
Arch. Math. 104 (2015), 145–155
c© 2015 Springer Basel

0003-889X/15/020145-11

published online January 29, 2015
DOI 10.1007/s00013-015-0724-y Archiv der Mathematik

The group algebra decomposition of Fermat curves of prime
degree

Patricio Barraza and Anita M. Rojas

Abstract. We describe the action of the full automorphisms group on the
Fermat curve of degree N . For N prime, we obtain the group algebra
decomposition of the corresponding Jacobian variety.
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1. Introduction. Let S be a compact Riemann surface and G a non-trivial
group of automorphisms of S. There are two representations of G associated
to the action of G on S. Namely the rational (in what follows denoted by
ρQ) and the analytic representations, which are on H1(S, Q) (first homology
group) and on H1,0(S, C) (analytic differentials) respectively. For the Fermat
curve FN , the decomposition of both representations can be computed [2].

The action of G on S induces an action on the Jacobian variety JS of S.
In [5] there was given a relationship between the rational irreducible represen-
tations of G and the G-invariant factors in the isotypical decomposition of an
arbitrary abelian variety A with an action of a finite group G. In this way the
group algebra decomposition of JS is obtained:

JS ∼ J(S/G) × Bu2
2 × · · · × Bur

r . (1.1)

This equation gives us a generic decomposition for a Jacobian with the
action of a group G. The dimensions of the subvarieties Bi depend on the
geometry of the action of G on S; they were computed in [7] in terms of the
geometric signature for the action (see Section 2.2).

Let N ≥ 4 be a natural number, and denote by FN the Riemann surface
given by the complex projective algebraic curve xN + yN + zN = 0, known as
the Fermat Curve of degree N . We compute the group algebra decomposition
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for its Jacobian variety JFN considering the action of its full automorphisms
group. To decompose the Jacobian variety of a Fermat curve has been of inter-
est to geometers and number theorists for quite some time. In [1] the Fermat
curve FN is decomposed using techniques of number theory, into a product
of subvarieties of CM-type. The question of when such subvarieties are isoge-
nous is answered, and under some additional conditions on N it is determined
whether they are simple. This decomposition corresponds to the group alge-
bra decomposition considering the subgroup H = (Z/N)2 of the full automor-
phisms group GN . For N = p a prime number, the author decomposes JFp

into p − 2 factors of dimension p−1
2 , describing which of these subvarieties are

simple. Our decomposition, which considers the full group of automorphisms
GN , further decomposes some of the factors determining which are isogenous.
For instance for p = 7, in [1] JF7 is decomposed as a product of five three-
folds, three of them simple. Considering the full group GN , we determine that
JF7 ∼ E6 × T 3, with E an elliptic curve and T a threefold.

2. Preliminaries. Let S be a Riemann surface S of genus g. We say that the
group G acts on S if G is isomorphic to a subgroup of the analytical automor-
phism group Aut(S) of S. Let πG : S → S/G denote the branched covering
of S to S/G associated to the action of G on S. A ramification point P ∈ S
is a point where πG has multiplicity n ≥ 2. In other words, a point whose
stabilizer has order n. The image of a ramification point of multiplicity n is
called a branch point of degree n.

The geometric information about the action of G on S is partially encoded
in the geometric signature. This is a tuple σ = (γ; [n1, C1], . . . , [nt, Ct]), where
γ is the genus of the quotient curve S/G, each Cj is a conjugacy class of
cyclic subgroups of G, nj denotes the number of branch points y ∈ S/G whose
preimages in S are fixed by a subgroup in the class Cj , and

∑t
j=1 nj is the

number of branch points of πG : S → S/G, see [7] for details.

2.1. Rational representation ρQ. According to [7], if G is acting on S with
geometric signature σ as above, then for each non trivial complex irreducible
representation θi : G → GL(Vi), its multiplicity si in the isotypical decompo-
sition of ρQ ⊗ C is given by

si = 2dim(Vi)(γ − 1) +
t∑

k=1

nk(dim(Vi) − dim(FixGk
(Vi))), (2.1)

where Gk is a representative of the conjugacy class Ck.

2.2. Lange–Recillas decomposition [5]. Let S be a Riemann surface of genus
g ≥ 2 with a faithful action of a finite group G denoted by ρ : G → Aut(S).
This action induces a homomorphism Q[G] → EndQ(JS) of the rational group
algebra Q[G] into the endomorphism algebra EndQ(JS) of the Jacobian of S,
in a natural way.

Let Q[G] = Q1 ×· · ·×Qr denote the decomposition of Q[G] into a product
of simple Q-algebras Qi. The algebras Qi correspond bijectively to the rational
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irreducible representations Wi of G. So for any irreducible rational representa-
tion Wi of G, there is a uniquely determined central idempotent eWi

in Q[G]
defining an abelian subvariety Ai := Im(neWi

) of JS, where n is any positive
integer such that neWi

∈ End(JS). The addition map

μ : A1 × · · · × Ar → JS (2.2)

is an isogeny. The isogeny (2.2) is called the isotypical decomposition (or the
G-equivariant decomposition) of JS. The subvarieties Ai are called isotypical
components of JS.

The decomposition of every Qi = L1 × · · · × Lui
into a product of (iso-

morphic) minimal left ideals gives a further decomposition of the Jacobian
which is called the group algebra decomposition. There are idempotents, not
uniquely determined, fi1, . . . , fiui

∈ Qi such that ei = fi1+ · · ·+fiui
[3], where

ui = dim Vi

mi
, and mi = mVi

is the Schur index of the representation Vi. As be-
fore, define for each fij a subvariety Bij := Im(nfij). As all these subvarieties
are isogenous, we write Bi = Bi1 obtaining (1.1).

According to [7], if G is acting on S with geometric signature σ=(γ; [n1, C1],
. . . , [nt, Ct]), the dimension of the subvarieties Bi of (1.1) associated to a non
trivial rational irreducible representation Wi, is given by

dim Bi = ki

(

dim Vi(γ − 1) +
1
2

t∑

k=1

nk (dim Vi − dim FixGk
Vi)

)

(2.3)

where Gk is a representative of the conjugacy class Ck, dimVi is the dimension
of a complex irreducible representation Vi associated to Wi, Ki = Q(χVi

(g) :
g ∈ G), mi is the Schur index of Vi, and ki = mi[Ki : Q].

2.3. The full group of automorphisms of FN . It is known that the genus of

FN is g =
(N − 1)(N − 2)

2
. Concerning its full automorphisms group, we have

the following result [6].

Proposition 2.1. Let ω = ei 2π
N be a primitive n-th root of the unity. Then

1. The full group of automorphisms Aut(FN ) of FN is generated by the maps
in (2.4):

F1(x, y, z) = (x, ωy, z), F2(x, y, z) = (ωx, y, z),
F3(x, y, z) = (y, x, z), F4(x, y, z) = (z, x, y). (2.4)

2. Let GN := (μN × μN ) � S3, where μN = 〈ω〉 is the group of n-th roots
of unity, and the action of S3 = 〈a, b : a3, b2, abab〉 on μN × μN is given
by a(ω, 1)a2 = (1, ω), b(ω, 1)b = (1, ω), a(1, ω)a2 = (ω, 1)−1(1, ω)−1. Then
Aut(FN ) ∼= GN . In fact an isomorphism Φ : GN → Aut(FN ) is given by
(1, ω) 	→ F1, (ω, 1) 	→ F2, b 	→ F3, a 	→ F4.

In what follows we identify GN with Aut(FN ) using Φ.
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Table 1. Ramification points and stabilizer for the action of
GN on FN

Point Stabilizer
( N

√
2ei π

N , 1, 1) 〈ba〉
(ei 2π

3N )2, ei 2π
3N , 1) 〈(ω, 1)a〉

(0, ei π
N , 1) 〈(ω, ω)ba〉

2.4. Description of the action of GN = (μN × μN ) � S3 on FN . We describe
the canonical covering π : FN → FN/GN .

Proposition 2.2. The geometric signature for the action of its full group of
automorphisms GN on FN is (0; [1, 〈ba〉], [1, 〈(w, 1)a〉], [1, 〈(w,w)ba〉]). Rami-
fication points and their stabilizers are given in Table 1.

Proof. With the notation of Proposition 2.1, each f ∈ Aut(FN ) is of the form
f = (ωk, ωj)σ, for some k, j ∈ Z/N and σ ∈ S3. The elements of S3 act on FN

as follows:

1(x, y, z) = (x, y, z), ba(x, y, z) = (x, z, y), ab(x, y, z) = (z, y, x),
b(x, y, z) = (y, x, z), a(x, y, z) = (z, x, y), a2(x, y, z) = (y, z, x).

The set of points in FN having any zero coordinate are all in the same
orbit. In fact we have:
(1) (0, y, z) ∈ FN if and only if (0, y, z) = (0, ei π

N ωk, 1), for some k ∈ Z/N.
(2) (x, 0, z) ∈ FN if and only if (x, 0, z) = (ei π

N ωk, 0, 1), for some k ∈ Z/N.
(3) (x, y, 0) ∈ FN if and only if (x, y, 0) = (ei π

N ωk, 1, 0), for some k ∈ Z/N.

Note that for all j, k we have (1, ωj−k)(0, ei π
N ωk, 1) = (0, ei π

N ωj , 1), thus
points of type (1) are in the same orbit. Moreover, as b(x, 0, z) = (0, x, z)
and a(x, y, 0) = (0, x, y), points of type (2) and (3) are also in this orbit.
Therefore this orbit has size 3N . Since | G |= 6N2, we have a branch point of
degree 2N . Finally, the stabilizer of (0, ei π

N , 1) is (ω, ω)ba, which gives part of
the geometric signature.

On the other hand, we have that ab(1, N
√

2ei π
N , 1) = (1, N

√
2ei π

N , 1), thus
we have another branch point of degree 2. Finally observe that (1, ω)a ∈
Stab(e− 4πi

3N , 1, e− 2πi
3N ), so we have one last branch point of degree 3. We verify

that these points are all the branch points for the covering π : FN → FN/GN

using the Riemann-Hurwitz equation. If there are r points with multiplicities
t1, .., tr > 1 and γ is the genus of the quotient, we have

(N − 1)(N − 2)
2

= (γ − 1)6N2 + 1 +
6N2

2

⎛

⎝3 − 1
2N

− 1
2

− 1
3

+ r −
r∑

j=1

1
tj

⎞

⎠,

hence

3N2

⎛

⎝r −
r∑

j=1

1
tj

⎞

⎠ =
−γ12N2

2
,
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but 3N2
(
r −∑r

j=1
1
tj

)
> 0 and

−γ12N2

2
≤ 0, which is a contradiction.

Therefore

(N − 1)(N − 2)
2

= (γ − 1)6N2 + 1 +
6N2

2

(

3 − 1
2N

− 1
2

− 1
3

)

,

hence γ = 0. �

3. Complex irreducible representations of GN . To study the group algebra
decomposition (1.1) of the Jacobian variety JFN of FN , we need to know the
complex irreducible representations of GN . We use the method known as little
groups method of Wigner and Mackey [8, 8.2] to compute them.

Proposition 3.1. The group GN of automorphisms of FN , given in Proposi-
tion 2.1, has the following complex irreducible representations.

1. If 3 divides N , then GN has 6 irreducible representations of degree 1, 3 of
degree 2, 2(N − 3) of degree 3, and N2−3N+6

6 of degree 6.
2. If 3 does not divide N , then GN has 2 irreducible representations of degree

1, 1 of degree 2, 2(N − 1) of degree 3, and (N−2)(N−1)
6 of degree 6.

Moreover, these representations are explicitly shown in Table 2, where ‘diag’
means diagonal matrix, and (α, β) ∈ {1, . . . , N − 1}2 is such that α �= β and
N does not divide β + 2α or α + 2β. We denote by Λ the set of these pairs.

4. Group algebra decomposition of JFN , for N prime. We are interested in
showing the group algebra decomposition (1.1) of the Jacobian variety JFN

associated to FN . The restriction on N becomes necessary when we compute
the degree of the extension field Kα,β := Q(χρα,β

(g) : g ∈ GN ) over Q, see
(2.3). The decomposition of ρQ can be obtained for arbitrary N .

4.1. Decomposition of ρQ, for the action of GN on FN .

Theorem 4.1. Let the notation be as above, in particular representations are
given in Table 2. Then the decomposition of the rational representation ρQ ⊗C

associated to the action of GN on FN depends on N in the following way.

1. If N is even and 3 does not divide N , the rational representation decomposes
into a sum of N − 2 irreducible representations of degree 3 and (N−2)(N−4)

6
irreducible representations of degree 6, namely:

⊕

α∈{1,...,N−1}\{ N
2 }

ρ−
α ⊕

⊕

(α,β)∈Λ,α+β �≡0(N)

ρα,β

2. If N is odd and 3 does not divide N , the rational representation decomposes
into a sum of N − 1 irreducible representations of degree 3 and (N−1)(N−5)

6
irreducible representations of degree 6, namely:

⊕

α∈{1,...,N−1}
ρ−

α ⊕
⊕

(α,β)∈Λ,α+β �≡0(N)

ρα,β
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Table 2. Representations of GN given on its generators

Label Generators of S3 Generators of μN × μN

ρ1 a → 1, b → 1 (ω, 1) → 1, (1, ω) → 1
ρ2 a → 1, b → −1 (ω, 1) → 1, (1, ω) → 1

ρ3 a →
(

0 −1
1 −1

)

, (ω, 1) →
(

1 0
0 1

)

,

b →
(−1 1

0 1

)

(1, ω) →
(

1 0
0 1

)

ρ+
α a →

⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠, (ω, 1) →
⎛

⎝
ωα 0 0
0 ωα 0
0 0 ω−2α

⎞

⎠,

b →
⎛

⎝
1 0 0
0 0 1
0 1 0

⎞

⎠ (1, ω) →
⎛

⎝
ωα 0 0
0 ω−2α 0
0 0 ωα

⎞

⎠

α ∈ {1, .., N − 1} \ {N
3 , 2N

3 }

ρ−
α a →

⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠, (ω, 1) →
⎛

⎝
ωα 0 0
0 ωα 0
0 0 ω−2α

⎞

⎠,

b →
⎛

⎝
−1 0 0
0 0 −1
0 −1 0

⎞

⎠ (1, ω) →
⎛

⎝
ωα 0 0
0 ω−2α 0
0 0 ωα

⎞

⎠

α ∈ {1, .., N − 1} \ {N
3 , 2N

3 }
ρ1

N
3

a → 1, b → 1 (ω, 1) → ω
N
3 , (1, ω) → ω

N
3

ρ2
N
3

a → 1, b → −1 (ω, 1) → ω
N
3 , (1, ω) → ω

N
3

ρ3
N
3

a →
(

0 −1
1 −1

)

, (ω, 1) →
(

ω
N
3 0

0 ω
N
3

)

,

b →
(−1 1

0 1

)

(1, ω) →
(

ω
N
3 0

0 ω
N
3

)

ρ1
2N
3

a → 1, b → 1 (ω, 1) → ω
2N
3 , (1, ω) → ω

2N
3

ρ2
2N
3

a → 1, b → −1 (ω, 1) → ω
2N
3 , (1, ω) → ω

2N
3

ρ3
2N
3

a →
(

0 −1
1 −1

)

, (ω, 1) →
(

ω
2N
3 0

0 ω
2N
3

)

,

b →
(−1 1

0 1

)

(1, ω) →
(

ω
2N
3 0

0 ω
2N
3

)
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Table 2. Table 2 continued

Label Generators of S3 Generators of μN × μN

ρα,β a →

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
(ω, 1) → diag(ωα, ωβ ,

ω−α−β , ωβ , ω−α−β , ωα) ,

b →

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(1, ω) → diag(ωβ , ω−α−β ,
ωα, ωα, ωβ , ω−α−β)

3. If N is even and 3 divides N , the rational representation decomposes into a
sum of N − 4 irreducible representations of degree 3, N2−6N+12

6 irreducible
representations of degree 6, and 2 of degree 1, namely:

⊕

α∈{1,...,N−1}\{ N
3 , N

2 , 2N
3 }

ρ−
α ⊕

⊕

(α,β)∈Λ,α+β �≡0(N)

ρα,β ⊕
(
ρ2

N
3

)
⊕
(
ρ2

2N
3

)

4. If N is odd and 3 divides N , the rational representation decomposes into
a sum of N − 3 irreducible representations of degree 3, (N−3)2

6 irreducible
representations of degree 6, and 2 of degree 1, namely :

⊕

α∈{1,...,N−1}\{ N
3 , 2N

3 }
ρ−

α ⊕
⊕

(α,β)∈Λ,α+β �≡0(N)

ρα,β ⊕
(
ρ2

N
3

)
⊕
(
ρ2

2N
3

)

The proof of Theorem 4.1 is a straightforward computation using
Theorem 2.1, see [2] for details.

4.2. Subvarieties of the group algebra decomposition for JFN . According to
(2.3), we need to compute the Schur index and the degree [Q(χρi

(g) : g ∈ GN ) :
Q] for the irreducible representations ρi decomposing ρQ ⊗ C (Theorem 4.1).

Proposition 4.2. The Schur index of each representation ρ−
α and ρα,β is 1.

Proof. These representations are induced by irreducible representations of de-
gree 1 of H1 = μN ×μN 〈b〉 ≤ GN and H2 = μN ×μN ≤ GN , respectively; both
subgroups have a complement in GN . From Proposition [4, X.8] we obtain that
the Schur index of the corresponding induced representations divide 1. �

Lemma 4.3. Let χ be the character of the representation ρ−
α , α ∈ {1, . . . , N −

1}\{N
2 , N

3 , 2N
3 }. Then

[Q(χ(g) : g ∈ G) : Q] = ϕ

(
N

gcd(N,α)

)

.
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Proof. We will prove that Q(χ(g) : g ∈ G) = Q(2ωα + ω−2α) = Q(ωα). The
proposition follows from the fact that ωα is a

(
N

gcd(N,α)

)
− primitive root of

unity.
Let τ = ωα be a

(
N

gcd(N,α)

)
− primitive root of unity. We have the following

extension of fields Q(τ) ⊃ Q(χ(g) : g ∈ G) ⊃ Q(2τ +τ−2), hence it is sufficient
to prove that Q(τ) = Q(2τ +τ−2). Since Q(τ) ⊃ Q is Galois, we will prove that
GalQ(2τ+τ−2)(Q(τ)) = {Id}. Suppose we have σ ∈ GalQ(2τ+τ−2)(Q(τ)) \ {Id},
hence σ(τ) = τ r, for some r �= 1. Thus σ(2τ + τ−2) = 2τ r + τ−2r = 2τ + τ−2.
Hence

2(τ r − τ) =
1
τ2

− 1
τ2r

=
τ2r − τ2

τ2τ2r
=

(τ r − τ)(τ r + τ)
τ2τ2r

and 2 = τr+τ
τ2τ2r . Furthermore | τ r +τ |= 2 =| τ r | + | τ |, then τ r = λτ for some

λ ∈ R, where | λ |= 1. If λ = −1, then τ r +τ = 0, which is impossible. If λ = 1,
then τ r = τ , which is not possible. Thus GalQ(2τ+τ−2)(Q(τ)) = {Id}. �

We recall (Table 2) that Λ is a set of pairs (α, β) ∈ {1, . . . , N −1}2 indexing
the irreducible representations of degree 6 of G. At this point we need to restrict
N to prime numbers.

Lemma 4.4. Let N > 6 be a prime, (α, β) ∈ Λ be a pair such that α+β �≡ 0(N),
and Kα,β as before. Then

[Kα,β : Q] =
{

N−1
3 if α ≡ rβ(N) for some r ∈ Z where r3 ≡ 1(N)

N − 1 otherwise

Proof. We will consider two cases. First consider N ≡ 1(3). Since N is prime,
by Cauchy’s theorem, there exists r �≡ 1(N) such that r3 ≡ 1(N). Let α ≡
rβ(N) be an integer. We will show that | GalKα,β

Q(ω) |= 3.
Let σ ∈ GalQ Q(ω) be the automorphism given by σ(ω) = ωr, then | σ |= 3.

We will prove that 〈σ〉 = GalKα,β
Q(ω).

Consider σ′ ∈ GalKα,β
Q(ω), hence σ′(ω) = ωs, for some s ∈ Z. We must

show that σ′ ∈ 〈σ〉, that is s ≡ 1(N) or s ≡ r(N) or s ≡ r2(N). N is prime and
r �≡ 1(N), hence if r3 − 1 ≡ (r − 1)(r2 + r +1) ≡ 0(N) then r2 + r +1 ≡ 0(N).

Let γ = −α−β, multiplying by β we have β +βr +βr2 ≡ β +βr +αr(N).
Adding α we conclude α ≡ α + β + βr + αr ≡ (α + β)(1 + r) ≡ −γ(1 + r)(N).
Equivalently, rβ ≡ −γ − γr(N) so that γ ≡ −γr − rβ ≡ αr(N). Thus rγ ≡
β(N).

On the other hand, χ(ω, 1) = 2ωα +2ωβ +2ω−α−β ∈ Kα,β , then ωα +ωβ +
ωγ = ωsα + ωsβ + ωsγ , but since N > 6, we must have equal elements in the
set {ωα, ωβ , ωγ , ωsα, ωsβ , ωsγ}, otherwise they are part of a basis for Q(ω) and
linearly dependent. As α, β, and γ are different form each other, we have three
cases:
1. α ∈ {sα, sβ, sγ}. If α = sα, then s = 1. If α = sβ, then rβ = sβ, hence

r = s. If α = sγ, then γ = rα = rsγ and hence rs = 1, that is s = r2.
2. β ∈ {sα, sβ, sγ}. If β = sα, then β = srβ and hence rs = 1, that is σ′ = σ2.

If β = sβ, then s = 1. If β = sγ, then rβ = rsγ = sβ and hence r = s.
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3. γ ∈ {sα, sβ, sγ}. If γ = sα, then rα = sα and hence r = s. If γ = sβ, then
rγ = rsβ and hence rs = 1, that is s = r2. If γ = sγ, then s = 1.

If α �≡ rβ(N) for each r with r3 ≡ 1(N), then we must show that GalK Q(ω) =
{Id}. Suppose σ ∈ GalK Q(ω)\{Id}, that is σ(ω) = ωs, where s �≡ 1(N). By
the previous analysis, we have the following cases:
1. α = sβ. If β = sγ, then γ = sα. Hence γ = sα = s2β = s3γ, that is

s3 ≡ 1(N), which is impossible.
If β = sα, then γ = sγ. Hence s = 1, which is a contradiction.

2. α = sγ. Then β = sα and γ = sβ. Hence β = s2γ = s3β, that is s3 ≡ 1,
which is impossible.

3. γ = sα. Then β = sγ and α = sβ. Hence γ = s3γ, that is s3 ≡ 1, which is
impossible.

�

Theorem 4.5. Let N > 4 be a prime:
1. If N ≡ −1(3) the isotypical decomposition of JFN is given by

JFN ∼ B3
0 × B6

1 × · · · × B6
N−5

6
.

The subvariety B0 corresponds to the Q−irreducible representation of GN

associated to ρ−
α , for any α. B0 is of dimension N−1

2 .
For i > 0, the subvariety Bi corresponds to the Q−irreducible repre-

sentation of GN associated to ρα,β appearing in the decomposition of ρQ⊗C

(see Theorem 4.1). Bi is of dimension N−1
2 .

2. If N ≡ 1(3),the isotypical decomposition of JFN is given by

JFN ∼ B6 × B3
0 × B6

1 × · · · × B6
N−7

6
.

The subvariety B corresponds to the Q−irreducible representation of G as-
sociated to the representations of degree 6 appearing in the decomposition
of ρQ ⊗ C (see Theorem 4.1). They have Galois group GalQ Kα,β of order
N−1

3 , therefore B is of dimension N−1
6 .

The subvariety B0 corresponds to the Q−irreducible representation of
GN associated to ρ−

α , for any α. B0 is of dimension N−1
2 .

For i > 0, the subvariety Bi corresponds to the irreducible represen-
tation of G over Q associated to the representations of degree 6 appearing
in the decomposition of ρQ ⊗ C (see Theorem 4.1), they have Galois group
GalQ Kα,β of order N −1. Therefore these varieties are of dimension N−1

2 .

Proof. For each ρ−
α the corresponding Galois group GalQ Kα is of order N −

1 and the other potencial representations of degree 3 do not appear in the
rational representation (see Theorem 4.1). We have that the representations
ρ−

α are in one Galois orbit of size N − 1, the corresponding subvariety B0 is of
dimension N−1

2 , and its factor is B3
0 .

If N �≡ 1(3), there exist s subvarieties associated to the s orbits of the
action of GalQ K, of order N −1, on the irreducible representations of degree 6
which appear in the rational representation (see Theorem 4.1), each subvariety
is of dimension N−1

2 and appears with multiplicity 6.
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Thus JFN ∼ B3
0 × B6

1 × · · · × B6
s . Comparing with the dimension of JFN ,

we have
(N − 1)(N − 2)

2
= 3

N − 1
2

+ s

(

6
N − 1

2

)

,

equivalently s = N−5
6 .

If N ≡ 1(3), then there exists an element of order 3 on the group Z/N
∗,

that is there exists r0 �= 1 with r3
0 ≡ 1(N) and hence there exists r1 �= 1, r0

with r3
1 ≡ 1(N). Then the 2(N−1) pairs (r0β, β) and (r1β, β) are such that the

corresponding representation appears in the rational representation and have
Galois group GalQK of order N−1

3 . We have N−1
3 representations of degree

6, which must be grouped into orbits of size N−1
3 , then we have only one

Galois orbit. Therefore there is only one subvariety B associated to them,
it is of dimension N−1

6 , and its factor is B6. Finally, there are s subvarieties
associated to the s orbits corresponding to the representations of degree 6 with
Galois group GalQ Kα,β of order N − 1. Each subvariety is of dimension N−1

2
and appears with multiplicity 6. Thus

JFN ∼ B3
0 × B6 × B6

1 · · · × B6
s ,

comparing with the dimension of JFN , we have that

(N − 1)(N − 2)
2

= 3
N − 1

2
+ 6

N − 1
6

+ s

(

6
N − 1

2

)

,

equivalently s = N−7
6 . �
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Casilla 110-V
Valparáıso
Chile.
e-mail: patricio.barraza@usm.cl

Anita M. Rojas
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