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ABSTRACT
In stably stratified stars, numerical magnetohydrodynamics simulations have shown that arbi-
trary initial magnetic fields evolve into stable equilibrium configurations, usually containing
nearly axisymmetric, linked poloidal and toroidal fields that stabilize each other. In this work,
we test the hypothesis that stable stratification is a requirement for the existence of such
stable equilibria. For this purpose, we follow numerically the evolution of magnetic fields
in barotropic (and thus neutrally stable) stars, starting from two different types of initial
conditions, namely random disordered magnetic fields, as well as linked poloidal–toroidal
configurations resembling the previously found equilibria. With many trials, we always find a
decay of the magnetic field over a few Alfvén times, never a stable equilibrium. This strongly
suggests that there are no stable equilibria in barotropic stars, thus clearly invalidating the as-
sumption of barotropic equations of state often imposed on the search of magnetic equilibria.
It also supports the hypothesis that, as dissipative processes erode the stable stratification, they
might destabilize previously stable magnetic field configurations, leading to their decay.
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1 IN T RO D U C T I O N

There are several kinds of stars, namely upper main sequence stars,
white dwarfs and neutron stars, that, contrary to the Sun, have mag-
netic fields that are organized on large scales and persist unchanged
over long time-scales. Much of their interior is stably stratified, due
to (a) gradients of entropy in white dwarfs and radiative envelopes
of main-sequence stars; and (b) gradients of composition (relative
abundances of particle species) in the case of neutron stars. Clearly,
no dynamo action is taking place in these stars, so their magnetic
fields must be in stable hydromagnetic equilibrium states in which
the Lorentz force is balanced by small perturbations to the other-
wise spherical pressure and gravitational forces (with solid shear
stresses in neutron star crusts possibly also playing a role).

It has long been known that purely toroidal (azimuthal) and purely
poloidal (meridional) magnetic field configurations are unstable
(Markey & Tayler 1973; Tayler 1973; Wright 1973). However,
three-dimensional magnetohydrodynamics (MHD) simulations of
self-gravitating balls of highly conducting gas (Braithwaite & Spruit
2004; Braithwaite & Nordlund 2006) have shown their magnetic
field to evolve naturally from an initially random configuration to a
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nearly axisymmetric structure in which poloidal and toroidal com-
ponents of comparable amplitudes stabilize each other, persisting
for many Alfvén times. Further work has suggested that the stable
stratification of the fluid plays an important role in stabilizing these
structures (Braithwaite 2009; Akgün et al. 2013), and Reisenegger
(2009) has conjectured that there are no stable magnetic configura-
tions in stars that are barotropic, since they are not stably stratified.

On the other hand, attempting to construct plausible axisymmet-
ric magnetic equilibria for these stars, several authors (Tomimura
& Eriguchi 2005; Yoshida, Yoshida & Eriguchi 2006; Akgün &
Wasserman 2008; Haskell et al. 2008; Kiuchi & Kotake 2008;
Ciolfi et al. 2009; Lander & Jones 2009; Duez & Mathis 2010;
Pili, Bucciantini & Del Zanna 2014) have imposed a barotropic
equation of state, forcing the magnetic field structure to satisfy
the non-linear and thus highly non-trivial Grad–Shafranov equation
(Grad & Rubin 1958; Shafranov 1966). This assumption is not only
very restrictive and unjustified for any of the stars likely to contain
hydromagnetic equilibria (only very massive, radiation-dominated
stars or extremely cold white dwarfs might come close to being
barotropic); it might even be incompatible with having stable equi-
libria if the conjecture mentioned above is correct.

On the other hand, stable stratification will in the long term be
eroded by non-ideal MHD processes such as heat diffusion (in
main-sequence and white dwarf stars), beta decays and ambipolar
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diffusion (the latter two in neutron stars; see Reisenegger 2009). If
the above conjecture is true, these processes would destabilize the
magnetic field on these long time-scales, making it decay (unless
stabilized, e.g. by the solid neutron star crust).

Thus, it is important to clarify whether stable magnetic equilib-
ria can exist in barotropic stars. A previous study by Lander &
Jones (2012), based on a perturbative approach, gives a negative
answer. This work explores the same question more extensively,
using full MHD simulations, in which we have evolved initially
disordered magnetic fields as well as the ordered, axially symmet-
ric, twisted-torus magnetic equilibria written analytically by Akgün
et al. (2013), in both barotropic and (for comparison) stably strati-
fied stars, in order to see whether stable equilibria can be reached.

Section 2 gives a brief introduction of the effect that stratification
or its absence is expected to have on the stability of magnetic
equilibria. Section 3 explains the numerical scheme used for our
simulations. In Section 4, we explain how the disordered fields
are created, and show the results of their evolution. In Section 5,
we present the axially symmetric equilibria we use, as well as
their evolution. The conclusions from our results can be found in
Section 6.

2 STA BLE STRATIFICATION VERSUS
BA ROTRO PY

The physical effect of stable stratification can be illustrated by the
thought experiment in which a fluid element is taken from a given
position and moved vertically against gravity to a new position.
Then, it is allowed to achieve pressure equilibrium with its new
surroundings, without allowing it to change its entropy or chemical
composition (which generally occur on much longer time-scales).
If the entropy or chemical composition vary with depth in the star,
they will be different inside and outside the displaced fluid element,
causing its density to be different, and thus creating a restoring
force that is quantified by the squared Brunt–Väisälä (or buoyancy)
frequency (force per unit mass per unit displacement)

N2 = g2

[(
∂ρ

∂P

)
eq

−
(

∂ρ

∂P

)
ad

]
. (1)

Here, g is the local acceleration of gravity, ρ is the fluid mass
density, P is its pressure and the subscripts ‘eq’ and ‘ad’ refer to the
equilibrium profile existing in the star and to the changes produced
in the adiabatic displacement of the fluid element, respectively. If
N2 > 0, the restoring force tends to move the fluid element back to
its initial position, causing the fluid to be stably stratified, whereas
N2 < 0 causes a runaway fluid element, resulting in a convective
instability. If, on the other hand, the fluid is barotropic, there is a one-
to-one relation between pressure and density, P = P(ρ) (i.e. because
the specific entropy and/or composition are uniform throughout the
fluid or adjust to an equilibrium as fast as the fluid element can
move), the two partial derivatives will be equal, and the fluid will
be neutrally stable.

In a hydromagnetic equilibrium state, the forces on a given fluid
element must be balanced,

− ∇P − ρ∇ψ + 1

c
j × B = 0, (2)

where ψ is the effective gravitational potential (including a centrifu-
gal contribution in a rotating star), j = c∇ × B/(4π) is the electric

current density and B is the magnetic field. From this, it follows
that

∇P × ∇ρ

ρ2
= ∇ ×

(
j × B
ρc

)
. (3)

In the barotropic case, ∇P and ∇ρ must be parallel everywhere,
so the left-hand side vanishes, forcing the right-hand side to vanish
as well, and thus imposing a strong constraint (three scalar equa-
tions) on the magnetic field configuration. This constraint is much
weaker for the stably stratified case. In order to understand the lat-
ter, we make the astrophysically well-justified assumption that the
last term in equation (2) is much smaller than the other two, so
the thermodynamic variables can be written as P = P0 + P1 and
ρ = ρ0 + ρ1, where P0 and ρ0 are their values in an unmagnetized
star, and P1 and ρ1 are small perturbations caused by the Lorentz
force, which can be regarded as independent because of the third,
relevant thermodynamic variable entering their relation (small per-
turbations of specific entropy or chemical composition; see also
Reisenegger 2009; Mastrano et al. 2011). In this case, ∇P × ∇ρ ≈
∇P0 × ∇ρ1 + ∇P1 × ∇ρ0, so the left-hand side of equation (3) is
generally non-zero, only being constrained to be a horizontal vec-
tor field (perpendicular to ∇P0). Thus, only the vertical component
of the curl on the right-hand side is required to vanish (a single
scalar equation), a much weaker constraint. The particular, axially
symmetric case is discussed in Section 5.

In realistic stars, the characteristic Alfvén frequency ωA asso-
ciated with magnetically induced motions (e.g. the growth rate of
magnetic instabilities) is much smaller than N, thus the buoyancy
will produce a powerful restoring force, largely impeding magneti-
cally induced vertical (radial) motions, and thus strongly constrain-
ing possible magnetic instabilities. If, on the other hand, we had
N = 0 (or �ωA), there would be no such constraints on the motion,
and the magnetic field could decay much more easily. This general
idea, as well as more detailed arguments based on the same physics
(Braithwaite 2009; Akgün et al. 2013) motivate the conjecture that
there will be stable magnetic equilibria only in stably stratified stars
(Reisenegger 2009).

3 TH E M O D E L S

In this section, we describe the setup of the model, starting with a
description of the numerical code.

3.1 The numerical scheme

We use a three-dimensional Cartesian grid-based MHD code de-
veloped by Nordlund & Galsgaard (1995, see also Gudiksen &
Nordlund 2005) , which has been used in many astrophysical con-
texts such as star formation, stellar convection, sunspots and the
intergalactic medium (e.g. Padoan & Nordlund 1999; Padoan et al.
2007; Collet et al. 2011; Braithwaite 2012). It has a staggered mesh,
so that different variables are defined at different locations in each
grid box, improving the conservation properties. The third-order
predictor–corrector time-stepping procedure of Hyman (1979) is
used, and interpolations and spatial derivatives are calculated to
fifth and sixth order, respectively. The high order of the discretiza-
tion is a bit more expensive per grid point and time step, but the
code can be run with fewer grid points than lower order schemes, for
the same accuracy. Because of the steep dependence of computing
cost on grid spacing (fourth power for explicit 3D) this results in
greater computing economy. We model the star as a ‘star in a box’,
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Instability of magnetic equilibria in barotropic stars 1215

by modelling a self-gravitating ball of gas inside of the cubic com-
putational domain. The simulations described here, unless stated
otherwise, are run at a resolution of 1283, and the star has a radius
of 32 grid spacings (see below).

For stability, high-order ‘hyper-diffusive’ terms are employed
for thermal, kinetic and magnetic diffusion. These are an effec-
tive way of smoothing structure on small, badly-resolved scales
close to the spatial Nyquist frequency whilst preserving structure
on larger length-scales. This results in a lower ‘effective’ diffusiv-
ity compared to standard diffusion, and is more computationally
efficient than achieving the same by increasing the resolution. In
this study, we are interested in physical processes taking place on a
dynamic time-scale, and so the diffusion coefficients are simply set
to the lowest value needed to reliably prevent unpleasant numerical
effects (‘zig-zags’), so that the diffusion time-scale is as long as
possible. All three diffusivities are equal, i.e. the Prandtl and mag-
netic Prandtl numbers are both set to 1. The code contains a Poisson
solver to calculate the self-gravity.

3.2 Timescales, numerical acceleration scheme

The presence of several very different time-scales in stellar MHD
problems presents computational difficulties. There is the sound
crossing time τ sound (governing deviations from pressure equilib-
rium), the Alfvén crossing time τA (on which a magnetic field
evolves towards equilibrium), the time-scale τ d on which the mag-
netic field evolves under magnetic diffusion, and the rotation period
of the star. We simplify the problem by assuming a non-rotating star,
and by making sure the magnetic diffusion inherent in the numerical
method is small enough that it does not significantly affect the evo-
lution of the field, while still allowing for magnetic reconnection.
The time-scales to be included are then the sound travel time and the
Alfvén time. For realistic Ap star field strengths of about a few kG,
τA is of the order of a few years, which is five orders of magnitude
longer than the sound crossing time. To cover a range like this, we
make use of the fact that in a star close to hydrostatic equilibrium
the evolution of the magnetic field of a given configuration depends
on the field amplitude only through a factor in time-scale. That is
to say, if a field B(r, t) has the initial state B0(r), a field B′ with
initial amplitude, B′(r, 0) = kB0, where k is a constant, evolves
approximately as

B′(r, t) = kB(r, kt). (4)

In other words, the time axis scales in proportion to the Alfvén
crossing time. This approximation is valid as long as the Alfvén
crossing time is sufficiently long compared with the sound crossing
time that the evolution takes place close to hydrostatic equilibrium,
and at the same time sufficiently short compared to the magnetic
diffusion time-scale.

We make use of this scaling to speed up the computation. The
field strength of the configuration is multiplied by a time-dependent
factor f(t), chosen so as to keep the Alfvén crossing time approxi-
mately constant between time steps. With equation (4), the result-
ing (unphysical) field Bnum(r, tnum) is related to the physical field
B by B(r, t) = 1/f Bnum(r, tnum), where t is related to tnum by
dt = fdtnum. For the numerical implementation see the appendix.
This acceleration scheme (Braithwaite & Nordlund 2006) makes it
possible to follow the decay of an unstable configuration to very
low field strengths, by maintaining an artificially high amplitude
magnetic field, and consequently shorter Alfvén time, considerably
decreasing computational needs and making such studies feasible.

Since the Alfvén speed is not uniform within the star, it is neces-
sary to decide on some suitable average for the definition of τA; we
use

τA = R

v̄A
= R

√
4πρ̄

B̄
= R

√
M

2Emag
, (5)

where R, M, ρ̄, B̄ and Emag are the radius, mass, average density, av-
erage magnetic field and total magnetic energy of the star. Similarly,
the sound crossing time is defined as

τsound = R

√
M

�(� − 1)Eth
, (6)

where Eth is the total thermal energy content of the star and � is the
adiabatic index, further discussed in Section 3.3.

The initial field strength of the configuration B̄0, or equivalently
the value of the initial Alfvén time τAo, is an adjustable parame-
ter. Its choice involves a compromise. A lower value of the initial
field strength increases the separation between τ sound and τAo. The
approximation made is then better, but computationally more ex-
pensive. The value used here corresponds to τAo/τ sound ≈ 15.

3.3 Implementing stably stratified versus barotropic stellar
models

The code assumes a chemically uniform, monatomic, classical ideal
gas, whose specific entropy is s ∝ ln(P/ρ�) + const., and

� ≡
(

∂ ln P

∂ ln ρ

)
ad

= 5

3
. (7)

This partial derivative as given corresponds to an adiabatic change
as discussed in Section 2.

Simulations so far (e.g. Braithwaite & Spruit 2004; Braithwaite
& Nordlund 2006; Braithwaite 2009) have taken an initial density
profile inside the star corresponding to a polytrope P∝ργ , with

γ ≡ 1 + 1

n
≡

(
∂ ln P

∂ ln ρ

)
eq

= 4

3
, (8)

where n (here =3) is the usual ‘polytropic index’, and the value was
chosen to roughly match the radiative zones of Ap stars. For these
values, since � > γ , we have ds/dr > 0 and N2 > 0, so the star is
stably stratified. We use this model as a reference against which to
compare the new barotropic model for which we choose an initial
profile with γ = 5/3 (n = 3/2), so now � = γ , ds/dr = 0 and
N2 = 0.

The profiles of the specific entropies of both models can be seen
in Fig. 1(a). The star in either model is surrounded by a low-density,
poorly conducting atmosphere, which causes the magnetic field
outside of the star to relax to a potential field. Fig. 1(b) shows
the magnetic diffusivity profile for the stably stratified model. The
atmosphere has a high temperature, so that its density does not
become too small towards the edges of the computational domain.

Note, however, that the numerical code contains heat diffusion.
Since the chosen profiles correspond to a radially decreasing temper-
ature, the diffusion will reduce the temperature gradient, increasing
the specific entropy gradient and thus making the fluid increasingly
stably stratified. In order to counteract this effect and keep the fluid
barotropic, we introduce an ad hoc term in the evolution equation
for the internal energy per unit volume e, namely

de

dt
= . . . + ρT (s0 − s)

τs
, (9)
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Figure 1. (a) Initial dimensionless specific entropy, with zero-point at its
central value, as a function of r. The red dashed line is for the stably stratified
model (n = 3), and the solid black line is for the barotropic model (n = 3/2).
(b) The magnetic diffusivity versus radius for the stably stratified model.

where T is the local temperature, s0 is the initial value of the specific
entropy inside the star and τ s is a time-scale (to be chosen) at which
this ‘entropy term’ forces the star back to its initially isentropic
structure.

4 D ISORDERED INITIAL FIELDS

The setup of the disordered initial field is done in the same way as in
Braithwaite & Spruit (2004) and Braithwaite & Nordlund (2006).
This consists in assigning random phases to locations in three-
dimensional wavenumber space to wavenumbers from that which
corresponds to the size of the star up to wavenumbers corresponding
to about four grid spacings. The amplitudes are scaled as a function
of wavenumber as k−4:

Ak = (cos(2πx1) + isin(2πx2))k−4, (10)

where Ak is the amplitude for wavenumber k, and x1 and x2 are
two randomly created phases. A reverse Fourier transformation
is performed to obtain a scalar field. Two more scalar fields are
produced in the same way and these become the three components
of a vector potential. The vector potential is then multiplied by
exp(− r2

r2
m

), where rm was set equal to roughly a quarter of the radius
of the star. This was done to concentrate the field in the inner quarter

Figure 2. Total magnetic energy relative to initial total magnetic energy
versus time, given in initial Alfvén times, for models that have an initially
disordered magnetic field configuration. The solid violet curve is the evo-
lution of a stably stratified model that reaches a stable equilibrium, and is
shown for comparison. The dash–dotted grey line shows the evolution of the
stably stratified model where the model is kept static, to show how the system
will evolve under just diffusive processes. All other curves are the evolution
of barotropic models which began with initially different disordered fields,
none of which reach stable equilibria.

of the star, so that the field dies off sufficiently quickly outside the
star.

From this potential field, the magnetic field is then computed by
taking the curl, and then its magnitude is scaled so as to obtain the
desired total magnetic energy, which was 1/400 times the thermal
energy.

We used four different barotropic models, each including differ-
ent initially disordered field configurations and an entropy time-
scale value roughly equal to the sound crossing time. We also
include one model where a disordered magnetic field was put into a
stably stratified model as a comparison. The works of Braithwaite
& Spruit (2004) and Braithwaite & Nordlund (2006) have shown
that disordered fields in a stably stratified model can reach sta-
ble equilibria. The evolution of the total magnetic energy of all of
these models can be found in Fig. 2. The conclusion is that the
stably stratified model reaches a stable equilibrium in a few Alfvén
time-scales after which, the field decays only on the long diffusive
time-scale, which in a main-sequence star is of the order of 1010 yr.
On the other hand, none of the barotropic models reach such a stable
equilibrium. Fig. 3 contains 3D renderings of the magnetic field for
both a stably stratified model and a barotropic model after a time
of 70τAo. In the stably stratified model, there is a visible twisted
torus structure, while the barotropic model still has a disordered
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Instability of magnetic equilibria in barotropic stars 1217

Figure 3. Magnetic field configurations after a time of roughly 70τAo for
models with initially disordered fields in a stably stratified star (panel a) and
a barotropic star (panel b). Lines shown in red are outside of the star, those
that are blue and green are inside the star. Panel (a) shows that the field
has evolved into a large twisted torus inside the star. It was shown that this
configuration decays on a diffusive time-scale and is stable. Panel (b) shows
that the barotropic model still has a disordered magnetic field, and much of
the magnetic flux is at large radii or even outside of the star.

magnetic field configuration. This suggests that stable stratification
is a crucial ingredient for reaching a stable MHD equilibrium from
a disordered field.

We have also investigated the effect of using different values of
τ s on the evolution of a disordered initial field. Simulations were
carried out with four different values of τ s, as well as a simulation
where the entropy term was not used, which is akin to τ s being equal
to infinity. Fig. 4 shows the evolution of the total magnetic energy
for these models, as well as the stably stratified one. It is obvious
that increasing the value of τ s has little effect on the evolution,
although after a few τAo, models with a larger entropy time-scale
decay slightly more slowly. The reason for this is that the longer τ s

time-scale allows for a slight positive entropy gradient to evolve,
thus a small buoyant restoring force will act to slow down the rise of
the magnetic field. It should be noted, however, that even in the case
where the entropy term is not utilized in the code, the formation
of a stable stratification does not occur quickly enough for a stable
equilibrium to be created.

5 AXISYMMETRIC EQUILIBRIA

Akgün et al. (2013) wrote down analytic expressions of linked
poloidal–toroidal magnetic field configurations that correspond to

Figure 4. Evolution of the total magnetic energy relative to its initial value,
for models all starting from the same initially disordered magnetic field
configuration, and evolved with values of τ s ≈ 1, 5, 13 and 40 τ sound, where
τ s is the entropy time-scale defined in equation (9), depicted as a short-
dashed magenta, short-dashed dotted blue, solid red and long-dash–dotted
green curves, as well as a model in which the entropy term was not used,
which is plotted as a long-dashed gold curve. To compare, the evolution of
the random magnetic field in a stably stratified model is also shown with the
solid violet curve. As the time-scale is increased in the barotropic models,
the magnetic energy decays more slowly at late times. However, none of the
simulations of barotropic models reaches a stable equilibrium.

hydromagnetic equilibria in stably stratified stars. (A particular form
of these was also used by Mastrano et al. 2011.) They have not been
shown to be stable, and they are not equilibria in the barotropic case,
but they might be stable equilibria (or close to these) in the stably
stratified case and a good approximation to the best candidates for
stability in the barotropic case.

In order to motivate their functional form, consider a general,
axisymmetric field written as a sum of poloidal and toroidal com-
ponents,

B = Bpol + Btor = Bp∇α(r, θ ) × ∇φ + Btβ(r, θ )∇φ, (11)

where Bp and Bt are characteristic values of the two components,
and α and β are dimensionless scalar functions that depend on r,
the radial coordinate, and θ , the polar angle in the star. Since there
cannot be an azimuthal component of the Lorentz force (which,
in axial symmetry, cannot be balanced by pressure gradients and
gravity), ∇α and ∇β must be parallel, thus one can write β = β(α).
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Figure 5. Cross-sectional view of the poloidal field in the equilibria from
Akgün et al. (2013), with the parameter f8 = −100 and −10 (left and right,
respectively), controlling the volume of the closed field lines within the star.

The latter condition (a special case of the condition of the vanish-
ing vertical component of ∇ × ( j × B)/ρc discussed in Section 2)
is the only condition required to be satisfied by α(r, θ ) and β(r, θ ) in
order to yield a hydromagnetic equilibrium in a stably stratified star.
Besides this, these functions are arbitrary and need not satisfy, e.g.
the commonly assumed Grad–Shafranov equation, which is physi-
cally justified only for barotropic fluids and otherwise represents an
arbitrary, additional constraint (e.g. Reisenegger 2009). Of course,
in neither case there is a guarantee for the stability, and thus for the
astrophysical relevance, of the constructed equilibria.

For the poloidal part, Akgün et al. (2013) choose

α(x, θ ) = f (x) sin2 θ, (12)

where x is the dimensionless radial coordinate, x = r/R, for R the
stellar radius and

f (x) =
{∑4

i=1 f2ix
2i if x ≤ 1

x−1 if x > 1,
(13)

where the f2i are constants. Outside the star, this gives an exact
dipole. For the internal field, three of the four constants can be
obtained from the condition that all components of the magnetic
field are continuous across the stellar boundary (implying f(1) = 1
and f′(1) = −1, where the primes denote derivatives with respect
to x) and that the current density vanishes at the surface (implying
f′′(1) = 2). The fourth constant, here chosen as f8, is a free parameter,
which can be tuned to change the size of the closed field line region
of the equilibria, as seen in Fig. 5.

The closed field line region is important because the toroidal
component of the field, described by the function β(α), can only
exist in the volume where the poloidal field lines are closed within
the star. This motivates the choice:

β =
{

(α − 1)λ if α ≥ 1

0 if α < 1,
(14)

where the exponent λ > 1, so that the current due to the toroidal
field decreases smoothly to zero at the stellar surface.

5.1 Stability tests in stably stratified models

We do not know a priori whether these equilibria will be stable in
any type of star. As a first step, we verified their stability in a stably
stratified model. If the magnetic field configurations are not stable
in the stably stratified model, it seems likely that they will not be
stable in a barotropic model.

We utilize the aforementioned equilibria of Akgün et al. (2013)
with the toroidal exponent λ of equation (14) set equal to 2, as

Figure 6. Evolution of the total magnetic energy given in initial Alfvén

times, for an initially ordered magnetic field with
Epol
Etot

equal to 0.0025, 0.50
and 0.87 as the dashed red curve, solid black curve and dotted blue curve,
respectively, in a stably stratified star.

was done in their analytic work, and f8 from equation (13) equal
to −100. The reason for choosing this value of f8 was twofold.
The equilibria found to evolve from random field configurations
in the stably stratified models were found to have larger tori than
the equilibria of Akgün et al. (2013) in which the value of f8 was
set to zero. Secondly, we chose f8 to be a large amplitude, so as
to be spread out the toroidal flux across a larger area of the star.
This would have the effect of decreasing the local magnetic energy
density in the torus, as compared to a configuration with a smaller
closed field line region with the same fraction of the toroidal to total
magnetic energy. In spreading out the toroidal energy, the local
value of βplasma, defined as βplasma = 8πP

B2 , in the torus would be
larger, and it would thus be less buoyant.

We ran a number of simulations with various initial poloidal field
energies relative to total magnetic energy Epol

Etot
, ranging between

0.0015 and 0.93. Such a large range was used, because at low values
of this parameter, the Tayler instability (Tayler 1973) is expected
to set in and, at high values, instability along the ‘neutral line’ may
occur (Markey & Tayler 1973; Wright 1973). Models with initial
Epol

Etot
between 0.008 and 0.8 were found to be stable, and to decay on

a diffusive time-scale, while all others decayed more quickly due to
instabilities. Fig. 6 shows the evolution of the magnetic energy for
some of the models. To try to diagnose the source of instabilities,
we analysed the evolution of the m = 0–3 azimuthal modes, which
were determined by performing a root-mean-square integration of
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Instability of magnetic equilibria in barotropic stars 1219

Figure 7. θ component of the kinetic energy in each of the azimuthal m =
0–3 modes relative to the total initial magnetic energy versus time for stably

stratified models with initially ordered magnetic fields and
Epol
Etot

values of:
0.0025 (top left), 0.5 (top right) and 0.87 (bottom). The dashed black curve
represents the m = 0 mode, the solid grey curve the m = 1 mode, the dotted
blue curve is the m = 2 mode and the dash–dotted red curve is the m = 3
mode.

the θ component of the velocity in the meridional plane as

vθm = 1

A

×
∫ √(

1

π

∫ 2π

0
vθ cos(mφ)dφ

)2

+
(

1

π

∫ 2π

0
vθ sin(mφ)dφ

)2

dA,

(15)

where vθm is the amplitude of the theta component of the velocity
for a particular m-mode, A is the area of the star in the meridional
plane and vθ is the θ component of the velocity. We then calculated
the θ component of the kinetic energy in each of these modes, and
plotted these values normalized to the initial total magnetic energy
versus time in Fig. 7. Here, it is evident that the model with Epol

Etot
of 0.5 is stable to all of the modes, as the curves for each mode
evolve to a steady value. The model with initial Epol

Etot
of 0.87 was

unstable to m = 2 which can be seen by the sharp peak in the m = 2
curve at a time of roughly 2–5τAo after which this model calms to
a new equilibrium as the m = 2 mode flattens out. The model with
initial Epol

Etot
of 0.0025 was unstable to the m = 1 mode which begins

to set in at a time of roughly 4τAo, as can be seen by the peak in
the figure. It was then found that all configurations with initial Epol

Etot
above 0.8 were unstable to the m = 2 mode, while those with initial
Epol

Etot
below 0.008 were unstable to the m = 1 mode. In the m = 1

instability, the toroidal component of the field can be thought of as
a stack of rings on top of one another; as the instability occurs, the
rings slip with respect to each other. In the m = 2 instability, the
region along the neutral line, which is the space where the poloidal
field goes to zero, experiences tension, which results in kinking of
the neutral line, stretching any toroidal field that may be present
along the neutral line. This kinking of the neutral line bends the
toroidal field lines into a shape that is similar to the seam of a tennis
ball. Both the m = 1 and 2 unstable configurations end up reaching
another stable equilibrium after some time. In the case of the m =
1 unstable model, the equilibrium is reached at a much later time.
However, it can be seen that the m = 2 unstable model reaches a new
‘tennis ball’ shaped equilibria after roughly 8τAo when it begins to

decay on a diffusive time-scale, and the kinetic energy amplitude
in the m = 2 mode drops off and becomes stable in Fig. 7. These
results are similar to those of Braithwaite (2009), who studied the
stability of twisted torus configurations in stably stratified stars.

5.2 Stability tests in barotropic models

With the knowledge that these equilibria are stable in a stably strati-
fied star for initial Epol

Etot
values between about 0.008 and 0.8, we now

investigate whether such stable equilibria can exist in barotropic
stars.

5.2.1 Existence of stable equilibria?

A series of models have been run with the same equilibria used
in barotropic models. For these models, τ s was set to be equal to
the sound crossing time of the star. The initial Epol

Etot
values used

were between 0.03 and 0.96. The motivation for using values of
Epol

Etot
above 0.9 comes from the works by Tomimura & Eriguchi

(2005), Ciolfi et al. (2009), Lander & Jones (2009) and Armaza
et al. (2014), where magnetic equilibria have been calculated in
axial symmetry for barotropic stars, and none of which obtained
Epol

Etot
< 0.9. The rest of the spectrum of Epol

Etot
values was chosen based

on the results of Section 5.1, where for a stably stratified star, the
equilibria were stable for initial Epol

Etot
values of 0.008 to roughly

0.8. In addition, Ciolfi & Rezzolla (2013) have calculated magnetic
equilibria in barotropic stars and found equilibria with Epol

Etot
values

as low as roughly 0.11.
Fig. 8 shows the evolution of the total magnetic energy for

barotropic models, as well as a stably stratified model with Epol

Etot
=

0.5 for comparison. It is evident from the figure that none of the
equilibria are stable in the barotropic models. An interesting point,
however, is that fields with an initial Epol

Etot
values between 0.33 and

0.2 decay much more slowly at earlier times than all other barotropic
models. The reason for the slower decay of the magnetic field for
these models can be seen in Fig. 9, where the effective magnetic
radius, am, defined as

a2
m =

∫
B2r2dV∫
B2dV

, (16)

is plotted. It is evident that for magnetic configurations with an
initial Epol

Etot
≥ 0.33, am increases, caused by the torus rising in the

star. For Epol

Etot
values below 0.33, the magnetic tension in the torus

results in its contraction, causing a decrease of am. However, these
models that initially experience a contraction of the torus still show
that the am value will increase after roughly 6 τAo, as the torus rises
out of the star.

5.2.2 Effect of τ s

We also investigated the effect of varying τ s for a magnetic config-
uration with an initial Epol

Etot
value of 0.5 in Fig. 10. It is evident that

a longer τ s allows the magnetic field to decay more slowly. As the
entropy time-scale becomes larger, the star, due to numerical diffu-
sion, will evolve an entropy gradient, which will impede the rise of
the torus. However, even without the entropy adjustment term, the
equilibria are still not stable.
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Figure 8. Evolution of the total magnetic energy relative to its initial value

for a stably stratified star with an initially ordered field with
Epol
Etot

=0.5 as
the solid violet curve, and a series of curves for barotropic stars with initial
Epol
Etot

values of 0.03 (red dashed), 0.14 (black dash–dotted), 0.26 (blue short-
dashed), 0.5 (green short-dashed dotted), 0.74 (gold dashed double-dotted)
and 0.96 (grey solid). The stably stratified star’s magnetic field decays on
a diffusive time-scale (see Section 5.1), while all of the barotropic stars’
magnetic fields decay faster.

Figure 9. Evolution of am, the effective magnetic radius (equation 16), for

the barotropic models discussed in Fig. 8. All models with an initial
Epol
Etot

value less than about 0.33 experience an initial decrease in am and then
subsequent increase as the torus initially contracts due to tension and then

rises outwards. All models with an initial
Epol
Etot

above 0.33 simply experience
an increase in am as the tori simply rise out of the star. In all models, the
final state is the same, the magnetic field rises out of the star.

Figure 10. Evolution of the total magnetic energy relative to its initial value

for models of barotropic stars with an initial
Epol
Etot

value of 0.5, each with a
different τ s value. τ s ≈ 1, 5, 13 and 40 τ sound are plotted as the dashed red,
long-dashed dotted black, dotted blue and short-dash–dotted green curves,
respectively. In addition, one model where the entropy forcing term was not
included is plotted as a gold dashed double-dotted curve, and the comparison
model of a stably stratified star is plotted as the solid violet curve. Regardless
of the value of τ s used in the barotropic models, the configuration is always
unstable.

5.2.3 Variations of the free parameters in the axially symmetric
equilibria

It was shown in Section 5.2.1 that, regardless of the initial Epol

Etot
frac-

tion used, all the magnetic configurations were unstable. However,
the initial fraction of the total magnetic energy in the poloidal com-
ponent is just one of the free parameters that can be investigated in
the axisymmetric configurations. The effect of varying other free
parameters, namely the value of λ in equation (14), which affects
the distribution of the toroidal component, the value of f8 in equa-
tion (13), which controls the size of the closed field line region,
and the radius of the ‘neutral line’ were also studied. We found that
variations to these parameters had no effect on the final state of the
simulations, as all configurations were found to be unstable to the
same effect seen in Section 5.2.1, where the torus flowed radially
out of the star, subsequently decaying in the atmosphere.

5.3 Instabilities

We have analysed the instability of the m-modes in the barotropic
models, with the same method as the stably stratified models (See
Section 5.1). Fig. 11 shows the evolution of the kinetic energies for
each of the m = 0–3 modes for models with four different initial
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Instability of magnetic equilibria in barotropic stars 1221

Figure 11. Evolution of the θ component of the kinetic energy in each of
the azimuthal m = 0–3 modes relative to the total initial magnetic energy,
for barotropic stars containing initial magnetic field configurations with
Epol
Etot

values equal to: 0.26 (top left), 0.5 (top right), 0.76 (bottom left) and
0.96 (bottom right). In all cases, the m = 0 mode is the dominant mode of
instability.

Epol

Etot
values. In all cases, the m = 0 mode is the dominant instability,

quickly rising to a value of a few hundredths of a per cent of the
total initial magnetic energy, at which point it remains at this range.
Even in the cases where Epol

Etot
> 0.8 and Epol

Etot
< 0.008, which in the

stably stratified star were found to be unstable to the m = 2 and
1 modes, respectively, the m = 0 mode is the dominant instability
in the barotropic models. To help visualize what the m = 0 mode
looks like, Fig. 12 shows that the cause of the m = 0 mode is the rise
of the torus, driven by a combination of its own buoyancy and the
pressure of the enclosed poloidal field. Thus, the stable stratification
seems to play a very strong role in suppressing the m = 0 mode, as
it always dominates in the absence of stable stratification.

In order to see how robustly this mode dominates in destabilizing
the magnetic equilibria, we have investigated what happens when
an initial non-axially symmetric perturbation is added to the system.
To do so, we introduced perturbations to the vz component of the
velocity along the equatorial plane within the star. One case included
an initial m = 1 perturbation for a model with initial Epol

Etot
= 0.03, a

second model contained an m = 2 perturbation with initial Epol

Etot
=

0.74, while the third model contained perturbations to m = 1, 2 and
3 modes for an initial Epol

Etot
= 0.5. The strength of all perturbations

was the same, with each mode containing an initial Ekin
Emag

= 0.01 per
cent, roughly of the same order that the m = 0 mode was seen to
reach in the non-perturbed models. We again found that regardless
of the initial perturbations added, the m = 0 mode always became
the dominant mode of instability.

In addition to non-axially symmetric perturbations, we have run
two simulations with a non-equatorially symmetric perturbation.
The perturbation was created by offsetting the magnetic field con-
figuration by 0.016R in the northern direction, for two initial Epol

Etot
values of 0.5 and 0.24. Snapshots of the time evolution of the
poloidal and toroidal field lines can be seen in Fig. 13. The evolution
in these northerly perturbed models is similar to their non-perturbed
counterparts, with the only difference being that these models have
a slight tendency to evolve away from the equator.

Figure 12. Meridional projection of the poloidal field lines and toroidal
contours (drawn as ω̄Bφ , where ω̄ is the cylindrical radius, and the colour
scale is constant for all snapshots), at times 0.28, 2.07, 3.08 and 9.71 τAo

in a barotropic model. At time 0.28τAo the configuration has not changed
much from the initial state. By time 2.07 τAo the torus has drifted towards
the radius of the star. After 3.08 τAo the toroidal field has risen into the
atmosphere where it decays. By time 9.71 τAo nearly all of the torus has
decayed.

6 C O N C L U S I O N S

We have conducted two different kinds of numerical experiments.
In the first kind, we started with disordered initial fields. In

the previously studied case of stably stratified stellar models, we
confirmed that the magnetic field evolved into an ordered, stable,
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Figure 13. Snapshots of the poloidal field (black lines) and toroidal field
(drawn as ω̄Bφ ) (blue colour scale), for magnetic field configurations with

an initial
Epol
Etot

of 0.5 (left-hand panels) and 0.24 (right-hand panels), which
were perturbed axially symmetrically, by moving the configuration 0.016R
above the equator, causing a north–south asymmetry in barotropic models.
The snapshots are at time: 0.0, 1.1, 2.0, 3.3, 5.1 and 7.1 τAo, from top to
bottom. By time 1.1 τAo, it is possible to see that the toroidal field in the
0.5 model has risen to slightly larger radii, while the 0.24 model’s torus
has contracted to smaller radii. By time 2.0 τAo, the tori in both models
begin to move towards the northern pole, whilst continuing their previously
seen radial movement. By time 3.3 τAo, the tori in each model have moved
noticeably towards higher latitudes, and the magnetic field in the 0.24 model
begins to rise to larger radii. By 5.1 τAo, the torus of the 0.24 model has
continued its northerly path, while the torus in the 0.5 model has begun to
decay in the atmosphere. (Note that there is some toroidal component outside
the star, this is because the enhanced diffusion utilized in the atmosphere
takes a bit of time to make the field relax to a potential field.) By the final
time step of 7.1 τAo, the torus of the 0.5 model has decayed significantly,
while the torus of the 0.24 model has started to reach the atmosphere where
it is now experiencing a fast decay of the torus. In both cases, the magnetic
field configurations remain axisymmetric throughout this process.

roughly axially symmetric configuration with comparable poloidal
and toroidal fields. In the barotropic cases we studied, this never
happened, and the magnetic energy decayed much faster than ex-
pected from diffusion.

In the second kind, we started with a smooth, axially symmetric
magnetic field with poloidal and toroidal components. We con-
firmed that, in the stably stratified star, there are stable hydro-
magnetic equilibria for a fairly wide range of values of the initial
fraction of poloidal to total magnetic energy, 0.008 <

Epol

Etot
< 0.8.

Outside this range, the field decayed through non-axisymmetric
modes, m = 1 in the toroidally dominated and m = 2 in the poloidally
dominated case. In contrast, in the barotropic case, we found no sta-
ble configurations (exploring a fairly large parameter space), and
the field always decayed through an axially symmetric (m = 0)
instability in which the toroidal flux rose radially out of the star,
being dissipated in the atmosphere.

Although far from a rigorous mathematical proof, this provides
strong evidence (added to that previously provided by Lander &
Jones 2012) that there are no stable equilibria in barotropic stars.
It also strongly supports the intuition that, in a stably stratified star,
the buoyancy force strongly constrains the potential instabilities
by impeding any substantial radial motions, whereas such motions
are not hindered in the barotropic case, and in fact these motions
destabilize the magnetic equilibrium.

As argued above, the stabilization provided to the magnetic field
by the buoyancy force can be roughly quantified by comparing
the Brunt–Väisälä frequency N to the Alfvén frequency ωA. It will
only be effective if N � ωA, whereas in the opposite case the star
would behave as if it were barotropic, not being able to contain a
stable magnetic field. If there are dissipative processes effectively
eroding the stable stratification on long time-scales, they will lead
to a destabilization and eventual decay of the magnetic field, unless
it can be stabilized, e.g. by the solid crust of a neutron star. In
fact, in the neutron star case, this effect has been argued to act on
astrophysically relevant time-scales, which does not seem to be the
case in white dwarfs and upper main-sequence stars (Reisenegger
2009), with the possible exception of very massive O stars, which
are radiation dominated and thus only weakly stratified.

Note that the numerical models used here, which assume a chem-
ically uniform, classical ideal gas, stably stratified by an entropy
gradient, clearly do not directly apply to degenerate stars, such as
white dwarfs and neutron stars. However, we have no reason to
doubt that the essential physics, in particular the competition be-
tween magnetic and buoyancy forces, is the same in these cases,
and the (very rough) condition N � ωA is still required to stabilize
a hydromagnetic equilibrium in these cases, even in the neutron
star case, where N is due to a composition gradient. Additional
changes in the neutron star case are the presence of a stabilizing
solid crust, as well as superconducting and superfluid regions in
the interior, which modify the form of the Lorentz force and the
dynamical equations and thus do not allow a direct application of
the present results, although some of their features might carry over
to this regime.
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A P P E N D I X A : N U M E R I C A L AC C E L E R AT I O N
SCHEME

The scaling of magnetic fields that evolve from different initial
amplitudes (but otherwise identical configuration) with time is de-
scribed in Section 3.2. The practical implementation in the MHD
code is as follows. We need to make a distinction between the field
Bnum and time tnum in the accelerated code, and the physical field B
and time t reconstructed from it. The MHD induction equation

∂Bnum

∂tnum
= −1

c
∇ × E (A1)

is first evolved over a time step �tnum, where E = − v×Bnum
c

, to
yield an intermediate update �B′. The magnetic energy over the
numerical volume V is measured from the result of this time step:

Enum =
∫

B2
num/8π dV , (A2)

and the evolution time-scale τ num (in the numerical time unit) is
calculated:

τnum = 4πEnum /

∫
Bnum · ∂Bnum/∂tnum. (A3)

The intermediate update �B′ is modified:

�B = �B′ + B′�tnum/2τnum, (A4)

which brings the numerical Alfvén crossing time back to its initial
value τAo. The new value of the physical magnetic energy E has
changed by the amount

�E = −E�tnum/τnum, (A5)

and the physical time coordinate by the amount

�t = �tnum

√
Enum/E. (A6)
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