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• A model to grow scale-free networks with tunable motif distributions.
• A combined operation of preferential attachment and triad motif seeding.
• Networks with adjustable distributions of the local triad motifs.
• Networks with ‘‘scale-free’’, ‘‘small-world’’ and high clustering features.
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a b s t r a c t

Network motifs are local structural patterns and elementary functional units of complex
networks in real world, which can have significant impacts on the global behavior of these
systems.Manymodels are able to reproduce complexnetworksmimicking a series of global
features of real systems, however the local features such asmotifs in real networks have not
beenwell represented.Wepropose amodel to grow scale-free networkswith tunablemotif
distributions through a combined operation of preferential attachment and triad motif
seeding steps. Numerical experiments show that the constructed networks have adjustable
distributions of the local triad motifs, meanwhile preserving the global features of power-
law distributions of node degree, short average path lengths of nodes, and highly clustered
structures.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Complex networks can represent a wide variety of systems in real world, ranging from the Internet to even food webs
[1–3]. The elements in these real systems can be described as nodes and their interactions can be seen as links, respectively.
Most of these networks share a common group of statistical features: first, they show highly clustered structures compared
with random networks; second, the average shortest path between any pair of nodes is relatively small, and this is well
known as the ‘‘small-world’’ effect [4]; moreover, the degree of nodes decays as either a power-law distribution [5] or as an
exponential distribution [6,7].

To better understand such complex systems, various models have been proposed to describe networks with above three
properties over the last decade. Watts and Strogatz introduced a model to represent the small-world networks which have
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Fig. 1. Motif seeding process. (a) Two looped triad motifs: FFL and FBL. (b) Seeding triad motifs into a network, the blue dashed triangle represents a
FFL motif, and the blue circle represents the newly created node; the red dashed triangle is a FBL motif, and the red circle is the newly added node. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

small average path lengths as random graphs, and are highly clustered as regular lattices at the same time [4]. Soon later, the
scale-free network model was proposed by Barabási and Albert (BA) [5]. This model can characterize networks which have
short path lengths and power-law distributions of node degree. However, unlike the small-world networks, the BA model
based networks are lack of high clustering in structures. To overcome this limitation, Holme and Kim (HK) modified the BA
model by incorporating an additional step called triad formation (TF). As a result, theHKmodel is able to evolve the networks
integrating both scale-free and high clustering features simultaneously [8]. Similarly, Dorogovtsev, et al. also developed
a model which can generate clustered scale-free networks through random triad formation steps [9]. Indeed, this simple
triangle connectionmechanismhas also been proven to be the basis for reproducing social networkswith short path lengths,
high clustering, and scale-free or exponential distributions of node degree [10]. In addition, another model based on a finite
memory of nodes has been demonstrated that can induce the growth of highly clustered scale-free networks as well [11].

Although these models show promising results in representing networks of real systems, yet none of them considers the
emergence of motifs during structural evolution of networks. Network motifs are frequently appearing small sub-networks
consisting of a few nodes and links. They have been discovered across a wide spectrum of networks including biological
networks, social networks, electronic circuits, and the World Wide Web, etc. It is generally believed that these motifs
serve as basic building blocks of many real world networks [12,13]. A network motif can be understood as a unit which
performs a particular information-processing task, or a pattern of a group of specific interacting elements in the system.
Moreover, a previous study also reveals that various networks might share very similar distributions of specific motifs, thus
the statistical properties ofmotifs play an essential role in understanding the global structures and functionalities of complex
networks [14].

In this paper, we propose a model which can reproduce networks with the properties of high clustering, small average
path length, and power law degree distribution, while preserving specific motifs with tunable distributions. This is the
first model that simultaneously considers the global structural features of entire networks as well as the distributions of
local sub-networks. We should note that our model currently focuses on directed networks, and the mutual connections
are forbidden in these networks. Furthermore, a pair of typical triad motifs, the feedforward loop (FFL) and the feedback
loop (FBL) as shown in Fig. 1, can be seeded into the structures of networks during their growth processes. Considering the
complexity of the seeding process, we currently propose the model only for these unidirectional triad motifs, and a more
complete model will be developed in our future work.

2. Motif seeding model

We then introduce this dynamical model by the following growth rules:

1. Initial condition: The initial network has N0 nodes and L0 random connections based on the classic Erdös–Rényi (ER)
model [15], and the directions of connections are arbitrary but not reciprocal.

2. Growth: At each time step, a new node is created.
3. Motif seeding (MS): In every MS operation, a new node is connected to other two already existing nodes, and the

directions of these links are determined by the selected motif pattern. These two existing nodes are chosen by the well-
known preferential attachment (PA) operations [16], whereas the selecting probability of each node P(Ki) is based on its
in-degree Ki−in or out-degree Ki−out instead of the node’s total degree in undirected networks. It should be noted that,
these two nodes must have no connection before MS step in order to guarantee a completely desired motif formation.
For instance, when seeding a FFL motif, the node n1 is selected based on P(Kn1)in, and the other node n2 is chosen based
on P(Kn2)out as shown in Fig. 1(b). For seeding a FFL motif, each of its 3 possible loops with different links’ directions has
an equally probability of 1/3 to be seeded by a random rule in this model.
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4. Tuning parameters: Including the newly added node, we seed M(≥ 1) motifs into the network. Therefore the number
of links increases 3M at each time step. As for each MS operation, with probability p, we select the FFL as the formation
pattern of a motif; alternatively, a FBL motif will be seeded into network with probability 1 − p. The growth and MS
operations will iterate until the network reaches the given size of N .

Aswe can learn fromabove description, the networkwill be generated entirely byMS steps,whichmeans one node and at
least one triad motif consisting of three directed links will be added into network structure at each time step. Therefore, our
model can be generally categorized as a TF basedmodel, nevertheless it is quite different from others. First, two independent
nodes are chosen by two parallel PA steps in ourmodel, while other models commonly pick a pair of neighbored nodes from
the existing network using either PA or randomly choosing operations [8,9,17–19]. More importantly, among all TF based
models, our model is the only one that can generate triangle formations using various directed connections.

3. Experiments and results

We verified our model by a series of numerical simulations. The initial conditions were set as N0 = 10, and L0 = 22 (the
connection probability is 0.5). The goal sizes of grown networks were fixed to be 40,000 nodes (N = 40,000) for degree
distribution experiments, and 1,000 nodes (N = 1,000) for other experiments. The main parameters M and p, were varied
in different test cases, and the results were averaged over 20 independent trials in each case.

To check the performance of MS operation, the software tool Mfinder (version 1.20) [20] was then used to extract motifs’
distributions from the seeded networks. A set of 100 random networks was used for calculating each statistical result of
Z-score, and the uniqueness threshold was set as 4 in the Mfinder for detecting triad motifs. Those random networks were
generated from the original network using a widely used switching randomization algorithm. This algorithm repeatedly
switches the two edges of a randomly chosen connection pair from the original network at each step until the given network
is randomized to a target level. Meanwhile, the numbers of in- and out-edge for each node are preserved in this switching
process, thus the distributions of in-degree, out-degree, and the total degree are conserved in all randomized networks of
the original network [21,12,22]. We should note that the switching algorithm does not make any bidirectional link in the
randomization process, since our model prohibits the bidirectional connections in the original networks. As suggested in
previouswork [14], amotif’s statistical significance can be represented quantitatively using the Z-score Zi and its normalized
value ZN

i as given by Eqs. (1) and (2):

Zi =
(Nireal − Nirand)

STD
(1)

ZN
i =

Zi
Z2
i

(2)

where Nireal is the appearing times of the specific sub-graph i in the original network, and Nirand and STD are the mean and
standard deviation of its frequency of appearance in the randomized networks, respectively. The normalized value of Z-score
emphasizes the relative significance of amotif over the full spectrum, thuswe use it for comparisons in the following studies.
A positive Z-score means the motif appears more frequently in the real network, whereas a negative Z-score indicates the
motif is less represented in the real network compared with random networks. This definition apparently means that the
higher the Z-score, the higher the appearance frequency of a motif, and vice versa. Fig. 2 shows a whole family of five triad
motifs’ normalized Z-scores under the same seeding frequency M = 1 but with different values of the parameter p, while
the latter one denotes the seeding probability of the FFL motif.

Interestingly, it is confirmed that these triad motifs’ distributions in target networks can be easily controlled through
tuning the parameter p. The bar graph demonstrates that the Z-scores of all five types of motifs are significantly varied over
a relativelywide range as p changes. For example, alongwith the rise of p from0 to 1, the FFL’s Z-score steadily increases from
0.03 to 0.52 on average; in contrast, the FBL’s Z-score decreases gradually from 0.83 to 0.12 at the same time. Additionally,
other three motifs also exhibit different negative Z-scores under various levels of p.

Furthermore, as we can see from the bar graph (Fig. 2), the two looped triad motifs, FFL and FBL both keep positive
Z-scores. However the binary-tree motif (BT), the three-chain motif (TC), and the reverse binary-tree motif (RBT) always
show negative values on their Z-scores, which means they are underrepresented in the seeded networks, therefore the BT,
TC and RBT motifs can be considered as anti-motifs of the seeded networks. We believe this phenomenon might be due to
the statistical bias on motifs’ appearances, because once a looped motif is counted, then any of its sub-motifs will be no
longer considered as an independent one from the looped structure [23,24]. More specifically, a FFL motif has three triad
sub-motifs including BT, TC and RBT motifs, while the TC motif is the only one triad sub-motif of a FBL motif. It is easy to
understand the relations between these looped motifs and their sub-motifs. The BT, TC and RBT motifs can be obtained if
one of these three edges is removed from a FFL motif, similarly we can get a TC motif by deleting one edge from a FBL motif.
Consistent with this hypothesis, it is observed that the BT and RBT motifs have exactly the same distributions, and indeed
their Z-scores’ profiles are both extremely similar to the FFL’s distribution but with negative values as its shadow under the
Z = 0 axis (Fig. 2). We should note that TC shows a more complicated Z-score distribution than BT and RBT, since it serves
as sub-motif for both FFL and FBL at the same time.
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Fig. 2. Triad motifs’ distributions in seeded networks. All 5 patterns of triad motifs are shown along the horizontal axis from left to right as the binary-
tree (BT, ID: 6), the three-chain (TC, ID: 12), the reverse binary-tree (RBT, ID: 36), the feedforward loop (FFL, ID: 38) and the feedback loop (FBL, ID: 98),
respectively. For each pattern of motif, the bars with different colors represent the normalized Z-scores under the same seeding frequency M = 1 but
using various seeding probabilities p. In particular, the bar with a color of red, yellow, blue, green and grape denotes the case of p equals 0, 0.3, 0.5, 0.7
and 1, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Z-score changes under different M . ZFFL,p=0 and ZFFL,p=1 indicate the normalized Z-score of FFL motif when
p = 0 and p = 1. Similarly, ZFBL,p=0 and ZFBL,p=1 represent FBL motif’s Z-score (normalized) in the cases of
p = 0 and p = 1.

M = 1 M = 2 M = 3

ZFFL,p=0/ZFFL,p=1 0.03/0.52 0.09/0.51 0.23/0.51
ZFBL,p=0/ZFBL,p=1 0.83/0.12 0.81/0.18 0.74/0.22

In addition, there exists a side-effect by which some unexpected FBL motifs emerge during supervised FFL motif seeding
process, and vice versa. The side-effect in the former process seems stronger than that in the latter one, which further causes
the FBLmotifs to appearmore frequently than designed inmost seeding scenarios. For example, the FBLmotif shows amuch
higher Z-score than the FFL motif at p = 0.5 in Fig. 2. This interesting difference of side-effects between two processes is
likely to be induced by the topological relations among motifs and their sub-motifs. In particular the FBL motif has higher
probabilities to be formed compared to the FFL motif, since it only needs sole sub-motifs of TC.

Next, we investigated how the seeding frequencyM influences the features of the seeded networks. The number of edges
of the network approached about 3N , 6N , and 9N (N = 1,000) after completing the seeding processes, while M was set as
1, 2, and 3, respectively. Interestingly, the normalized Z-score of the FFL motif at p = 0 has been significantly increased
from 0.03 to 0.23, an almost 8 times’ increase, while the FBL motif’s Z-score at p = 1 was raised from 0.12 to 0.22 for M
ranging from 1 to 3 as we can see from Table 1. These changes reveal that the side-effects of motif seeding become stronger
when the seeding frequency M increases. We should note that the statistical results of triad motifs shown here might not
be accurate enough, as these might include fluctuations and artifacts induced by the switching randomization method in
some cases [25,26]. The refined results will be studied in our future work, especially for analyzing the seeded networks with
modular or hierarchical structures.

Since our networks consist of many directed motif loops, they are characterized by the in-degree distribution and the
out-degree distribution. In Fig. 3(a), we show the in-degree distribution Pin(k) and the out-degree distribution Pout(k)
respectively based on the numerical simulations when p = 0.5 and M = 1. These two degree distributions of the grown
networks have extremely similar curves, therefore we use just the in-degree distributions for our studies hereinafter.
Moreover, it is confirmed that the seeding probability p has no significant effect on the networks’ degree distributions as
presented in Fig. 3(a) inset. As for the networks seeded by differentM , their degree distributions all decay following the same
power-law denoted as P(k) ∼ k−2.3(α = −2.3) as shown in Fig. 3(b). The exponent is different to one from the standard
BA model. According to the previous work [27], we believe this may be due to the addition of a new internal edge between
two existing nodes at each seeding step compared to the standard BA model. Based on the continuum theory, we can write
the change rate of the node degrees in the following form

∂ki
∂t

=
ki(t) t

0 kj(t)dtj
+ 2c

ki(t)
 t

0 kj(t)dtj − ki(t)


 t
0 kj(t)dtj

2
−

 t
0 k2j (t)dtj

(3)
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Fig. 3. Degree distributions of seeded networks. (a) Comparison of in/out degrees when p = 0.5 and M = 1, where the blue circles denote the in-degree
distributions and the red triangles represent the out-degree distributions. These two probabilities both decaywith the increase of node degree k following a
power-law, which has an exponent of α = −2.3 (black line). Inset: In-degree distributions under different pwhenM = 1. (b) The open circles (blue), open
triangles (red) and open squares (green) indicate the in-degree distributions in the cases of M = 1, 2, and 3, respectively. These in-degree distributions
share a common power-law scaling with an exponent of α = −2.3 (black line). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

where ki is the node’s degree, and kj is the sum of the degrees of all nodes. The first term on the right-hand side describes
the linear preferential attachment as in the BA model, and the second term models the addition of c new internal edges
between old nodes. The second term can be simplified at long times by neglecting small elements in both numerator and
denominator, and then Eq. (3) becomes

∂ki
∂t

= (1 + 2c)
ki(t) t

0 kj(t)dtj
(4)

thus the dynamic exponent can be written as

β = −
1 + 2c
2(1 + c)

(5)

and then we can obtain the exponent of the degree distribution

α = −


2 +

1
1 + 2c


. (6)

This exponent is about −2.3 in our case, since we add only one internal edge at each motif seeding step (c = 1).
High clustering is another natural feature of many real networks. The degree of clustering can be measured by the

clustering coefficient. The clustering coefficient of node i in our network is calculated as a ratio of existing links Ei among
its ki neighboring nodes to the number of all possible links of these neighbors, which is defined by Eq. (7). The average
clustering coefficient of the whole network is obtained by Eq. (8). To calculate the node’s clustering coefficient, networks
produced by our model can be treated as undirected here, since there is only one directed link between each pair of nodes.
The average clustering coefficient seems to be independent of the seeding probability p of the FFL motif in all cases of
M as shown in Fig. 4(a). This result suggests that the distributions of various triad motifs have no obvious effect on the
clustering characteristics of a seeded network. More importantly, the average clustering coefficient of our network is always
significantly higher than that of a randomnetworkwith the same size and link density as shown in Table 2 in different cases.
This indicates that our seeding method can always construct networks with highly clustered structures under a smallM .

Ci =
2Ei

ki(ki − 1)
(7)

C =


Ci

N
. (8)
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Fig. 4. (a) The dependence of the average clustering coefficient C on the seeding probability p. The open circles (blue), open triangles (red) and open
squares (green) correspond to the cases of M = 1, 2, and 3. (b) C vs. network size N under different seeding parameters. The blue, red, and green data
points represent the cases ofM = 1, 2, and 3, respectively. The slopes of their fitted lines are 0 (blue), −0.14 (red), and −0.25 (green), respectively. (c) C as
a function of the node’s in-degree k. The solid line has a slope of−1, while the open circles (blue), open triangles (red) and open squares (green) correspond
to M = 1, 2, and 3. (d) The scaling law of the average path length L with the network size N under different seeding parameters. The blue, red and green
dashed lines represent the average path lengths in the corresponding random networks under different seeding frequencies of M . (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 2
Comparison of clustering coefficients, where Crand denotes the clustering coefficient of a random network
which has the same size of nodes and links as a seeded network.

M = 1, L = 3N M = 2, L = 6N M = 3, L = 9N

C 0.685 0.282 0.220
Crand 0.006 0.012 0.018

Moreover, there is an interesting trend for the seeded networks that the higher the density of seeding, the lower the
clustering of grown structures. As shown in Table 2 and Fig. 4(a), the average clustering coefficient decreases asM increases
for the seeded networks, however, this trend is completely reversed for their corresponding random networks. This implies
that if the seeding frequencyM grows to a certain level, this proposed method will not be able to generate highly clustered
networks distinguished from random ones. It also provides a way to tune a network with an arbitrary clustering coefficient
by alteringM during its seeding process.
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Fig. 4(b) shows that the average clustering coefficient is nearly independent of the network size N whenM = 1, whereas
it seems to decrease slightly faster when M becomes higher. Furthermore, we find that the relation between the clustering
coefficient of a node and the in-degree k approximately follows a power-law C(k) ∼ k−1 in the case ofM equals 1. However,
as observed in Fig. 4(c), C(k) becomes more independent of k when M is increased further. This result suggests that our
network can be adjusted from a hierarchical structure to a non-hierarchical one [28,29].

To investigate the small-world behavior of the seeded networks, we studied the scaling law of the average path length L
with the network size N under differentM and p as Fig. 4(d) presents. In general, the data clearly demonstrate that L grows
logarithmically with the network size N . These numerical simulations also reveal that our seeded networks have relatively
small values of L, which are very close to those values in their corresponding random networks. Therefore, our model is
capable of constructing networks with ‘‘small-world’’ features. Moreover, it is found that a higher seeding frequency M
seems to reproduce a network with smaller L, while the parameter p affects L slightly onceM is fixed.

4. Conclusion

In conclusion, we have presented a motif seeding model for the construction of networks which uniquely reproduces
the natural characteristics of real systems. These characteristics describe not only the global structures, such as ‘‘scale-
free’’, ‘‘small-world’’ and high clustering, but also the local organizations of various triadmotifs. The proposedmodel simply
incorporates a triad-motif seeding action in the preferential attachment process for growing the target network structure.
By adjusting only two parameters, the seeding frequency and the seeding probability of the feedforward loop, the network’s
motif distribution can be continuously varied over a wide range. Meanwhile, numerical simulations also demonstrate that
the power-law scaling of degree distribution, the average path length, the clustering coefficient and even the hierarchical
structure of the network can be significantly tuned by using proper values of the seeding frequency at each growth step.
This study might offer a bottom-up perspective for understanding how the structures and the functionalities of a complex
network [30] are simultaneously evolved from scratch. Combined with some network optimization methods [31–33], this
study also opens the door to constructing functional networks with desired global behaviors.
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