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RESUME

Soit (M, g) une variété riemannienne compacte sans bord, de dimension n, et I" une
géodésique fermée, non dégénérée de (M, g). On démontre que le probléme elliptique
supercritique

ntlg
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admet une solution qui se concentre le long de I" lorsque le parametre € tend vers
zéro, & condition que la fonction h et les courbures sectionnelles de M le long de
I' satisfassent une certaine condition appropriée. On établit également un lien avec

* The first author was supported by Fondo Nacional de Desarrollo Cientifico y Tecnolégico grant 1130360 and Fondo Basal CMM.
The second and the third authors have been partially supported by the Gruppo Nazionale per I’ Analisi Matematica, la Probabilitd
e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

* Corresponding author.

E-mail addresses: jdavila@dim.uchile.cl (J. Davila), pistoia@dmmm.uniromal.it (A. Pistoia), vaira@mat.uniromal.it
(G. Vaira).

http://dx.doi.org/10.1016/j.matpur.2014.11.004
0021-7824/© 2014 Elsevier Masson SAS. All rights reserved.


http://dx.doi.org/10.1016/j.matpur.2014.11.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/matpur
mailto:jdavila@dim.uchile.cl
mailto:pistoia@dmmm.uniroma1.it
mailto:vaira@mat.uniroma1.it
http://dx.doi.org/10.1016/j.matpur.2014.11.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.matpur.2014.11.004&domain=pdf

J. Ddvila et al. / J. Math. Pures Appl. 103 (2015) 1410-1440 1411

des solutions d’une certaine classe d’équations différentielles ordinaires périodiques
avec singularité de type attractif ou répulsif.
© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction and statement of main results
We deal with the semilinear elliptic equation
~Agu+hu=uP"', u>0,in (M,g) (1.1)

where (M, g) is an n-dimensional compact Riemannian manifold without boundary, h is a C*-real function
on M such that —A, + h is coercive and p > 2.

For any p € (2,2;), where 27 := 2% if n > 3 and 2, := 4oc if n = 2, problem (1.1) has a solution,
which can be found by minimization of

S (IVgul? + hu?)do,

Ip(u) = (f/\/l |u|pd0-g)2/p

over Hj(M)\ {0}, using the compactness of the embedding Hj(M) < LF(M).

In the critical case, i.e. p = 27, the situation turns out to be more delicate. In particular, the existence of
solutions is related to the position of the potential i with respect to the geometric potential hg := 4(";1—:21)]%!],
where R, is the scalar curvature of the manifold.

If h = hg, then problem (1.1) is referred to as the Yamabe problem [22] and it has always a solution.
After Trudinger [20] discovered a gap in the argument in [22] and gave a proof under some conditions on
(M, g), Aubin [2,3] showed that whenever Q(M, g) < Q(S™, go), where (S™, go) is the standard sphere and

M, = i f I * )
Q(M,g) ueH;I{M\{O} 2x (u)

there is a solution to the problem, and proved that this holds if n > 6 and (M, g) is not locally conformally
flat. Finally, Schoen [18] gave a proof in full generality using the Positive Mass Theorem [19].

When h < hy, somewhere in M, existence of a solution is guaranteed by a minimization argument,
arguing as in Aubin [2,3]. The situation is extremely delicate when h > hy everywhere in M, because
blow-up phenomena can occur as pointed out by Druet in [9,10].

The supercritical case p > 2% is even more difficult to deal with. A first result in this direction is a
perturbative result due to Micheletti, Pistoia and Vétois [15]. They consider the almost critical problem
(1.1) when p = 2% £ ¢ with e > 0. If p = 2 — € the problem (1.1) is slightly subcritical and if p = 2} + ¢
the problem (1.1) is slightly supercritical. They prove the following results:

Theorem 1.1. Assume n > 6 and & € M 1is a non-degenerate critical point of h — (n*21)R Then

(i) if h(&o) > PTCEy 21 Ry(&o) then the slightly subcritical problem (1.1) with p = 2% — 1 — €, has a solutions
ue which concentmtes at &y as € — 0,

i) 1 then the slightly supercritical problem (1.1) wit = — 1 —¢€, has a solutions

(if) if h(6o) < 725 Ry(€0) then the slightly supercritical problem (1.1) with p =25 —1—e, has a soluti

ue which concentmtes at & as € — 0.

2(n7k)

Now, for any integer 0 < k < n —3let 2}, = be the (k + 1)-st critical exponent. We remark
that 2y ; = 25, ; is nothing but the critical exponent for the Sobolev embedding H} (N) < L}(N) in a
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compact (n — k)-dimensional Riemannian manifold (A, k). In particular, 2 ; = -2 is the usual Sobolev
critical exponent.

We can summarize the results proved by Micheletti, Pistoia and Vétois just saying that problem (1.1)
when p — 27 (i.e. k = 0) has positive solutions blowing-up at points. Note that a point is a 0-dimensional
manifold.

A natural question arises:

does problem (1.1) have solutions blowing-up at k-dimensional submanifolds when p — 2:7,6?

In the present paper, we give a positive answer when k = 1. More precisely, we prove that if p — 27 |
problem (1.1) has a solution which concentrates along a geodesic I" of the manifold provided h satisfies a
suitable condition. Let us state our main result.

We consider the problem (1.1) with p =27 ; ¢ and € > 0, i.e.

—Agu+ hu = unsE 4> 0 in (M, g). (1.2)

We will say that problem (1.2) is slightly 2nd-supercritical if p = 2}, | + € and it is slightly 2nd-subcritical
ifp=2;,—e

In order to state our main result, we need to introduce some geometric notation. Let I' be a closed
nontrivial simple geodesic in M. Given £ € I there is a natural splitting T:M = T.I'® NI into the tangent
and normal bundle over I'. It is useful to introduce a local system of coordinates near I'. Let «y : [0, 2¢] — M
be an arclength parametrization of I', where 2¢ is the length of I". We denote by Ej a unit tangent vector
to I'. In a neighborhood of a point £ of I" we give an orthonormal basis Ej, ..., Ex of NyI'. We can assume
that the E;’s are parallel along I', i.e. Vg, E; = 0 for any ¢ = 1,...,N. The geodesic condition for I’
translates into the condition Vg, Fy = 0. Here V is the connection associated with the metric g. Moreover,
the non-degeneracy of I is equivalent to say that the linear equation

Jo = V%Ud) + R(¢, Ey)Eo = 0 has only the trivial solution on all of I (1.3)

Here J is the Jacobi operator on I corresponding to the second variation of the length functional on curves.
For a generic metric g on M it is well known that all closed geodesics are non-degenerate (see Anosov [1]).
To parametrize a neighborhood of a point of I" in M we define the Fermi coordinates

N
F(z0,21,...,TN) = €XPy(sy) <Z xiﬂ(%))a (1.4)
=1

where exp,,(,,) is the exponential map in M through the point (o).
Let us introduce the function (see also (4.20))

n—3 .. .
o(xg) = h(xg) — 4((71—_2)> [Rg(xo) —(n— 1)ch(’y(x0),7(x0))], (1.5)
where R, is the scalar curvature and Ric denotes the Ricci tensor.
Let a,, := % and b, := %. We introduce the periodic ODE problem

by .
—fi+anop— m =0 1in [0,24],

p>0 in 0,20, (1.6)

p(0) = p(20),  1(0) = u(20)
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which has a singularity of attractive type at the origin and the periodic ODE problem

—ﬂ—l—ano’,u—kb;n =0 in [0,2],
>0 in [0,24, (1.7)
w(0) = p(20),  1(0) = fu(20)

which has a singularity of repulsive type at the origin.

Solvability of the slightly 2nd-subcritical problem is strictly related with solvability of (1.6) with attractive
singularity, while solvability of the slightly 2nd-supercritical problem is strictly related with solvability
of (1.7) with repulsive singularity. We remark that in the subcritical side the assumption o(s) > 0 for any
s € [0, 4] is enough to find a solution to problem (1.6). In this case, using standard arguments, the solution
is just a minimizer of the energy. The supercritical side turns out to be more difficult and the only existence
result for problem (1.7) was obtained by del Pino, Mandsevich and Montero in [5] when o(s) < 0 for any
s € [0, ¢] provided some extra non-resonance conditions are satisfied (see also Proposition 2.1).

As usual in this kind of problem, we also need to assume a gap condition of the form

ek’ — K| >vve, k=1,2,... (1.8)

where x > 0 is given explicitly in Lemma 6.2 and v is positive.
Now we can state our main result.

Theorem 1.2. Let n > 8. Let I' be a simple closed, non-degenerate geodesic of M (see (1.3)).

(i) Assume the problem (1.6) has a non-degenerate positive solution pg. Then, for any v > 0 there
exists €g > 0 such that for any € € (0,¢9) which satisfies condition (1.8), the slightly 2nd-subcritical
problem (1.2) with p =2} 1 — 1 — € has a solution u. that concentrates along I' as € — 0.

(ii) Assume the problem (1.7) has a non-degenerate positive solution pg. Then, for any v > 0 there exists
€0 > 0 such that for any ¢ € (0,€0) which satisfies condition (1.8), the slightly 2nd-supercritical
problem (1.2) with p = 2} 1 — 1+ € has a solution u. that concentrates along I' as € — 0.

Moreover, the solution u,. can be described in Fermi coordinates as follows:

_N-2

ue(2o, ) = pe * w(,ue_l(x - de)) +o(1),

where

pe(wo) ~ Veuo(ro) and de, (zo) ~ edi(z0), k=1,...,N,

and po solves either problem (1.6) in the slightly 2nd-subcritical case or problem (1.7) in the slightly
2nd-supercritical case, the d;’s are smooth functions of xy and w is the standard bubble

’I,U(Z./):C]\]m7 yERN7 CN = [N(N—Q):I NZZ’ (19)

which is the radial solution of the critical problem Aw + w? = 0 in RY, with N =n — 1.

Since the existence of solutions to singular problems (1.6) or (1.7) plays a crucial role in the construction
of the solution, in particular in the choice of the concentration parameter p., it is important to point out
that existence of solutions to problems (1.6) or (1.7) is strictly linked with the sign of the function ¢ defined
in (1.5), as it is showed in the following theorem, whose proof is given in Section 2.
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Theorem 1.3. If

i >0
g 0) >0

then problem (1.6) has a non-degenerate solution.
If h* € C?(M) is such that

(k: + 1)71' 2 . km 2
—_ N < . — —
( Y] < g’lén op (xo) < I{leaXO'h (xo) < Y <0,

then for most functions h € C*(M) with ||h — h*||co(ary < 7, provided v is small enough, the problem (1.7)
has a non-degenerate solution.

As far as we know, Theorem 1.2 is the first result about existence of solutions to (1.1) which concentrate
along geodesic of the manifold M when the exponent p approaches the 2nd-critical exponent from above.
Indeed, in the Euclidean setting, del Pino, Musso and Pacard in [7] built bubbling solutions for a Dirichlet
problem when the exponent is close to but less than the second critical exponent. Solutions concentrating in
higher dimensional sets and the gap condition have been found in elliptic problems in the Euclidean setting.
We mention among, among many results, [12,13,11,14] for a Neumann singular perturbation problem and
[4] for a Schrodinger equation in the plane.

It would be interesting to find a geometric interpretation to problem (1.2). We only observe that the
geometric potential

(n—3)

Qp(xo) = m

[Ry(0) — (n — 1) Ric((x0), ¥(0))]

introduced in (1.5) when I" reduces to a point ¢ is nothing but the usual geometric potential %Rg(xo)

which appears in the Yamabe problem.

We conjecture that our result can be extended to higher k-dimensional minimal submanifolds I" of M.
Indeed, arguments developed by Del Pino, Mahmoudi and Musso in [6] in the Euclidean setting for a
Neumann problem could also be applied to Eq. (1.1). More precisely, we could consider a supercritical
problem

—Agu+ hu = uﬁ:’;fiie) u>0, in (M, g),

and we could find conditions on h such that it possesses solutions which concentrate along I" as € goes to
zero. It would interesting to determine the function o (the analogue of the function o introduced in (1.5))
whose sign determines the existence of solutions either to the supercritical case or to the subcritical case.

The proof of our result relies on the infinite-dimensional reduction developed by del Pino, Kowalczyk and
Wei in [4] and successively adapted by del Pino, Musso and Pacard in [7] to study a problem quite similar
to our problem

m+1

—Au=um-3"° in {2, u=0 on 012,

where 2 is a bounded smooth domain in R™. We omit many details in several steps of the proof, because
they can be carried out, up to some minor modifications, as in [7]. However there is an important difference
with respect to [7] concerning the scaling parameter p., whose choice is crucial for building the solution.
The difference is that the extra term % here is the main order term, see (4.11), and leads to the ODEs
(1.6) and (1.7), while in [7] it appears at a higher order.
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The paper is organized as follows. In Section 2 we study the singular problems (1.6) and (1.7). In Section 3
we build the approximate solution close to the geodesic and in Section 4 we estimate the error. Then, in
Section 5 we reduce the problem to a suitable infinite dimensional set of parameters and in Section 6 we
study the reduced problem. Section 7 is devoted to the study of a linear problem.

Notation.
o For sums we use the standard convention of summing terms, where repeated indices appear.
o We will denote by L35 (R), C9,(R) and C3,(R) the Banach space of 2¢-periodic L>, C° and C? functions,

respectively. We will set ||u]|co := supg |u|, for any 2¢-periodic bounded function wu.

2. A periodic ODE with repulsive or attractive singularity

Let us consider the periodic boundary value problem

—ji+opu— 5 =0 in[0,20,
p>0 in [0,24, (2.1)
w(0) = p20),  (0) = a(20),

where ¢ € R and o € C9,(R). The following existence result holds true.

Proposition 2.1. Assume either

mino(t) >0 and ¢>0 (2.2)
teR
or
(k+1)7m\? . e\
S S i < Y i )
( 57 < rtrélﬂga(t) < max o(t) < 57 ) < 0 and ¢<0 (2.3)

for some integer k. Then problem (2.1) has a periodic solution uy € C3,(R).

Proof. If (2.2) holds, the claim follows by standard arguments and if (2.3) holds the claim follows by
Theorem 1.1 of [5]. O

Let us consider the linearization of problem (2.1) around pg, namely the linear periodic boundary value
problem

—ji+ (J-l—%)u:O in [0, 2],
Ho

p(0) = p(20),  [1(0) = fu(20).

The solution pg is non-degenerate if and only if the problem (2.4) has only the trivial solution.
Proposition 2.2.

(i) If (2.2) holds, then the solution ug is non-degenerate.
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(ii) Let o* € C9,(R) and c € R as in (2.3). The set
{0 € B(o*, r) : all the positive solutions of (2.1) are non-degenemte}

is a dense subset of the ball B(o*,r) := {0 € C,(R) : |lc — 0*||oc < r} provided the radius r is small
enough.

Proof. (i) follows immediately by the maximum principle.
Let us prove (ii). We shall use the following abstract transversality theorem previously used by Quinn [16],
Saut and Temam [17] and Uhlenbeck [21].

Theorem 2.3. Let XY, Z be three Banach spaces and U C X,V CY open subsets. Let F : U xV — Z be
a C*-map with a > 1. Assume that

(¢) foranyy eV, F(-,y): U — Z is a Fredholm map of index | with | < a;
(et) 0 4s a regular value of F, i.e. the operator F'(xg,yo) : X x Y — Z is onto at any point (xo,yo) such
that F(xg,yo) = 0;
(tee) the map moi : F~Y0) — Y is o-proper, i.e. F~1(0) = ;:Ool Cy where C, is a closed set and
the restriction m o i\c,, is proper for any n; here i : F~Y(0) — Y is the canonical embedding and
m: X XY =Y is the projection.

Then the set © := {y € V : 0 is a regular value of F(-,y)} is a residual subset of V', i.e. V \ O is a
countable union of closet subsets without interior points.

In our case the C?-function F is defined by
.. Cc
F: C3,(R) x C3y(R) — C3(R), F(p,0) :=—ji+op— m

X =0C%R)and U = {pu € C%(R) : mingp >0}, Y = Z = CY,(R) and V = B(c*,r), where r is small
enough so that condition (2.3) holds for any o € V.

It is not difficult to check that for any o € V' the map p — F(u, o) is a Fredholm map of index 0 and
then assumption (¢) holds. Let us prove assumption (t). We fix (p19,00) € U x V such that F(uo,00) = 0.
The derivative D, F(uo,00) : C9,(R) = C9,(R) is the linear map defined by Dy F (1o, 00)[0] = opo and it is
surjective, because pg > 0.

As far as it concerns assumption (tet), we have that

—+oo

FH0) = [ {(Cm x Bn) N F7H(0)}

m=1

where

1 1
—<min,u<max,u§m} and BmB<O'*,T‘—).
m R R m

Cr = {u € C3(R) -
We can show that the restriction 7o, is proper, namely if the sequence (on) C By, converges to o and
the sequence (p,) C Cyy, is such that F'(uy,, 0,) = 0 then there exists a subsequence of (u,,) which converges
to pp € Cy, and F(u,0) =0.
That concludes the proof. O
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Proof of Theorem 1.3. It follows immediately by Proposition 2.1 and Proposition 2.2. O
3. Construction of the approximate solution close to the geodesic

This section is devoted to the construction of an approximation for a solution to the problem (1.2) in a
neighborhood of the geodesic.

8.1. The problem near to the geodesic

Let us consider the system of Fermi coordinates (zg, z) introduced in (1.4). In this language the geodesic
I' is represented by the xp-axis. We recall that xy denotes the arclength of the curve, 2¢ represent the total
length of the geodesic and x = (x1,...,2x) € RY. Let us introduce a neighborhood of the geodesic I in
this system of coordinates

D = {(zo,z) e RxRY 1 g € [-£,4], |z] <3}, (3.1)
where § > 0 is a fixed small number. Then for a function defined in D we write
a(zo, z) = u(F(zo,z))
and we extend @ in a satisfying the following periodicity condition:
u(2¢, x) = u(0, Ax),

where A = (a;;) is the invertible matrix defined by the requirement

= ZaﬂEJ(O) (32)

Therefore, if u solves Eq. (1.2) in the neighborhood D of the geodesic, then @ solves

{800u—|—A u—i—B(zl) ht+ fo(@) =0 in D (3:3)

u(xo + 20, ) Az) for any (xg,z) € D

where f.(s) := (s7)P%¢. For the sake of simplicity, we will refer to f.(s) := (s1)P as the supercritical case
and to fo(s) := (sT)P~¢ as the subcritical case.

n (3.3) B is a second order linear operator defined in the following lemma:
Lemma 3.1. Let u be a smooth function. Then for any (zg,x) € D we have

Agu = Opott + Azt + B(ﬂ),

where B is a second order linear operator defined by

B(i) := A% g0t + ZA ) 900y + Z(—— ZRmﬂxkxl +Aﬂ>a 0yt

2Y)

B 2 ; -
+ Boaou + E ( E (ﬁRij““ + ROjOk)@’c + Bj) 8ju7
7 Nk
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where the Riemann tensor Rijr and the metric g are computed along I', depending only on xq, while the
functions A*? and B do depend on (zq, ) and enjoy the following decompositions:

00 __ 00 . ij ij . 0j _ 0y .
A = E Api AY = E A Tra Ty AY = g ATy
K, k.,

k,lm
0 _ § 0, . j § J
BY = Bka:k, B = Bklxka:l,
k k,l
where AY, A% A% B and B, are smooth functions dependi ( )
kL Skl Skl Pk ki penarng on (To,x).

Proof. We argue exactly as in Section 4 of [7] taking into account the following expansion of the metric g
in a neighborhood of the geodesic

N
goo(w) =1+ Z Rokoixrr; + O(|x\3),
k,l=1
goj(z) =O(|z]*), j=1,...,N, (3.4)
1 ..
9ij(x) = 6;5 + 3 ;Rikﬂka + O(|1"3), i,7=1,..., N,

whose proof is postponed in Appendix A. O
3.2. The scaled problem

We write an approximated solution of problem (3.3). Let

il 2) = elan) T (T ), (35)

where the bubble w is defined in (1.9), and d. satisfies
de(0) = Adc(20), with de(2o) = (de1(20), - - -, den(20)) (3.6)
and A = (a;;) is the matrix defined by (3.2). In the sequel, C2,(R,RY) is the space of functions

d : [0,2¢] — RY which satisfy (3.6).
We will take d.(zg) of the form

dej(z0) = edj(zo) with d;j € C3,(R), j=1,...,N (3.7)
and the concentration parameter u(xg) is given by
fre(z0) = Vefic(zo),  fic(xo) = po(wo) + (elne)pr(xo) + eu(wo), (3.8)

with p0, 1, 1 € C3,(R). We point out that in (3.8) and (3.7) the po, u1, pand dj, j = 1,..., N are unknown
functions which will be found in the final step of the infinite-dimensional reduction. In particular, it will
turn out that 1o is a non-degenerate solution to problem (1.6) in the subcritical case or to problem (1.7) in
the supercritical case.

Therefore, it is natural to consider the change of variables

_N-2 —d
(w0, ) = e 2 v(ﬂ, z 6), p = /e (3.9)

P He
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Here v = v(yo,y) is defined in a region of the form

I n

D =4 (Yo,y):yo € [——,—},y <—}. 3.10
{09 Sow< 2 (3.10)
It is clear that if @¢(xo,x) solves Eq. (3.3), then v = v.(yo,y) solves problem

AW) — p2ho + 127 Sf(0) =0 D
(3.11)

2
U(yo + ?y> = v(yo, Ay) for any (yo,y) € D.

N—-2 _N=2
We agree that we take uj > “in the supercritical case, i.e. f.(s) = (s7)P*¢ and uc 2 © in the subcritical

case, i.e. fe(s) = (sT)P~c.

In (3.11) A is a second order operator of the form defined in the following lemma, whose proof can be

obtained arguing exactly as in Lemma 5.1 of [7].
Lemma 3.2. After the change of variable (3.9), the following holds true:
A(v) := agdoov + Ayv + A(v),
with
ao(pyo) = p~ 2 pe(pyo)® = (po + pp)? (3.12)
and A(v) := Zi:o A, (v) + B(v) where

N(N —2)
4

N -2

Ag(v) = i? [Dyyv[yf + NDyvly] + v] + fie [Dyyv[y] + TDyv} [d.]

; _ . : N-2. _ .
+ Dyyv[de]2 — 24 [p 1Dy(30v)[,u6y +de] + Tﬂep 1807}] — peDyvld]

(N -2
— ejie <Tv + Dyv[y]>
1
Ai(v) == -3 > Rikji(peyn + der) (eyi + der)dijv

2
Az (v) == Z (gRijik + ROjOk) (MeYr + der) peOjv

and the operator B(v) satisfies

B(v) = O(|pey + de|?) Ao (v) + O(|pey + de|?) 050

+O(|uey + d5|2) {Neplawv + pep™ v — Dy (9jv)[de]

_ (¥ajv + Dy(ajv)[yo/le — Dyo[d]

([ N—=2
_ ﬂe( 5V + Dyv[y]> + ueajv}
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Our approximation close to the geodesic is
D =w+uw. (3.13)

The first order approximation w is given in (3.15), while the second order approximation w; is given in (3.25).
We also set

N-—2

Se(v) == Aw) — p2ho + p 2 “f(v). (3.14)
3.8. The ansatz: the first order approximation
We define w to be
w = (14 acw + ec(pyo)xe(y) Zo(y)- (3.15)
N=-2)2
In the first term of (3.15), w is the bubble defined in (1.9) and «, := pe ® ~ — 1 in the subcritical case

_(N—2)?
3

Or (e i= [le  — 1 in the subcritical case. In the second term of (3.15), xe(y) := x(€2|y|) where y is a
cut-off function such that x(s) =1if s < ¢ and x(s) =0 if s > 2J with 6 > 0 small but fixed. Moreover, Z
denotes the first eigenfunction in L?(R") of the problem (see Section 7)

AZy+puwP~'Zy = N7y in RV, with \; >0 and /Z§ dy = 1. (3.16)
RN
Finally, the function e.(z) is given by
ec = €€, €c =ep + (elne)e; + ee, (3.17)

with eg, e1,e € C3,(R). We point out that eg, e; and e are unknown functions which will be chosen in the
final step of the infinite-dimensional reduction, together with the functions 19, 1 and d; introduced in (3.7)
and (3.8).

Let us estimate the error Sc(w) one commits by considering w a real solution to (3.11), which is itself a
function of the parameter functions p,d, e.

Assume that the functions u, d, e defined respectively in (3.8), (3.7) and (3.17), satisfy the assumption

(e, ds e)|| = Nlull + Nl + llelle < € (3.18)

for some constant C' > 0, independent of €, where

N
el == Niilloo + Nitlloo + ltlloos Nl == D ldjlloo, (3.19)
j=1

lelle := [leélloo + [leé]| . + llefloo- (3.20)

Here and in the rest of the paper, the dot denotes the derivative with respect to xzg.
It is possible to compute the expansion of the error S¢(w) as showed in the following lemma whose proof
is postponed in Section 4.1.
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Lemma 3.3. If € > 0 small enough, then for any (yo,y) € D the following expansion holds

where

Se(w) = tew? Inw + eAyegZy — e,ughw

. N(N —2 ..
+e€ [ug (Dyyw[y]2 + NDywly] + %w) — HofioZN+1
(1 2
+p _gRikjlykylaijw + gRijik + Rojor |yrOjw

5 .1 2 . .
+e [_,andej - gNORikjlykylaijw + o <§Rijik + ROjOk) drOjw — QHOajZN+1dj:|
|
+ €2 |:(p2a0é + )\16) Zy + <Z dldj - gRijkldkdl)aijw + 7%
%,

N(N - 2) w)

— 2pophw + b(pyo, p1, d, e)w” + 2fioft (Dyyw[yF + ND,wly] + 1

.. .. 1 2
— Mol N1 — B0 ZN+1 + 2o p (_gRikjlykylaijw + <§Rijik + ROjOk) ykajw>

.. 1 2
— eofiotoZN+1 + Hgeo (_gRikjlykylaijZO + <§Rijik + ROjOk) ykajZ())
. N(N -2
+ i (DyyZO [y)> + NDy Zoy] + (4)Zo> - thzo}
5 .1 2 . .
+e€z | —pd;d; — g,UfRikjlykdlaijw — gRijik + Rojor | drp0jw — 200; 2N 1d;
.. 1 2
— poepd; Zod; — §M060Rikjlykdlaij20 + poeo gRijik + Rojor |dr0;Zo

. N -2 .
— 2[&060 (TDyZO + DyyZO[y]) [d}:| + 63@, (321)

— Zy is defined in (3.16) and Zny1 is defined in (3.23)

— the first term is

“—ewPlnw” in the subcritical case or “+ewPInw” in the supercritical case.

Yo = p(p — Degw?P 2 Z2 + peow? ' InwZ, (3.22)

— 0 =0(yo,y) is a sum of functions of the form

with

hU(pyO) [fl (/~La d» /lv d) + 0(1).][2(#’ d, €, /.1'7 da éa ,U,, sz 6)] fd(y)

— ho a smooth function uniformly bounded in €
— f1 and fa smooth functions of their arguments, uniformly bounded in € when u,d and e satisfy (3.18)

— fo depending linearly on the argument (ji,d, €)
- 0(1) = 0 as € — 0 uniformly when u,d and e satisfy (3.18)
= supyer(L+ YY) fs(y)] < o0
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Now, we use formula (3.21) to compute, for each yo € [—¢/p,+{/p], the L?(D,,) the projection of the
error S.(w) along the elements of the kernel of the linear operator Lo := Ag~ + pwP ™11 (see Section 7), i.e.
the functions

N -2
Zk(y) == Okw(y), k=1,....,N and Znti(y):=y Vw(y)+ Tw(y)' (3.23)
Lemma 3.4. If ¢ > 0 small enough, then for any xo = pyo with yo € [—€/p,+{/p] the following expansion
holds:

/ 8. Zidy = lerppy (~di + Y Rowordt) + 0, for amy k=1,..., N;
DyD

moreover, if ug solves either (1.6) or (1.7) there exist ji1,eg,e1 € C3,(R) such that

. bn
/ Se(w)Zn1 dy = e capig |:04N+1(550) + c3Q(xo,d) — ji + (anU F F)H} +€°|Inelf
o
Yo

and

/ Se(w)Zydy = € [eaoé + Are + ap(zg) + caQ(pyo, d) + B(mo),u} + €*Inelf.

DZ‘/O

Here

— o is defined in (1.5) and a,, by, are positive constants depending only on n defined in (4.16)

~ Q(zo,d) == Y_(d? — L Ripjdrdy)

— ¢;’s are constants which depend only onn

— «;’s and B are explicit smooth functions, uniformly bounded in € when u,d and e satisfy (3.18)
— 0 =0(xg) denotes a sum of functions of the form

hO(:I:O) [hl(lh d7 ¢, /17 é, d) + 0(1)h‘2(M7 d7 €, /.J/a d7 e, ﬂv da 6)] )

where

— ho is a smooth function uniformly bounded in €

— h1 and hy are smooth functions of their arguments, uniformly bounded in € when p,d and e satisfy
(3.18)

— hy depends linearly on the argument (ji, d, é)

— o(1) = 0 as € = 0 uniformly when p,d and e satisfy (3.18)

The proof is postponed in Section 4.2.
In the sequel we will use the following norms, which are motivated by the linear theory presented in
Section 7. For functions ¢, g defined on a set D as in (3.10), and for a fixed 2 < v < N, let

#ll« == S%p(l + 1y 7) [ é(vo, )| + s%p(l + [z[" 1) [Dd(wo, )|,
gl = s%p(l + [yl |9(yo, )|-

Therefore, from the expansion given in (3.21) we conclude that the error S.(w), computed in (3.21), has
the properties listed in the following lemma;:
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Lemma 3.5. Let pg and eqg as in Lemma 3.4 If € is small enough
S.(w) = €S0 + €[paoé + Aie]xcZo + No, (3.24)
where

— Sy is a smooth function of pyo uniformly bounded in €

— Sy does not depend on p,d and e

- nyO SoZjdy =0 for any yo € (—p~*¢,p~0) and for any j =0,...,N +1
— || Nolw < ce?.

Here ¢ is a positive constant independent of €. All the estimates are uniform with respect to u,d and e which
satisfy (3.18).

3.4. The ansatz: the second order approximation
Now we introduce a further correction wy to w, to get the final approximation @ := w+w;. The correction

ws is chosen to reduce the size of the error (3.24), killing the term €Sy and it is found in the following lemma,
whose proof can be carried out arguing exactly as in Section 5 of [7].

Lemma 3.6. If € is small enough there exists a unique solution wy of the problem

N
Alwr) — ,uzhwl + pwPlw, = —€eSy + Zaij in D,
=0

I, (3.25)
/ W1(y0,y)Z7dy = O for any Yo S |:_;7 E:|7 .7 = Oa .. 'aN + 1
Yo
Moreover, the function wy satisfies
— e« < ce and ||Bowr ||s < ce?
— w1 depends smoothly on p and d and it is independent of e
= Nlwi(pa, di) = wi(pz, d2)|l« < cfl(u1 — p2,di — da)|
and each function o; satisfies
= llojllee < o(1)€?
— o depends smoothly on p and d and it is independent of e
= lloj(pr, dv) = 0j(p2, d2)lloc < c€?[|(p1 — p2,di — da)|.
Moreover, it holds true
N
3 i
Se(@) = €281 + €[p®aoé + \e]xZo + N1 + > 0;Z;, (3.26)
j=0

where

— 51 is a smooth function of pyo uniformly bounded in €
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— 51 depends smoothly on u,d and e
= [[S1(p1, d1se1) — S1(pa, dz, e2) |l < el|(p1 — p2,di — da, e1 — e2) ||
= [Nt fls < c€?.

Here c is positive constant independent of €. All the estimates are uniform with respect to u,d and e which
satisfy (3.18). Moreover, the components of S¢(@) along the Z;’s satisfy the estimate in Lemma 5.4.

4. The error S¢(w)
4.1. The pointwise estimate of the error

We recall that

where by Lemma 3.2

A(w) = apdoow + Ayw + Z A (w) + B(w)

k=0

A(w)

and

w(y) = (1+ adw(y) + ec(pyo)xe(y) Zo(y)-

Here we recall that

(N-2)2
_ g ¢
Qe = /f«e

and
4+ N=-2, . N
Al +adw) +pe = “fo(l+adw)=0 inRY.

Proof of Lemma 3.3. We use Lemma 3.2.
A straightforward computation shows that

2

Se(w) =Y Ax(w) — pZhw £ ew” Inw + [p*aoéc(pyo) + Mee(pyo)] xeZo
k=0

Jo
+ B(w) + agwdyoore + Aacw) — pachw
Ji
+ pe e [fe((l + ae)w) — fo((l + ae)w)] T ewP lnw

Ja2

2

+ Z AN(eEXEZO) - uge€XeZOh
k=0

J3
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+ B(eeXeZO) + eEZOAXE + 2€evXevZO

Jy

T [fuw) = 10+ aw)] = fow)exZo. (1)

Js

By Lemma 3.2, we get the first term of Jy

2

Z An(w) = fi [Dyyw[y]Q + NDywly] +

> N(N - 2) w]

4

. N -2 . .
| Dl + 252Dy (4] Dyyeld P

. (N -2
- MeDyw[de] — Helle (Tw + Dyw[y]>
1
—3 > Rikji(pete + der) (eys + der)ijw

2
+ Z (gRijik + R0j0k> (peyr + der) pedjw + €20

.. 1
= 62 |:Z (didj — gRikjldkdl):| aij’w

_ 1
+ pe [uDyw[d] - Z g#Rikjlykdlaijw

2 . .
+ <3Rijik + ROj0k> dipOjw — 211Dy Z N +1 [d]]

22 N(N -2 oo
+ p? {u [Dyyw[y]2 + NDywly] + (4)4 A

1 2
+ pi° <§ > Riuiyryidijw + (gRijik + ROjOk) ykaj"U)] + €0, (4.2)

where © = O(pyo, y) has the required properties.
By Lemma 3.2, we deduce that B(w) is of lower order with respect to Y Ay (w). Moreover, by definition

of a we get that a. = O(e|In¢|) as € — 0. Hence aeA(w) and peachw are terms of lower order with respect
to the others. Furthermore dpgae = p20(a.), so also agdyo|acw] = O(€?|In€|)w. Therefore,

J1 = 63@

where © = O(pyo,y) is a sum of functions of the form ho(pyo) f1 (11, d, i1, d) fo(y), with hg a smooth function
uniformly bounded in €, f; a smooth function of its arguments, homogeneous of degree 3, uniformly bounded
in ¢ and sup,eq(1+ [s1¥ )| fa(y)]| < +oc.

By mean value theorem we deduce that

(n—2)*
8

+ O(€’|Inel). (4.3)

2)2

— 1
Jo ==+ (€ ne)w’(Inw — 1) ieQw”<(n8(lnw —Dlnp+ 21nw>

By Lemma 3.2 we also get that
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.. 1
5g:¢{gK§:¢@—§RMmmJ@ﬂ4

.1

~ - (2
+ pe [—uDyZo[d] - gMRikjlykdlaijZO + M(‘Rijik + ROjOk)dkajZO

3

~2i(X 20,2+ Dyt ) ]

. ~ 1 2
+ p? [—MMZNH + i? <_§Rikjlykylaijzo + (gRijik + R0j0k> ykajZO)
. N(N —2 B
i (DyyZo[yP +NDy Zoly) + %ZO) - QhZO] }
+ peé{e(—2aDy, Zold)) + pe[—20ijiDy Zoly) — (N — 2)fijiZo) }
and

Ji = €30

where © = O(pyo, y) has the required properties.
Finally, standard estimates yield to

Js =€ [plp — 1)egw? 2 Z§ + peow? ' InwZy| +€*|In€|O,

To

where © = O(pyo,y) is a sum of functions of the form ho(pyo)hi (i, d, e)ha(y) with hy a smooth function,
uniformly bounded in €, by a smooth function of its arguments and sup,cg (1 + [y|V ~2)|ha(y)| < +oo.
Collecting all the previous estimates we get the proof. O

4.2. The components of the error along the Z;’s

Proof of Lemma 3.4. The proof consists of two steps. In the first part we compute the expansion in € of the
projection assuming that

e = pit, de; = edj, €c = €€.

In the second part we will choose the e-order terms py and ey and the €ln e-order terms p; and e; in the
expansion of f and é.
Arguing as in the proof of Lemma 3.3, we have

2
Se(w) = ew? Inw — p?jihw + Z.Ak(w) + e[anoé + Alé]XeZo + i+ + J5.
—_———
In Eiv_/ I3 1y
Iz

We stress the fact that the first term in I3 is “4ew? Inw” in the super-critical case and “—ewP Inw” in the
subcritical case.

e The projection of I.

/IlZN_de::I:e/wplanN+1dy—p2ﬂ2/thN_de

Dyq Dyq Dyq
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= —€A; + O(epN) — P2 i h(pyo) / wZ N1 dy + O(pN)
RN

= e[£A1 — i*h(pyo) A2] + O(p"),

where

Al = /wp InwZyy1dy = TEIE /werl dy >0 (see Remark 4.1)
RN P RN

and

Ap = /wZN+1 dy <0 (see Remark 4.1).

RN

/Iledy:e/wplanjdy—i—pzﬂz/thjdy
Yo DyO DyO
:e/wplanj dy—l—pz/]Qh(pyo)/ij dy+0(pN+1)
RN RN
zO(pN'H) fork=1,...,N.

/IlZody:fe/wplanodyfpzﬂz / hwZy dy

DyO DyO DyO

= €[—A3 — i*h(pyo) As] + O(p"),

where

Ag = /wp InwZy dy, Ay = /wZo dy.
]RN

The projection of Is.
We use estimate (4.2).

1
/ LZni1dy = € Z(didj - ng‘kjldk:dl> / OijwZny1 dy
D

Y0 Yo

_Peﬂzdj/aj'LUZNJrld@/
Dyo

1.
- gMPEZRikg‘ldl / YO WZ N1

Dyo

5 2
+ pefi Z (gRijik + ROjOk) dy, / OjwZ N1 dy
Yo

—Qﬁpezdj/ajzzvﬂzzvﬂdy

Dy,

1427

(4.5)

(4.6)
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2 N N—2
+ [ p? / [Dyyw[y]2 + NDjwly] + (?)w Zni1dy

Dy[)

— Rjip’ / ZIQV+1 dy
DyO

o1
2M2§ZRikﬂ / Yt OiwZn 1 dy

Dy()

~ 2
fi*p? Z <3Rijik + ROjOk) / YO W N 41 dy

Yo

= Z [dQ zkzldkdl] / OuwZ 41 dy

RN

_ 2
i Z(gRim + ROjOJ‘) /yjajsz-H dy — fifip? / Z% 4

RN Dy,

- —,0 N ZRZW /ykylaijsz+1 dy + €0

1
=3B Z {dz Rzkzldkdl:|

Q(d,pyo)

_ 1 o
+e {Mg Z <§Rijij + ROjOj)B2 - NNBS] + €°0,

where the function 8 = 6(pyp) has the required properties and
B; = /8¢inN+1dy, By = /yjaijNde <0, B3 = /ZJZVJrldy
RN RN RN
Here we used the fact that
Z Rikji /ykylaijU)ZNJrl dy = Z Rjiij /yjajWZN+1 dy,
RN
because R;y;; is antisymmetric (i.e. Rigj; = —Rkiji),
/ykylaijsz-H dy
RN

dij i
= /ykyl(—CN(N—mﬁ"'CNN(N—Q)LM)ZNH dy
oS (1+y[?)> (1 +1[yl?)

nd [on %ZNH dy is symmetric,
(1+1y1?)
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N - 2
/ I Zy dy = peji |:_dk / ZJZ dy — gRiljmdl /ymaijwzk dy

Dy, RN RN
+ (2R + Rogor i [ 22 dy| + p2e0
3 154l 0501 l i Yy p e
RN

= e2 [iBy[—dy + Rojords) + peb),

where
B4;:/Z§dy, j=1,...,N. (4.9)
RN
Here we used the fact that
_gRiljm/ymaijwzk dy

2
=3 |:Rilik / YrOiiwZy, dy + Riggi / Y0 wZy, dy + Ryjj /yjakjwzk dy]

1 2
= —§B4 [Ritit — Riki] = _§B4Rilik~

: 1
/ IQZO dy = 62 |:Z <d12 - gRikildkdl> / a“"wZo dy:|
RN

Yo

N 2
+H2PZZ(3RUU +R0j0j) /yjaijo dy
RN

51
- PQN2§ > Rigji / yryidijwZo dy + *r
RN

L1 N 1 ;
=€eB5 Y [df - gRikildkdl] +€fi°Bs Y <§Rijij + Rom) +e%0,

Q(d,pyo)
where
RN RN
Here we used (4.8) and we argued as before.
e The projection of I3.
/ I3Zn41dy = o(1)e®  and / I3Z,dy = o(1)e® forany k=1,...,N,
Dyo Dyo
because of the symmetry and of the orthogonality of Zy with Zy 11 and Z;.

/ I3Zy dy = €[p®aoé + A1€] + o(1)€?

D’yO

because [y Z5 dy = 1.
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o The projection of 1.

/ Iy Zny1dy = €1IneDy + €2bi(pyo) + €| In€|f

DyO

/I4dey:629 forany k=1,...,N.

DyO

/ IiZydy = €2 IneDy + 6252(P90> + €3| Ine|d,

DyO

where

(N - 2)?
16

(N —2)

D=4+
! 16

Ay, Dy =+ Az (see (4.4) and (4.6)),
b1, by are explicit functions and the function 6 = 6(pyg) has the required properties.

Hence, summing up the previous calculations we conclude that

/ Se(w)Zns1dy = € (£A1 — pofioBs + pgg1)
D

vo the choice of po = =0
+ € Ine (—jirpioBs + 1 (—fioBs + 2p091) + D1)
the choice of py = =0
+ €2 (—jipo Bs + p(—fioBs + 2u091) + B1Q(d, z0) + by (20))
+ O(€*|Inel),

where (see Remark 4.1)

1
g1(zo) = —Ash(zo) + Z (gRijij + ROjOj)BQ = —As0(xp)

and
/ Se(w)Zody = € (\eg — As + p13g2)
Dy, the choice of eg = =0
+e?Ine(Mer + 2pop1 + D2)
the choice of e; = =0
+ €* (€apé + Are + apéo + ba(xo) + 2popge + BsQ(d, xo))
+ O(€*|In€l),
where

1
92(x0) := —Agh(xo) + Z(gRiﬁj + Rojoj)Bg.

More precisely, o solves the periodic ODE

(4.11)

(4.12)

(4.13)

(4.14)
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. Ay :
~jioBs + giwo £ L =0, o> 0in [0, 24]. (4.15)
0
which is nothing but problem (1.6) or (1.7) where (see Remark 4.1)
A A
an=—-2>0 and b,:= = >0 (see (4.4), (4.5) and (4.7)). (4.16)
Bs Bs
Moreover,
Az — 2
e = 21092, (4.17)
A1
Finally, 1 solves the periodic ODE
—jt1poBs + 1 (—ﬂoB?, + 2,[1,091) +D; =0 in [0, 25]. (4.18)

A
=pog1 F o4
H0

We point out that py does exist, because po is a non-degenerate solution of (4.15) (see also Lemma 6.1).
Moreover,

_ —2puop1 — Do

e = )\1 (419)

That concludes the proof. 0O

Remark 4.1. It holds

o g1(xo) = —Agz0o(xg) with Ay < 0 (see (4.5)),
o A; >0 (see (4.4)),
Ay 2(N-1) _ 2(n—2) )
¢ ap=-—F = W) ~ 8D (see (4.5) and (4.7)),
A N—2)>(N—4 n—3)>(n—5 , ,
o by=F = ( 4(1)\[5_2) ) = ( 4&_’51) ) (see (4.4) and (4.7)).

Proof. It is useful to point out that

By _ 3(N —2)
Ay 4N 1)
Indeed, if we denote
+o0 4
r
17 .= ———dr ifp-— 1
v [ e e
0
and we use the properties
p—(¢g+1) +1 g+1
Lp="—— 10 ad Ln="— "l

a straightforward computation shows that
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N (N=2)%  n/
Ay = —— [ wPtldy = A ——LwnIY
1 (p+1)2/w dy = ¢ N WN >0,
RN
AN —1)(N—=2) .~/
_ _ .2

AQ_/“’ZN“dy_ NTUN(N —4) In
RN

3(N — 2)2
BQ = /yjaj’U}ZN+1 dy = —C?\]m

<0,

N/2

wnly'” <0

RN
and

2 (N=22(N+2)  np

Bgz/z%v+1dy:cN Y wnIy'™ >0,
RN

where wy is the measure of the sphere SV —!. Therefore, we immediately deduce the quantities a,, and b,
taking into account that N =n — 1.
Moreover, it is easy to check that

N N
1 1
g XZ: 151 JfO +;ROJOJ 330) = 3”2220 i IO ZROJOJ 1‘0
1 N _. . .
= gRg(ﬂﬁo) - 3320(7($0),’7($0))~ (4.20)

Therefore, the claim follows. O
5. The infinite dimensional reduction
5.1. The gluing procedure

Here we perform a gluing procedure that reduces the full problem (1.2) to the scaled problem (3.11) in
the neighborhood of the scaled geodesic.

Since the procedure is very similar to that of [7] we briefly sketch it.

We denote by M, the scaled manifold %M , by z the original variable in M, and by £ := pz the
corresponding point in M. It is clear that the function u(x) is a solution to (1.2) if and only if the function
v(z) = piE u(pz) solves the problem

Agv— p*hvo +p~ TPt =0 in M, (5.1)

The function @(yop,y) constructed in (3.13) defines an approximation to a solution of (1.2) near the geodesic
through the natural change of variables (3.9).

It is useful to introduce the following notation. Let f(z) be a function defined in a small neighborhood
of the scaled geodesic I', := %F . Through the change of variables (3.9) we denote

N—2

fyo.y) =pe = (pyo)f(;F(pyo, pe(pyo) + de(pyo))), (5.2)

where the point pz = F(pyo, pe(pyo) + de(pyo)) € M and fic, pe and d. are defined in (3.8) and (3.7).
According this notation, we set w = w(z) the function corresponding to & = @(yo, y)-
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Let 8 > 0 be a fixed number with 46 < &, where 4 is given in (3.1). We consider a smooth cut-off function
¢s(s) such that (s5(s) =1if 0 < s < ¢ and (s(s) = 0 if s > 24. Let us consider the cut-off function 1§ defined
on the manifold M, by

n5(2) = @(M) for pz =¢ € M.

We remark that with this definition n§(z) does not depend on the parameter functions.
We define our global first approximation of the problem (1.2) w(z) as

We look for a solution to problem (5.1) of the form u = w + @, namely

Ag®+pw? 'O+ N(@)+ E=0 in M,, (5.4)
where
N(®) = p‘¥€(w + PP —wP = — pwP P — p?h(w + D) (5.5)
and
E=A,w+wP™e (5.6)

We look for a solution @ of (5.4) as @ = 1956 + ¢ where the function ¢ is such that the corresponding
function ¢ via the change of variables (5.2) is defined only in D. It is immediate to check that @ of this form
solves (5.4) if the pair (1, ¢) solves the following nonlinear coupled system:

Agth+ (1= n55)pwWP ™) = =2V 6V g5 — dAgnss — (1 —55) N (nss + ) in M, (5.7)
and
A(@) + p@P ™ = —N (G550 + 1Y) — Se(@) — p@P~ ') in D, (5.8)
where
N@) = 7 (@+ &P —wr— — par—1d — i2hd, = 50+ . (5.9)

Indeed, problem (5.4) in a scaled neighborhood of the geodesic looks like Problem 5.8 and the error E given
in (5.6) via the change of variables (5.2) is nothing but the error term S.(&) defined in (3.26).
Given ¢ such that ¢ is defined in D, we first solve problem (5.7) for ¢ (see Section 6 of [7]).

Lemma 5.1. For any R > 0 there exists r > 0 such that for any function ¢ such that the corresponding
function ¢ is defined only in D with ||¢||« < r, there exists a unique solution 1 = () of (5.7) with

[lloo < Re™Z (|-

Moreover, the nonlinear operator 1 satisfies a Lipschitz condition of the form

[9(61) — o). <ce = 161 — 2l (5.10)

for some positive constant c independent on €.
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Finally, we substitute 1) = v)(¢) (via the change of variables (5.2)) in Eq. (5.7) and we reduce the full
problem (1.2) to solving the following (nonlocal) problem in D:

A(P) +p@P ') = —N (0550 +9(9)) — Se(@) — p@”~'4(¢) in D. (5.11)
5.2. The nonlinear projected problem

We can solve the following projected problem associated to (5.11): given u,d and e satisfying (3.18), find
functions ¢ and ¢i(yo) for j=0,...,N +1 such that

N
L(9) = —S(@) + M) + Y ¢;Z; inD,
=0
- 20
¢<yo + ?y) = ¢(yo, Ay) for any (yo,y) € D, (5.12)
- A )
/ ¢Z;dy =0 for any yo € f;,; , j=0,1,....N+1.
D’!JO

Here S (@) is given in (3.26) and

L(¢) == A(¢) + puP 1o (A is in Lemma 3.2 and w is in (35)),
N(@) i=p(w? ' =@ 1) d = N (G556 + () —p@ ' P(¢) (N is in (5.9)).

Proposition 5.2. There exists ¢ > 0 such that for all sufficiently small € and all u,d and e satisfying (3.18),
problem (5.12) has a unique solution ¢ = ¢(u,d,e) and ¢; = ¢j(p, d, e) which satisfies

6]l < ce?. (5.13)
Moreover, ¢ depends Lipschitz continuously on w, d and e in the sense
[6(p1, dv,e1) — P(pa, da, e2)]|, < e | (11 = p2,di — da, €1 — €2)]|
for some positive constant c¢ independent of € and uniformly with respect to u,d and e which satisfy (3.18).

Proof. We argue exactly as in Section 7 of [7], using a contraction mapping argument and the linear theory
developed in Proposition 7.3. O

6. The reduced problem
6.1. The reduced system

We find N +1 equations relating 41, d and e to get all the coefficients ¢; in (5.12) identically equal to zero.
To do this, we multiply Eq. (5.12) by Z;, for all j =0,..., N + 1 and we integrate in y. Thus, the system

¢i(pyo) =0, j=0,1,....,N+1

is equivalent to
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/Se(a;)zjdw /(L(qg)f‘ﬁ(qg))Zjdy:O, j=0,1,...,N+1,

DyO Dy()

for any yo € | i
By Proposition 5.2 it follows that

_t l].

where 6 = 6(pyp) is as in Lemma 3.4.
Hence the equations ¢; = 0 are equivalent to the following limit system on N + 2 nonlinear ordinary
differential equations:

. bn
Lyyi(p) == —ji+ <an0 + P)M = —an+1(20) — c3Q(20,d) + €| Ine[Mp 41,
0
. N
Li(d) := —dx + > Rojord; = VeMy, k=1,...,N,

j=1

Lo(e) := €agé + \re = —ap(x0) — caQ(z0,d) — B(xo)p + €| In €| My,

(6.1)

where ,d1,...,dy,e € C3,(R) and

— the functions «; and (8 are explicit functions of zy, smooth and uniformly bounded in e given in
Lemma 3.4

— the operator @ is quadratic in d (see Lemma 3.4) and it is uniformly bounded in L39(R) for (u,d,e)
satisfying (3.18)

— the operators M; = M;(u,d, e) can be decomposed as M;(u,d,e) = A;(u,d,e) + K;(p,d, ), where
— K is uniformly bounded in L33(R) for (u,d, e) satisfying (3.18) and it is compact
— A; depends on (u,d, e) and their first and second derivatives and it satisfies

| Ai(p2, da, e2) — Ai(pr, dy, e1)|| < o(1)| (12 — pa, da — disea — 1)

uniformly for (u, d, e) satisfying (3.18)
— the dependence on (ji,d, €) is linear.

Our goal is to solve (6.1) in u,d and e. To do so, we first analyze the invertibility of the linear
operator Ly .

Lemma 6.1. For any f € L3 (R), there exists a unique p € C3,(R) solution of Lyy1(p) = f. Moreover,
there exists ¢ such that

ltlloo + litlloe < €llfllo-

Proof. The non-degeneracy condition of the solution pg translates into the fact that the periodic ODE

—ji+ (ana + b—g),u =0 in [0,2/]
Ho

has only the trivial solutions. Therefore the claim follows. O

Next, we analyze the invertibility of the linear operator L.
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Lemma 6.2. Assume
em® — K| > vye foranym=1,2,...

for some v positive, where

+e
s 1
K==\ ——ds.
2 1_/€ Vao(s)

For any f € C9,(R)N LS (R), there exists a unique solution e € C3,(R) of Lo(e) = f. Moreover, there exists

¢ such that
.. ) 1
ellélloc + Vellefloo + [lelloo < C%IIflloo
Finally, if f € C3,(R), then

elléllos + Vellélloo + llelloo < efll flloo + [l flloo + I1fllos]
Proof. We argue as in Lemma 8.2 of [7]. DO

Finally, we consider the invertibility of the linear operator (Lq,...,Ly).

Lemma 6.3. Assume the geodesic is non-degenerate. For any f = (f1,..., fn) with fi, € L33 (R), there exists
ad=(di,...,dy) with d; € C3,(R) such that L(d) = fi for any k = 1,...,N. Moreover, there exists c

such that

ldlloo + lldlloo + lldllo < €ll flloo-

Proof. It is useful to point out that assumption (1.3) about non-degeneracy of I" in normal coordinates

translates exactly into the fact that the linear system of ODE’s

N
—dy+ > Rojord; =0, in[0,2), k=1,....N

j=1

has only the trivial solution d = 0 satisfying the periodicity condition (3.6). Therefore, the claim follows.
6.2. The choice of parameters: the proof completed!

Now, we are ready to complete the proof, finding parameters which solve the reduced problem (6.1).
First, by Lemma 6.1 we find fip solution of

Ly+1(fo) = —an+1(zo),  with [|fg|lls + [l 4ollsc + [lolleo < c.
Then, by Lemma 6.2 we find éy solution of
Lo(é0) = —ag — Biio,  with €][éo]loo + Vell€olloo + [[€0]loo < .

Therefore, ||(fio,0,ép)|] < c. Let us define

a
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The system (6.1) reduces to

Lys1(fn) = —c3Q(x0,d1) + €[ In e My 41,
Lk(czl):\/EMkv k:]-v"'va (62)
Lo(é1) = —caQ(xo, dy) — Blxo)fis + €| In €| M.

Let us observe now that the linear operator
L(fu,di,é1) = (Ly41(1), Ln(dr), ..., Li(dr), Lo(é1))

is invertible with bounds for £(fi1,d1,é1) = (f, g, h) given by

(1, di,e1)|| < Ol flloo + lglloo + €21 2]lo]-

Finally, by the contraction mapping principle it follows that, the problem (6.2) has a unique solution with

lallse < celluel,  ldilloo < Ve, [le1lloo < Vellnel.

That concludes the proof.
7. The linear theory

Here we recall a linear theory necessary to solve problem (3.11), which has been developed in Section 3
of [7].

Let us consider the operator £y := Ag~y + pwP~!. It is well-known that the L2-null space of the operator
Ly is N + 1-dimensional and spanned by the functions

. N -2
Zi(y) = djuw(y), j=1,...,N and Zyii(y) =y - Vuly) + ——w(y).

Moreover it is known that (see [7]) the operator Ly has one negative eigenvalue —A; < 0, whose corresponding
eigenfunction Z, (normalized to have L2-norm equal to 1) decays exponentially at infinity with exponential

order O(e~Vilel),
The following results (see Lemma 3.1 of [7] and also [8]) are useful in order to obtain a priori estimates
and a solvability theory for problem (3.11).
Lemma 7.1. Assume that A\ ¢ {0,£+v/A1 }. Then for g € L>®(RYN), there ewists a unique bounded solution of
(Lo— ) =g
in RN. Moreover

]l < exllglln=

for some constant cx > 0 only depending on A.
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Lemma 7.2. Let ¢ a bounded solution of

do0d + Ayp +puwP tep =0 in RVTL

Then ¢(yo,y) is a linear combination of the functions Z;, j = 1,...,N + 1, Zy(y)cos(~/A1yo),
Zo(y) sin(v/A1%0).

Now, we study a slightly more general problem than (3.11) that involves the essential features needed.
For any constant M > 0 we consider the domain D defined as

D= {(yo,y) e Rx R : |y| < M} (7.1)

and given a function ¢ defined on D, an operator of the form

L(¢) == b(y0)Dood + Ay + pwP ' o+ > bij(yo, ¥)0iid + > bivo,y)died + d(yo, y)$.

4,J
Then for a given function g we want to solve the following projected problem:

N+1
L(¢) =g+ > cj(y0)Z;(y) inD,
=0 (7.2)
/¢(yo,y)zj(y>dy:0 for any yo € R, j=0,..., N,
Dyo

where
Dy, = {y € RV : (yo,y) € D}.
We fix a number 2 < v < N and consider the L*-weighted norms
6]l := S%p(l + yl" )| é(yo. v)| + s%p(l + |z|"71) | Dé(o, )|,
gl := s%p(l + [yl")|9(yo, v)|-

We assume that all functions involved are smooth. The following result (see Proposition 3.2 of [7]) establishes
existence and uniform a priori estimates for problem (7.2) in the above norms, provided that appropriate
bounds for the coefficients hold.

Proposition 7.3. Assume that N > 7 and N — 2 < v < N. Assume that there exists m > 0 such that
m < b(yo) < m~Y for any yo € R.

There exist 6 > 0 and C > 0 such that if

M8obllse + Y (Ibijlloc + [Dbig 1) + DI (L + wD)bell  + |1+ w1*)d]|, <& (7.3)

ij i

then for any g with ||g|l«« < 0o there exists a unique solution ¢ =T (g) of problem (7.2) with ||¢|l« < oo and
it holds true that

[¢ll« < Cllgllsx-
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Appendix A
A.1. Proof of (3.4)

Let Ey, E1,..., Ex be the coordinate vectors as given in the Introduction. By our choice of coordinates it
follows that Vg E = 0 on I for any vector field E, that is a linear combination (with coefficients depending
only on xg) of the E}’s, j=1,...,N.

In particular, for any 4,7 = 1,..., N and for any t € R, we have Vg, ;g (E; + tE;) = 0 on I', which
implies Vg, E; + Vg, E; = 0 for every 4,5 = 1,..., N.

Using the fact that E;’s are coordinate vectors for j = 1,..., N and in particular Vg, Ey, = Vg, F, for
all a,b = 0,..., N, we obtain that VE;E; = 0 for every 4,5 = 1,...,N. The geodesic coordinate for I"
translates precisely into VEyFy = 0.

These facts immediately yield

on I'with é,5,m=1,...,N.
Moreover, since E,’s are coordinate vectors for a =0, ..., N, we obtain
Omgoj = Em(Eo, Ej)
<VE EOaE > <E07 VEm >

m

= Vg, Em, Ej) + (Eo, Vg, Ej) =0 (A.2)

on I' withm,j=1,..., N.
Here we used the fact that Vg, E,, = 0 on I', namely that Vg, E,, has zero normal components.
Moreover by (A.1) it follows that

8mg00 =0 onl. (Ag)

We can also prove that the components Ry, of the curvature tensor are given by

1
——8mjg()0. (A4)

Romo; = >

Indeed, we have

—Romo; = (R(Eo, E;)Eo, Ey)

— (Vi E; Eo, En) — (Vi Vi, Eo, En)
Ep) — E;(V i, Eo, Bm) — (Vi Eo, Vi, E)

= (VE, Vg, Eo, ) — E;(V 5, Eo, En)
Ey) — E;E)Eo, En) +
Ep) )

+ E;(Eo,VE,, Eo

Ej(Eo, VE,Em)

§EjE m(Eo, Eo) + Eo(VE, Eo, Em) — (Vi Eo, VE,Enm)

1
= EaijOOa

where here we have used the above properties and the fact that



1440 J. Ddvila et al. / J. Math. Pures Appl. 103 (2015) 1410-1440

1
VE].E() = VEDEj = 5 ngOEO =0.
By (A.2), (A4), (A.3) and (A.1) the claim follows.
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