
ww.sciencedirect.com

b i om a s s a n d b i o e n e r g y 7 4 ( 2 0 1 5 ) 9 6e1 0 2
Available online at w
ScienceDirect

ht tp: / /www.elsevier .com/locate/biombioe
Biomass yield and quality of an energy dedicated
crop of poplar (Populus spp.) clones in the
Mediterranean zone of Chile
Ren�e Carmona a,*, T. Nu~nez a, M.F. Alonso b

a Department of Wood Engineering and Biomaterials, FCFCN, University of Chile, Chile
b Department of Environmental Sciences and Natural Resources, University of Chile, Chile
a r t i c l e i n f o

Article history:

Received 14 July 2014

Received in revised form

29 December 2014

Accepted 5 January 2015

Available online 30 January 2015

Keywords:

Populus clones

Lignin

Cellulose

Heating value

Chemical composition

Biomass
* Corresponding author. Tel.: þ56 2 29785909
E-mail address: recarmon@uchile.cl (R. C

http://dx.doi.org/10.1016/j.biombioe.2015.01.0
0961-9534/© 2015 Elsevier Ltd. All rights rese
a b s t r a c t

The biomass of nineteen Populus spp. clones was measured and characterized as a feed-

stock for energy production. Biomass yield was estimated using the average volume and

dry weight of each clone. Quality traits analyzed include higher heating value (HHV) and

chemical composition. Biomass yield ranged between 0.31 and 9.54 kg individual�1. HHV

ranged between 17.69 and 20.75 MJ kg�1. Total extractives varied between 11.78% and

19.62% (mass fraction% on dry basis), Klason lignin ranged between 14.31% and 20.92% and

a-Cellulose ranged between 42.38% and 48.70%, both without extractives. The ash content

ranged from 2.05% to 3.40%. The chemical composition of the clones reported here is

slightly different to the previously reported for this genre, but this is attributed to the ju-

venile wood and the inclusion of bark in the samples. As a result of the biomass used in

this study, the correlations between the chemical composition and extractives content on

HHV are of very poor quality. Based on our results, an approach including both biomass

yield and quality is required in order to ensure the most viable treatment for a sustainable

utilization of the biomass for energy generation. For a direct combustion perspective, the

preferred clones are those which a high combination of yield and heating value as Bocalari,

Beaupre, Constanzo and Nmdv.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Among themost promissorywoody species in Chile are hybrid

poplars, due to their fast growth, high adaptability to a wide

variety of soils and climatic conditions and wide range of

potential applications as biofuels, pulp and paper, as well as

other bio-based products such as chemicals and adhesives [1].

Lignocellulosic biomass is typically the fibrous and non-

edible plant material composed primarily by fibers of walls
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formed by layers of organic macromolecules, the poly-

saccharides cellulose and hemicellulose and a phenolic poly-

mer, lignin. All these macromolecules provide a strong

mechanical stability due to the bonds of lignin in the cell wall,

providing a natural resistance to its degradation [2] and

becoming one of the main challenges for the second genera-

tion biofuel industry [3]. However, lignin contribution to the

higher heating value (HHV) has been demonstrated in

different species [4,5].
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Besides the structural components there are also extrac-

tives and inorganics. Extractives are a varied group of organic

compounds usually represent a minor proportion of the

biomass and vary with the species, structure of the plant

analyzed and the solvents used for the extraction. Depending

on their quantity and industrial value they could represent a

potential source of co-products [1]. White [4] states that dif-

ferences in HHV between softwoods and hardwoods species

could be more related to the presence of extractives than to

the lignin content of these groups. On the other hand, Kacik

et al. [6] found that HHV in Populus depend on the content of

both, lignin and extractives.

Mineral compounds or inorganics are usually informed as

ash. They represent less than 1% of the dry weight (mass

fraction) of woody biomass [7] and include metals and met-

alloids that vary in type and quantity depending on the

biomass type (i.e. whole plants or harvest residues), plant

tissue (i.e. wood, bark or leaves), soil type and management

(i.e. fertilization). Their relevance depends on their quantity

and composition [8,9] and, as the other chemical compounds,

are used to screen biomass feedstocks for biofuel applications

[1].

According to Dinus [10] and others researchers [1,7,11], in

order to reduce the cost of pre-treatments and to increase the

total energy produced we should select feedstocks based on

the available biomass conversion technology, the end-product

required and the chemical composition of the feedstock uti-

lized. Different energy conversion processes require different

biomass quality in order to reach the end product with high

performance and at low cost [10].

In Chile, the most common process for energy generation

with lignocellulosic biomass is combustion. A 20% of the pri-

mary energy (234 EJ) is generated from wood fuel and its de-

rivatives to produce heat for domestic and industrial uses and

electricity (900 GWh, 1.6% of the total) [12]. In the short term,

the biomass participation in the energy generation matrix

should increase by the adoption of short rotation lignocellu-

losic crops.

For the purpose of this study, nineteen Populus spp. clones

from an energy dedicated plantationwere studied as potential

feedstock for combustion processes [13] and as a primary

source for solid fuels like pellets. The goal of this study was

the characterization of the biomass for energy purposes, thus

samples used in the analyses were composed by juvenile

wood and included bark.
2. Materials and methods

2.1. Experimental site

The plantation included nineteen two-years old Populus spp.

clones growing in a density of 9,000plants ha�1 at Antumapu

Experimental Station located in the Central Zone of Chile at

33�3401000S 70�3804000W and 368 m of altitude. The soil is a

Mollisol, coarse loamy over sandy, skeletal, mixed Thermic

Entic Haploxeroll, 60 cm deep, flat and well drained [14] with

28.70 mg kg�1 of N; 3.27 mg kg�1 of P; 125 mg kg�1 of K;

25.19 mg kg�1 of S; a pH of 8.24 and 2.34% of organic matter.

The site has a Mediterranean semiarid climate, with 8 dry
months during the warm season, a minimum temperature of

3.4 �C in July and a maximum temperature of 28.7 �C in

January, with 231 frost-free days and an annual precipitation

of 330 mm [15]. The trial was irrigated 3 times a week from

October to March to keep the soil at field capacity.

2.2. Biomass productivity

Stem and branches of six random individuals of nineteen

clones of Populus spp. were harvested manually and cut in

pieces 0.5m long.We estimated the volume of each individual

geometrically multiplying the area corresponding to the

average diameter of each piece by its longitude [16]. The apex

was considered as a cone. Each piece was dried at 60 ± 3 �C
until a constant weigh was reached and then weighted. We

used the average volume and dry weight of the six individuals

for the determination of the specific gravity and the total

biomass per hectare of each clone.

2.3. Higher heating value (HHV)

The heating value (HHV) was determined in a ballistic bomb

calorimeter (Gallen Kamp 23C679). Two samples of 0.5e1.0 g of

each clone were weighed and ignited.

2.4. Chemical analyses

A sample of each clonewas chipped in a hammermill of 9.7W

and milled in a Wiley Mill N�4 to reduce the sample to dust

size. Finally, part of the material was sieved to a size of

0.40 mme0.25 mm, as described by T 264 om-88 “Preparation

of Wood for Chemical Analysis” [17].

Determinations of extractives (removed sequentially with

ethanol-toluene, ethanol and water and expressed as total ex-

tractives), total, Klason and soluble lignin, holocellulose, a-

celluloseandashweredone induplicateaccording toTAPPI and

NREL procedures [18]. Hemicellulose was obtained by differ-

ence. For the determination of soluble lignin, 1 mL of the ho-

mogeneous filtrated liquor was taken in Eppendorf tubes in

duplicate, and then centrifuged at 1047.2 rad s�1for 15min. The

supernatant was separated from the pellet and taken to a

Spectrometer adjusted to 240 nm, to the recommended wave-

length. Then, samples were diluted to match a range between

700 and 1000 of absorbance and the absorptivity at the recom-

mended wavelength corresponded to 2.5 � 106 L kg�1 m�1 [18].

Amultiple regression analysis was carried out in JMP® 9.0.2

to detect the quality variables of the biomass (extractives,

lignin, a-cellulose, holocellulose and ash) explaining its HHV.
3. Results and discussion

3.1. Biomass productivity

Table 1 shows the biomass productivity of the clones evalu-

ated in this study. Biomass yield varied between 0.31 and

9.54 kg dry weight (DW) individual�1. The most productive

clones were Bocalari, Constanzo, Beaupre and Nmdv.

When extrapolated to a hectare basis, biomass yield range

from 1.57 (VSB-2) to 47.7 (Bocalari) Mg DWha�1 (Fig. 1). Twelve
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Table 1e Biomass yield (kg dryweight (DW) individual¡1)
of the Populus clones evaluated in this study (mean ± SD).

Clon n Yield
(kg DW indiv�1)

Clon n Yield
(kg DW indiv�1)

Bocalari 4 9.54 ± 5.11 a Eridano 3 2.47 ± 2.16 b

Constanzo 6 5.95 ± 3.71 ab Categorı́a 10 2.18 ± 1.79 b

Beaupre 7 5.47 ± 2.58 ab 269 2 1.99 ± 2.63 b

Nmdv 3 4.95 ± 2.52 ab Carolinensis 2 1.79 ± 2.17 b

ST-109 10 3.44 ± 2.46 b 70038/31 6 1.66 ± 1.32 b

Dvina 5 3.42 ± 2.47 b Chopa

Blanca

3 1.53 ± 1.27 b

Neva 6 3.38 ± 2.30 b Triplo 3 0.79 ± 0.59 b

Unal 3 3.04 ± 3.33 b NM6 3 0.73 ± 0.31 b

Boelare 7 2.78 ± 1.75 b VSB-2 3 0.31 ± 0.20 b

I-488 4 2.53 ± 1.98 b

Mean values followed by the same letters are not significantly

different at P < 0.05.

Table 2 e Higher heating value (HHV; MJ kg¡1) of the
Populus spp. clones evaluated in this study (mean ± SD).

Clon HHV (MJkg-1) Clon HHV (MJkg-1)

Neva 20.75 ± 0.52 a I-488 19.59 ± 0.47 abcd

269 20.49 ± 0.16 ab Chopa

Blanca

19.35 ± 0.42 abcd

VSB-2 20.44 ± 1.22 ab 70038/31 19.26 ± 0.03 abcde

Bocalari 20.38 ± 0.22 ab NM6 19.08 ± 0.45 bcde

Nmdv 20.28 ± 0.07 abc Categorı́a 18.89 ± 0.02 bcde

ST-109 20.02 ± 0.04 abc Triplo 18.88 ± 0.03 bcde

Beaupre 19.97 ± 0.01 abc Unal 18.73 ± 0.45 cde

Boelare 19.86 ± 0.23 abc Eridano 18.20 ± 0.42 de

Carolinensis 19.82 ± 0.48 abcd Constanzo 17.69 ± 0.21 e

Dvina 19.63 ± 0.06 abcd

Mean values followed by the same letters are not significantly

different at P < 0.05.
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of the nineteen clones studied produced more than

10 Mg DW ha�1. Liesebach et al. [19] obtained similar yields in

energy plantations like those used in this study. Four clones

yieldedmore than 20Mg DWha�1, as was reported by Liberloo

et al. [20] in a high-density coppice plantation of three years

old in a second rotation.

3.2. Higher heating value (HHV)

Results of the higher heating value (HHV) determination are

shown in Table 2.

HHV varied between 17.69 and 20.75 MJ kg�1. The clones

with the highest HHV were Neva, 269 and VSB-2. Constanzo

and Eridano showed the lowest HHV. The values presented in

thiswork arewithin the range informed in previous studies on

Populus spp. wood [21,22] and close to those reported for stem

wood of two years old secondary sprouts of Populus x euro-

americana [23].

3.3. Extractives

Results showed in Table 3 correspond to the extractives sol-

uble in ethanol-toluene, ethanol and water, and total extrac-

tives in a mass fraction basis (%).

Total extractives varied between 11.78% and 19.62%.

Ethanol-toluene removed close to 10% of the woody biomass.
Fig. 1 e Biomass yield of the Populus clones evaluated in

this study extrapolated to Mg dry weight (DW) ha¡1.
Water removed around 3% of the biomass and ethanol

removed less than 1%. Total extractives values are higher than

those reported for wood of broadleaf species (hardwoods) and

for Populus spp. in particular [1,4,7,8,24]. Isenberg [25] reported

extractives contents of 1.4%e2.4% in alcohol-benzene and of

3.5%e3.6% in ethanol when working on mature wood of

poplar clones. Values of 1.5%e2.0% of extractives in ethanol/

toluene were informed by Kacik et al. [6] in wood of Populus

spp. from different clones. Extractives in ethanol in a range of

2.6%e3.6% for wood of seven years old deltoides x nigra clones

were reported by Davis et al. [26]. These authors concluded

that deltoides x nigra clones showed similar results to other

hybrid poplars analyzed in previous studies. Fernandez et al.

[24] obtained a range of 2.3%e4.0% (freeze dried wood) of

solubles in acetone for nine clones of Populus tremuloideswhen

analyzing the wood of mature trees. Luo and Polle [23] ob-

tained between 11.2% and 12.8% of removed material in a

more exhaustive extraction with water and methanol.

Our results are closer to those informed by Isenberg [25] for

the bark of poplar clones and are in accordance with those

presented by Bowersox et al. [9] who used composite samples

of wood and bark from four years old hybrid poplars and using

a similar method for the extractives (ASTM) to the one used in

this study (TAPPI).

The difference in total extractives between this and other

studies could be attributed to the presence of bark in the

samples analyzed. It is well known that steam wood and bark

differ on fiber structure and chemical composition, and that

bark has an especially high content of extractives [11,27,28].
3.4. Lignin

Results of lignin determinations are shown in la Table 4.

Lignin was divided in Klason (insoluble or acid lignin) and

soluble lignin. Klason lignin ranged between 14.31% and

20.92%. This range is similar to the one reported by Kacik et al.

[6], who found values between 17.68% and 23.66% of Klason

lignin inwood from sixteen years old Populus clones. However,

insoluble lignin contents for most of the clones of this study

were lower than 20%, the average value for hardwoods re-

ported by Scurlock [29]. This could be attributed to the pres-

ence of bark in the samples and the use of juvenile wood.
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Table 3 e Extractives in ethanol/toluene, ethanol, water and total extractives of Populus spp. clones a mass fraction (% on
dry basis).

Clon Ethanol/toluene (%) Ethanol (%) Water (%) Total (%)

70038/31 15.61 ± 0.08 0.38 ± 0.09 3.63 ± 0.16 19.62 ± 0.35 a

Unal 14.43 ± 0.05 0.20 ± 0.04 3.57 ± 0.07 18.20 ± 0.16 ab

Nmdv 12.06 ± 0.33 0.58 ± 0.07 4.97 ± 0.36 17.62 ± 0.62 bc

Eridano 12.61 ± 0.23 0.28 ± 0.19 4.48 ± 0.12 17.37 ± 0.16 bcd

Carolinensis 11.31 ± 0.14 0.53 ± 0.07 4.64 ± 0.90 16.48 ± 0.83 cde

NM6 11.94 ± 0.01 0.35 ± 0.01 3.59 ± 0.07 15.89 ± 0.08 def

Boelare 11.91 ± 0.13 0.43 ± 0.07 3.04 ± 0.14 15.38 ± 0.20 efg

Constanzo 9.49 ± 0.17 0.77 ± 0.03 4.46 ± 0.41 14.73 ± 0.55 fgh

Beaupre 9.78 ± 0.01 0.75 ± 0.09 4.00 ± 0.40 14.53 ± 0.30 fgh

Bocalari 10.95 ± 0.10 0.43 ± 0.27 3.14 ± 0.03 14.53 ± 0.34 fgh

269 10.90 ± 0.14 0.55 ± 0.08 2.92 ± 0.04 14.37 ± 0.27 fgh

Triplo 10.64 ± 0.37 0.46 ± 0.09 3.05 ± 0.30 14.16 ± 0.02 ghi

VSB-2 10.04 ± 0.63 0.54 ± 0.24 3.31 ± 0.31 13.89 ± 0.07 ghi

Dvina 8.75 ± 0.06 0.74 ± 0.13 4.30 ± 0.02 13.80 ± 0.04 hij

Neva 10.03 ± 0.48 0.50 ± 0.09 3.24 ± 0.12 13.78 ± 0.50 hij

I-488 9.40 ± 0.44 0.64 ± 0.10 3.59 ± 0.24 13.64 ± 0.57 hij

ST-109 9.03 ± 0.05 0.46 ± 0.01 3.24 ± 0.48 12.73 ± 0.41 ijk

Categorı́a 8.35 ± 0.01 0.33 ± 0.02 3.65 ± 0.21 12.33 ± 0.19 jk

Chopa Blanca 8.47 ± 0.41 0.27 ± 0.07 3.03 ± 0.02 11.78 ± 0.31 k

Mean values followed by the same letters are not significantly different at P < 0.05.
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Insoluble lignin values obtained in this study are closer to

the range obtained by White [4] in hardwoods and softwoods,

by Adam et al. [30] and Agblevor et al. [31] in hybrid poplars

and similar to those presented by Fengel and Wegener [7] in

wood of P. tremuloides and other poplars.

Soluble lignin has a low molecular weight. It is solubilized

in an acidic hydrolysis solution and usually ranges between

0.5% and 4.0% of the dry mass. In this study, the values of

soluble lignin showed little variability and were relatively
Table 4 e Klason lignin, soluble lignin and total lignin
contents of Populus spp. clones asmass fraction (% on dry
basis).

Clon Klason
lignina (%)

Soluble
lignina (%)

Total
lignina (%)

Constanzo 20.92 ± 1.14 3.91 ± 0.01 24.84 ± 1.14 a

Beaupre 20.61 ± 0.37 3.18 ± 0.01 23.80 ± 0.37 ab

Eridano 20.10 ± 0.74 3.44 ± 0.27 23.54 ± 0.47 abc

Carolinensis 19.81 ± 0.57 3.59 ± 0.02 23.40 ± 0.55 abcd

Categorı́a 18.40 ± 1.39 3.44 ± 0.08 21.84 ± 1.48 abcde

Nmdv 18.07 ± 0.12 3.54 ± 0.01 21.61 ± 0.14 abcde

Neva 17.35 ± 1.84 4.02 ± 0.09 21.37 ± 1.75 bcde

Bocalari 18.19 ± 0.13 2.98 ± 0.28 21.17 ± 0.41 bcde

I-488 17.39 ± 0.14 3.27 ± 0.02 20.66 ± 0.16 bcdef

NM6 17.23 ± 1.63 3.29 ± 0.11 20.52 ± 1.51 bcdef

ST-109 17.00 ± 1.12 3.35 ± 0.05 20.36 ± 1.07 cdef

VSB-2 16.59 ± 0.91 3.49 ± 0.20 20.08 ± 0.71 def

70038/31 16.70 ± 0.94 3.23 ± 0.14 19.93 ± 0.95 ef

Unal 16.37 ± 0.45 3.50 ± 0.14 19.88 ± 0.31 ef

269 16.29 ± 0.22 3.46 ± 0.08 19.75 ± 0.31 ef

Dvina 16.71 ± 0.26 2.98 ± 0.14 19.69 ± 0.12 ef

Chopa Blanca 16.42 ± 0.76 3.25 ± 0.04 19.67 ± 0.71 ef

Triplo 16.01 ± 0.17 3.28 ± 0.11 19.29 ± 0.06 ef

Boelare 14.31 ± 0.25 3.38 ± 0.02 17.69 ± 0.22 f

Mean values followed by the same letters are not significantly

different at P < 0.05.
a Percentage based on material free of extractives.
high, ranging between 3.0% and 4.0%. This range is slightly

higher than the one reported previously for poplar clones in

short rotation schemes [1,28].

Lignin content has a direct influence in the heating value of

the biomass [4] because it is a high-energy component [32].

This fact was confirmed by the heating value determinations

of the Klason lignin obtained in this study, which reached

22.89 MJkg�1.

3.5. Holocellulose

Holocellulose content of the samples are shown in Table 5.

Values ranged between 83.32% and 88.29%. These values are

higher than the averageof 77.2% reported byVassilev et al. [33],

the 79.12%e84.77% range obtained by Kacik et al. [6] and the

78.4%e80.3% range reported by Fengel and Wegener [7] in

poplarwood.Theyarealsohigher than thoseobtainedbyDavis

et al. [26] and Zamora et al. [34] from wood of hybrid clones of

seven and thirteen years old respectively, in short rotation

forestry systems established in Minnesota, USA. These higher

values could be attributed to the presence of bark in the sam-

ples analyzed and a residual of lignin product of its incomplete

oxidation or an incomplete extraction of polyphenols during

the preparation of the wood free of extractives.

a-Cellulose ranged between 42.4%and 48.7%. Hemicellulose,

obtained as a difference between holocellulose and cellulose,

ranged between 38.81% and 42.48%. The reference value given

byVassilev et al. [33] for cellulose inhardwoods is46.3%. Inother

studieswith Populus spp. the values of cellulose rangedbetween

42.7% and 51%, while hemicellulose content is about 30%

[1,6,9,34]. Results obtained in this study, although from juvenile

wood with bark, are within the ranges reported previously.

3.6. Ashes

The ash content of the Populus spp. clones studied here ranged

between 2.05% and 3.40% (Table 6). These values are higher
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Table 5 e Holocellulose and a-Cellulose contents of
Populus spp. clones as mass fraction (% on dry basis).

Clon Holocellulosea

(%)
Clon a-Cellulose

(%)

I-488 88.29 ± 0.61 a Beaupre 48.70 ± 0.50 a

70038/31 88.29 ± 0.78 a NM6 46.98 ± 0.22 ab

Boelare 88.22 ± 0.72 a Chopa Blanca 46.96 ± 1.27 ab

Beaupre 88.09 ± 0.40 ab 70038/31 46.29 ± 0.28 abc

Carolinensis 87.82 ± 0.49 ab Boelare 46.23 ± 0.57 abc

Chopa

Blanca

87.65 ± 1.54 abc Unal 46.19 ± 0.59 abc

Unal 87.53 ± 0.65 abcd Carolinensis 46.10 ± 0.35 abc

ST-109 87.48 ± 0.11 abcd I-488 45.81 ± 0.12 abc

Eridano 87.21 ± 0.24 abcde VSB-2 45.52 ± 1.02 bc

Categorı́a 86.08 ± 2.32 abcdef Eridano 45.51 ± 0.09 bc

NM6 85.96 ± 0.21 abcdef ST-109 45.25 ± 0.38 bcd

Triplo 85.39 ± 1.14 abcdef Bocalari 45.13 ± 0.61 bcd

VSB-2 85.13 ± 0.02 abcdef 269 44.89 ± 0.05 bcd

269 84.71 ± 0.64 bcdef Dvina 44.77 ± 0.14 bcd

Bocalari 84.27 ± 0.51 cdef Categorı́a 44.27 ± 2.08 bcd

Constanzo 84.09 ± 0.44 def Triplo 44.09 ± 0.84 bcd

Neva 83.77 ± 0.89 ef Nmdv 43.85 ± 0.31 cd

Dvina 83.58 ± 0.27 f Constanzo 42.48 ± 0.06 d

Nmdv 83.32 ± 0.68 f Neva 42.38 ± 0.80 d

Mean values followed by the same letters are not significantly

different at P < 0.05.
a Percentage based on material free of extractives.
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than the 0.45% reported by Scurlock [29] as typical for hard-

woods, the 0.2%e0.4% range reported for poplar wood [31] and

the 0.5%e0.9% range reported for Populus spp. in short rota-

tions [31]. The explanation for our results could be that the

young bark or phloem has higher ash content than wood [35].

Although higher than the values reported previously, the ash

content on samples including bark does not impose any lim-

itation as a feedstock for combustion, pyrolysis and gasifica-

tion. However, additional characterization of the composition

of these ashes would be necessary in order to identify po-

tential contaminants in the process of energy production [33]

and technical troubles such as slagging, fouling, sintering and

corrosion in the combustion system [36]. Caution must be

given in using HHV as the only criterion of quality for clone

selection, because there are other factors that have to be
Table 6eAsh content of poplar clones asmass fraction (%
on dry basis).

Clon Ash (%) Clon Ash (%)

Carolinensis 3.40 ± 0.23 a Boelare 2.69 ± 0.03 abcde

NM6 3.38 ± 0.16 ab Unal 2.60 ± 0.13 abcde

I-488 3.27 ± 0.05 abc Chopa Blanca 2.58 ± 0.45 bcde

70038/31 3.24 ± 0.08 abcd Triplo 2.47 ± 0.04 cde

VSB-2 3.11 ± 0.31 abcd Dvina 2.44 ± 0.12 de

Beaupre 2.83 ± 0.17 abcde 269 2.22 ± 0.04 e

Bocalari 2.77 ± 0.38 abcde Categorı́a 2.10 ± 0.14 e

ST-109 2.75 ± 0.01 abcde Neva 2.09 ± 0.23 e

Nmdv 2.73 ± 0.07 abcde Constanzo 2.05 ± 0.14 e

Eridano 2.71 ± 0.01 abcde

Mean values followed by the same letters are not significantly

different at P < 0.05.

Ash Percentage based on material free of extractives.
considered when choosing clones for energy purposes, such

as ash composition, S and Cl content and agglomeration

tendency [37e41]. Such characterization is beyond the scope

of this study.

3.7. Correlations between the chemical composition and
extractives content on HHV

We look for correlations between the chemical composition

and extractives on HHV (not shown here), and found very low

square correlation coefficient values (R2 < 20). Among all the

correlation models proposed in the literature [5,42e44], the

most suited for our data was the one proposed by Demirbas

[5], although the square correlation coefficient value was also

low. Thus, our results show a lack of correlation between the

chemical composition and extractives on HHV, as suggested

by Sheng and Azevedo [45]. We attributed this lack of corre-

lation to the variable chemical structure and composition of

the clones' biomass, the use of juvenilewood and the presence

of bark in the samples analyzed.

3.8. Energy production

We used the biomass yield and its energy content (HHV) to

establish a ranking of the energy potential of the clones

studied (Fig. 2). Clone Bocalari showed the highest yield and

one of the highest HHV, so was the clone with the highest

energy potential (486 GJ ha�1 year�1) and the best candidate

for energy generation by combustion. Beaupre and Constanzo

were in the second and third place with 273 and

263 GJ ha�1 year�1 respectively. Constanzo, although with the

lowest HHV could compensate its energy potential due its

high biomass productivity. On the other hand, clone VSB-2

although with a high HHV, it occupied the lowest position in

the ranking due its low biomass yield.

In general, the position on the energy potential ranking is

related to the biomass productivity. However, for clones with

similar yield (Constanzo and Beaupre) the position in the

ranking depends strongly on the HHV. Thus, biomass pro-

ductivity is the most important factor when selecting clones

for energy purposes, but for clones with similar productivity,

HHV should also be used as a selection criterion.
Fig. 2 e Ranking of the Populus spp. clones studied by their

energy potential as a combination of biomass yield and

HHV.
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The energy production values of this study confirmed the

results presented by Luo and Polle [23], who obtained energy

productions that ranged between 368.5 and

461.5 GJ ha�1 year�1 in Populus clones of similar age (two years

old) and growing conditions (irrigated and unfertilized) to

those of this study.
4. Conclusions

Data presented here confirm the potential of using Populus for

biomass production purposes in the Mediterranean Zone of

Chile. Yields obtained in this study are alike to those reported

worldwide with different Populus clones and similar

management.

The use of bark and juvenile wood in the samples analyzed

in this work modify substantially the extractives and lignin

contents of the biomass when compared with previous

studies on chemical quality of mature wood on the same

species. The ash content reported, higher than the average for

the Populus genre, is attributed to the presence of bark in the

raw material. However, the ash content on samples including

bark does not impose any limitation for using this type of

biomass in thermochemical processes.

As previously reported in the literature, our results show a

lack of correlation between the chemical composition and

extractives on HHV.

When defining the energy potential of a poplar clone for

direct combustion purposes, a combination of biomass yield

and quality must to be considered. In our study, Bocalari,

Beaupre, Constanzo and Nmdv growing under irrigation at a

density of 5000 plants ha�1 demonstrated been the most

promissory clones for biomass production in the Mediterra-

nean Zone of Chile.
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