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Abstract We study a scheduling problem in which jobs
may be split into parts, where the parts of a split job may be
processed simultaneously on more than one machine. Each
part of a job requires a setup time, however, on the machine
where the job part is processed. During setup, a machine
cannot process or set up any other job. We concentrate on
the basic case in which setup times are job-, machine- and
sequence-independent. Problems of this kind were encoun-
tered when modelling practical problems in planning dis-
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aster relief operations. Our main algorithmic result is a
polynomial-time algorithm for minimising total completion
time on two parallel identical machines. We argue, why the
same problem with three machines is not an easy extension of
the two-machine case, leaving the complexity of this case as a
tantalising open problem. We give a constant-factor approx-
imation algorithm for the general case with any number of
machines and a polynomial-time approximation scheme for
a fixed number of machines. For the version with the objec-
tive to minimise total weighted completion time, we prove
NP-hardness. Finally, we conclude with an overview of the
state of the art for other split scheduling problems with job-,
machine- and sequence-independent setup times.

Keywords Scheduling · Job splitting · Setup times ·
Complexity theory · Approximation algorithms

1 Introduction

We consider a scheduling problem with setup times and job
splitting. Given a set of identical parallel machines and a
set of jobs with processing times, the goal of the scheduling
problem is to schedule the jobs on the machines such that
a given objective, for example, the makespan or the sum of
completion times, is minimised. With ordinary pre-emption,
feasible schedules do not allow multiple machines to work
on the same job simultaneously. In job splitting, this con-
straint is dropped. Without setup times, allowing job splitting
makes many scheduling problems trivial: both for minimis-
ing makespan and for minimising total (weighted) comple-
tion time, an optimal schedule is obtained by splitting the
processing time of each job equally over all machines, and
processing the jobs in an arbitrary order on each machine in
case of makespan, and in (weighted) shortest processing time
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first [(W)SPT] order in case of total (weighted) completion
time. See Xing and Zhang (2000) for an overview of several
classical scheduling problems which become polynomially
solvable if job splitting is allowed.

In the presence of release times, minimising total com-
pletion time with ordinary pre-emption is NP-hard (Du et al.
1990), whereas it is easy to see that if we allow job splitting,
then splitting all jobs equally over all machines and apply-
ing the shortest remaining processing time first (SRPT) rule
gives an optimal schedule.

Triviality disappears, when setup times are present, i.e.,
when each machine requires a setup time before it can start
processing the next job (part). During setup, a machine can-
not process any job nor it can set up the processing of
any other job (part). Problems for which the setup times
are allowed to be sequence-dependent are usually NP-hard,
as such problems tend to exhibit routinglike features. For
example, the Hamiltonian path problem in a graph can be
reduced to the problem of minimising the makespan on a
single machine, where each job corresponds to a node in the
graph, the processing times are 1, and the setup time between
job i and j is 0 if the graph contains an edge between i and j ,
and 1 otherwise. However, as we will see, adding setup times
leads to challenging algorithmic problems, already if the
setup times are assumed to be job-, machine- and sequence-
independent.

We encountered such problems in studying disaster relief
operations (Van der Ster 2010). For example, in modelling
flood relief operations, the machines are pumps and the jobs
are locations to be drained. Or in the case of earthquake relief
operations, the machines are teams of relief workers, and the
jobs are locations to be cleared. The setup is the time required
to install the team on the new location. Although, in princi-
ple, these setup times consist partly of travel time, which is
sequence-dependent, the travel time is negligible compared
to the time required to equip the teams with instructions and
tools for the new location. Hence, considering the setup times
as being location- and sequence-independent was in this case
an acceptable approximation of reality.

In this paper, we concentrate on a basic scheduling prob-
lem and consider the variation where we allow job split-
ting with setup times that are job-, machine- and sequence-
independent, to which we will refer here as uniform setup
times, i.e., we assume a uniform setup time s. There exists
little literature on this type of scheduling problem. The prob-
lem of minimising makespan on parallel identical machines is
in the standard scheduling notation of Graham et al. (1979)
denoted as P||Cmax (see Sect. 8 for an instruction on this
notation). This problem P||Cmax, but then with job split-
ting and setup times that are job-dependent, but sequence-
and machine-independent, is considered by Xing and Zhang
(2000), and Chen et al. (2006). Chen et al. (2006) mention
that this problem is NP-hard in the strong sense, and only

weakly NP-hard if the number of machines is assumed con-
stant. Straightforward reductions from the 3- Partition and
Subset Sum problem show that these hardness results con-
tinue to hold, if setup times are uniform. Chen et al. (2006)
provide a 5/3-approximation algorithm for this problem and
an FPTAS for the case of a fixed number of machines. A
PTAS for the version of P||Cmax with pre-emption and job-
dependent, but sequence- and machine-independent setup
times was given by Schuurman and Woeginger (1999). It
remains open whether a PTAS exists with job splitting rather
than preemption, even if the setup times are uniform. See Liu
and Edwin Cheng (2004) and Potts and Wassenhove (1992)
for a more extensive literature on problems with pre-emption
and setup times.

Our problem is related to scheduling problems with mal-
leable tasks. A malleable task may be scheduled on mul-
tiple machines, and a function f j (k) is given that denotes
the processing speed if j is processed on k machines. If k
machines process task j for L time, then f j (k)L units of
task j are completed. What we call, job splitting is referred
to as malleable tasks with linear speedups, i.e., the processing
time required on k machines is 1/k times the processing time
required on a single machine. We remark that job splitting
with setup times is not a special case of scheduling malleable
tasks, because of the discontinuity caused by the setup times.
We refer the reader to Drozdowski (2009) for an extensive
overview of the literature on scheduling malleable tasks.

The main algorithmic result of our paper considers the
job splitting variant of the problem of minimising the sum
of completion times on identical machines, with uniform
setup times: given a set of m identical machines, n jobs with
processing times p1, . . . , pn , and a setup time s, the objective
is to schedule the jobs on the machines to minimise total com-
pletion time (

∑
C j ) (where the chosen objective is inspired

by the disaster relief application). The version of this problem
with ordinary pre-emption and fixed setup time s is solved
by the shortest processing time first rule (SPT); the option of
preemption is not used by the optimum. However, the situa-
tion is much less straightforward for job splitting. If s is very
large, then an optimal schedule minimises the contribution
of the setup times to the objective, and a job will only be split
over several machines if no other job is scheduled after the
job on these machines. It is not hard to see that the jobs that
are not split are scheduled in SPT order.

If s is very small (say 0), then each job is split over all
machines and the jobs are scheduled in SPT order. However,
for other values of s, it appears to be a non-trivial problem
to decide how to schedule the jobs, as splitting a job over
multiple machines decreases the completion time of the job
itself, but it increases the total load on the machines, and
hence the completion times of later jobs.

Consider the following instance as an example. There are
3 machines and 6 jobs, numbered 1, 2, . . . , 6, with process-
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Fig. 1 Gantt charts depicting the schedules for the instance described in Sect. 2. The grey blocks indicate the setup times, the numbered blocks are
scheduled job parts. Each row of blocks gives the schedule for a machine

ing times 1, 2, 3, 5, 11 and 12, respectively, and setting up a
machine takes 1 time unit. One could consider filling up a
schedule in round-robin style, assigning the jobs to machine
1, 2, 3, 1, 2, 3, respectively. This schedule is given in the
Gantt chart in Fig. 1a. The schedule has objective value 49.

By splitting job 6 over machines 1 and 3, instead of
processing it on machine 3 only, we can lower the comple-
tion time of job 6, and this improves the objective value since
there are no jobs scheduled after job 6. In fact, to get the best
improvement in objective value, we make sure that both job
parts of job 6 finish at the same time, see Fig. 1b. The objec-
tive value of the schedule is 45.

Splitting jobs early in the schedule, may increase the
objective value, as (many) later jobs may experience delays.
For example, if we choose to split job 2 over machines 2 and
3, we will cause delays for jobs 3 and 6, while improving the
completion times of jobs 2 and 5. If we require that job parts
of the same job end at the same time, we get the schedule
pictured in Fig. 1c with objective value 46. Finally, Fig. 1d
depicts the optimal schedule with objective value 40.

This example illustrates the inherent trade-off in this prob-
lem mentioned earlier: splitting jobs will decrease the com-
pletion times of some jobs, but it also may increase the com-
pletion times of other jobs.

In Sect. 3 we present a polynomial-time algorithm for the
case in which there are two machines. The algorithm is based
on a careful analysis of the structure of optimal solutions to
this problem. Properties of optimal solutions that hold under
any number of machines are presented in a preliminary sec-
tion. Though a first guess might be that the problem would

remain easy on any fixed number of machines, we will show
by some examples in Sect. 4 that nice properties, which make
the algorithm work for the 2-machine case, fail to hold for
three machines already. The authors are split between think-
ing that we have encountered another instance of Lawler’s
“mystical power of twoness” (Lenstra 1998), a phrase sig-
nifying the surprisingly common occurance that problems
are easy, when a problem parameter (here the number of
machines) is two, but NP-hard when it is three, or that we
just lacked the necessary flash of insight to find a polynomial-
time algorithm. We present a constant-factor approximation
algorithm for the general case with any number of machines
in Sect. 5, and in Sect. 6 we give a polynomial-time approx-
imation scheme for the case of a fixed number of machines.
We leave the complexity of the problem (even for only three
machines) as a tantalising open problem for the scheduling
research community. We show in Sect. 7 that introducing
weights for the jobs makes the problem NP-hard, already on 2
machines. We finish the paper by giving a table with the state
of the art for other split scheduling problems with uniform
setup times. We summarise whether they are known to be NP-
hard or in P, and present the best known approximation ratios.

2 Preliminaries

An instance is given by m parallel identical machines and n
jobs. Job j has processing time p j , for j = 1, . . . , n. Each
job may be split into parts and multiple parts of the same job
may be processed simultaneously. Before a machine can start
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processing a part of a job, a fixed setup time s is required.
During setup of a job (part), the machine cannot simulta-
neously process or setup another job (part). The objective
is to minimise the sum of the completion times of the jobs
(total completion time), which is equivalent to minimising
the average completion time.

Here, we derive some properties of an optimal schedule,
which are valid for any number of machines. Some additional
properties for the special case of two machines, presented in
Sect. 3, will lead us to a polynomial-time algorithm for this
special case. We show in Sect. 4 that the additional properties
that make the 2-machine case tractable do not hold for the
case of three machines.

Claim Let σ be a feasible schedule with job completion
times C1 ≤ C2 ≤ · · · ≤ Cn . Let σ ′ be obtained from
σ by rescheduling the job parts on each machine in order
1, 2, . . . , n. Then, C ′

j ≤ C j for j = 1, . . . , n.

Proof Let qi j be the time that j is processed on machine i
in σ and let Ci j be the time that j finishes on machine i . Let
yi j = s + qi j if qi j > 0 an let yi j = 0 otherwise. Fix some
job j and machine i . Let k = arg max{Cik | 1 ≤ k ≤ j}.
Then C j ≥ Ck ≥ Cik ≥ ∑ j

h=1 yih = C ′
i j , where the first

inequality is by assumption and the last one by the fact that
all work on jobs smaller than or equal to j has been done on
machine i at time Cik . Since C j ≥ C ′

i j for any machine i on
which j is scheduled the proof follows. ��

The claim above has several nice corollaries. First, note
that if in an optimal schedule C1 ≤ C2 ≤ · · · ≤ Cn , then we
maintain an optimal schedule with the same completion time
for each job by scheduling the job parts on each machine in
the order 1, 2, . . . , n. This allows to characterise an optimal
schedule by a permutation of the jobs and the times that job j
is processed on each machine i . The optimal schedule is then
obtained by adding a setup time s for each non-zero job part
and processing them in the order of the permutation on each
machine. Consequently, in the optimal schedule obtained,
each machine contains at most one part of each job.

We thus have the following lemma, which we will use
throughout this work.

Lemma 1 There exists an optimal schedule such that each
machine contains at most one part of each job.

In the sequel, given a schedule, we use M j to denote the set
of machines on which parts of job j are processed. We will
sometimes say that a machine processes job j , if it processes
a part of job j .

Lemma 2 There exists an optimal schedule that satisfies the
property of Lemma 1 such that on each machine the job parts
are processed (started and completed) in SPT order of the
corresponding jobs.

Proof Among the optimal schedules that satisfy Lemma 1,
we choose the schedule that minimises

∑
h phCh . By the

observations preceding Lemma 1, we may assume the jobs
are numbered 1, . . . , n so that C1 ≤ C2 ≤ . . . ≤ Cn , and
each machine processes the job parts in the order given by
the numbering of the jobs. Suppose by contradiction that
there exist jobs j, k such that p j < pk and there exists some
machine that processes job k before j , i.e., Ck ≤ C j . Choose
among such pairs of jobs j, k a pair that minimises j−k. Note
that any machine that processes both j and k must process
k immediately before j , since if there is some job � that is
processed between them, then Ck ≤ C� ≤ C j , and either
p� > p j or p� ≤ p j < pk , so either j, � or �, k should have
been chosen instead of the pair j, k. We now show how to
define a new optimal schedule for which

∑
h phCh is strictly

less than for the original schedule, thus contradicting the
choice of our schedule.

Note that M j ∩ Mk �= ∅. We define a new schedule by
rescheduling both jobs within the time slots these jobs occupy
in the current schedule (including the slots for the setup
times). First remove both jobs. Then consider the machines
in Mk one by one, starting with the machines in Mk\M j and
fill up the slots previously used by job k, until we have com-
pletely scheduled job j including the setup times. This is pos-
sible since p j < pk . We consider the remaining slots, which
we note are single time intervals for each machine by our
choice of j and k. We will show that they provide sufficient
time for the processing and set up of job k, by showing that
the combined number of setups for j and k does not increase.

Let M ′
j and M ′

k denote the sets of machines occupied by j
and k, respectively, in the new schedule. We distinguish two
cases. If job j cannot be rescheduled completely in the slots
used by k in Mk\M j then we have M ′

k ⊆ M j . Together with
M ′

j ⊆ Mk it follows that (M ′
j ∩ M ′

k) ⊆ (M j ∩ Mk). Hence,
any machine containing both j and k in the new schedule
did also contain both jobs in the old schedule, and therefore,
there are no extra setups on any machine needed.

Now consider the case that job j is rescheduled completely
in the slots used by k in Mk\M j . Then, after adding job k, the
total number of setups needed for j and k does not increase
since there is at most one machine of Mk\M j containing both
jobs in the schedule, but none of the machines in M j ∩ Mk

is used by j in the new schedule.
We conclude that the remaining slots after scheduling

job j provide sufficient room to feasibly schedule both the
processing of job k and the required setups. Note that, if there
is some machine on which the time allotted to k is at most
s, then we can simply leave the machine idle for that time
interval.

Let C ′ denote the new completion times. We have C ′
j ≤

Ck and C ′
k ≤ max{C j , Ck}, since in the new schedule j is

processed only where job k was processed in the old sched-
ule, and job k is processed in the new schedule only where
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either job j or job k was processed in the old schedule. For
all other jobs, the completion time remains the same. Now,
by assumption, we have that C j > Ck , and hence C ′

k ≤ C j .
Therefore, the sum of completion times did not increase, and
∑

h phC ′
h <

∑
h phCh , which contradicts the choice of the

original schedule. ��
From now on, assume that jobs are numbered in SPT order,

i.e., p1 ≤ · · · ≤ pn . Given a schedule, we call a job balanced
if it completes at the same time on all machines on which it
is processed.

Lemma 3 There exists an optimal schedule that satisfies the
properties of Lemma 1 and Lemma 2 in which all jobs are
balanced.

Proof Consider an optimal schedule of the form of Lem-
ma 1 and Lemma 2 with a minimum number of job parts. Let
C j be the completion time of j in this schedule and define
M j for this schedule as before. Consider the following linear
program in which there is a variable xi j for all pairs i, j with
i ∈ M j , indicating the amount of processing time of job j
assigned to machine i :

min
∑

j

C j

s.t.
∑

i∈M j

xi j = p j ∀ j = 1, . . . , n,

∑

k≤ j : Mk
i

(s + xik) ≤ C j ∀ j = 1, . . . , n, ∀i ∈ M j ,

xi j ≥ 0, C j ≥ 0 ∀ j = 1, . . . , n, ∀i ∈ M j .

Note that a schedule that satisfies Lemmas 1 and 2 gives a
feasible solution to the LP, and on the other hand that any
feasible solution to the LP gives a schedule with total com-
pletion time at most the objective value of the LP: if there
exist some j and i ∈ M j such that xi j = 0, then the LP
objective value is at least the total completion time of the
corresponding schedule, as there is no need to set up for job
j on machine i if xi j = 0. We know that a solution is a basic
solution to this LP, only if the number of variables that are
non-zero is at most the number of linearly independent tight
constraints (not including the non-negativity constraints). By
the minimality assumption on the optimal schedule, in any
optimal solution to the LP all C j and xi j variables are non-
zero, which gives a total of n + ∑

j |M j | variables. Since
there are only n + ∑

j |M j | constraints, all constraints must
be tight, which proves the lemma. ��

3 An O(n log n)-time algorithm for two machines

Given a feasible schedule, we call a job j a d-job, if |M j | = d.
In this section we assume that the number of machines is two.

Lemma 4 Let σ be an optimal schedule for a 2-machine
instance that satisfies the properties of Lemmas 1, 2 and 3.
Let j < k be two consecutive 2-jobs. If there are 1-jobs
between j and k, then there is at least one 1-job on each
machine. Also, the last 2-job is either not followed by any
job or is followed by at least one 1-job on each machine.

Proof Let j and k be two consecutive 2-jobs and assume
there is at least one in-between 1-job on machine 1 and none
on machine 2. Let s1, s2 be the start time of job j on, respec-
tively, machine 1 and 2. We may assume without loss of
generality that s1 ≥ s2: otherwise we just swap the sched-
ules of the two machines for the interval [0, C j ] and get the
inequality. We change the schedule of j and k and the in-
between 1-jobs as follows. Job j is completely processed on
machine 2, starting from time s2, and the in-between 1-jobs
are moved forward such that the first starts at time s1. Let
� be the amount of processing on job j that was previously
assigned to machine 1, where we note that � ≤ 1

2 p j . We
increase the part of job k on machine 1 by �, and decrease
the part of job k on machine 2 by �. This is possible, since
the part of job k that was previously on machine 2 is at least
1
2 pk ≥ 1

2 p j ≥ �.
The completion time of each of the in-between 1-jobs

decreases by � + s, the completion time of job j increases
by � and the completion time of job k remains unchanged.
The total completion time is thus reduced by at least s. If j
is the last 2-job then, we can make the same adjustment. ��
Lemma 5 In the case of two machines, there are no 1-jobs
after a 2-job in an optimal schedule satisfying the properties
of Lemmas 1, 2 and 3.

Proof Suppose the lemma is not true. Then, there must be
a 2-job j that is directly followed by a 1-job. By Lemma 4,
there must be at least one such 1-job on each machine, say
jobs h and k. Assume without loss of generality that ph ≤ pk .
Let x1 j , x2 j be the processing time of j on machine 1 and 2,
respectively. As argued before, without loss of generality we
assume that x1 j ≥ x2 j . Let us define the starting time of j as
zero, and let � = x1 j −x2 j . Note that C j = 1

2 (�+ p j +2s).
Then, the sum of the three completion times is

C j + Ch + Ck = C j + (C j + ph + s) + Ck

= � + p j + 2s + ph + s + Ck . (1)

We reschedule the jobs j, h, and k as follows, while the
remaining schedule stays the same. Place job j , the shortest
among j, h, and k, on machine 1 (unsplit), job h on machine
2 (unsplit), and behind these two, job k is split on machine 1
and 2, in such a way that it completes on one machine at time
Ch and at time Ck on the other. The sum of the completion
times of the three jobs becomes

(p j + s) + (� + ph + s) + Ck,
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which is exactly s less than the sum of the three completion
times in (1) from before the switch. ��

Given the previous lemmas, we see that the 2-jobs are
scheduled in SPT order at the end. By Lemma 2, the first
2-job, say job k, is not shorter than the preceding 1-jobs.
But this implies that the 1-jobs can be scheduled in SPT
order without increasing the completion time of job k and
the following jobs. By considering each of the n jobs as the
first 2-job, we immediately obtain a O(n2)-time algorithm to
solve the problem. Carefully updating consecutive solutions
leads to a faster method.

Theorem 1 There exists an O(n log n) algorithm for min-
imising the total completion time of jobs on two identical
parallel machines with job splitting and uniform setup times.

Proof Suppose we schedule the first k jobs (for any 1 ≤ k ≤
n) in SPT order as 1-jobs and the other jobs in SPT order
as 2-jobs. We would like to compute the change in objective
value that results from changing job k from a 1-job to a 2-job.
However, this happens to give a rather complicated formula.
It is much easier to consider the change for job k − 1 and k
simultaneously.

The schedule for the 1-jobs j < k − 1 does not change.
To facilitate the exposition, suppose that job k − 1 starts at
time zero and job k starts at time a. Then, Ck−1 + Ck =
pk−1 + s +a + pk + s. After turning the jobs into 2-jobs, the
new completion times become C ′

k−1 = (a + pk−1 + 2s)/2
and C ′

k = (a + pk−1 + pk + 4s)/2. Hence,

C ′
k−1 + C ′

k − Ck−1 − Ck = s − pk/2.

In addition, each job j > k completes s time units later.
Hence, the total increase in objective value due to turning
both job k − 1 and k from a 1-job into a 2-job is

f (k) := (n − k + 1)s − pk/2.

Notice that f (k) is decreasing in k, since s > 0 and pk is
non-decreasing in k. Hence, either there exists some k ∈
{2, . . . , n} such that f (k) < 0 and f (k − 1) ≥ 0, or either
f (n) ≥ 0, or f (2) < 0.

Suppose there exists some k ∈ {2, . . . , n} such that
f (k) < 0 and f (k −1) ≥ 0. The optimal schedule is to have
either k − 1 or k − 2 unsplit jobs, since the first inequality
and monotonicity implies that a schedule with k − 2 unsplit
jobs has a better objective value than a schedule with k or
more unsplit jobs, and the second inequality and monotonic-
ity implies that a schedule with k −1 unsplit jobs has a better
objective value than a schedule with k − 3 or fewer unsplit
jobs.

If f (n) ≥ 0 then the optimal solution is either to have
only 1-jobs or have only job n as a 2-job. If f (2) < 0 then
the optimal solution is either to have only 2-jobs or have only
job 1 as a 1-job.

Straightforward implementation of the above gives the
desired algorithm, the running time of which is dominated
by sorting the jobs in SPT order. ��

4 Troubles on more machines

The properties exposed in Sect. 2 have been proven to hold
for any number of machines. The properties presented in
Sect. 3 were shown specifically for two machines only. In
this section, we investigate their analogues for three and more
machines. We will present some examples of instances that
show that the extension is far from trivial. It keeps the com-
plexity of the problem on three and more machines as an
intriguing open problem.

Lemma 5 shows that for two machines, there always exists
an optimal schedule in which |M j | is monotonically non-
decreasing in j . The following lemma shows that this does
not hold for an arbitrary number of machines.

Lemma 6 There exist instances for which there is no optimal
schedule in which |M j | is monotonically non-decreasing in
j .

Proof Consider the instance on three machines having 10
jobs with their vector of processing times p = (3, 10, 10, 10,

10, 50, 50, 50, 50, 50) (1 small job, 4 medium-sized jobs
and 5 large jobs) and s = 0.7. We slightly perturb the
processing times if necessary, obtaining p j < p j+1 for all
j = 1, 2, . . . , n − 1.

We found all optimal solutions for this instance by exhaus-
tive search. An optimal solution is depicted in Fig. 2a. As we
see, job 2 is split over machines 2 and 3, but job 3 starting
later than job 2 is not split. Jobs 4 and 5 are again what we
call 2-jobs and are split over machines 2 and 3. The large
jobs are all split over all three machines.

Below, we will describe all other optimal solutions to this
instance. We will consider two solutions to be the same, if
one solution can be obtained from the other by a relabelling
of machines, and/or (repeatedly) swapping the schedule of
two machines from some time t till the end of the schedule,
if these two machines both complete processing of some job
at time t .

The second optimal schedule, in Fig. 2b, is obtained by
scheduling job 1 on machine 1, job 2 split on machines 2 and
3, job 3 on machine 2 (or 3) and jobs 4 and 5 as split jobs
on the machines not used by job 3. The remaining jobs are
again all split on all three machines. It is easily verified that
the objective of this schedule is the same as the objective of
the schedule in Fig. 2a: the completion time of job 3 increases
by 2, and the completion times of jobs 4 and 5 each decrease
by 1, and all other completion times remain the same. The
remaining two optimal schedules, in Fig. 2c, d are obtained
by switching jobs 3 and 4 in the first two optimal schedules.
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(a)

(b)

(c)

(d)

Fig. 2 Gantt charts depicting the optimal solutions to the 3-
machine instance with processing times p = (3, 10, 10, 10, 10, 50,

50, 50, 50, 50) (1 small job, 4 medium-sized jobs and 5 large jobs) and

s = 0.7. The grey blocks indicate the setup times, the numbered blocks
are scheduled job parts. Each row of blocks gives the schedule for a
machine

Fig. 3 Gantt chart depicting the unique optimal solutions to the 3-machine instance with processing times p = (3, 10, 10, 10, 10, 50, 50, 50, 50)

(1 small job, 4 medium-sized jobs and 4 large jobs) and s = 0.7

We note that these schedules continue to be optimal if the
processing times are slightly perturbed, as mentioned earlier.

All optimal solutions for this instance share the property
that job 2 is a 2-job, and either job 3 or job 4 is a 1-job, which
proves the lemma. ��

If we slightly change the instance from the proof of
Lemma 6 by deleting one of the large jobs, then there is
a unique optimal solution, which splits job 3 over machines
1 and 2 and continues with splitting job 4 over machines 1
and 3. Job 5 and the four large jobs are split over all three
machines, see Fig. 3.

Lemma 6 and the fact that a subtle change in the prob-
lem instance causes such a substantial change in the optimal
schedule bodes ill for an algorithmic approach like the one
in Sect. 3.

5 Approximation algorithm

We will now show a constant-factor approximation algorithm
for our problem, for an arbitrary number of machines. We
remark that we do not know whether this problem is NP-

hard, but the examples in the previous section do show that
the way a job is scheduled in an optimal schedule may depend
on jobs that occur later in the schedule. Our approximation
algorithm, on the other hand, is remarkably simple, and only
uses a job’s processing time and the setup time to determine
how to schedule the job.

We schedule the jobs in order of non-decreasing process-
ing time. Let s > 0 and let α be some constant that will be
determined later. Job j will be scheduled such that it com-
pletes as early as possible under the restriction that it uses at
most � j := min{�αp j/s�, m} machines. Thus, the job will
be scheduled on the at most � j machines that have minimum
load in the schedule so far. It is easy to see that a job is always
balanced this way.

Theorem 2 The algorithm described above is a (2 + α)-
approximation algorithm for minimising the total completion
time with job splitting and uniform setup times, provided that
α ≥ 1

4 (
√

17 − 1).

Proof Let σ be the schedule produced by the described algo-
rithm. Note that the total load (processing times plus setup
times) of all jobs in σ up to, but not including, job j is upper
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bounded by L j = ∑
k< j (pk + �ks), since job k introduced

at most �k setups. Therefore, the average load on the � j least-
loaded machines is upper bounded by L j/m. Since job j is
balanced, we can thus upper bound the completion time C̃ j

of job j in the schedule by L j/m + p j/� j + s. Note that this
is an upper bound on the completion time of job j when we
try to schedule it on at most � j machines.

Noting that

p j/� j = p j/ min{�αp j/s�, m}
≤ p j/�αp j/s� + p j/m

≤ (1/α)s + p j/m,

and

�ks = min{�αpk/s�, m}s < αpk + s,

we obtain

C̃ j ≤ L j/m + p j/� j + s

≤ 1

m

∑

k< j

(pk + �ks) + p j/� j + s

<
1

m

∑

k< j

(
(1 + α)pk + s

) + p j/m + (1 + 1/α)s

≤ 1 + α

m

∑

k≤ j

pk +
(

j − 1

m
+ 1 + 1

α

)

s.

We can lower bound the sum of completion times in an opti-
mal schedule by

∑
j (s + 1

m

∑
k≤ j pk): suppose we only

needed a setup time for the first job to be processed on a
machine, for any machine. Clearly, the optimal sum of com-
pletion times for this problem gives a lower bound on the
optimum for the original problem. Now, the optimal sched-
ule when we only need a setup time for the first job on a
machine processes the jobs in SPT order and splits each job
over all machines, which gives a sum of completion times of∑

j (s + 1
m

∑
k≤ j pk).

Also, in any schedule, at most m jobs are preceded by
only one setup, at most another m by two setups, etc., giving
a lower bound of

∑
j� j/m�s on the sum of completion times:

this is exactly the optimal value when all processing times
are 0. We will show below that

∑
j� j

m �s ≥ ∑
j

j−1
m s + 1

2 ns.
Hence, by using 1 + α times the first bound, and 1 time

the second bound, we get

(2 + α)
∑

j

C j

≥ (1 + α)
∑

j

(
s + 1

m

∑

k≤ j

pk

)
+

( ∑

j

j − 1

m
s + 1

2
ns

)

=
∑

j

⎛

⎝1 + α

m

∑

k≤ j

pk + (1 + α)s + j − 1

m
s + 1

2
s

⎞

⎠ ,

which is at least as large as
∑

j C̃ j provided α > 0 and
3
2 + α ≥ 1 + 1

α
, which is equivalent to α ≥ 1

4 (
√

17 − 1).

Next, we show that
∑

j

⌈
j

m

⌉
s ≥ ∑

j
j−1
m s + 1

2 ns. Let

j = qm + a for some q ≥ 0 and a ∈ {1, . . . , m}. Then
⌈

j

m

⌉

− j − 1

m
= (q + 1) − (qm + a − 1)/m

= 1 − (a − 1)/m.

Now assume that n = rm + b, for some integer r ≥ 0 and
b ∈ {1, . . . , m}. Then

n∑

j=1

⌈
j

m

⌉

−
n∑

j=1

j − 1

m

= r
m∑

a=1

(

1 − a − 1

m

)

+
b∑

a=1

(

1 − a − 1

m

)

= rm + b − r
m∑

a=1

a − 1

m
−

b∑

a=1

a − 1

m

= n − r(m − 1)/2 − 1

2
(b − 1)b/m

≥ n − r(m − 1)/2 − 1

2
(b − 1)

= n − (rm + b)/2 + r/2 + 1/2

= n/2 + r/2 + 1/2 ≥ n/2.

Hence multiplying both sides with s yields

n∑

j=1

⌈
j

m

⌉

s ≥
n∑

j=1

j − 1

m
s + 1

2
ns.

��
Corollary 1 There exists a 2 + 1

4 (
√

17 − 1) < 2.781-
approximation algorithm for minimising total completion
time with job splitting and uniform setup times.

6 A polynomial-time approximation scheme

We give an approximation scheme which runs in polynomial
time if the number of machines is assumed constant. The idea
is simple: by splitting a job j , at most p j on its completion
time can be saved. Denote by Opt the sum of completion
times of an optimal schedule. It is easy to show that the
value of a non-preemptive SPT schedule is no more than∑

j p j larger than Opt. In particular, if we schedule the first
K = n − �m/ε� jobs by non-preemptive SPT then the extra
cost is at most

∑K
j=1 p j . But, as we will see, this is only an

ε-fraction of the total completion time of the last �m/ε� jobs.
These last jobs we schedule optimally given the schedule of
the first K jobs.

Now, we define the algorithm and its running time in more
detail. Let, as before, p1 ≤ · · · ≤ pn . Let K = n − �m/ε�.
(If K ≤ 0 then n ≤ �m/ε� and the optimal solution can be
found in constant time.) Let ρ be an optimal schedule and
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let ρ(K ) be the schedule ρ restricted to the jobs 1, 2, . . . , K .
By Lemma 2 we may assume that ρ(K ) has no idle time. Let
ti (ρ) be the completion time of machine i in ρ(K ). The algo-
rithm makes an approximate guess about the values ti (ρ).
That means, it finds values ti such that

ti (ρ) ≤ ti ≤ ti (ρ) + s + pK . (2)

Note that for any i , we have ti (ρ) ≤ K (s + pK ). Hence,
we need to try only K m guesses for (t1, . . . , tm). Assume
from now that we guessed (t1, . . . , tm) correctly, i.e., (2) is
satisfied.

We apply SPT to the jobs 1, 2, . . . , K such that no machine
i is loaded more than ti + s + pK . This can easily be done
as follows: apply list scheduling in SPT order and close a
machine once its load becomes ti or more. Let Ti be the
completion time of machine i in the resulting schedule. Then,
Ti ≤ ti + s + pK ≤ ti (ρ) + 2(s + pK ). Next, we find a
near-optimal completion of the schedule by guessing for each
job j > K a set M j and apply linear programming. There
are 2m(n−K ) possibilities for choosing such sets, which is a
constant. The linear program works as follows. Note that the
LP of Sect. 2 can be extended to do the following. Given a
set M j for each job j and a time Ti for each machine, we can
find the optimal schedule among all schedules for which: (i)
job parts are in SPT order on each machine, (ii) machine i
does not start before Ti , (iii) job j can only be scheduled on
machines in M j and (iv) job j has a setup time s for each
machine in M j even when its processing time xi j is zero.
Note that it is not clear if the LP gives us the real optimal
completion since, we have not proved that the SPT properties
hold also for optimal schedules if an initial part is fixed, as
we do here. However, we can show that the solution given
by the LP is close to optimal.

Approximation ratio Let σ be the final schedule and let C̃ j be
the completion time of job j . Here, we use Opt to denote the
objective value of optimal schedule ρ. For any h ∈ {1, . . . , n}
define μh = ∑h

k=1(s + pk)/m. Then, for any schedule, the
h − th completion time is at least μh . Hence,

Opt ≥
n∑

h=1

μh ≥
n∑

h=K+1

μh ≥
n∑

h=K+1

μK

= �m/ε�μK ≥ 1

ε

K∑

k=1

(s + pk).

For the rest the proof, we will denote by Ch the completion
time of job h in the optimal schedule and by C̃h the comple-
tion time of job h in the schedule produced by our algorithm.
Further, we will use the notation C (h) for the h − th com-
pletion time of ρ, (h = 1, . . . , n). Notice that C (h) is not
necessarily equal to Ch . For h ≤ K it is easy to see that
C̃h ≤ C (h) + s + ph . This implies

K∑

h=1

C̃h ≤
K∑

h=1

(C (h) + s + ph)

=
K∑

h=1

C (h) +
K∑

h=1

(s + ph)

≤
K∑

h=1

C (h) + εOpt. (3)

So for the first K jobs we are doing fine. Next, we give a
bound on the total completion time of the other jobs.

Let M∗
j be the set of machines used by job j in the optimal

schedule ρ. One of the guesses of the algorithm will be M j =
M∗

j for j > K . We show that the corresponding LP-solution
gives a near-optimal completion of the schedule.

A feasible LP solution is to take for xi j , j > K , the values
that correspond to ρ and choose values C L P

j = C j + 2(s +
pK ), where we we remind that C j is the completion time of
job j in the optimal schedule ρ. The latter is feasible since
Ti ≤ ti (ρ) + 2(s + pK ). Hence, we can bound the total
completion times of jobs K + 1, . . . , n by

n∑

h=K+1

C̃h ≤
n∑

h=K+1

C L P
h

≤
n∑

h=K+1

(Ch + 2(s + pK ))

=
(

n∑

h=K+1

Ch

)

+ 2(n − K )(s + pK ). (4)

To bound the second term in the right-hand side of (4) we
derive another bound on Opt:

Opt ≥
n∑

h=1

μh ≥
n∑

h=K+1

μh

=
n∑

h=K+1

h∑

k=1

(s + pk)/m

≥
n∑

h=K+1

h∑

k=K+1

(s + pk)/m

≥
n∑

h=K+1

(h − K )(s + pK )/m

>
1

2
(n − K )2(s + pK )/m

≥ 1

2
(n − K )(s + pK )/ε.

Combining this with (4) we get
n∑

h=K+1

C̃h ≤
n∑

h=K+1

Ch + 4εOpt ≤
n∑

h=K+1

C (h) + 4εOpt.

Adding (3) we can bound the total completion time by (1 +
5ε)Opt.
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7 Hardness for weighted completion times

We prove that introducing weights for the jobs in our problem
makes it strongly NP-hard for any number of machines and
weakly NP-hard for 2 machines.

Theorem 3 The problem of minimising total weighted com-
pletion time with job splitting and uniform setup times on
parallel identical machines (P|s, split|∑w j C j ) is strongly
NP-hard.

Proof We reduce from 3-Partition: given 3n positive num-
bers a1, . . . , a3n and a number A such that a1 + · · · + a3n =
n A, does there exist a partition A1, . . . , An of {1, . . . , 3n}
such that |Ai | = 3 and

∑
j∈Ai

a j = A for all i?
Given an instance of 3-Partition, we construct the fol-

lowing instance of our scheduling problem: We have n
machines and 3n jobs. We set p j = a j and w j = a j + s
for all j = 1, . . . , 3n, where the setup time s is some large
enough number, to be defined later.

The idea behind the reduction is the following: the large
setup time will make sure that exactly three jobs are sched-
uled (unsplit) per machine. The weights are chosen such that
a schedule where all machines complete at exactly the same
time is optimal, if such a schedule is feasible.

Suppose we schedule the jobs unsplit where Ai is the set of
jobs processed on machine i . Then, the cost of the schedule
is:

3n∑

j=1

w j C j =
n∑

i=1

∑

j∈Ai

w j C j

=
n∑

i=1

∑

j∈Ai

(s + a j )
∑

k≤ j

(s + ak)

=
n∑

i=1

∑

j∈Ai

∑

k∈Ai :k≤ j

(s + a j )(s + ak)

= 1

2

n∑

i=1

⎡

⎢
⎣

⎛

⎝
∑

j∈Ai

(s + a j )

⎞

⎠

2

+
∑

j∈Ai

(s + a j )
2

⎤

⎥
⎦

= 1

2

n∑

i=1

l2
i + 1

2

3n∑

j=1

(s + a j )
2,

where li is the total load on machine i . Note that the second
term is independent of the schedule. This cost is minimised
when li = lh for all i and h and this can be realised if a perfect
3-partition exists. Let us denote this minimum by Opt3P.

If no perfect 3-partition exists, then any schedule where no
jobs are split has strictly higher cost than Opt3P. It remains
to prove that also any schedule with at least one split job has
a strictly higher cost than Opt3P.

First observe that

Opt3P = 1

2

n∑

i=1

(3s + A)2 + 1

2

3n∑

j=1

(s + a j )
2

= 6ns2 + O(ns).

Now assume that at least one job is split, then there are at
least 3n +1 setup times of s each. Consider the extreme case
where all 3n values a j are zero. In this case, it is easy to see
that the weighted sum of the 3n completion times is at least
(6n + 1)s2. Clearly, this bound holds as well for arbitrary
value a j . For large enough s we have (6n + 1)s2 > Opt3P.
��
Theorem 4 The problem P2|s, split|∑w j C j is weakly NP-
hard.

Proof We now reduce from a restricted form of the Subset
Sum problem: Given 2n positive integers a1, . . . , a2n such
that a1 + · · · + a2n = 2A, is there a set I ⊂ {1, . . . , 2n}
such that |I | = n and

∑
i∈I ai = A? Given an instance

of Subset Sum, we construct the following instance of our
scheduling problem. We have 2 machines and 2n jobs. We set
p j = a j and w j = a j +s for j = 1, . . . , 2n, where the setup
time s is some large enough number, to be defined later. The
proof follows the same reasoning as the previous proof: the
large setup time will now make sure that exactly n jobs are
scheduled (unsplit) per machine, and the weights will make
sure that a schedule where the two machines complete at
exactly the same time is optimal, if such a schedule is feasible.

Suppose we schedule the jobs unsplit. Then, just as in the
proof above for an arbitrary number of machines we have
that the cost of the schedule is:

2n∑

j=1

w j C j = 1

2
(l2

1 + l2
2) + 1

2

2n∑

j=1

(s + a j )
2,

where li is the total load on machine i . Note that the second
term is independent of the schedule. This cost is minimised
when l1 = l2 and this can be realised if a perfect subset I
exists. Let us denote this minimum by OptS.

If no perfect subset exists, any unsplit schedule has strictly
higher cost. It remains to prove that also any schedule with
at least one split has a strictly higher cost than OptS.

First observe that

OptS = (ns + A)2 + 1

2

2n∑

j=1

(s + a j )
2

= (n2 + n)s2 + O(ns).

Now assume that at least one job is split, then there are at
least 2n +1 setup times of s each. Consider the extreme case
where all 2n values a j are zero. In this case, it is easy to see
that the weighted sum of the 2n completion times is at least
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Table 1 Minimising total (weighted) completion time and makespan with job splitting and setup times

Problem Complexity Algorithm

P | split | ∑
C j In P Divide jobs equally over the machines in SPT order

P2 | s, split | ∑
C j In P Algorithm of Sect. 3

Pm | s, split | ∑
C j ? PTAS of Sect. 6

P | s, split | ∑
C j ? 2.781-approx. of Sect. 5

cf. P | s, pmtn | ∑
C j In P SPT

P |split | ∑
w j C j In P Divide jobs equally over the machines in WSPT order

cf. P | pmtn | ∑
w j C j NP-hard (Bruno et al. 1974) PTAS (Afrati et al. 1999)

P | s, split | ∑
w j C j NP-hard -

cf. P | s, pmtn | ∑
w j C j NP-hard -

P | s, split | Cmax NP-hard (Van der Ster 2010) [cf. Chen et al. (2006)] 5
3 -approximate split/assignment (Chen et al. 2006)

P | s, split | Cmax NP-hard 3
2 -approximate wrap-around (Van der Ster 2010) algorithm

if p j ≥ s ∀ j

cf. P | s, pmtn | Cmax NP-hard (Schuurman and Woeginger 1999) PTAS (Schuurman and Woeginger 1999)

(n2 +n +1)s2. Clearly, this bound holds as well for arbitrary
values a j . For large enough s we have (n2+n+1)s2 > OptS.

��

8 Epilogue

In the following table, we gather the state of the art on
scheduling problems with job splitting and uniform setup
times. For describing the problems in the first column of
the table we use the standard three-field scheduling nota-
tion (Graham et al. 1979). In the first field, expressing the
processor environment, we only consider parallel identical
machines, denoted by P , possibly with the number of par-
allel machines mentioned additionally. In the second field,
expressing job characteristics, the term ‘pmtn’ denotes ordi-
nary preemption, ‘split’ denotes job splitting as we consider
in this paper and s denotes the presence of uniform setup
times. Though this paper is mainly concerned with problems
with a total completion time objective, indicated by

∑
C j in

the third field, expressing the objective, we will also show the
state of the art on the total weighted completion time (indi-
cated by

∑
w j C j ) and on the makespan (indicated by Cmax)

(Table 1).
In the second column, we summarise the complexity sta-

tus of these problems. A question mark indicates that the
complexity of the problem is unknown. In the third column,
we give the best approximation guarantee known, where a
‘-’ indicates that no algorithm with a performance guaran-
tee is known. If we consider it relevant, we also present, as
a footnote, the knowledge on the comparable version with
preemption instead of splitting.
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