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Remote sensing-assisted estimates of aboveground forest biomass are essential for modeling carbon
budgets. It has been suggested that estimates can be improved by building species- or strata-specific
biomass models. However, few studies have attempted a systematic analysis of the benefits of such
stratification, especially in combination with other factors such as sensor type, statistical prediction
method and sampling design of the reference inventory data. We addressed this topic by analyzing
the impact of stratifying forest data into three classes (broadleaved, coniferous and mixed forest). We
compare predictive accuracy (a) between the strata (b) to a case without stratification for a set of pre-
selected predictors from airborne LiDAR and hyperspectral data obtained in a managed mixed forest
site in southwestern Germany. We used 5 commonly applied algorithms for biomass predictions on
bootstrapped subsamples of the data to obtain cross validated RMSE and 12 diagnostics. Those values were
analyzed in a factorial design by an analysis of variance (ANOVA) to rank the relative importance of each
factor. Selected models were used for wall-to-wall mapping of biomass estimates and their associated
uncertainty. The results revealed marginal advantages for the strata-specific prediction models over
the unstratified ones, which were more obvious on the wall-to-wall mapped area-based predictions.
Yet further tests are necessary to establish the generality of these results. Input data type and statistical
prediction method are concluded to remain the two most crucial factors for the quality of remote sensing-
assisted biomass models.
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Introduction

The estimation of aboveground forest biomass from remotely-
sensed data is currently of great interest, due to important
applications ranging from forest management to environmental
and climate policy. Forest biomass is directly linked to carbon
stocks, which are crucial for establishing future mitigation sce-
narios under climate change. The importance of forest biomass in
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the context of such mitigation strategies is demonstrated by inter-
national initiatives such as reducing emissions from deforestation
and forest degradation (REDD and REDD+) (e.g., Hill et al., 2013).
Furthermore, biomass estimates can support surveys assessing the
bioenergy potential of certain landscapes and help to monitor the
sustainability of forest resources (e.g., Rosillo Calle et al., 2008).
Metrics from light detection and ranging (LiDAR) data have
been frequently reported to provide good estimates of aboveground
biomass across different geographical units (e.g., Hall et al., 2005;
Nesset and Gobakken, 2008; Bright et al., 2012). A possibility to
improve predictive accuracy could be including additional informa-
tion, for example on species composition, in the estimation process.
This could be achieved by various techniques. One is combining
LiDAR information with optical data, but results have been mixed.
Whereas some improvements could be obtained (e.g., Popescu
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Table 1
Summary statistics of reference aboveground biomass values within the study site.

Min. value Max. value First quantile

Median Mean

Third quantile No. of samples

9.02 372.9 114 165.7

167.8 2164 297

et al., 2004), these were occasionally reported to be only marginal
(Kulawardhana et al., 2014), particularly in case of pure deciduous
stands (Tonolli et al., 2011). Previous studies using predictors from
LiDAR-based biomass models (Packalén and Maltamo, 2006, 2007;
Breidenbach et al., 2010a,b) show promising results for predicting
biomass on species level. Further refinements have been reported
by incorporating hyperspectral metrics (e.g., Sarrazin et al., 2011).
However, in many cases (e.g., in highly mixed stands) a realistic
biomass prediction at tree species level will be severely restricted
by factors such as spectral mixture due to tree crown overlaps. In
such cases, a coarser division (i.e., post-stratification) into species
groups (or communities) or into major strata of coniferous, decid-
uous and mixed stands is a compromise to retrieve strata-specific
estimates (e.g., Eckert, 2012; Latifi et al., 2012). A practical exam-
ple under which a similar stratification approach is applied is the
Forest Inventory and Analysis program of the US, where remote
sensing data are used to stratify sample plots from a nation-wide
regular grid to subpopulations. The proportionally-allocated sam-
ples of each subpopulation are eventually inventoried in the field
(e.g., Reams et al., 2005).

A superiority of species (or strata) — specific biomass models to
those predicting the entire units at once has been found in a number
of previous reports (Breidenbach et al., 2010a,b; Latifi et al., 2012).
In case of LiDAR data, this may be related to the differing interac-
tions of the laser pulse signals with the architecture of broadleaved
and coniferous trees, as stated by Heurich and Thoma, (2008) who
suggested the stratification into deciduous, coniferous and mixed
strata for LiDAR-assisted forest parameter estimation.

There are several examples on comparisons between modeling
approaches while predicting area-based biomass (e.g., Breidenbach
et al., 2010a; Latifi et al., 2010; Powell et al., 2010; Main-Knorn
et al., 2015; Gagliasso et al., 2014). However, studies addressing
the general issue of post-stratification of the input data for remote
sensing-based estimates are still scarce (see Heurich and Thoma,
2008; Dahlke et al., 2013). It has been suggested that classifying
inventory plots information to forest types or districts may improve
the precision of forest attribute estimation (Reams et al., 2005;
Nelson, 2010; Latifi and Koch, 2012), particularly when the aim
is to design a multi-level forest inventory for large area estima-
tions (Katila and Tomppo, 2002; Andersen et al., 2011). However,
recent reports also state an existing shortage of statistical analysis
on post-stratified estimation of forest attributes to be a function of
restriction in the sample size in small scale domains (McRoberts
et al., 2012), who also provided examples on regional inferences
of standing timber volume (IMcRoberts et al., 2013). Yet in order
to draw reliable conclusions on the effect of stratification on for-
est biomass estimates, stratification approaches are needed to be
examined in interaction with several other parameters which are
known to influence remote sensing-based biomass estimates (e.g.,
sensor type, prediction method, sample size).

Here, we explore the question of whether stratification of
sampling units into major forest types can influence the predic-
tive quality of area-based forest biomass modeling. We based
the models on a number of pre-selected predictors from sets of
LiDAR and hyperspectral data. We based the models on a number
of pre-selected predictors from sets of LiDAR and hyperspectral
data. We did not consider building models based on combined
LiDAR and hyperspectral predictors due to the previously-available
reports on the fairly similar performance of LiDAR and combined

LiDAR +Hyperspectral data for the examined dataset (e.g., Latifi
et al., 2012, Fassnacht et al., 2014).

Commonly applied parametric and non-parametric prediction
methods were used on bootstrapped subsamples of the data to
obtain a relative accuracy measure (RMSE) as well as the degree of
variance explained by the models (r2) under cross-validation. Two
subsequent analyses of Variance (ANOVA) were used to compare
the differences in RMSE and 2 (a) between the strata (b) between
the stratified and the non-stratified case with differences in pre-
dictive accuracy from other factors (prediction method, input data
type and sample size). This allows us to systematical assess the
importance of factors which typically occur when modeling strati-
fied forest biomass by means of remote sensing data.

Materials and methods
Study site

The study site consists of nearly 900ha of managed pure
and mixed stands located in the vicinity of the southwestern
German city of Karlsruhe (8°24'09”E, 49°03'37”N to 8°25'49"E,
49°01’15”N). The dominant tree species is scots pine (Pinus
sylvestris L., with 56.3% of the total timber volume), occurring with
other species such as European Beech (Fagus sylvatica L., with 17.8%
of the total volume), Sessile Oak (Quercus petraea Liebl.) and Pedun-
culate Oak (Quercus robur L.) (jointly 14.9% of the total volume)
and other deciduous trees (5.8% of the total volume). Further tree
species including Pseudotsuga menziesii, Picea sp., Abies sp. and Larix
sp. (jointly 5.2% of the total volume) are also sporadically present
within the stands. The age of the stands ranges between 30 and 130
years. The stands were either comprised of dense, young stands
(mainly pure Scots pine or pure oak trees) or of older stands (with
Scots pine as the dominating species) with varying densities. The
stands were mostly two-story with a second tree story consisting
of broadleaves i.e., Beech and Hornbeam (Carpinus betulus L.).

Field and remote sensing datasets

The reference biomass values were calculated from 297 plots
inventoried in 2006. The systematically-gridded plot design was
comprised of concentric circles of 2, 3, 6 and 12m radii in a
200 x100 m grid. In each plot, trees with (DBH) <10 cm, <15cm,
<30cm, and >30cm were measured if their distance to the plot
center was 2, 3, 6 and 12 m, respectively (State Forest Service of
Baden-Wiirttemberg, 2009). The aboveground biomass of each tree
was then calculated by applying species-specific allometric func-
tions (Zell, 2008). The yielded biomass values were summed up to
derive total biomass in tons per hectare. The descriptive statistics
for the reference biomass values is summarized in Table 1.

Table 2
Number of samples for the three sample size classes which were applied in the
individual model runs of the two experiments.

Experiment Samples class 1 Sample class 2 Sample class 3
Broadleaved 34 48 73
Coniferous 38 48 76
Mixed 34 48 73

Reference samples 42 49 72
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The LiDAR dataset included metrics extracted from pre-
processed, full waveform data collected in August 2007 (leaf-on
condition) by Toposys GmbH by means of a Harrier56 system and
a Riegl LMS-Q560 laser scanner. Further technical specifications of
the applied LiDAR data can be found in Latifi et al., (2012). Pulse-
form data were derived from the original waveform dataset, from
which solely the first pulse data was used. Following a digital ter-
rain model (DTM) generation by means of the TreesVis software
package (Weinacker et al., 2004), the available point cloud was nor-
malized to derive the actual tree heights, where a height of 2m
was used as a threshold for deriving tree metrics, with a rationale
of these being mainly representative for canopy hits (Packalén and
Maltamo, 2006).

In addition to the LiDAR data, spectral metrics were extracted
from an airborne hyperspectral scene (HyMap) acquired in August
2009 by the HyEurope campaign of the German Aerospace Cen-
ter (DLR). The atmospherically/geometrically-corrected scene had
a pixel size of 4 m. The data consisted of 125 spectral bands featur-
ing a spectral resolution of 13-17 nm covering arange between 0.45
and 2.48 pm of the electromagnetic spectrum (Cocks et al., 1998).
See Latifi et al., (2012) for further technical details on the applied
LiDAR and hyperspectral data. A total number of 13 metrics were
derived for the subsequent modeling. The LiDAR-extracted metrics
included the mean height, the maximum height, 10th, 70th, and
90th height quantiles of first-pulse height as predictors. The ratio-
nale for this selection stems from prior experiences regarding the
relevance of mean- and top-heights extracted features for biomass
studies (e.g., Tsui et al., 2012).

From the HyMap data, eight predictors were extracted which
mostly correlate with species information, vegetation density
and leaf water content. The predictors consisted of normalized
difference vegetation index (NDVI), the normalized difference
water index (NDWI), and Chlorophyll-VI as suggested by Gitelson
et al., (2003). In addition, five pre-selected original hyperspectral
bands (closest bands corresponding to 518 nm, 681 nm, 1235 nm,
1477 nm and 2032nm of the electromagnetic spectrum) were
derived due to their previously-reported relevance to vegetation
biomass (Thenkabail et al., 2004a; Latifi et al., 2012) and species
information (Fassnacht et al., 2014; Thenkabail et al., 2004b).

Description of the experiments

Two experiments were conducted based on the stratification of
samples prior to modeling. The first experiment explored the pre-
diction of aboveground biomass for each of the three broadleaved,
coniferous and mixed forest strata. The second test compared the
stratified predictions to the predictions of total (i.e., unstratified)
samples.

The assignment of the sample plots to the coniferous, decidu-
ous and mixed strata was based on the information recorded for
the inventoried field data. Thus, the percentage of coniferous and
deciduous timber volume within each inventory plot was initially
derived. Each plot was then assigned to the coniferous or deciduous
stratum if this portion was 70% for either of the strata. Otherwise
the given plot was assigned to the mixed stratum (see Latifi et al.,
2012).

The application of the sample allocation methods such as pro-
portional or Neyman (e.g., Peltoniemi et al., 2007) in stratification
would inherently yield in differing stratum-specific sample sizes
(see Westfall et al., 2011). This has been reported to pose as a
highly-affecting factor on model performance in case of the cur-
rent dataset in Karlsruhe test site, in which the proportion of plots
covering the coniferous stratum is notably larger than those of the
other two strata (Latifi et al., 2012). Since the aim here was to keep
the explored factors independent from stratum size, we minimized
this effect by deliberately forming three strata with nearly the same

number of sample units. Thus, the initially-higher number of 151
coniferous sample units was pruned by a systematic selection of
every second plot from the set of samples sorted based on their
total biomass. This finally led to 75 sample units for the coniferous
stratum, as well as 73 sample units for both of the broadleaved and
mixed strata. An overview of the location of the sample plots within
the study area is provided in Fig. 1.

Biomass modeling

The modeling chain of the two experiments consisted of the
following steps (Fig. 2):

I. Separate matrices of response and predictor variables were
formed for each of the two sources of remote sensing met-
rics. The n plots were then sorted according to their reference
biomass values. From the sorted dataset, five groups of equal
sample size (i.e., ns=(n/5)) were derived which is analogous
to splitting the data into 20% percentiles. This split was inte-
grated to reduce potential effects originating from differing data
ranges and distributions of the response values (see step II). For
the first experiment, this process was repeated for each forest
stratum. The splitting process was independently conducted for
each source of predictors (i.e., LIDAR and hyperspectral features).

II. We performed a 500-times permutated stratified bootstrap on
the groups built in step I through which samples from each of
the five sample groups were drawn with replacements. Then, a
single input dataset per bootstrap was formed by combining the
drawn subsets from the five sample groups. As a consequence,
sample units from the full range of available biomass values were
available in each bootstrapped stratum-specific input dataset.
The within-group drawn sample size x was varied three times
(x=ns/2,x=ns/1.5,x=ns) which led to forming three sample size
classes with differing number of sample units for each class.
Input datasets of class 1 (x=ns/2) embraced the least sample
units, whereas those of class 3 (x=ns) contained the most.

IIl. Subsequently, each of the created 500 input datasets of each
input sample size class were fit by 5 selected prediction methods,
including k-nearest neighbor (KNN), support vector machines
(SVMs), gaussian processes (GPs), random forest (RF) and step-
wise linear regression (LMSTEP). A summary of the applied
prediction methods is included in Appendix 1. Cross-validations
were conducted for each case, where the model outputs included
the best model parameters (selected based on lowest RMSE
values) as well as the RMSE and r? diagnostics. 3-fold cross-
validation with 5 repetitions was performed. A higher number
of folds was not possible because of too few sample units in the
hold-out samples.

IV. To quantify the influence of each tested factor on the predictive
error, analysis of variance (ANOVA) was applied (see Chambers
etal., (1992) for details on ANOVA). Independent variables in the
ANOVA were the sample size (as applied by sample size class),
the prediction method, the sensor type (LiDAR/hyperspectral),
the either (a) stratification into broadleaved, coniferous, mixed,
or (b) and presence/absence of stratification, as well as their
corresponding interactions. For the presence/absence of stratifi-
cation, the sample sizes were kept approximately equal. Table 2
provides an overview of the sample sizes for the entire experi-
ment.

V. The selected best models of each prediction method were used
for wall-to-wall mapping of the biomass estimates (and the cor-
responding coefficients of variation (CV)). To this aim, the mean
values of the entire 500 model runs were calculated for both pre-
dicted biomass values and the standard error of the estimates.
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Fig. 1. Geographical Location of the study site in Baden-Wiirttemberg state- Germany shown on the NIR band of an aerial orthophoto and overlaid by the stratified sample
plots (the coniferous stratum has been already pruned to yield similar number of samples as the broadleaves and mixed strata).

The model training, prediction and mapping processes were
entirely implemented in an open source domain in R (Development
Core Team, 2014) by integrating a number of libraries including
kernlab (Karatzoglou et al., 2004), RandomForest (Liaw and Wiener,
2012) and caret (Kuhn and Johnson, 2013).

3. Results
Model performances

Figs. 3-6 summarize the results of model performances. For
the strata-specific models, the median r2 values varied between
0.17 (kNN for broadleaves) and 0.48 (RF for coniferous) for the
hyperspectral predictors. For the LiDAR predictors they ranged
between 0.42 (SVM for coniferous) and 0.6 (RF for coniferous).
No explicit trend was observed among the applied modeling
approaches. When applying hyperspectral metrics, lower 2 rates
were returned by the broadleaved stratum than by both conifer-
ous and mixed strata (lowest r2 ~0.17 for broadleaved compared

to lowest 12 ~0.22 and r2 ~0.20 for mixed and coniferous strata).
When applying LiDAR-based predictors, alower amount of variance
(lowest median r2~0.42) was explained for coniferous stratum
than for mixed (lowest r2 ~ 0.47) and broadleaved (lowest 2 ~ 0.46)
strata (Fig. 3).

When applying hyperspectral predictors, the RMSE rates
showed comparable patterns with lowest performances for the
broadleaved stratum (highest median RMSE ~77 t/ha for LMSTEP),
followed by coniferous (highest median RMSE ~72 t/ha for LMSTEP)
and mixed (highest median RMSE ~64 t/ha for KNN) strata (Fig. 4).
Applying LiDAR predictors turned out fairly better performances
by returning lowest RMSE for the coniferous stratum (mean RMSE
~44 t/ha by RF), followed by the broadleaves (lowest mean RMSE
~45 t/ha by RF) and the mixed (mean RMSE ~46 t/ha) strata (Fig. 4).
A general tendency toward improved model performance was
observed along with increasing the number of input samples, as
shown by the colored horizontal stripes in the Fig. 4. Furthermore,
the RF showed to generally return higher performances (i.e., lower
RMSEs) compared to other applied extrapolation methods.
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Fig. 2. The experimental set-up of the biomass modeling approach.

Figs. 5 and 6 summarize the model performances for the strat-
ified (panels a and b) and the unstratified (panels c and d) model
runs. One may particularly note the generally improved rates for
both RMSE and 12 diagnostics for the stratified runs (highest median
r2 ~0.59, lowest median RMSE ~45t/ha by LiDAR data and RF

model) as compared to those built by unstratified samples (high-
est median r2 ~ 0.48, lowest median RMSE ~50 t/ha by LiDAR data
and RF model). In addition to the overall median rates, improve-
ments were also observed for the median values of each individual
prediction method across all the applied sample sizes.
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distribution of the r? values from the 500 bootstrapped models as obtained by the 3-fold-cross validation for each extrapolation method (LMSTEP = stepwise linear models,
SVM =support vector machines, KNN =k-nearest neighbor, RF=random forest, GP=Gaussian processes) and sample size (class 1-3) for hyperspectral-based models of
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1-3) for hyperspectral-based stratified (A) and unstratified (C) models, as well as for LIDAR-based stratified (B) and unstratified (D) models. The horizontal black line in each
beanplot shows the mean value. The median r? for each of the three sample size classes is given with the blue, yellow and green horizontal stripes for class 1-3, respectively.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

ANOVA results

Tables 3 and 4 summarize the outcomes of the ANOVAs by quan-
tifying the influence of prediction methods (SVM, KNN, GP, LMSTEP,
and RF), sample size (class1-3), sensor type (LiDAR, hyperspec-
tral) and modification (three individual strata as well as stratified
vs. unstratified prediction) on the obtained performance diagnos-
tics. The factors have been ranked based on their calculated sum of
squares (ssq).

All in all, the highest ranked factors within the first ANOVA
based on the explained variance were sensor type (ssq=450.7),
prediction method (ssq=145.7) and the sample size (ssq=42). The
stratification seemed to be only of minor importance (ssq=19.6).
When exploring RMSE rates, the same ranking was observed. The
second ANOVA (stratified vs. unstratified models) showed fairly
differing rankings based on either r2 or RMSE rates: the high-
est r2-ranked factors included sensor type (ssq=660.7), prediction
method (ssq=128) and stratification (ssq=92.8), while the high-
est ranks based on RMSE included sensor type (ssq=1,685,775),
prediction method (ssq=618,125) and the number of samples
(ssq=249,304).

Area-based predictions

Figs. 7 and 8 contain examples of wall-to-wall predictions of
biomass (left side) and their corresponding CVs (right side). The

mapped CVs provide information on the extent of variability rel-
ative to the mean which is analogous to a measure of relative
standard uncertainty of the predicted biomass. The maps show
the strata-specific (Fig. 7) and unstratified (Fig. 8) estimates pre-
dicted with the highest within-group drawn sample size (class 3)
by means of the best performing approach (RF) on LiDAR predictors.
Slight differences in the spatial distribution of predicted biomass
across the different strata as well as differences in the value range
can be observed. Additionally, one may note the somewhat higher
CVs (most obviously located within the non-forested areas in e.g.,
upper left part of the maps) in both coniferous and broadleaved
strata(panels Aand CinFig. 7)as compared to that of mixed stratum
(panel B in Fig. 7). Despite that observation, fairly similar patterns
were observed throughout the mapped biomass for all the strata,
which reflect the previously-mentioned subtle effect of the sam-
ple stratification. The Fig. 8 depicts an exemplified prediction map
of an unstratified model, in which the predicted pixels represent
the biomass values with a degree of smoothness as opposed to the
heterogeneity unveiled when mapping based on the strata-specific
estimates.

Discussion

Regional forest inventories are often based on systematic
sampling grids, and thus are constrained to previously-defined
sampling designs and intensities (McRoberts et al., 2012). Since a
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The beanplots illustrates the distribution of the RMSE values from the 500 bootstrapped models as obtained by the 3-fold-cross validation for each extrapolation method
(LMSTEP = stepwise linear models, SVM = support vector machines, KNN =k-nearest neighbor, RF=random forest, GP = Gaussian processes) and sample size (class 1-3) for
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Table 3
Results of ANOVA conducted to explain variance of r2 and RMSE as obtained for the
additional experiments on test site Karlsruhe.

Table 4
Results of ANOVA conducted to explain variance of r? as obtained for the additional
experiments on test site Karlsruhe.

2 RMSE r? RMSE

Df SumSq SumSq Df SumSq SumSq
PredMeth 4 145.7 677886 PredMeth 4 128.0 618125
SensType 1 450.7 1201864 SensType 1 660.7 1685775
SampSi 3 42.0 271392 SampSi 3 38.6 249304
Strat 2 19.6 27712 Strat 1 92.8 83277
PredMeth:SensType 4 41.1 195998 PredMeth:SensType 4 49.8 249304
PredMeth:SampSi 8 13.7 52194 PredMeth:SampSi 8 12.8 50628
PredMeth:Strat 8 9.6 27507 PredMeth:Strat 4 27.5 87885
SensType:SampSi 2 0.0 1148 SensType:SampSi 2 0.0 1468
SensType:Strat 2 324 117983 SensType:Strat 1 42 3165
SampSi:Strat 4 14 9853 SampSi:Strat 3 5.0 32537
PredMeth:SensType:SampSi 8 1.6 6943 PredMeth:SensType:SampSi 8 1.7 7475
PredMeth:SensType:Strat 8 15.0 76194 PredMeth:SensType:Strat 4 2.7 5003
PredMeth:SampSi:Strat 16 0.4 2227 PredMeth:SampSi:Strat 8 1.5 5479
SensType:SampSi:Strat 4 0.4 725 SensType:SampSi:Strat 2 0.0 7
PredMeth:SensType:SampSi:Strat 15 0.3 4928 PredMeth:SensType:SampSi:Strat 7 0.1 428
Residuals 44910 543.1 2049713 Residuals 59940 769.6 2807363

PredMeth = Prediction method, SampSi = number of input samples, SensType = input
datatype / sensor, Strat = stratification, here: stratification into broadleaved, conif-
erous, mixed stands. The colons (:) shows the interaction between two given factors.

PredMeth = Prediction method, SampSi = Number of input samples, SensType = [nput
datatype | sensor, Strat=Stratification, here: stratified models vs. non stratified
samples. The colons (:) shows the interaction between two given factors.
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stratified sampling can often not be integrated into forest inventory
plans prior to the inventory, a post-stratification of the previously-
recorded plots into major forest types have been stated to partially
enable more precise estimations of forest attributes (Westfall et al.,
2011; McRoberts et al., 2012).

Here, we investigated the effect of stratification on remote
sensing-based aboveground biomass predictions in combination
with a set of crucial factors that have been shown to affect the
quality and robustness of small-scale forest biomass estimation by
remote sensing data. The considered factors include sample size,
prediction method and sensor type. For each combination of those
factors and the strata, we calculated cross-validated 2 and RMSE
diagnostics with replicated datasets created by bootstrapping. A
subsequent ANOVA allowed us to separate the relative influence of
the above-mentioned factors on the predictive error.

The results of our experiment suggest that the importance of
a post stratification of the reference samples is of lower impor-
tance compared to factors such as the sensor type (i.e., the input
predictor data) and the applied prediction method. Here, the strata-
specific models were only slightly better than the total ones, as
revealed by the ANOVA analysis in which the comparison between
stratified and total models was included as one of the examined fac-
tors. A previous study across another German test site stated the
stratification of sample units to bear different levels of effects on
LiDAR-based estimation of stand parameters (Heurich and Thoma,
2008). They reported the variance explanation of models for stand
height and DBH to be only marginally enhanced by stratifica-
tion, whereas the standing volume and density were significantly
enhanced.

In a typical stratification case, the strata-specific sample sizes
are defined based on the size of each subpopulation. Though sev-
eral numbers have been suggested as minimum number of samples
allowed within each forest stratum (Sdrndal et al., 1992; Ott,
1999), this minimum depends chiefly on the population structure
(Cochran, 1977; Westfall et al., 2011). In a general sense, the less-
populated strata are presumable to return higher prediction errors
whichin turn affect the total prediction error (see e.g., the RMSE val-
ues of up to 261% for Douglas fir (Pseudotsuga menziesii reported by
Breidenbach et al.,2010a). This was also mentioned by e.g., Westfall
et al., (2011) who warn about biased estimates of standard errors
at small within-strata sample sizes.

In our test site, an asset in applying forest strata-specific models
over the total ones has previously been confirmed to be marginal
and restricted to the more homogenous coniferous stratum (mainly
consisting of Scots Pine in Karlsruhe test site) (Latifi et al., 2012).
In the latter study a proportional allocation of the sample units
resulted in a notably higher number of sample units for the conif-
erous stratum. Here we minimized the effect of stratum size on
the model outputs by deliberately keeping the sample sizes of the
three strata on a comparable level. However, the observed results
concerning this were similar to the latter study, where only a min-
imal improvement was observed for the stratified models over the
unstratified ones. This confirms that the predictive power of a strat-
ified model is not only a function of the homogeneity (and spatial
dominance) of the higher populated strata, but also a function of
more crucial factors such as sensor type and prediction method.
Further tests have to done to confirm whether this observation is
specific to our test site, or whether it applies in general.

By solely applying multispectral predictors, Labrecque et al,,
(2006) reported slightly higher total explained variance (i.e., r? val-
ues) for the stratified models compared to the unstratified ones.
They also confirmed that a post-stratification was most effective
when predicting the strata which are formed based on species
groups (i.e., coniferous, broadleaves and mixed) rather than those
based on the species level. In addition, our results are in line with
those from Labrecque et al., (2006), in which the stratification
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Fig. 7. Wall-to-wall predicted maps (left) and the CV of estimates (right) of mean
stratified biomass for broadleaves (A), mixed (B) and coniferous (C) strata. The pre-
dictions are resulted from RF models incorporating the class 3 sample size and LiDAR
predictors.
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Fig. 8. Wall-to-wall predicted maps (left) and the CV of estimates (right) of mean unstratified biomass. The predictions are resulted from RF models incorporating the class

3 sample size and LiDAR predictors.

caused almost no advantage in terms of reported RMSE and estima-
tion bias. In another case, a post-stratification to landcover types
did only marginally reduce the standard error of LiDAR-assisted
biomass estimates (Andersen et al., 2011).

The RF models were shown here to generally exceed other
tested prediction methods, particularly in presence of larger sam-
ple sizes. The higher performance of RF compared to the other
tested methods confirms several previous reports on the ability
of RF to flexibly deal with multiple modeling contexts in inven-
tory of forest biomass (e.g., Breidenbach et al., 2010a; Yu et al.,
2011; Latifi and Koch, 2012), although some other studies did not
find significant improvements compared to parametric regressions
(Penner et al., 2013). For RF, one may note that it is affiliated with
an internal subsampling, which presumably causes the single esti-
mates to be highly variant when the number of input subsamples
is low (Wagner et al., 2014). Here, we also observed the higher
performance of models with highest number of samples per stra-
tum compared to those containing the lower number of samples.
Nevertheless, the sample size in our study was not notably affect-
ing the achieved r? and RMSE rates when focusing on the ANOVA
results.

Considering the rank of the other factors in ANOVA, the high
importance of the sensor type was expectedly observed. The signifi-
cant dominance of 3D metrics from LiDAR data has been repeatedly
confirmed compared to other sources of optical data for modeling
forest structural attributes (Sexton et al., 2009; Koch, 2010; Clark
etal., 2011).

The examples of wall-to-wall predictions on pixel level mirrored
the general patterns within the study area well. In the stratified
predictions, the mixed stratum proved to be somewhat less prone
to high prediction uncertainties as shown by its comparatively
less CV values. This was most presumably due to the absence of
extreme biomass values compared to both broadleaves and conifer-
ous strata in combination with the applied prediction method. For
the mixed strata, there was only one reference sample plot with for-
est biomass of >300 t/ha. Since RF (and in general nearest neighbor
imputation methods) can only predict within the range of values
offered by the reference sample units, the smaller range of values
may have contributed to the decreased CV. In addition, the pres-
ence of both coniferous and broadleaved trees in the mixed strata
may have caused a smoothing effects on the wall-to-wall biomass
estimates.
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Although being moderate, differences existed in the wall-to-
wall estimates of the three broadleaved, mixed and coniferous
strata. One should keep in mind that this poses new challenges
concerning the use of final maps or the calculated statistics when
modeling spatially-explicit biomass estimates for larger areas. The
main idea behind applying remote sensing data for biomass esti-
mations is to extrapolate the plot-based information to larger
geographic domains which provides the required area-based infor-
mation that would be costly to collect in the field surveys. Applying
stratification will lead to as many wall-to-wall prediction maps as
the number of models being built for the individual strata. If the
objective is to transport the advantages in the model performances
of the applied stratification (which were yet observed to be small
in the current study) to the wall-to-wall maps, approaches have to
be developed to merge the various mapping results into a single
product. If spatially explicit, strata-specific information concern-
ing each location in the study area are available, a straightforward
approach would possibly be to apply the best strata-specific model
to each location which belongs to the corresponding stratum. The
final product would then be a mosaic of the predictions of all loca-
tions, each predicted with the corresponding strata-specific model.
If this information is not available, one alternative would be to
use a remote sensing-based classification of the study site into
the defined forest strata and then follow the procedure as outlined
above. This could be a motivating subject for future research.

Conclusion

In the context of remote sensing-assisted estimation of forest
biomass, we examined the importance of sensor type, statistical
prediction method, sample size as well as the influence of strati-
fication of the sample units in two experiments. The results lead
us to the conclusion that the sensor type (hyperspectral/LiDAR)
showed to be the essential source of impact on the yielded pre-
dictive performance of the models. This was followed by the effect
of prediction method, while sample size turned out to be only of
a relatively low importance. The modeling based on forest strata
did show slight improvements over the use of unstratified models.
Thus, this study mainly bears the message that model diagnos-
tics of biomass estimations can be more drastically influenced
by data- and method-driven factors compared to those factors
directly related to the stratification process. Nevertheless, a certain
improvement in model diagnostics was achieved with the strat-
ification procedure. Further investigations with further datasets
are required to draw final conclusions on the question of how far
the stratification approaches can contribute to improve remote
sensing-based biomass estimations. We therefore encourage fur-
ther tests across other test sites with the algorithms presented here
to allow an exact comparison to our results.

We believe that the ranking of the importance of the most rele-
vant factors affecting the modeling of the target variable, as shown
in the present study, can help to objectively assess the performance
of the various modeling approaches in the literature. This may be a
key step toward a quantitative ranking of different modeling strate-
gies for predicting biomass values of forest ecosystems on larger
geographical domains, but also beyond that for other remote sens-
ing applications.
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Appendix 1.
Summary of the applied modeling approaches

Approach 1: Gaussian processes

Gaussian processes provide a probabilistic approach for learn-
ing generic regression problems with kernels ((Rasmussen and
Williams, 2006). The model relates the predictor and the response
variables (canopy parameter) X € R of the form:

N
V=fX) =Y oKX, X), (s4)

i=1

Where X,-?’Zl are the predictor variables applied in the training
phase, o; € R is the weight assigned to them and K is a function
evaluating the similarity between the predictor dataset from the
test data and the entire N training predictor set, X;,i=1,...,N.

Two main advantages of GPR are 1) estimation of the prediction
variance in addition to the mean value and 2) the ability to apply
sophisticated kernel functions, since all the hyperparameters can
be learned efficiently by maximizing the marginal likelihood in the
training set (Verrelst et al., 2012).

The method is considered as being advantageous in multiple
aspects. It uses a weighting strategy for the optimization which
is relevant to the predictor variables. Furthermore, the inverse of
the specific parameter controlling the spread of the relations for
each particular predictor represents the relevance of that predictor
variable. Thatis, the higher this parameter is, the more extended are
the relations along that predictor (i.e., containing less informative
content).

Approach 2: Random forest

The regression tree method of RF (Breiman, 2001) has been
reported to be an efficient prediction approach, especially when
the number of descriptors is very large (Svetnik et al., 2003). The
algorithm works as follows (Liaw and Wiener, 2002; Latifi and Koch,
2012):

1. Bootstrap samples are drawn from the original data.

2. Foreachbootstrap sample, an unpruned regression tree is grown.
The best splits are chosen from the randomly-sampled variables
at each node.

3. New predictions are made by aggregating the predictions of the
total number of trees. In this way, the mode votes from the total
trees will be the final predicted value of the respective variable.

As an k-NN imputation method, the distance between target and
reference units is calculated as “one minus the proportion of termi-
nal nodes from all regression trees where the target observation is
in the same terminal node as the specific reference unit” (Crookston
and Finley, 2008).

Approach 3: k-NN

Generally speaking, in a k-NN method the weighted mean of
response value of the most similar neighbor(s) is assigned to a tar-
get unit of interest, where the similarity is defined in a feature
space consisted of candidate predictor variables (Latifi and Koch,
2012).The k-NN estimator can be defined as a weighted average of
neighboring response values according to Hardle et al., (2004)

V0= 13 ot ($5)
i=1



240 H. Latifi et al. / International Journal of Applied Earth Observation and Geoinformation 38 (2015) 229-241

where the weights o, are defined as

| =

X ifi € Jx,
wi(x) = (S6)
0 otherwise.

With the set of indices Jx = {i: X; is one of the k nearest observations
to x} and n the total number of reference sample plots.Thus, the
NN estimator has the character of a kernel estimator in the form
of the Nadaraya-Watson estimator with uniform kernel K, (u) =
1/2I(ju| < d®)and a variable bandwidth d®=d®)(x), with d®)(x)
being the distance between the vector of variables for the target
unit and its k" neighbor

D iy Ko (X)(dh)
In general, the distance between the target unit with a vector x of

p variables to any neighbor i having the p-dimensional vector of
variables x; can be measured by

Vi(x) = (S7)

di =V (x — x)"Qx — x;) (S8)

In the original form of k-NN, the weighting matrix Q is a p-
dimensional identity matrix. That is, d; becomes the Euclidian
distance. The original k-NN approach is modified when using a dif-
ferent 2 which turns out to form e.g., Mahalanobis distance (if 2
is set as inverse of the covariance matrix of the predictor variables
Q=(Cov[X])~!; with X being the (n x p) matrix of auxiliary variables
i).

Approach 4: SVM

The SVM algorithm (Vapnik, 2000) is a well-known machine
learning approach which has been widely used for classifica-
tion/regression based on remote sensing data (e.g.,, Mountrakis
etal.,2011; Paland Mather 2005). The SVM algorithm implemented
in “caret” uses “kernlab” R package (Karatzoglou et al., 2004) which
is developed by Cortes and Vapnik (1995) and Vapnik (2000). The
idea behind SVM is based on structural risk minimization (Vapnik,
2000). For a linearly separable binary classification (yi € +1, —1)
the SVM classifier is constructed by the hyper planes given by:

WT x x + Wy = +1wherex € RfandW e R4+1(S9)

With the following conditions for alli € [1, d]

d
minimize/(w, &) = %||W||2 + cZg,- (510)
i=1
subject toWT x x + Wg > 1 - §;, (S11)
WT xx+Wy<-1+§, (512)
WT xx+Wp<-1+4§ (513)

The non-negative margin errors &; are known as the slack vari-
ables. For a nonlinear classification, the input data is mapped ontoa
higher dimensional feature space using a non-linear mapping func-
tion:

X — ¢(x) € Rkwherek > d.(S14)The classification is then per-
formed in the mapped space instead of the input feature space.
Mapping of the entire samples to higher dimension is computa-
tionally expensive and this is avoided by using a positive definite
kernel function.
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