
Econ Theory (2013) 53:181–211
DOI 10.1007/s00199-011-0685-8

RESEARCH ARTICLE

Equilibrium with limited-recourse collateralized loans

Rubén Poblete-Cazenave ·
Juan Pablo Torres-Martínez

Received: 8 June 2010 / Accepted: 12 December 2011 / Published online: 27 December 2011
© Springer-Verlag 2011

Abstract We address a general equilibrium model with limited-recourse collater-
alized loans and securitization of debts. Each borrower is required to pledge physical
collateral, and bankruptcy is filed against him if claims are not fully honored. More-
over, agents have a positive amount of wealth exempt from garnishment and, for at
least a fraction of them, commodities used as collateral are desirable. In this con-
text, equilibrium exists for any continuous garnishment rule and multiple types of
reimbursement mechanisms.
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1 Introduction

Financial default on secured debts was introduced into the general equilibrium model
with incomplete markets by Dubey et al. (1995) and Geanakoplos and Zame (1997,
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2002, 2007). In that model, the financial sector is linked to physical markets through
collateral constraints and, therefore, the scarcity of commodities induce endogenous
bounds on short-sales. This avoids discontinuities that may appear on individuals’
demands, when the dimension of the space of transfers becomes dependent on prices.
Thus, an equilibrium always exists.

On the other hand, with the aim of addressing bankruptcy in incomplete markets
with unsecured claims, Araujo and Páscoa (2002) propose two models with nomi-
nal assets. In the first model, borrowers are burdened by exogenous short-sales con-
straints, exemptions are proportional to the amount of wealth, and garnished resources
are distributed in proportion to the size of claims. In the second model, short-sales
constraints are avoided, garnished resources are distributed giving priority to smaller
claims, and exemptions asymptotically vanish as debt increases. In a related result,
Sabarwal (2003) addresses a finite horizon model with numeraire assets and default
dependent credit constraints. In case of bankruptcy, borrowers may have non-propor-
tional exemptions and garnished resources are distributed in proportion to the size of
claims. In these models, the garnishment of wealth induce non-convexities on choice
sets. Thus, equilibrium existence was proved in economies with a continuum of agents.

In this article, we include bankruptcy and the garnishment of wealth in a general
equilibrium framework with collateralized credit contracts and securitization of debts.
We replace credit limits of models with unsecured claims by collateral constraints.
Since resources obtained by the seizure of collateral guarantees are delivered to inves-
tors, there is no indetermination about the right over physical guarantees, avoiding any
risk regarding the repossession of collateral. The garnishment of resources in case of
bankruptcy follows exogenous rules that are only required to be continuous. Thus, we
allow for exemptions that are proportional to the amount of wealth, that decrease as
the amount of debt increases, or that protect poor defaulters (reducing the garnishment
to a lower percentage of their wealth). Reimbursement mechanisms are very general,
allowing the distribution of garnished resources to be proportional to the size of claims
or following a seniority criteria among securities. In this context, we prove equilibrium
existence under two key assumptions: the existence of positive exemptions in case of
bankruptcy and the desirability of collateral, which ensures that any utility level can be
attained through an increment in the consumption of commodities used as collateral.

Our economy is stochastic and has two-time periods. Commodities may be durable,
perishable, or may transform into other goods through time. There is a continuum of
agents which demand commodities, trade debt contracts, and invest in securities.

Debt contracts are limited-recourse loans backed by physical collateral guarantees.
Different to Geanakoplos and Zame (1997, 2002, 2007), we allow for the garnish-
ment of the individual’s wealth when promises are not fully paid. Each debtor knows
that a financial regulator—whose only objective is to ensure the well operation of
the bankruptcy law and the securitization processes—will file bankruptcy against him
when promises are not fully honored. Therefore, even when the value of collateral
guarantees is lower than the original claim, whole debts can be paid. For instance, an
agent pays his debts if the garnishable wealth is enough to cover his claims.

Loans associated to each type of debt contract are pooled and securitized into only
one asset. When promises associated to a debt contract are honored, debtors’ pay-
ments are distributed to holders of the associated security. In case of default on a debt
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contract, foreclosure occurs and resources obtained by the seizure of collateral guaran-
tees are distributed to investors. Also, bankruptcy is filed and investors are reimbursed
with the wealth obtained by garnishment. However, these resources may be insuffi-
cient to cover unpaid debts and, therefore, we assume that they are delivered following
a pre-fixed mechanism. For instance, we can allow agents to be reimbursed propor-
tionally to the size of claims. Alternatively, we can give priority to some securities
to receive garnished resources over others. Thus, investors on a senior security have
priority to be reimbursed, independent of the size of their claims.

Since security payments are endogenous, we concentrate our attention to non-trivial
equilibria, that is, equilibria where security payments are positive in at least one state
of nature. Indeed, as in Steinert and Torres-Martínez (2007), we can trivially prove
the existence of equilibrium when security payments are zero, as the economy can be
reduced to a pure spot market economy (assuming that debt contracts also have zero
prices).

As is usual in the literature regarding large economies, the existence of equilib-
rium is carried out using the existence of pure strategy Cournot-Nash equilibria in
non-convex generalized games. We construct games where each agent maximizes
his objective function by choosing bounded allocations, and abstract players choose
prices and security payments in a form such that market feasibility conditions hold. By
increasing the upper bounds on individuals’ allocations, we prove that any sequence
of Cournot-Nash equilibria converges to a non-trivial equilibrium of our economy.
However, to guarantee this last property, it is necessary to bound the individual’s allo-
cations associated with cluster points of the sequence of Cournot-Nash equilibria. In
the economy proposed by Sabarwal (2003), and in the first model in Araujo and Páscoa
(2002), this was done using exogenous short-sales constraints and the fact that, in any
cluster point, commodity and asset prices are strictly positive.1

In our context, we can prove that commodity and asset prices are strictly positive in
any cluster point of a sequence of Cournot-Nash equilibria. However, we do not have
short-sales constraints either exogenously imposed or endogenously induced by mar-
ket feasibility conditions. Therefore, we need to obtain upper bounds on debt positions
from budget sets constraints. For this reason, the most important step of our proof of
equilibrium existence is to ensure that, for any type of credit contract, the price of
collateral guarantees is greater than the amount of the loans. This is a consequence
of two assumptions: the desirability of commodities used as collateral and the existence
of minimal protection from excessive losses of wealth by confiscation.

As a byproduct of our analysis, we extend the result of equilibrium existence of
Geanakoplos and Zame (1997, 2002, 2007) to non-convex economies. Moreover, we
obtain a result of equilibrium existence in economies with unsecured debts and perish-
able commodities, where short-sales are linked to the amount of consumption to induce
endogenous debt constraints as a consequence of the scarcity of physical resources.

The remaining sections of the paper are organized as follows: in Sect. 2 we describe
some previous results related with our framework. In Sect. 3, we introduce our model.
Our results about equilibrium existence are stated in Sect. 4. In Sect. 5 we give exam-

1 With these properties, budget constraints induce natural upper bounds on consumption and investment
positions.
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ples of garnishment rules compatible with the framework. Extensions of our results
are discussed in Sect. 6. Finally, the proofs of our results are given in the appendixes.

2 Related literature

Our work constitutes a blend of two different frameworks previously addressed in the
literature of general equilibrium: economies with collateralized asset markets, as in
Dubey et al. (1995) or Geanakoplos and Zame (1997, 2002, 2007), and models that
include bankruptcy in markets with unsecured claims, as in Araujo and Páscoa (2002)
or Sabarwal (2003).

The model of mortgage loans of Dubey et al. (1995) and Geanakoplos and Zame
(1997, 2002, 2007) was the first to address collateralized debts into a general equi-
librium framework, allowing for heterogenous agents, aggregated uncertainty, and
default. This two-period seminal model gives rise to a growing theoretical literature.

In finite horizon models, Araujo et al. (2000) and Araujo et al. (2005) make exten-
sions to allow for endogenous collateral. Steinert and Torres-Martínez (2007) include
CLO markets, where some claims have priority over others to receive resources
obtained by the repossession of collateral guarantees. Allowing for asymmetric infor-
mation, Petrassi and Torres-Martínez (2008) analyze the role of collateral to reduce
arbitrage opportunities. In a recent paper, Kilenthong (2011) studies the effectiveness
of collateral as a risk sharing mechanism.

In the infinite horizon context, Araujo et al. (2002, 2011) prove equilibrium exis-
tence in collateralized asset markets without the need to impose transversality condi-
tions, debt constraints, or uniform impatient assumptions.2 In the context of Markovian
economies, the existence of stationary equilibrium in markets with secured debts was
proved by Kubler and Schmedders (2003). Also, Seghir and Torres-Martínez (2008)
prove that collateral allows the increase of credit opportunities in economies with
incomplete demographic participation.

In those models, the only payment enforcement mechanism is the seizure of collat-
eral guarantees. Therefore, each borrower makes strategic default and, hence, delivers
the minimum between the original promise and the associated collateral’s value. How-
ever, additional payment enforcement mechanisms may appear, for instance, in the
form of institutional reactions to a strong fall in the value of collateral guarantees. In
this context, Páscoa and Seghir (2009) prove that, when defaulters are punished by
harsh linear utility penalties, Ponzi schemes opportunities may appear, and equilibrium
with trade may cease to exist in infinite horizon economies. Even more, Ferreira and
Torres-Martínez (2010) show that if the value of the collateral suffers negative shocks,
then the percentage of unpaid resources recovered by additional payment enforcement
mechanisms decreases as well. There is also a positive theory of equilibrium existence
in infinite horizon collateralized asset markets when utility penalties for default are

2 In infinite horizon incomplete markets models without credit risk, transversality conditions (or portfo-
lio constraints) jointly with uniform impatient requirements are imposed to avoid Ponzi schemes. See for
instance, Kehoe and Levine (1993), Magill and Quinzii (1994, 1996), Hernandez and Santos (1996), Levine
and Zame (1996), Araujo et al. (1996), and Florenzano and Gourdel (1996).

123



Equilibrium with limited-recourse collateralized loans 185

allowed, as the results of Páscoa and Seghir (2009) and Martins-da-Rocha and Vailakis
(2011a,b).3

On the other hand, Araujo and Páscoa (2002) and Sabarwal (2003) address equi-
librium existence in two-period incomplete financial markets with perishable com-
modities. They assume that garnished resources are distributed in proportion to the
size of claims. Also, exogenous short-sales constraints or default dependent credit
constraints are imposed. In Araujo and Páscoa (2002), a proportion of agents’ wealth
is protected from expropriation in case of bankruptcy. Therefore, rich agents have
exemptions substantially larger than poor consumers. Alternatively, Sabarwal (2003)
allows poor agents to have a greater proportion of their wealth protected from gar-
nishment. In both models, individual endowments are uniformly bounded away from
zero and, therefore, exemptions are bounded away from zero too.

To avoid short-sales constraints, Araujo and Páscoa (2002) propose an alternative
model where garnishable resources increase as unpaid debt grows. Thus, individuals’
exemptions are asymptotically zero as debts increase. Also, they assume that claims
are reimbursed through a specific mechanism which gives priority to smaller claims to
receive the whole payment (independently of the asset). However, strong assumptions
are imposed over endowments and preferences: the utility function of each agent is
separable, continuously differentiable, and satisfies the Inada conditions; the family
of utility functions in the economy is equicontinuous; the family of partial derivatives
of utility functions is equicontinuous; and initial endowments are uniformly bounded
away from zero.

The existence of collateral guarantees allow us to overcome exogenous short-sales
constraints without the need to impose these strong assumptions on agents’ charac-
teristics. Also, although they are required to be continuous, our garnishment rules
are quite general. Finally, we allow reimbursement mechanisms that not only include
proportional distribution, but also seniority structures among securities.

3 The model

We consider an economy with two periods t ∈ {0, 1}. There is no uncertainty at t = 0
and one state of nature in a finite set S is reached at t = 1. Let S∗ = {0} ∪ S be the
set of states of nature in the economy, where s = 0 denotes the only state of nature at
t = 0.

At each state s ∈ S∗, there is a finite set L of perfect divisible commodities, which
may be durable between periods. That is, for any s ∈ S, there is a linear function
Ys : R

L+ → R
L+ that represents an exogenous technology transforming bundles that

are consumed at the first period into quantities of contingent commodities at state of
nature s. Let p = (ps; s ∈ S∗) be the vector of commodity prices in the economy,
where ps = (ps,�; � ∈ L) ∈ R

L+ are the commodity prices at s ∈ S∗.
There is a measure space of consumers, H = ([0, 1], B, μ), where B is the

Borel σ -algebra of [0, 1] and μ the Lebesgue measure. Each h ∈ [0, 1] maximizes

3 These results are also extensions of works on default and punishment with unsecured debts (see Dubey
et al. 1989, 2005; Zame 1993; Araujo et al. 1998).
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his utility function uh : R
L×S∗
+ → R using physical and financial markets to smooth

consumption. Let wh := (wh
s ; s ∈ S∗) be the physical endowment of agent h, where

wh
s = (wh

s,�; � ∈ L) ∈ R
L++ is the bundle that he receives at s ∈ S∗.

There is a finite set J of collateralized debt contracts which are available for trade
at the first period. When a borrower issues one unit of j ∈ J , he receives a quantity
of resources π j and pledges a physical collateral C j ∈ R

L+ \ {0}. The real promises
associated to one unit of debt contract j ∈ J are given by (As, j ; s ∈ S) ∈ R

L×S+ . If an
issuer of a debt contract does not honor his promises at some state of nature s ∈ S, the
market will seize the associated collateral guarantee and may also implement addi-
tional payment enforcement mechanisms. We denote by π = (π j ; j ∈ J ) the unitary
prices of debt contracts.

Each debt contract j ∈ J is securitized into only one asset. That is, payments
made by issuers of a contract j ∈ J are pooled and delivered to holders of an asso-
ciated security, which is also denoted by j and has unitary price π j .4 Let (θh, ϕh) =
((θh

j , ϕ
h
j ); j ∈ J ) ∈ R

J+ × R
J+ be agent h’s financial positions in securities and debt

contracts at the first period. We denote by xh = (xh
s ; s ∈ S∗) ∈ R

L×S∗
+ the non-collat-

eralized consumption plan of an agent h. Thus, at the first period, the total consumption
of agent h is equal to xh

0 +∑
j∈J C jϕ

h
j ∈ R

L+.

Since collateral guarantees are seized in case of default, an agent h that borrows ϕh
j

units of debt contract j ∈ J delivers, at any state s ∈ S, at least an amount Ds, j (ps)ϕ
h
j

of resources, where Ds, j (ps) = min{ps As, j , psYs(C j )}. In addition, if agent h debts
are not fully paid, the financial regulator files bankruptcy against him and, therefore,
his wealth can be garnished.

However, we assume that the law protect agents from excessive losses by
wealth confiscation. More precisely, let zh

0 = (xh
0 , θh, ϕh) be the consumption

and financial decisions of an agent h at the first period. Then, given ps �= 0, the
amount of resources that h has exempt from garnishment at s ∈ S is given by
�s
(

ps, w
h
s ,Ws(ps, Rs, w

h
s , zh

0)
)
, where �s : (RL+ \ {0})× R

L++ × R++ → R++ is
a continuous function, Rs = (Rs, j ; j ∈ J ) are the unitary security payments at the
state of nature s, and

Ws(ps, Rs, w
h
s , zh

0) = psw
h
s + psYs(xh

0 ) +
∑

j∈J

[psYs(C j ) − ps As, j ]+ϕh
j

+
∑

j∈J

Rs, jθ
h
j ,

is the wealth of agent h after the payment or the foreclosure of his debts, where
[y]+ := max{y, 0}. Therefore, the amount of wealth that agent h ∈ [0, 1] loses when
bankruptcy is filed at s ∈ S is given by the garnishment rule �s(ps, Rs, w

h
s , zh

0) =
[Ws(ps, Rs, w

h
s , zh

0) − �s
(

ps, w
h
s ,Ws(ps, Rs, w

h
s , zh

0)
)]+

.

4 Making a normalization of portfolios and security payments, it is always possible to identify those prices.
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As a consequence of monotonicity of preferences, at any s ∈ S associated with
original promises

∑
j∈J ps As, jϕ

h
j , agent h pays the following amount of resources,

Ms(ps, Rs, w
h
s , zh

0) = min

⎧
⎨

⎩

∑

j∈J

ps As, jϕ
h
j ,
∑

j∈J

Ds, j (ps)ϕ
h
j + �s(ps, Rs, w

h
s , zh

0)

⎫
⎬

⎭
.

It follows that bankruptcy is filed against agent h ∈ [0, 1] at state of nature s ∈ S if
and only if his remaining debt after the payment or foreclosure of debts,

	s(ps, ϕ
h) :=

∑

j∈J

[ps As, j − psYs(C j )]+ϕh
j ,

is greater than the amount of garnishable resources �s(ps, Rs, w
h
s , zh

0).5

In our model, the amount of resources exempt from garnishment is always positive.
That is, �s(ps, w

h
s ,Ws(ps, Rs, w

h
s , zh

0)) > 0, for any s ∈ S and ps �= 0. This require-
ment is compatible with a variety of specifications for (�s; s ∈ S). For instance, we
can allow for structures where exempt resources are described as a non-linear function
of individuals’ wealth (see Sect. 5). Alternatively, we can make the assumption that
exemptions are constant, or dependent on the amount of endowments, or are propor-
tional to the amount of wealth. Actually, given ps �= 0, if �s(ps, w

h
s ,Ws) = psηs ,

the bundle ηs � 0 determines a threshold under which it is not allowed to garnish
resources from any agent. When �s(ps, w

h
s ,Ws) = λs psw

h
s , the exemption from

garnishment is equal to the market value of a percentage λs ∈ (0, 1] of individual
endowments wh

s � 0. Finally, exemptions are proportional to the amount of wealth
when �s(ps, w

h
s ,Ws) = λsWs , with λs ∈ (0, 1] and Ws > 0.

Since in our two-period model the only enforcement in case of bankruptcy is the
garnished of the non-exempt wealth, agents do not care about the distribution of rates of
default among different promises. Indeed, each borrower only decides between honor
his whole debts or file for bankruptcy. For this reason, we assume that in the case of
bankruptcy of an agent h at state of nature s, his garnished resources are distributed to
the investors of the associated security through delivery rates (βh

s, j ; j ∈ J ) ∈ [0, 1]J

that satisfy,

∑

j∈J

βh
s, j [ps As, j − psYs(C j )]+ϕh

j = �s(ps, Rs, w
h
s , zh

0),

where βh
s, j is the proportion of the unpaid claim on debt contract j that is honored by

the distribution of agent’ h non-exempt wealth.6

5 This comes from the fact that Ms (ps , Rs , w
h
s , zh

0 ) = ∑
j∈J Ds, j (ps )ϕ

h
j + min{	s (ps , ϕ

h),

�s (ps , Rs , w
h
s , zh

0 )}.
6 Note that, if we allow for financial participation constraints (in a model with more than two periods) or
we impose any kind of non-economic utility penalty for default, then agents may have incentives to decide
to honor some promises instead of others. As we highlight in our concluding remarks, this extensions can
be matter of future research.
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Delivery rates are restricted by the reimbursement mechanism of the economy that
determines the rules in which confiscated resources are distributed. More precisely, we
assume that, for any (h, s) ∈ [0, 1] × S, delivery rates (βh

s, j ; j ∈ J ) belong to a con-

nected set Rs ⊂ [0, 1]J , which contains vectors {0, e}, where e = (1, . . . , 1) ∈ R
J .7

The collection of sets (Rs; s ∈ S), which determine restrictions over delivery rates,
constitute the reimbursement mechanism of the economy. For instance, if

Rs = {(β j , j ∈ J ) ∈ [0, 1]J : β j = β j ′ , ∀( j, j ′) ∈ J × J },

then garnished resources at the state of nature s are distributed to investors propor-
tional to the size of their claims. Alternatively, given an order on the set of securities,
{ j (1), . . . , j (#J )}, if

Rs = {(β j , j ∈ J ) ∈ [0, 1]J :
∃m, (β j (m′) = 1, ∀m′ < m) ∧ (β j (m′) = 0, ∀m′ > m)},

then claims of a security j (r) are fully honored before any portion of garnished
resources is delivered to securities ( j (r ′); r ′ > r). Thus, we have a seniority structure
among securities. Note that, since markets are anonymous and debts are pooled, we
cannot determine a seniority structure among investors.

In equilibrium, the quantity of resources that are invested in a security will match
the quantity of resources borrowed. In addition, the distribution of debtors’ payments
and garnished resources will determine unitary security payments Rs = (Rs, j ; j ∈ J )

at any s ∈ S. Thus, an agent h ∈ [0, 1] that buys θh
j units of security j ∈ J will receive,

at each s ∈ S, an amount of resources Rs, jθ
h
j .8

Given (p, π, R) ∈ V := R
L×S∗
+ × R

J+ × R
S×J+ , each h ∈ [0, 1] maximizes his

utility function by choosing consumption and financial positions within his budget set
Bh(p, π, R), defined as the collection of plans (xh, θh, ϕh) ∈ E := R

L×S∗
+ ×R

J+×R
J+

such that,

p0(xh
0 − wh

0 ) +
∑

j∈J

π j (θ
h
j − ϕh

j ) + p0

∑

j∈J

C jϕ
h
j ≤ 0;

7 These properties ensure that, when an agent h files for bankruptcy at s, there are always delivery rates
that allow the distribution of the total amount of garnished resources. Actually, as f ((β j ; j ∈ J )) =
∑

j∈J β j [ps As, j − psYs (C j )]+ϕh
j is continuous, f (Rs ) = [0, 	s (ps , ϕ

h)]. Therefore, as in case of bank-

ruptcy, �s (ps , Rs , w
h
0 , zh

0 ) ∈ [0, 	s (ps , ϕ
h)], there is always a vector (βh

s, j ; j ∈ J ) such that f ((βh
s, j ; j ∈

J )) = �s (ps , Rs , w
h
0 , zh

0 ).
8 As we remark above, markets are anonymous and, therefore, investors do not give resources directly to
other agents. For this reason, an agent that invests in a security j will receive a maximal unitary payment, i.e.,
Rs, j = ps As, j , if and only if the reimbursement mechanism of the economy assures that the non-exempt
wealth of any issuer of debt j covers his commitments on j , independently of the amount of other financial
commitments.
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ps(xh
s − wh

s ) ≤ psYs

⎛

⎝xh
0 +

∑

j∈J

C jϕ
h
j

⎞

⎠+
∑

j∈J

Rs, jθ
h
j − Ms(ps, Rs, w

h
s , zh

0).

We denote our economy with limited-recourse collateralized loans by

E = E
(

S∗, L , (Ys)s∈S, J, (As, j , C j )(s, j)∈S×J , (�s,Rs)s∈S,H, (uh, wh)h∈[0,1]
)

.

Definition 1 A vector
[
(p, π, R);

(
(xh, θ

h
, ϕh); h ∈ [0, 1]

)]
∈ V×E

[0,1] is an equi-

librium of E if the following conditions hold,

1. For each h ∈ [0, 1],

uh

⎛

⎝xh
0 +

∑

j∈J

C jϕ
h
j ,
(

xh
s ; s ∈ S

)
⎞

⎠

= max
(xh ,θh ,ϕh)∈Bh(p,π,R)

uh

⎛

⎝xh
0 +

∑

j∈J

C jϕ
h
j ,
(

xh
s ; s ∈ S

)
⎞

⎠ .

2. Physical and financial markets clear. That is,

∫

[0,1]
xh

0 dh +
∑

j∈J

C j

∫

[0,1]
ϕh

j dh =
∫

[0,1]
wh

0 dh;

∫

[0,1]
xh

s dh =
∫

[0,1]
wh

s dh + Ys

⎛

⎜
⎝

∫

[0,1]
xh

0 dh +
∑

j∈J

C j

∫

[0,1]
ϕh

j dh

⎞

⎟
⎠ , ∀s ∈ S;

∫

[0,1]
θ

h
j dh =

∫

[0,1]
ϕh

j dh, ∀ j ∈ J.

3. For any pair (s, j) × S × J , security payments satisfy Rs, j ≥ Ds, j (ps) and

Rs, j

∫

[0,1]
θ

h
j dh = Ds, j (ps)

∫

[0,1]
ϕh

j dh + [ps As, j − psYs(C j )]+
∫

[0,1]
β

h
s, jϕ

h
j dh,

where, for any (h, s) ∈ [0, 1] × S, (β
h
s, j ; j ∈ J ) ∈ Rs and

∑

j∈J

β
h
s, j

[
ps As, j − psYs(C j )

]+
ϕh

j = min
{
	s(ps, ϕ

h),�s(ps, Rs, w
h
s , zh

0)
}

.

It follows that, for any security j ∈ J , equilibrium unitary payments (Rs, j ; s ∈ S)

are non-trivial provided that Ds′, j (ps) > 0, for some s′ ∈ S. When commodity prices
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are strictly positive, the latter condition trivially holds if there is a state of nature at
which both As, j �= 0 and Ys(C j ) �= 0. Therefore, we can argue that non-trivial col-
lateral guarantees avoid over-pessimistic expectations about financial returns, a result
previously highlighted by Steinert and Torres-Martínez (2007, Section 3).

4 Equilibrium existence

The following result ensures that a non-trivial equilibrium exists, provided that col-
lateral guarantees do not fully depreciate at all states of nature.

Theorem 1 Suppose that the following assumptions hold,

(A1) For each h ∈ [0, 1], uh : R
L×S∗
+ → R is continuous and strictly increasing.

(A2) The function φ : [0, 1] → U(RL×S∗
+ ) × R

L×S∗
+ defined by φ(h) = (uh, wh) is

measurable.9

(A3) There is w ∈ R
L×S∗
++ such that, for each h ∈ [0, 1], 0 � wh ≤ w.

(A4) For each s ∈ S, �s : (RL+ \ {0})× R
L++ × R++ → R++ is continuous.

(A5) For each s ∈ S, Rs ⊂ [0, 1]J is compact and connected, with {0, e} ⊂ Rs .
(A6) Given j ∈ J , there is s ∈ S such that min{∥∥As, j

∥
∥

�
,
∥
∥Ys(C j )

∥
∥

�
} > 0.10

(A7) For any j ∈ J , there is a set Hj ⊆ [0, 1] with positive measure, such that,

lim
σ→+∞ uh(y0 + σ C j , (ys; s ∈ S)) > uh(z),

for any h ∈ Hj , and for each ((ys; s ∈ S∗), z) ∈ R
L×S∗
++ × R

L×S∗
+ .

Then, there exists an equilibrium for our economy. Also, we can ensure that prices are
strictly positive and unitary security payments are non-trivial.

We impose Assumptions (A1)–(A5) to prove equilibrium existence using large
non-convex generalized games. Particularly, (A3)–(A5) help us to prove the lower-
hemicontinuity of budget set correspondences, a necessary requirement to ensure the
existence of Cournot–Nash equilibrium in our games. However, these Cournot–Nash
equilibria are not necessarily equilibria of our economy, because individual alloca-
tions are exogenously bounded in the games (a requirement that our theorem does
not impose). Thus, as is usual in equilibrium theory for large economies, we increase
these upper bounds on allocations in order to obtain an equilibrium for our economy
as a cluster point of a sequence of Cournot–Nash equilibria.

To do this asymptotic argument, we prove that equilibrium allocations of general-
ized games are uniformly bounded.11 Since individual endowments have an uniform
upper bound [Assumption (A3)], we obtain the former property from budget feasibil-
ity, because in any cluster point of commodity prices, security prices and the value

9 The set U(RL×S∗
+ ) denotes the collection of functions u : R

L×S∗
+ → R endowed with the sup norm

topology.
10 The symbol ‖ · ‖� denotes the norm of the sum.
11 With this property we can apply the multidimensional Fatou’s lemma (see Hildenbrand 1974, p. 69) in
order to obtain a cluster point of the sequence of Cournot–Nash equilibria.
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of the joint operation of taking a loan and pledging the collateral bundle are strictly
positive. In fact, commodity prices are positive by the strict monotonicity of utility
functions [Assumption (A1)]. This implies that security payments are non-trivial, as a
consequence of Assumption (A6). Consequently, security prices are strictly positive.
To prove that the value of collateral is greater than the amount of resources borrowed,
we assume that (i) for at least a fraction of agents departing from an interior plan
of consumption, any utility level can be attained, provided that the consumption of
commodities used as collateral increases [Assumption (A7)]; and (ii) agents have an
exemption in case of bankruptcy [Assumption (A4)]. Indeed, if there is an optimal plan
for an agent h ∈ Hj at prices (p, π, R), then p0C j − π j > 0. In another case, agent
h may use credit on asset j to consume at the first period the bundle wh

0 + σC j � 0.
Since exemptions are positive [Assumption (A4)], independently of the size of σ , there
are interior bundles (γs; s ∈ S) � 0 which can be consumed tomorrow.12 Thus, it
follows from Assumption (A7) that there is no optimal solution for agent’s h problem,
a contradiction (see Lemma 6 in Appendix A).

In Geanakoplos and Zame (2002), where there is a finite number of agents, bounds
on short-sales can be obtained from the markets’ feasibility conditions. However, in
our framework there is a continuum of agents and, therefore, to prove equilibrium, we
obtain those bounds from budget constraints. For this reason, it is essential to ensure
that borrowers receive less resources than those necessary to buy collateral guarantees,
i.e., (p0C j − π j ; j ∈ J ) � 0.

Since functions (�s; s ∈ S) are only required to be continuous and strictly positive,
as a particular case of Theorem 1, we have an extension of Dubey et al. (1995) and
Geanakoplos and Zame (1997, 2002, 2007) to allow for non-convex preferences.
Actually, for any s ∈ S, assume that �s(ps, w

h
s ,Ws) = Ws , for each (ps,Ws) ∈(

R
L+ \ {0}) × R++. Then, the total amount on individuals’ wealth is exempt from

garnishment and, hence, the only payment enforcement mechanism is the seizure of
collateral guarantees. In this particular case, equilibrium exists even without Assump-
tion (A7). Indeed, in the absence of garnishment of wealth, the strictly monotonicity of
preferences it is sufficient to ensure that the collateral’s cost is always greater than the
amount of borrowing (otherwise, any agent can improve his utility level by increasing
the amount of borrowed resources).

On the other hand, Assumption (A6) is essential to prove the non-triviality of secu-
rity payments. Thus, we cannot have, as a particular case of Theorem 1, a result of
equilibrium existence for a model with unsecured debts and perishable commodities,
i.e., we cannot assume that (Ys; s ∈ S) ≡ 0. However, if the reimbursement of gar-
nished resources is proportional to the size of claims and exemptions are bounded
from above by a proportion of individuals’ wealth, we can ensure that a non-trivial
equilibrium exists, even when commodities are perishable.

12 In this context, agent h only takes financial positions on a debt contract j . Also, when the value of
depreciated collateral requirements is greater than or equal to the amount of promises, he pays his debt and
consumes his state-contingent endowment. Alternatively, he gives default and bankruptcy is filed against
him. However, in this case, exemptions are strictly positive and only depend on prices, state-contingent
endowments, and the amount of wealth, which is independent of σ . Thus, it is sufficient to choose, at any
s ∈ S, a bundle γs � 0 cheaper than both the initial endowment and the referred exemption.
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Theorem 2 Under Assumptions (A1)–(A4) and (A7), suppose that,

(B1) There is w ∈ R
L×S∗
++ such that, for each h ∈ [0, 1], wh ≥ w.

(B2) For each s ∈ S, Rs = {(β j , j ∈ J ) ∈ [0, 1]J : β j = β j ′ , ∀( j, j ′) ∈ J × J }.
(B3) Debt contracts are non-trivial, i.e., for any j ∈ J , (As, j ; s ∈ S) �= 0.
(B4) For any s ∈ S, there exists κs ∈ (0, 1) such that, �s(ps, w

h
s ,Ws) ≤ κsWs .

Then, there is an equilibrium for our economy, with positive prices and non-trivial
security payments.

This result allows us to contribute to the literature of bankruptcy in financial mar-
kets with unsecured debts. Indeed, if commodities are perfectly perishable between
periods, then Theorem 2 guarantees that equilibrium exists in a two-period economy
with unsecured debts, where garnished resources are distributed proportional to the
size of claims. In case of bankruptcy, garnished rules are only required to be continuous
and bounded from below by a positive proportion of individual’s wealth. However,
this result depends on a requirement that links the amount of debt with the amount of
consumption (since, in this context, collateral constraints do not determine guarantees
to investors, but still associate debts with consumption).13 Although this link between
consumption and debt appears as artificial, it can be viewed as a reduced form of a
regulatory mechanism that controls the amount of speculative debt, as it associates
borrowed resources to the real sector.

In a recent result, Ferreira and Torres-Martínez (2010) shows that, in infinite horizon
convex economies, payment enforcement mechanisms may have low effectiveness in
capturing resources over collateral values. In our two-period economy, which is non-
convex, a similar situation may happen. That is, the capacity of the garnishment of
wealth to obtain resources over collateral values may be compromised, particularly
when collateral guarantees are low. We illustrate this possibility through the following
example.

Example Suppose that Assumptions (A1)–(A7) hold and that there are two commod-
ities in the economy. One is perishable (� = 1), while the other is durable (� = 2).
Debt contracts have promises in units of the perishable commodity and have collateral
requirements in units of the durable commodity: ((As, j ; s ∈ S); C j ) = (((ds, j , 0); s ∈
S); (0, α j )), for any j ∈ J . Also, for any h ∈ [0, 1],

uh

⎛

⎝xh
0 +

∑

j∈J

C jϕ
h
j ,
(

xh
s ; s ∈ S

)
⎞

⎠ = ah
0 ·
⎛

⎝xh
0 +

∑

j∈J

C jϕ
h
j

⎞

⎠+
∑

s∈S

ah
s · xh

s ,

where vectors (ah
s ; s ∈ S∗) � 0.

Assume that there is an equilibrium
[
(p, π, R);

(
(xh, θ

h
, ϕh); h ∈ [0, 1]

)]
in

which at least one agent h0 ∈ [0, 1] has xh0 � 0 and ϕh0 = 0.
Since the set {(xh0 , θh0) ∈ R

L×S∗
+ × R

J+ : (xh0 , θh0 , 0) ∈ Bh(p, π, R)} is convex
and satisfies the Slater condition, it follows from the Kuhn–Tucker Theorem that there

13 As in Theorem 1, Assumption (A7) allows us to determine endogenous bounds on short-sales.
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are multipliers (γs; s ∈ S∗) � 0 such that, for any (s, �) ∈ S × L we have

(
γ0 p0,1; γ0 p0,2; γs ps,�

) =
(

ah0
0,1; ah0

0,2 +
∑

s∈S

γs ps,2; ah0
s,�

)

;

γ0π j ≥
∑

s∈S

γs Rs, j , ∀ j ∈ J.

Then, as in equilibrium commodity prices are strictly positive,

0 <
p0C j − π j

p0,1
= p0,2α j − π j

p0,1
≤ ah0

0,2

ah0
0,1

α j +
∑

s∈S

ah0
s,2

ah0
0,1

α j

−
∑

s∈S

ah0
s,2

ah0
0,1 ps,2

Rs, j , ∀ j ∈ J.

It follows that the mean payment made to investors of the security j at state of
nature s is lower than a fixed proportion of the value of collateral requirements at s,

Rs, j <
1

min
s′∈S

ah0
s′,2

(

ah0
0,2 +

∑

s′∈S

ah0
s′,2

)

ps,2α j .

Thus, the mean rate of default on asset j at state of nature s, denoted by τs, j , satisfies,

τs, j = ps,1ds,1 − Rs, j

ps,1ds,1

≥ ϒ(α j ) :=
⎡

⎢
⎣1 − 1

min
s′∈S

ah0
s′,2

(

ah0
0,2 +

∑

s′∈S

ah0
s′,2

)
ah0

s,2

ah0
s,1ds, j

α j

⎤

⎥
⎦

+

.

Since ϒ(α j ) converges to one as α j goes to zero, we conclude that the bankruptcy
law has a limited effectiveness to reduce the mean rate of default when collateral
requirements are low.

5 On garnishment rules

In our model, at any state of nature s ∈ S, for each vector of commodity prices ps �= 0,
the continuous garnishment rule �s satisfies

�s(ps, Rs, w
h
s , zh

0)=
[

1 − �s
(

ps, w
h
s ,Ws(ps, Rs, w

h
s , zh

0

)

Ws(ps, Rs, wh
s , zh

0)

]+
Ws(ps, Rs, w

h
s , zh

0).
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As exemptions are strictly positive, we can rewrite garnishment rules as a (var-
iable) proportion of the amount of debt. Indeed, for any s ∈ S, there is a func-
tion ζs : (RL+ \ {0}) × R

L++ × R++ → [0, 1) such that, �s(ps, Rs, w
h
s , zh

0) =
ζs
(

ps, w
h
s ,Ws(ps, Rs, w

h
s , zh

0)
) Ws(ps, Rs, w

h
s , zh

0).

Note that functions (ζs; s ∈ S) are only required to be continuous, non-negative,
and lower than one. Thus, we can have a variety of garnishment rules compatible with
equilibrium existence. In particular, non-linear rules as those imposed in Araujo and
Páscoa (2002).

Indeed, suppose that for some s ∈ S, the proportion ζs(ps, w
h
s ,Ws) is equal to

(

1 − B
([

	s(ps, ϕ
h) − Ad(ps, w

h
s ,Ws)Ws

]+))Ad(ps, w
h
s ,Ws)

+ Au(ps, w
h
s ,Ws)B

([
	s(ps, ϕ

h) − Ad(ps, w
h
s ,Ws)Ws

]+)
,

where Ws = Ws(ps, Rs, w
h
s , zh

0) and functions Au,Ad : (RL+\{0})×R
L++×R++ →

[0, 1] and B : R+ → [0, 1) are continuous and satisfy B(0) = 0 ≤ Ad(ps, w
h
s ,Ws) <

Au(ps, w
h
s ,Ws) ≤ 1.

With this specification, if the amount of unpaid debts 	s(ps, ϕ
h) is lower than or

equal toAd(ps, w
h
s ,Ws)Ws , then the amount of resources that can be garnished in case

of bankruptcy is equal to a proportion Ad(ps, w
h
s ,Ws) of Ws(ps, Rs, w

h
s , zh

0). That
is, when debts are lower than Ad(ps, w

h
s ,Ws)Ws , garnished resources are sufficient

to cover the whole amount of unpaid promises. Moreover, if the amount of unpaid debt
increases, then the quantity of garnishable resources may increase asymptotically to a
proportion Au(ps, w

h
s ,Ws) of the available wealth Ws(ps, Rs, w

h
s , zh

0). Thus, when
Au ≡ 1, we have, as in Araujo and Páscoa (2002), non-linear garnishment rules that
make exemptions go to zero as the amount of debt increases.

6 Concluding remarks

We introduce the possibility of bankruptcy into the general equilibrium model with
collateralized credit markets of Dubey et al. (1995) and Geanakoplos and Zame (1997,
2002, 2007). In case of default, borrowers may lose more than collateral guarantees,
as market regulations allow lenders to be reimbursed by the garnishment of debtors’
wealth. Allowing for a continuum of agents, we show that equilibrium always exists
in the economy, even when the garnishment of resources over collateral reposses-
sion could induce non-convexities on individuals’ problems. The key assumptions
of our model are the existence of positive exemptions in case of bankruptcy and the
desirability of commodities used as collateral.

As a matter of future research, it might be interesting to extend our model to
allow for more than two periods (or infinite horizon), to introduce additional payment
enforcements over the garnishment of wealth, to include financial collaterals, or more
complex securitization structures (as in Steinert and Torres-Martínez 2007). However,
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we want to highlight two natural questions that may be studied departing from our
model.

First, it could be interesting to analyze the performance of the bankruptcy law
(through the garnishment of wealth) in capturing resources over collateral values rel-
ative to another payment enforcement mechanisms, as those given by restrictions on
future credit (see for instance Sabarwal 2003) or non-economic punishments that affect
utility levels (as in Dubey et al. 1989, 2005). Second, although in our model garnished
wealth can be reimbursed to lenders following different mechanisms, we could extend
our results to price-dependent rules of distribution, for instance, to determine priorities
over claims as a function of its sizes, as in Araujo and Páscoa (2002).

Appendix A: Proof of Theorem 1

To prove the existence of equilibrium, we introduce non-convex generalized games.
In these games, there are fictitious players that choose prices and security payments,
and each consumer maximizes his utility function, but is restricted to choose bounded
budgetary feasible plans. First, we prove that those generalized games have equilibria.
Second, by making upper bounds on admissible plans go to infinity, we find an equi-
librium of our economy as a cluster point of the sequence of equilibria in generalized
games.

For any n ∈ N consider the set

En = {
(x, θ, ϕ) ∈ E : (xs,�, θ j , ϕ j ) ≤ (αs,�(n), n, n), ∀(s, �, j) ∈ S∗ × L × J

}
,

where

αs,� =

⎧
⎪⎨

⎪⎩

n if s = 0;
n + Ys,�

(

(n, . . . , n) + n
∑

j∈J
C j

)

+ 2n A#J if s �= 0.

and A := max
(s, j)∈S×J

∑

�∈L
As, j,�. Also, define

�0 =
{

z ∈ R
L+ × R

J+ :
∑

r∈L∪J

zr = 1

}

,

�1 =
{

z ∈ R
L+ :
∑

r∈L

zr = 1

}

.

Given s ∈ S, we rewrite the unitary payments of a security j ∈ J at this state
of nature as Rs, j = Ns, j + Ds, j (ps), where Ns, j ∈ [0, A] denotes the contingent
security payment over collateral values. Let N = (Ns, j ; (s, j) ∈ S × J ).
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The generalized game Gn Given n ∈ N, let Gn be a generalized game with a con-
tinuum of players, where only a finite number of them are atomic. In this game, the
set of players is described as follows,
(a) Given a vector of prices and payments (p, π, N ) ∈ V̂ := �0 × �S

1 × [0, A]S×J ,
each consumer h ∈ [0, 1] maximizes the function vh

n : V̂ × En ×∏
s∈S Rs → R,

vh
n ((p, π, N ), zh

n , βh
n )

= uh

⎛

⎝xh
n,0 +

∑

j∈J

C jϕ
h
n, j ,

(
xh

n,s; s ∈ S
)
⎞

⎠−
∑

s∈S

�s((p, π, N ), zh
n , βh

n )

by choosing a plan

(zh
n , βh

n ) =
(
(xh

n , θh
n , ϕh

n ), (βh
n,s, j ; j ∈ J )s∈S

)
∈ Bh

n (p, π, N ) ×
∏

s∈S

Rs,

where �s : V̂ × En × ∏
s∈S Rs → R+ is continuous, with �s((p, π, N ), zh

n , βh
n )

given by

⎛

⎝
∑

j∈J

βh
n,s, j

[
ps As, j − psYs(C j )

]+
ϕh

n, j

− min
{
	s(ps, ϕ

h
n, j ),�s(ps, Ns + Ds(ps), w

h
0 , zh

n,0)
}
⎞

⎠

2

,

and Bh
n (p, π, N ) := Bh (p, π, (Ns + Ds(ps))s∈S)

⋂
En .

Let τ : En × ∏
s∈S Rs → En × [0, n]S×J be the continuous function given by

τ((x, θ, ϕ), β) = ((x, θ, ϕ), β �ϕ), where β �ϕ = (βs, jϕ j ; (s, j) ∈ S × J ). Denote
by Fn the set of action profiles for players h ∈ [0, 1], that is, the set of functions
f : [0, 1] → En ×∏

s∈S Rs .
In addition to consumers h ∈ [0, 1], in the generalized game Gn there are players

that take messages m ∈ Messn about the actions taken by the consumers as given,
where

Messn =

⎧
⎪⎨

⎪⎩

∫

[0,1]
τ( f (h)) dh : ( f ∈ Fn) ∧ (τ ◦ f is measurable)

⎫
⎪⎬

⎪⎭
.

(b) Given m = ∫
[0,1]((xh

n , θh
n , ϕh

n ), βh
n � ϕh

n ) dh ∈ Messn , there exists a player a0 that
chooses a vector of prices (p0, π) ∈ �0, in order to maximize the function

p0

∫

[0,1]

⎛

⎝xh
n,0 +

∑

j∈J

C jϕ
h
n, j − wh

0

⎞

⎠ dh +
∑

j∈J

π j

∫

[0,1]

(
θh

n, j − ϕh
n, j

)
dh.
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(c) Given m = ∫
[0,1]((xh

n , θh
n , ϕh

n ), βh
n � ϕh

n ) dh ∈ Messn , for any s ∈ S, there is a
player as that chooses a vector of prices ps ∈ �1, in order to maximize the function

ps

∫

[0,1]

⎛

⎝xh
n,s − wh

s − Ys

⎛

⎝xh
n,0 +

∑

j∈J

C jϕ
h
n, j

⎞

⎠

⎞

⎠ dh.

(d) For each pair (s, j) ∈ S × J , there exists a player cs, j such that, given (m, ps) ∈
Messn × �1, he chooses Ns, j ∈ [0, A] in order to maximize the function

−
⎛

⎜
⎝Ns, j

∫

[0,1]
ϕh

n, j dh − [ps As, j − psYs(C j )]+
∫

[0,1]
βh

n,s, jϕ
h
n, j dh

⎞

⎟
⎠

2

,

where m = ∫
[0,1]((xh

n , θh
n , ϕh

n ), βh
n � ϕh

n ) dh.

Definition 2 A Cournot–Nash equilibrium for the game Gn is given by a plan of
strategies

((
(pn

0, πn), pn
s , N

n
s, j

)

(s, j)∈S×J
;
(

xh
n, θ

h
n, ϕh

n, β
h
n

)

h∈[0,1]

)

∈ V̂

×
(

En

∏

s∈S

Rs

)[0,1]
,

jointly with a message m ∈ Messn such that, any player maximizes his objec-
tive function given m and the strategies chosen by the other players, where m =
∫
[0,1]((xh

n, θ
h
n, ϕh

n), β
h
n � ϕh

n) dh.

Lemma 1 Under Assumptions (A1)–(A5), there exists n∗ ∈ N such that, for any
n > n∗, there is a Cournot–Nash equilibrium for Gn.

Proof In our game, a Cournot–Nash equilibrium is given as a consequence of The-
orem 1 in Riascos and Torres-Martínez (2010) (see also Theorem 2.1 in Balder
1999).14 The only requirement of this theorem that does not follow from direct ver-
ification is the lower-hemicontinuity of the correspondences of admissible strategies
�h

n (p, π, N ) = Bh
n (p, π, N ) ×∏

s∈S Rs , with h ∈ [0, 1]. However, as
∏

s∈S Rs is
fixed and Bh

n (p, π, N ) is independent of the choice of βh
n , it is sufficient to prove that

(Bh
n ; h ∈ [0, 1]) are lower-hemicontinuous correspondences.
Given h ∈ [0, 1], consider the correspondence Ḃh

n that associates to each
(p, π, N ) ∈ V̂ the collection of plans (xh

n , θh
n , ϕh

n ) ∈ En that satisfy state-contingent
constraints of Bh

n (p, π, N ) as strict inequalities. It follows from Assumption (A3)

14 As an alternative approach to prove the existence of a Cournot–Nash equilibrium, we can use a purifi-
cation of mixed strategy equilibria as in Balder (1999). This technique was used by Araujo et al. (2000),
Araujo and Páscoa (2002), and Araujo et al. (2005).
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that Ḃh
n has non-empty values. Also, since the constraints that define Ḃh

n (p, π, N ) are
given by inequalities that only include continuous functions, the correspondence Ḃh

n
has an open graph. Therefore, for any h ∈ [0, 1], Ḃh

n is lower-hemicontinuous (see
Hildenbrand 1974, Proposition 7, p. 27). Moreover, the correspondence that associates
any vector (p, π, N ) ∈ V̂ to the closure of the set Ḃh

n (p, π, N ) is also lower-hemi-
continuous (see Hildenbrand 1974, p. 26).

We affirm that, closure(Ḃh
n ) = Bh

n . Since for any (p, π, N ) ∈ V̂, we have that
closure(Ḃh

n (p, π, N )) ⊂ Bh
n (p, π, N ), it is sufficient to ensure that Bh

n (p, π, N ) ⊂
closure(Ḃh

n (p, π, N )).
Given (xh, θh, ϕh) ∈ Bh

n (p, π, N ) ⊂ En and (ε, (δs; s ∈ S∗), j) ∈ [0, 1) ×
[0, 1)S∗ × J , let ϕh

j (ε, δ0) = (1 − δ0)ϕ
h
j + ε. We want to prove that (((1 − δs)xh

s ; s ∈
S∗), (1 − δ0)θ

h, (ϕh
j (ε, δ0)) j∈J ) ∈ Ḃh

n (p, π, N ). It is not difficult to verify that this

last property effectively holds if n > n∗ := max(s,�)∈S∗×L ws,�,15

ε
∑

(�, j)∈L×J

C j,� < δ0 min
�∈L

wh
0,�;

and, for any s ∈ S,

δs =
⎧
⎨

⎩

[

1 − (1 − δ0)
Gs (ps ,Rs ,w

h
s ,zh

0 (ε,δ0))

ps xh
s

]+
, if ps xh

s > 0;
0, if ps xh

s = 0;

where zh
0(ε, δ) := ((1 − δ0)xh

0 , (1 − δ0)θ
h, (ϕh

j (ε, δ0)) j∈J ) and

Gs(ps, Rs, w
h
s , zh

0(ε, δ0))

= psw
h
s + psYs

⎛

⎝(1 − δ0)xh
0 +

∑

j∈J

C jϕ
h
j (ε, δ0)

⎞

⎠

+(1 − δ0)
∑

j∈J

Rs, jθ
h
j − Ms(ps, Rs, w

h
s , zh

0(ε, δ0)).
16

In fact, when (xh
0 , θh, ϕh) is changed to ((1 − δ0)xh

0 , (1 − δ0)θ
h, (ϕh

j (ε, δ0)) j∈J ),

a quantity of resources δ0 p0w
h
0 becomes available at the first period. Thus, the con-

dition that restricts ε ensures that a portion of these resources covers the cost of the
emission of the new debt. Moreover, for any s ∈ S, the condition that defines δs

ensures that, after the decision between payment or fill for bankruptcy at state of
nature s, the agent h has resources to buy the bundle (1 − δs)xh

s . Thus, the allocation
(((1 − δs)xh

s ; s ∈ S∗), (1 − δ0)θ
h, (ϕh

j (ε, δ0)) j∈J ) belongs to Ḃh
n (p, π, N ).

15 The restriction over n is to ensure that, at any s ∈ S∗, agents can consume their entire physical endow-
ment.
16 Note that, Gs (ps , Rs , w

h
s , zh

0 (ε, δ0)) is strictly positive as a consequence of Assumption (A4), because
there always exist exemptions in case of bankruptcy.
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Making δ0 go to zero (which implies that (ε; (δs; s ∈ S)) vanishes too), we con-
clude that (xh, θh, ϕh) belongs to the closure of Ḃh

n (p, π, N ). Thus, if n > n∗, the
correspondence Bh

n is lower-hemicontinuous for each h ∈ [0, 1]. ��
Lemma 2 Under Assumptions (A1)–(A5), for any n > n∗, given an equilibrium of
Gn,

((
(pn

0, πn), pn
s , N

n
s, j

)

(s, j)∈S×J
;
(

xh
n, θ

h
n, ϕh

n, β
h
n

)

h∈[0,1] , m

)

,

for each pair (s, j) ∈ S × J we have that,

N
n
s, j

∫

[0,1]
ϕh

n, j dh = [pn
s As, j − pn

s Ys(C j )]+
∫

[0,1]
β

h
n,s, jϕ

h
n, j dh.

Proof Let n > n∗ and fix (s, j) ∈ S × J . Since N
n
s, j ∈ [0, A], it follows from the

definition of the objective function of player cs, j that,

N
n
s, j

∫

[0,1]
ϕh

n, j dh ≤ [pn
s As, j − pn

s Ys(C j )]+
∫

[0,1]
β

h
n,sϕ

h
n, j dh,

where the strict inequality holds only when N
n
s, j = A and

∫
[0,1] ϕ

h
n, j dh > 0. However,

this situation is not compatible with pn
s ∈ �1. ��

Definition 3 A vector (pn, πn, R
n
) ∈ �0 × �S

1 × [0, 2A]S×J , jointly with plans(
(xh

n, θ
h
n, ϕh

n); h ∈ [0, 1]
)

∈ E
[0,1]
n , constitutes an n-equilibrium of E when market

feasible conditions (2) and (3) of Definition 1 hold and, for each h ∈ [0, 1] we have

(xh
n, θ

h
n, ϕh

n) ∈ argmaxBh(pn ,πn ,R
n
)∩En

uh

⎛

⎝xh
0 +

∑

j∈J

C jϕ
h
j ,
(

xh
s ; s ∈ S

)
⎞

⎠ .

Lemma 3 Under Assumptions (A1)–(A6), the economy E has an n-equilibrium for
any n > n∗.

Proof Given n > n∗, let

((
(pn

0, πn), pn
s , N

n
s, j

)

(s, j)∈S×J
;
(

xh
n, θ

h
n, ϕh

n, β
h
n

)

h∈[0,1] , m

)

be a Cournot–Nash equilibrium of Gn . We want to prove that

((
(pn

0, πn), pn
s , R

n
s, j

)

(s, j)∈S×J
;
(

xh
n, θ

h
n, ϕh

n

)

h∈[0,1]

)
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constitutes an n-equilibrium for the economy E , where for each (s, j) ∈ S × J the
unitary security payment is given by R

n
s, j = Ds, j (pn

s ) + N
n
s, j .

Note that, in any Cournot–Nash equilibrium, each agent h ∈ [0, 1] maximizes his
utility function uh . In fact, for any h ∈ [0, 1] it is always feasible to choose parameters

(β
h
n,s, j ; j ∈ J )s∈S ∈ ∏s∈S Rs in order to make (�h

s )s∈S = 0. Therefore, to achieve
our objective, it is sufficient to prove that market clearing conditions (2) and (3) of
Definition 1 hold.
Step 1. There is no excess demand in physical and financial markets.

Integrating the first period budget constraint of Bh
n (pn, πn, N

n
) through agents

h ∈ [0, 1], we have

pn
0

∫

[0,1]

⎛

⎝xh
n,0 +

∑

j∈J

C jϕ
h
n, j − wh

0

⎞

⎠ dh +
∑

j∈J

πn
j

∫

[0,1]

(
θ

h
n, j − ϕh

n, j

)
dh ≤ 0.

Thus, the maximal value of the objective function of player a0 is less than or equal to
zero. Therefore, since (pn

0, πn) ∈ �0, we have that, for any (�, j) ∈ L × J ,

∫

[0,1]

⎛

⎝xh
n,0,� +

∑

j∈J

C j,�ϕ
h
n, j − wh

0,�

⎞

⎠ dh ≤ 0,

∫

[0,1]

(
θ

h
n, j − ϕh

n, j

)
dh ≤ 0.

The last inequality, jointly with the result of Lemma 2, ensures that

N
n
s, j

∫

[0,1]
θ

h
n, j dh ≤ N

n
s, j

∫

[0,1]
ϕh

n, j dh = [pn
s As, j − pn

s Ys(C j )]+
∫

[0,1]
β

h
n,s, jϕ

h
n, j dh.

As we argue above, it follows from Assumption (A5) that, for any s ∈ S,

∑

j∈J

β
h
n,s, j [pn

s As, j − pn
s Ys(C j )]+ϕh

n, j

= min
{
	s(pn

s , ϕh
n),�s(pn

s , R
n
s , wh

s , xh
n,0, θ

h
n, ϕh

n)
}

,

which in turn implies that,

∑

j∈J

[pn
s As, j − pn

s Ys(C j )]+
∫

[0,1]
β

h
n,s, jϕ

h
n, j dh

=
∫

[0,1]
min{	s(pn

s , ϕh
n),�s(pn

s , R
n
s , wh

s , xh
n,0, θ

h
n, ϕh

n)} dh.
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Therefore, aggregating budget constraints at s ∈ S through agents h ∈ [0, 1], we
obtain that

pn
s

⎛

⎜
⎝

∫

[0,1]
(xh

n,s − wh
s ) dh −

∫

[0,1]
Ys

⎛

⎝xh
n,0 +

∑

j∈J

C jϕ
h
n, j

⎞

⎠ dh

⎞

⎟
⎠ ≤ 0.

which implies that the maximal value of the objective function of player as is less than
or equal to zero. Since pn

s ∈ �1, it follows that, for any commodity � ∈ L

∫

[0,1]
(xh

n,s,� − wh
s,�) dh ≤

∫

[0,1]
Ys,�

⎛

⎝xh
n,0 +

∑

j∈J

C jϕ
h
n, j

⎞

⎠ dh.

Step 2. Commodity and asset prices are strictly positive. Securities have non-trivial
payments.

For any commodity � ∈ L , we affirm that pn
0,� > 0. Otherwise, Assumption (A1)

ensures that every agent would choose xh
n,0,� = n and, therefore,

∫
[0,1] xh

n,0,� dh =
n > n∗ = max(s,�)∈S∗×L ws,� ≥ ∫

[0,1] w
h
0,� dh, which contradicts the results of Step

1. Analogously, for any pair (�, s) ∈ L × S we have that, pn
s,� > 0. In fact, in any

other case, every agent would choose xh
n,s,� = αs,�(n), which implies that,

∫

[0,1]
xh

n,s,� dh = αs,�(n) >

∫

[0,1]

⎛

⎝wh
s,� + Ys

⎛

⎝xh
n,0,� +

∑

j∈J

C j,�ϕ
h
n, j

⎞

⎠

⎞

⎠ dh,

a contradiction with the results of Step 1.
Thus, it follows from Assumption (A6) that, for any j ∈ J , there is a state of nature

s( j) ∈ S such that,

Rs( j), j ≥ Ds( j), j (pn
s( j)) = min

{
pn

s( j) As( j), j , pn
s( j)Ys( j)(C j )

}
> 0.

Then, Assumption (A1) ensures that, for any j ∈ J , the unitary price πn
j is

strictly positive. Otherwise, every agent would choose (θ
h
n, j , ϕ

h
n, j ) = (n, 0).17 Thus,

∫
[0,1](θ

h
n, j − ϕh

n, j ) dh = n > 0, a contradiction with the fact that
∫
[0,1](θ

h
n, j −

ϕh
n, j ) dh ≤ 0.

That is, ((pn
0, πn), (pn

s ; s ∈ S)) � 0 and, for any j ∈ J , (R
n
s, j ; s ∈ S) �= 0.

17 On one hand, the investment on security j has no cost but delivers positive payments at t = 1. On
the other hand, it follows from Assumption (A6) that agents do not have incentives to take short-positions
in debt contract j , because it will induce a positive commitment at s( j) without the right to receive any
resources at s = 0.
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Step 3. Market clearing conditions hold.
Since prices are strictly positive, it follows that for any agent h ∈ [0, 1] budget

set constraints hold as equalities.18 Therefore, since prices are strictly positive and
there is no excess demand in physical and financial markets at t = 0, market clearing
conditions hold at the first period. Thus, it follows that, at any s ∈ S,

R
n
s, j

∫

[0,1]
θ

h
n, j dh = Ds, j (pn

s )

∫

[0,1]
ϕh

j dh + [pn
s As, j − pn

s Ys(C j )]+
∫

[0,1]
β

h
n,s, jϕ

h
n, j dh,

and parameters (β
h
n,s, j ; (h, j) ∈ [0, 1] × J )s∈S satisfy the requirements imposed at

item (3) of Definition 1. Then, to finish the proof we need to ensure that physical
market clearing conditions hold at any state of nature s ∈ S. But these properties are
a direct consequence of the results proved at Steps 1 and 2, jointly with the fact that
budget constraints hold as equalities.

Thus,
(
(pn

0, πn), pn
s , R

n
s, j )(s, j)∈S×J ; (xh

n, θ
h
n, ϕh

n)h∈[0,1]
)

is an n-equilibrium of the

economy E .

Lemma 4 Suppose that Assumptions (A1)–(A6) hold and let

(
(pn, πn, R

n
);
(
(xh

n, θ
h
n, ϕh

n); h ∈ [0, 1]
))

be an n-equilibrium of E , with n > n∗. Consider the family of non-negative and

integrable functions
{

gn : [0, 1] → R
L×S∗
+ × R

J+ × R
J+ × R

S×J+
}

n>n∗ given by,

gn(h) =
(

xh
n, θ

h
n, ϕh

n, (β
h
n,s, j ϕh

n, j )(s, j)∈S×J

)
, ∀n > n∗.

18 Actually, suppose that for some h ∈ [0, 1] the budgetary constraint at s = 0 holds as strict inequality at

prices (pn
0 , πn). Then, (xh

n,0, θ
h
n) = n(1, . . . , 1). Using the first period budget set constraint, we have that,

n = pn
0 xh

n,0 +
∑

j∈J

πn
j θ

h
n, j < pn

0wh
0 +

∑

j∈J

πn
j ϕ

h
n, j

< n∗‖pn
0‖� + n‖πn‖� < n,

which is a contradiction. Analogously, assume that for agent h the budgetary constraint at s ∈ S holds as a
strict inequality. Then, xh

n,s = (αs,�(n); � ∈ L), which is a contradiction, since

∑

�∈L

ps,�αs,�(n) = pn
s xh

n,s

< pn
s wh

s + pn
s

⎛

⎝Ys

⎛

⎝(n, . . . , n) + n
∑

j∈J

C j

⎞

⎠+ n A(1, . . . , 1)#J

⎞

⎠

<
∑

�∈L

ps,�αs,�(n).
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Then,

{(

pn, πn, R
n
,
∫

[0,1]
gn(h) dh

)}

n>n∗
is bounded.19

Proof Since for any n > n∗, the vector (pn, πn, R
n
) ∈ �0 × �S

1 × [0, 2A]S×J , it
follows that the sequence of equilibrium prices and payments is bounded. On the other

hand, using the fact that
(
(pn, πn, R

n
);
(
(xh

n, θ
h
n, ϕh

n); h ∈ [0, 1]
))

is an n-equilib-

rium of E we have,

0 ≤
∫

[0,1]
xh

n,0 dh ≤
∫

[0,1]
wh

0 dh,

0 ≤
∑

j∈J

C j

∫

[0,1]
ϕh

n, j dh =
∫

[0,1]

∑

j∈J

C jϕ
h
n, j dh ≤

∫

[0,1]
wh

0 dh,

0 ≤
∫

[0,1]
θ

h
n dh ≤

∫

[0,1]
ϕh

n dh.

Moreover, for any (s, j) ∈ S × J ,

0 ≤
∫

[0,1]
β

h
n,s, j ϕh

n, j dh ≤
∫

[0,1]
ϕh

n, j dh,

0 ≤
∫

[0,1]
xh

n,s dh ≤
∫

[0,1]

(
wh

s + Ys

(
wh

0

))
dh,

where the last inequality is a consequence of the fact that Y (x) ≤ Y (y) if x ≤ y. The
result follows from Assumption (A3), since for any j ∈ J there is � ∈ L such that
C j,� > 0. ��

It follows from the Lemma above that, given a sequence

{(
(pn, πn, R

n
);
(
(xh

n, θ
h
n, ϕh

n); h ∈ [0, 1]
))}

n>n∗

of n-equilibria, there exists a convergent subsequence

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝pnk , πnk , R

nk
,

∫

[0,1]
gnk (h) dh

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭
nk>n∗

⊆

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝pn, πn, R

n
,

∫

[0,1]
gn(h) dh

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭
n>n∗

.

We denote by (p, π, R) the associated limit of prices and payments. Also, applying
the weak version of the multidimensional Fatou’s Lemma to the sequence

{
gnk

}
nk>n∗

19 Given
(
(pn , πn , R

n
);
(
(xh

n , θ
h
n , ϕh

n); h ∈ [0, 1]
))

,
(
β

h
n,s, j ; (h, s, j) ∈ [0, 1] × S × J

)
are the deliv-

ery rates that satisfy condition (3) of Definition 1.
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(see Hildenbrand (1974, page 69)), we can find a full measure set P ⊂ [0, 1] and an
integrable function g : [0, 1] → R

L×S∗
+ × R

J+ × R
J+ × R

S×J+ , defined by g(h) :=
(xh, θ

h
, ϕh, (ρh

s, j )(s, j)∈S×J ) such that, for each agent h ∈ P, there is a subsequence

of
{
gnk (h)

}
nk>n∗ that converges to g(h), and

∫

[0,1]
g(h) dh ≤ lim

k→∞

∫

[0,1]
gnk (h) dh.

Thus, it follows that, for any h ∈ P, the bundle (xh, θ
h
, ϕh) belongs to Bh(p, π, R).

In addition, for any (h, s) ∈ P × S, there exists (β
h
s, j ; j ∈ J ) ∈ Rs such that, for

any j ∈ J , ρh
s, j = β

h
s, j ϕh

j and

∑

j∈J

β
h
s, j

[
ps As, j − psYs(C j )

]+
ϕh

j

= min
{
	s(ps, ϕ

h),�s(ps, Rs, w
h
s , xh

0, θ
h
, ϕh)

}
.20

Lemma 5 Under Assumptions (A1)–(A6), for each h ∈ P, the plan (xh, θ
h
, ϕh) is an

optimal choice for agent h on Bh(p, π, R).

Proof Fix an agent h ∈ P and let (x̃ h, θ̃h, ϕ̃h) ∈ Bh(p, π, R). It is clear that there
exists n∗∗ > n∗ such that, for any n ≥ n∗∗, (x̃ h, θ̃h, ϕ̃h) belong to Bh

n (p, π, R).
Fix n > n∗∗. It follows from the sequential characterization of lower-hemiconti-

nuity that there exists a sequence
{
(x̃ h

m, θ̃h
m, ϕ̃h

m)
}

m>n∗∗ such that, for any m > n∗∗,

both (x̃ h
m, θ̃h

m, ϕ̃h
m) ∈ Bh

n (pm, πm, R
m
) and lim

m→∞(x̃ h
m, θ̃h

m, ϕ̃h
m) = (x̃ h, θ̃h, ϕ̃h). Since

for m large enough (x̃ h
m, θ̃h

m, ϕ̃h
m) ∈ Bh

m(pm, πm, R
m
), it follows that,

uh

⎛

⎝x̃ h
m,0+

∑

j∈J

C j ϕ̃
h
m, j ,

(
x̃ h

m,s; s ∈ S
)
⎞

⎠≤uh

⎛

⎝xh
m,0+

∑

j∈J

C jϕ
h
m, j ,

(
xh

m,s; s ∈ S
)
⎞

⎠.

20 Given h ∈ P, the convergence of a subsequence of {ϕh
nk

, (β
h
nk ,s, j ϕh

nk , j )(s, j)∈S×J }nk>n∗ (those
given by Fatou’s Lemma), does not necessarily imply the convergence of the associated subsequence of{
(β

h
nk ,s, j )(s, j)∈S×J

}

nk>n∗ . However, the later sequence is bounded and, therefore, taking a subsequence

if it is necessary, we can assume that it converges to a vector (β
h
s, j ; j ∈ J )s∈S ∈ ∏s∈S Rs . Thus, for any

(s, j) ∈ S × J , we have that ρh
s, j = β

h
s, j ϕh

j . Finally, it follows from the continuity of functions �s and

	s that
∑

j∈J β
h
s, j
[

ps As, j − psYs (C j )
]+

ϕh
j = min

{
	s (ps , ϕ

h), �s (ps , Rs , w
h
s , xh

0 , θ
h
, ϕh)

}
.
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Taking the limit as m goes to infinity, through the convergent subsequence of
{gm′(h)}m′>n∗ given by Fatou’s Lemma, we obtain that

uh

⎛

⎝x̃ h
0 +

∑

j∈J

C j ϕ̃
h
j ,
(

x̃ h
s ; s ∈ S

)
⎞

⎠ ≤ uh

⎛

⎝xh
0 +

∑

j∈J

C jϕ
h
j ,
(

xh
s ; s ∈ S

)
⎞

⎠ .

It follows that (xh, θ
h
, ϕh) is an optimal choice for agent h on Bh(p, π, R). ��

By Lemma 5 and the monotonicity of utility functions, we have that (ps; s ∈ S∗) �
0. Therefore, for any j ∈ J , Assumption (A6) ensures that there is a state of nature
s( j) ∈ S such that Rs( j), j ≥ Ds( j), j (ps( j)) = min

{
ps( j) As( j), j , ps( j)Ys( j)(C j )

}
>

0. Furthermore, this last property jointly with the monotonicity of preferences guar-
antees that, for any j ∈ J , the unitary price π j is strictly positive.

Lemma 6 Suppose that Assumptions (A1)–(A5) and (A7) hold. Then, for each j ∈ J ,
p0C j > π j .

Proof Since the set P has full measure, for any debt contract j ∈ J , the set P ∩ Hj is
non-empty. Thus, take as given (h, j) ∈ (P ∩ Hj ) × J and suppose that p0C j ≤ π j .

In this context, agent h may sell any quantity a > 0 of debt contract j to obtain
resources at t = 0 that allow him to consume the bundle wh

0 + C j a � 0. This short-
position on debt contract j has a limited commitment at any state of nature s ∈ S. In
fact, if ps As, j ≤ psYs(C j ), agent h pays his debt and has resources to demand his
initial endowment wh

s � 0. Alternatively, if ps As, j > psYs(C j ), even when agent h
decides to not pay the whole amount of his debt, he has a positive amount of resources
available for consumption, �s(ps, w

h
s ,Ws) > 0 [a consequence of Assumption (A4)].

Moreover, in this case, as the value of depreciated collateral is lower than the original
promises, the amount of wealth Ws is (by definition) independent of a. Actually,
Ws = ps(w

h
s + Ys(w

h
0 )).

Therefore, regardless of a, he may consume (at least) at any state of nature s ∈ S
a bundle γs(1, . . . , 1), where

0 < γs = ps(γs, . . . , γs) ≤ min{psw
h
s ;�s(ps, w

h
s , ps(w

h
s + Ys(w

h
0 )))}.

Using this strategy, it follows from Assumption (A7) that, for a large enough, agent
h could improve his utility function relative to the level that he obtains with the plan

(xh, θ
h
, ϕh), a contradiction. ��

Lemma 7 Suppose that Assumptions (A1)–(A7) hold. Then,
{
gnk

}
nk≥n∗ is uniformly

integrable and, for each h ∈ [0, 1], {gnk (h)
}

nk≥n∗ is bounded.

Proof For each h ∈ [0, 1], if the sequence
{
(xh

nk
, θ

h
nk

, ϕh
nk

)
}

nk≥n∗ is bounded, then
{
gnk (h)

}
nk≥n∗ is bounded too. Since

(
p, π, (p0C j − π j ) j∈J

) � 0, there exists ε > 0

and T ∗ ∈ N such that
(

p, π, (p0C j − π j ) j∈J
) � ε(1, . . . , 1) and, for any nk > T ∗,
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‖
(

pnk , πnk , (pnk
0 C j − π

nk
j ) j∈J

)
− (

p, π, (p0C j − π j ) j∈J
) ‖max ≤ ε.

Therefore, for each nk > T ∗, ‖
(

pnk , πnk , (pnk
0 C j − π

nk
j ) j∈J

)
‖max � 0. Using

individuals’ first period budget constraints, we have that, for any (�, j) ∈ L × J and
for each nk > T ∗,

0 ≤
(

xh
nk ,0,�, θ

h
nk , j , ϕ

h
nk , j

)
≤
(

pnk
0 wh

0

pnk
0,�

,
pnk

0 wh
0

π
nk
j

,
pnk

0 wh
0

pnk
0 C j − π

nk
j

)

.

In addition, for any (s, �) ∈ S × L ,

0 ≤ xh
nk ,s,� ≤

pnk
s

(
wh

s + Ys(xh
nk ,0

+∑
j∈J C jϕ

h
nk , j )

)
+∑

j∈J R
nk
s, jθ

h
nk , j

pnk
s,�

.

Let ζ = min
(s,�, j)∈S∗×L×J

{
ps,�, π j , p0C j − π j

}
and �0 = 1

ζ−ε
‖w‖max (which is

well defined by the definition of ε). Then, for each nk > T ∗,

0 ≤ max
(�, j)∈L×J

{
xh

nk ,0,�, θ
h
nk , j , ϕ

h
nk , j

}
≤ �0,

and for any s ∈ S,

0 ≤ max
�∈L

xh
nk ,s,�

≤ �s := �0

⎛

⎝1 + 1

ζ − ε

∥
∥
∥
∥
∥
∥

Ys

⎛

⎝(1, . . . , 1) +
∑

j∈J

C j

⎞

⎠

∥
∥
∥
∥
∥
∥

max

+ 2A

ζ − ε
#J

⎞

⎠ .

Therefore, for any h ∈ [0, 1], each component of the non-negative sequence{
(xh

nk
, θ

h
nk

, ϕh
nk

)
}

nk≥n∗ is bounded from above by � := maxs∈S∗ �s . Since the

upper bound of
{
gnk (h)

}
nk≥n∗ is independent of h ∈ [0, 1], the family of functions

{
gnk

}
nk≥n∗ is uniformly integrable (see Hildenbrand 1974, p. 52). ��

It follows from Lemma 7 that the sequence of non-negative integrable functions{
gnk

}
nk≥n∗ satisfies the assumptions of the strong version of the multidimensional

Fatou’s Lemma (see Hildenbrand 1974, p. 69). Thus, we can find a full measure set
P̂ ⊂ [0, 1] and an integrable function ĝ : [0, 1] → R

L×S∗
+ × R

J+ × R
J+ × R

S×J+ ,

defined by ĝ(h) := (̂xh, θ̂h, ϕ̂h, (ρ̂h
s, j )(s, j)∈S×J ) such that, for each agent h ∈ P̂, there

is a subsequence of
{
gnk (h)

}
nk≥n∗ that converges to ĝ(h) and
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∫

[0,1]
ĝ(h) dh = lim

k→∞

∫

[0,1]
gnk (h) dh.21

In addition, for any state of nature s ∈ S, there exists (β̂h
s, j ; j ∈ J ) ∈ Rs such

that, for any j ∈ J , ρ̂h
s, j = β̂h

s, j ϕ̂h
j and

∑

j∈J
β̂h

s, j

[
ps As, j − psYs(C j )

]+
ϕ̂h

j =
min

{
	s(ps, ϕ̂

h),�s(ps, Rs, w
h
s , x̂ h

0 , θ̂h, ϕ̂h)
}

(see footnote 20).
Therefore, it follows from the definition of ĝ that market clearing conditions of

Definition (1) hold for the allocation ((̂xh, θ̂h, ϕ̂h); h ∈ [0, 1]). Moreover, analogous
arguments to those made at Lemma 5 ensure that, for any h ∈ P̂, (̂xh, θ̂h, ϕ̂h) is an
optimal allocation for agent h in Bh(p, π, R).

Since
(
(ps)s∈S∗ , π, (p0C j − π j ) j∈J

) � 0, each agent h ∈ [0, 1] has a compact
budget set Bh(p, π, R). Continuity of utility functions [Assumption (A1)] ensures that
any agent h ∈ [0, 1] \ P̂ has an optimal allocation (x̆ h, θ̆h, ϕ̆h) ∈ Bh(p, π, R). Thus,
if we give to each h ∈ [0, 1] \ P̂ the allocation (x̆ h, θ̆h, ϕ̆h) instead of (̂xh, θ̂h, ϕ̂h),
we ensure that all consumers maximize their utility functions without changing the
validity of market clearing conditions (because [0, 1] \ P̂ has zero measure).

Therefore,
(
(p, π, R); ((̂xh, θ̂h, ϕ̂h); h ∈ P̂); ((x̆ h, θ̆h, ϕ̆h); h ∈ [0, 1] \ P̂)

)
is an

equilibrium of E . This concludes the proof of equilibrium existence in our economy.

Appendix B: Proof of Theorem 2

Since as now commodities can be perishable, to find an equilibrium with non-trivial
security payments the key is to guarantee that, for each asset j ∈ J , there is s ∈ S
such that Ns, j > 0.22 For this reason, we suppose that garnishable resources are
bounded away from zero by a percentage of individuals’ wealth [Assumption (B4)].
Actually, as initial endowments have a positive lower bound [Assumption (B1)], in
case of bankruptcy the quantity of garnished resources is bounded away from zero,
independent of the identity of the borrower. Thus, as claims are reimbursed in propor-
tion to their sizes [Assumption (B2)], in case of default on a debt contract j at state
of nature s, the mean payments that associated investors receive over the value of the
collateral guarantees, Ns, j , are bounded away from zero too. The existence of these
lower bounds on variables (Ns, j ; (s, j) ∈ S × J ) allows us to adapt the arguments
made in the proof of Theorem 1, in order to ensure equilibrium existence without
Assumption (A6).

We follow the same structure and notations used in the proof of Theorem 1. Thus,
we consider a generalized game Ĝn , which is obtained from Gn by changing two
characteristics: the set where delivery rates (βh

n,s, j ; (s, j) ∈ S × J ) are chosen,
and the set of admissible payments (Ns, j ; (s, j) ∈ S × J ). More precisely, given

21 Note that functions g and ĝ do not need to coincide.
22 Note that debt contracts are only required to make non-trivial promises in at least one state of nature
[Assumption (B3)] and, therefore, we cannot ensure that borrowers make payments over the minimum
between the collateral value and the promise in more than one state of nature.
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prices (p0, π) ∈ �0, for each (h, s, ps) ∈ [0, 1] × S × �1, we restrict delivery rates
(βh

n,s, j ; j ∈ J ) to belong to Rs ∩ [bs(p0, ps, π), 1]J , where Rs satisfies Assumption
(B2) and

bs(p0, ps, π) = min

⎧
⎨

⎩
max

⎧
⎨

⎩
(1 − κs)psw

min
j∈J

(p0C j − π j )

#J A ‖w‖�

; 0

⎫
⎬

⎭
; 1

⎫
⎬

⎭
,

where w and κs satisfy Assumptions (B1) and (B4), respectively.
Moreover, for any (s, j) ∈ S × J , we restrict Ns, j to belong to the set [[ps As, j −

psYs(C j )]+bs(p0, ps, π), A].
This characterization of the generalized game Ĝn is well defined when Assump-

tions (A1)–(A4), (A7), and (B1)–(B4) hold. In addition, under these hypotheses, the
following properties hold,
(a) For each n > n∗, the generalized game Ĝn has a Cournot–Nash equilibrium.

Proof Since (bs; s ∈ S) are continuous functions, the correspondence �̂h
n : V � En ×

∏
s∈S Rs defined by �̂h

n (p, π, N ) = Bh
n (p, π, N ) ×∏s∈S(Rs ∩ [bs(p0, ps, π), 1]J )

is continuous and has non-empty and compact values. By analogous arguments to
those made in Lemma 1, we ensure the existence of a Cournot–Nash equilibrium for
Ĝn . ��
(b) For any Cournot–Nash equilibrium of Ĝn,

N
n
s, j

∫

[0,1]
ϕh

n, j dh = [pn
s As, j − pn

s Ys(C j )]+
∫

[0,1]
β

h
n,s, jϕ

h
n, j dh.

Proof It follows from Lemma 2 that

N
n
s, j

∫

[0,1]
ϕh

n, j dh ≥ [pn
s As, j − pn

s Ys(C j )]+
∫

[0,1]
β

h
n,s, jϕ

h
n, j dh.

If the inequality is strict, we have that N
n
s, j > bs(pn

0, pn
s , πn)[pn

s As, j − pn
s Ys(C j )]+.

Thus, in the generalized game Ĝn , player cs, j can improve the value of his objec-
tive function by decreasing the value of N

n
s, j , a contradiction with the definition of

Cournot–Nash equilibrium. ��
(c) In any equilibrium of Ĝn, and for each (h, s) ∈ [0, 1] × S, there exists β̂h

n,s ∈
[bs(pn

0, pn
s , πn), 1] such that, equilibrium delivery rates (β

h
n,s, j ; j ∈ J ) satisfy β̂h

n,s =
β

h
n,s, j , ∀ j ∈ J . Moreover,

β̂h
n,s	s(pn

s , ϕh
n) = min{	s(pn

s , ϕh
n);�s(pn

s , R
n
s , wh

s , xh
n,0, θ

h
n, ϕh

n)},

where R
n
s = (R

n
s, j ; j ∈ J ) and R

n
s, j = Ds, j (pn

s ) + N s, j .
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Proof The existence of (β̂h
n,s; (h, s) ∈ [0, 1] × S) is a direct consequence of the def-

inition of (Rs; s ∈ S) [Assumption (B2)]. On the other hand, it follows from the
definition of the objective function of player h ∈ [0, 1] in the generalized game Ĝn

that, if there is s ∈ S such that

β̂h
n,s	s(pn

s , ϕ
h
n) �= min{	s(pn

s , ϕh
n);�s(pn

s , R
n
s , w

h
s , xh

n,0, θ
h
n, ϕh

n)},

then �s(pn
s , R

n
s , wh

s , xh
n,0, θ

h
n, ϕh

n) < 	s(pn
s , ϕh

n) and

bs(pn
0, pn

s , πn) = β̂h
n,s >

�s(pn
s , R

n
s , wh

s , xh
n,0, θ

h
n, ϕh

n)

	s(pn
s , ϕh

n)
≥ (1 − κs)

pn
s w

A
∑

j∈J ϕh
n, j

,

where the last inequality follows from Assumptions (B1) and (B4), jointly with the
definition of 	s(pn

s , ϕh
n). Thus, bs(pn

0, pn
s , πn) > 0, which implies that, for any j ∈ J ,

pn
0C j − πn

j > 0. From first period budget constraints, we obtain that
∑

j∈J ϕh
n, j ≤

#J ‖w‖�

min
k∈J

(pn
0Ck−πn

k )
. Therefore, bs(pn

0, pn
s , πn) > bs(pn

0, pn
s , πn), a contradiction. ��

As a consequence of properties (a)–(c), for any n > n∗, Step 1 of Lemma 3 holds.
Thus, we can apply the weak version of the multidimensional Fatou’s Lemma to obtain
a cluster point of a sequence of Cournot–Nash equilibria. By the same arguments made
in Lemma 5, for a generic set of consumers, individual allocations in the cluster point
are optimal at limit prices (p, π, R). Thus, by Assumption (A1), (ps,�; (s, �) ∈ S∗×L)

are strictly positive. Moreover, as a consequence of Assumption (A4) and (A7), the
same arguments of Lemma 6 can be applied to prove that (p0C j − π j ; j ∈ J ) � 0.

(d) Even without Assumption (A6), asset prices (π j ; j ∈ J ) are strictly positive.

Proof Given an asset j ∈ J , if Ds, j (ps) > 0 for some s ∈ S, then Rs, j > 0 and the
monotonicity of preferences ensures that π j > 0. Alternatively, when Ds, j (ps) = 0
for any s ∈ S, it follows from Assumption (B3) that, there is s j ∈ S such that
[ps j

As j , j − ps j
Ys j (C j )]+ > 0. On the other hand, as (p0C j − π j ; j ∈ J ) � 0 and

(ps; s ∈ S∗) � 0, we conclude that, for any s ∈ S, bs(p0, ps, π) > 0. Thus, at the
state of nature s j , the lower bound of the set of admissible payments Ns j , j is strictly
positive, which implies that N s j , j > 0. Then, Rs j , j > 0, which ensures the strict
positivity of π j . ��

Since (p, π, (p0C j − π j ; j ∈ J )) � 0, we can apply the same arguments made
in Lemma 7 to bound individual allocations in a sequence of Cournot–Nash equilibria
of Ĝn . Thus, using the strong version of Fatou’s Lemma, we obtain a cluster point
of the sequence of Cournot–Nash equilibria in which: (i) prices are strictly positive;
(ii) allocations are optimal for a generic set of agents; (iii) for these agents, budget
constraints hold with equality; and (iv) there is no excess demand in physical or finan-
cial markets (a property that any element in the sequence of Cournot–Nash equilibria
satisfies). Thus, market clearing conditions hold. Finally, with analogous arguments
to those given at the end of the proof of Theorem 1, we conclude that there exists an
equilibrium under the conditions of Theorem 2.
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