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Receptor activator of nuclear factor kappa-B (RANK) and RANK-ligand are relevant targets for the treat-
ment of polyethylene particle-induced osteolysis. This study assessed the local administration of siRNA,
targeting both human RANK and mouse Rank transcripts in a mouse model. Four groups of mice were
implanted with polyethylene (PE) particles in the calvaria and treated locally with 2.5, 5 and 10 lg of
RANK siRNA or a control siRNA delivered by the cationic liposome DMAPAP/DOPE. The tissues were har-
vested at day 9 after surgery and evaluated by micro-computed tomography, tartrate-resistant acid phos-
phatase (TRAP) immunohistochemistry for macrophages and osteoblasts, and gene relative expression of
inflammatory and osteolytic markers. 10 lg of RANK siRNA exerted a protective effect against PE particle-
induced osteolysis, decreasing the bone loss and the osteoclastogenesis, demonstrated by the significant
increase in the bone volume (P < 0.001) and by the reduction in both the number of TRAP+ cells and osteo-
clast activity (P < 0.01). A bone anabolic effect demonstrated by the formation of new trabecular bone was
confirmed by the increased immunopositive staining for osteoblast-specific proteins. In addition, 5 and
10 lg of RANK siRNA downregulated the expression of pro-inflammatory cytokines (P < 0.01) without
depletion of macrophages. Our findings show that RANK siRNA delivered locally by a synthetic vector
may be an effective approach for reducing osteolysis and may even stimulate bone formation in aseptic
loosening of prosthetic implants.

� 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
1. Introduction

During the periprosthetic osteolysis process, wear particles
released from bearing surfaces result in a local inflammatory
response challenged by proinflammatory macrophages (M1) that
produce interleukin-1 (IL-1) and tumour necrosis factor-alpha
(TNF-a) [1]. The largest particles (>10 lm) coated with proteins
may act as damage-associated molecular pattern molecules
(DAMPs) and are sensed by macrophagic toll-like-receptors
(TLRs) [2–4], leading to the activation of an innate inflammatory
immune response such as a ‘‘foreign body reaction’’ [5,6].
Otherwise, the smallest particles (<10 lm) and ions are up taken,
activating the NACHT, LRR and PYD domains-containing protein
3 (NALP3) inflammasome, leading to an adaptive immune response
[3,5–7]. Both immune pathways activate the transcription factors
NF-kB and NF-IL), increasing synthesis of the receptor activator
of nuclear factor kappa-B ligand (RANKL) and pro-inflammatory
cytokines (IL-1b, IL-6 and TNF-a) [8,9]. These cytokines were
recognized as the main molecules responsible for maintaining
the periprosthetic inflammatory environment and for increased
osteoclastogenesis [8].
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Inhibition of the RANKL–RANK axis is an efficient therapeutic
approach for decreasing osteoclast differentiation/activation. Anti-
resorptive drug-based therapies, such as bisphosphonates and the
anti-RANKL monoclonal antibody (Denosumab™), have evolved
from experimental models of osteolytic bone diseases [10–13] to
clinical uses [14–16]. In addition, new inhibitors, such as small
peptides designed to target a specific region of the RANK mem-
brane, are currently in preclinical development [17]. The preven-
tion of bone loss by blocking the RANK–RANKL axis was reported
in an experimental model of particle-induced osteolysis using a
recombinant protein of RANK (RANK-Fc) [18] and by inducing
the osteoclast apoptosis using zoledronic acid (ZOL) [19]. Despite
these encouraging preclinical results, they have still not been
transferred to clinical use [20].

Small interference ribonucleic acid (siRNA) regulates the syn-
thesis of proteins by means of a specific gene silencing mechanism
[21–23]. The use of siRNA-based therapy is a specific and biocom-
patible approach that has led to significant advances in cancer, age-
related macular degeneration and viral diseases [24]. Two key
aspects need to be considered in this strategy: the identification
of clinically relevant targets and the use of efficient delivery vec-
tors. Targeting of the key RANKL–RANK axis was first reported
in vitro in murine cells by Wang et al. [25] and Ma et al. [26] with
effective inhibition of Rank expression, osteoclast differentiation
and osteolysis using Rank-siRNAs and Rank-shRNAs, respectively,
which target the mouse Rank transcript [25–27]. The systemic
delivery of therapeutic siRNAs using biological and synthetic vec-
tors was reported in bone disease experimental models, including
bone-metastatic cancer (targeting Luciferase (LucF) and delivered
by atelocollagen) [28] and rheumatoid arthritis (targeting TNF-a,
IL-1ß, IL-6 and IL-18 and delivered by the cationic liposome DMA-
PAP/DOPE) [29,30]. Similarly, a siRNA targeting of the type I bone
morphogenetic protein receptor transcript (BMPR-IB) systemically
delivered by a recombinant adenoviral vector was reported [31].
However, the nature of aseptic loosening by wear debris seems
to be a confined condition that requires a local intervention. The
local delivery of siRNAs is then a logical strategy for bypassing
the anatomical barriers and optimizing its biotransformation dur-
ing its transport. In this context, the local delivery of Rankl-siRNA
by the cationic liposome DMAPAP/DOPE in a murine model of oste-
osarcoma [32] and a local lentiviral delivery of b110-siRNA, target-
ing a subunit of the PI3K/AKT pathway in a particle-induced
osteolysis model, were reported [33]. However, there are no
scientific reports using siRNA-based technology targeting the key
RANKL–RANK axis by local delivery using a synthetic vector in an
in vivo model. We hypothesized that siRNA targeting RANK, locally
delivered in situ by a cationic liposome might be an effective
approach for inhibiting osteoclastogenesis in vivo. The aim of our
study was to unveil the therapeutic effect of three doses of siRNA
targeting both human RANK and mouse Rank transcripts (RANK-
811 siRNA) in a mouse model of polyethylene (PE) particle-induced
osteolysis.
2. Material and methods

2.1. SiRNAs

All siRNAs were ordered from Eurogentec (Angers, France) with
30 overhanging dTdT and with annealed sense and reverse strands.
The primer sequence sense strand 50-GUGGAAAUAAGGAGUCCUC-
30 was designed to target Homo sapiens RANK mRNA (NM_003839;
Tumour Necrosis Factor Receptor Superfamily 11A, TNFRSF11A) at
start positions 811 and was named RANK-811. The antisense strand
of RANK-811 siRNAs presents perfect complementarity with Mus
musculus Rank mRNA (NM_009399.2) at start positions 804.
RANK-811 siRNA was selected based on its efficacy for decreasing
RANK expression in RANK-overexpressing human embryonic kid-
ney 293 (HEK 293) cells [17] and Rank in murine RAW 264.7 mono-
cytic cells (American Type Culture Collection, Promochem,
Molsheim, France) (Supplementary Information Fig. S1).

The siRNA duplex (sense strand 50-UUCUCCGAACGUGUCACGU-
30) which did not show significant homology with any mouse
mRNA sequence according to BLAST database searches, was used
as a negative control and designated Ct-siRNA. A previously vali-
dated siRNA (LucF-siRNA sense strand 50-CUUACGCUGAGUA-
CUUCGA-30) was used in vivo as an innocuous siRNA [32].

2.2. Particles of polyethylene

Pure PE particles (Ceridust 3610™) were purchased from
Clariant (Gersthofen, Germany). The morphology of particles was
assessed by scanning electron microscopy (JEOL, model 6400F).
The particle size and distribution were determined by five consec-
utive measurements obtained with a Coulter Counter™ (Beckman
Coulter Inc., USA). The mean size particle was 7.23 lm and with
a distribution of d10 = 1.15, d25 = 3.94, d50 = 7.14, d75 = 10.28
and d90 = 13.05. To eliminate endotoxins, the particles were
washed in ethanol, dried and then aliquoted until use [34]. Endo-
toxin levels were measured using a quantitative Limulus Amebo-
cyte Lysate (LAL) assay (Lonza, Belgium). The threshold of
positivity was 0.25 EU ml�1.

2.3. Implantation of polyethylene particles in mouse calvaria

The mice (Elevages Janvier, Le Genest Saint Isle, France) were
housed in pathogen-free conditions at the Experimental Therapy
Unit (Faculty of Medicine, Nantes) in accordance with the institu-
tional guidelines of the French Ethical Committee (CEEA PdL 06
ethical committee, authorization no. 1280.01) and under the
supervision of the authorized investigators. All surgical procedures
were also performed according to international ethical guidelines
for animal care (authorization no. 2012-198). Twenty-one C57BL/
6 male mice (Janvier, Le Genest-Saint Isle, France) aged 10 weeks
were randomly divided in two groups (Table 1). Eighteen of the
mice were surgically implanted using the adapted mouse calvaria
model [35] with 20 mg of dried PE particles (PE-implanted group).
Briefly, under general anaesthesia (2–3% isofluorane in 100% oxy-
gen at flow rate of 1 l min�1), a 0.5 � 0.5 cm2 area of periosteum
was exposed by a midsagittal incision in previously shaved and
aseptic head skin (Betadine, France). The dried PE powder was
uniformly spread over the periosteum with a sterile surgical spoon.
The surgical approach was carefully closed with 5-0 non-absorb-
able sutures. A subcutaneous injection of buprenorphine (Buprecar
0.1 mg kg�1) was performed after the surgical procedure (Palier 1
protocol). One group of three mice underwent the same surgical
procedure but without the PE particle implantation (Sham group).

2.4. Local injections of formulated siRNAs

For in vivo injections, siRNAs were premixed with an equal
quantity of a deoxyribonucleic acid (DNA) adjuvant in 150 mM
sodium chloride as described in Ref. [36] and mixed with an equiv-
alent volume of cationic liposome DMAPAP/DOPE at a ratio of
6 nmol of cationic lipid per microgram of nucleic acid as previously
described [37]. The lipoplexes were formed at room temperature
for at least 30 min. Injections of 50 ll of lipoplexes containing
2.5, 5 or 10 lg of siRNAs were used in vivo.

The PE-implanted mice were randomly divided in four groups
which received siRNA injections, while the Sham group (non-
implanted; n = 3) received 50 ll of saline solution (NaCl 0.9%)
(Table 1). Three groups of PE-implanted mice received a total of



Table 1
Experimental design. Number of mouse or sample included per group or per assay.

Treatment Non-implanted PE-implanted Total no. of animals

Sham
NaCl LucF siRNA RANK-811 siRNA

Dose (lg) 2.5 2.5 5 10

Micro-CT 3 3 5 5 5
Histology 3 3 5 5 5
RT-qPCR 3 3 3 3 3
Animals per group 3 3 5 5 5 21
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three injections (at days 1, 4 and 7 after surgery) in the calvaria
site, of either 2.5 or 5 or 10 lg of RANK-811 siRNA and respectively
named PE-2.5 lg RANK-811 siRNA (n = 5), PE-5 lg RANK-811 siRNA
(n = 5) and PE-10 lg RANK-811 siRNA group (n = 5). One PE-
implanted group received three injections of 2.5 lg LucF-siRNA
and was named the PE-2.5 lg LucF-siRNA group (n = 3). The injec-
tion site was determined intermediate to the full cephalocaudal
length of the sutured surgical approach and 2 mm laterally to the
right of it. The inclination of the 26-gauge needle was oblique,
pointing medially until a soft contact with the bone surface was
made. A continuous and slow pressure injection, to avoid the
reflow of injected solution, was performed. All animals were killed
by cervical dislocation following isofluorane anaesthesia at day 9
after the surgical procedure.
2.5. Micro-computed tomography assessment

The analysis of bone microarchitecture was performed in fixed
calvariae at the time corresponding to the necropsy (day 9) using a
high-resolution X-ray micro-computed tomography (micro-CT)
system for small-animal imaging (SkyScan-1076, SkyScan, Kontich,
Belgium) (Table 1). All calvariae were scanned using the same
parameters (pixel size 9 lm, 50 kV, 0.5 mm Al filter and 0.8� of
rotation step). Three-dimensional reconstruction and quantifica-
tion of bone parameters were performed in a cylindrical volume
of interest (VOI) (ratio 0.5 mm, height 1.143 mm, VOI = 0.89 mm3;
Fig. 2A) using ANT and CTvol software (Skyscan). The assessment
of the bone volume density was measured by the fraction of the
VOI (i.e. the total volume, TV) that is occupied by mineralized bone
(bone volume, BV) (BV/TV) expressed as a percentage (%).
2.6. Histological analysis

Harvested calvariae were fixed in 4% buffered formaldehyde for
24 h and decalcified with 4.13% ethylenediaminetetraacetic acid
(EDTA) and 0.2% paraformaldehyde in phosphate-buffered saline
(PBS) for 96 h using a KOS microwave histostation (Milestone,
Kalamazoo, MI, USA) before embedding in paraffin (Table 1). Six
coronal 4 lm thick sections were obtained from three levels of mid-
dle calvaria (each one separated by 300 lm). All slides were stained
for tartrate-resistant acid phosphatase (TRAP) to identify osteoclasts
by 1 h incubation in a 1 mg ml�1 naphthol AS-TR phosphate,
60 mmol l�1 N,N-dimethylformamide, 100 mmol l�1 sodium tartrate
and 1 mg ml�1 Fast Red TR salt solution (Sigma Aldrich, Saint
Quentin Fallavier, France) and counterstained with haematoxylin.

For immunohistochemistry, histological sections were treated
with citrate buffer at pH 6 for antigen unmasking and with goat
serum 5%, BSA 1% diluted in 1� TBS pH 7.6 for blocking of
non-antibody-specific sites. The immunostaining for F4-80 was per-
formed using rabbit monoclonal anti-F4-80 antibody (1/150 over-
night at 4 �C; Abcam, Cambridge, MA, USA) and goat anti-rabbit
biotinylated (Dako, Glostrup, Denmark) as a secondary antibody.
Immunostaining for alkaline phosphatase (ALP) was carried out
using rabbit monoclonal anti-ALP antibody and goat anti-rabbit
biotinylated (Dako) as a secondary antibody. Following incubation
with a streptavidin/peroxidase kit (1/200, Dako), antibody detec-
tion was made with a liquid DAB-substrate chromogen system
(Dako).

Histological images were acquired with a digital slide scanner
(NanoZoomer 2.0-RS, Hamamatsu, Japan). The region of interest
(ROI) corresponded to a rectangular area (1.7 mm2, 1.74 mm wide
and 980 mm high, 1913 � 582 pixels) centred in the middle sagit-
tal suture and comprising the full thickness of the parietal bones.
Two independent pathologists performed a qualitative assessment
based on morphological criteria. Quantification of TRAP+ cells was
assessed with ImageJ software (NIH, Bethesda, MD, USA) and
expressed as the percentage of osteoclasts (estimated from TRAP+

area) in the defined ROI area. This method was recently published
in Refs. [38–40].
2.7. RNA extraction from calvaria tissue and quantitative real-time
polymerase chain reaction (qRT-PCR)

Total RNA was extracted from three implanted calvaria samples
of each group using homogenizer Ika Ultra-Thurax T 25 (Janke and
Kunkel) and TRIzol reagent (Invitrogen) (Table 1). Synthesis of the
first strand of complementary DNA and the polymerase chain reac-
tion were carried out in triplicate using the same protocol as
described above. The listed oligonucleotides were used to amplify
Mus musculus receptor activator of nuclear factor kappa-B (Rank,
50-TGCAGCTCTTCCATGACACTG-30 and 50-CAGCCACTACTACCACAG-
AGATG-30), Cathepsin K (CathK, 50-GGAGGCGGCTATATGACCA-30

and 50-GATCTATGTCCTCACCGAACG-30), tumour necrosis factor
alpha (Tnf-a, 50-GGGTGATCGGTCCCCAAAGGGA-30 and 50-TGGTTT
GCTACGACGTGGGCTAC-30), interleukin-6 (Il-6, 50-TAGTCCTTCCT
ACCCCAATTTCC-30 and 50-TTGGTCCTTAGCCACTCCTTC-30), inter-
leukin-1 (Il-1b, 50-TTGACGGACCCCAAAAGAT-30 and 50-GATGTGCT
GCTGCGAGATT-30), cytochrome c-1 (Cyc 1, 50-TGTGCTACA
CGGAGGAAGAA-30 and 50-CATCATCATTAGGGCCATCC-30) and 60S
ribosomal protein L19 (Rpl19, 50-TCGTTGCCGGAAAAACAC-30 and
50-AGGTCACCTTCTCAGGCATC-30). Cyc and Rpl19 were used as
housekeeping genes. Target gene expression was normalized to a
housekeeping gene in respective samples as an internal standard,
and the comparative cycle threshold method was used to
calculated relative quantification of target messenger RNAs.
Analyses were then performed using the Vandesompele method
[41].
2.8. Statistical analysis

All analyses were performed using GraphPad InStat version 3.02
software (GraphPad Software, La Jolla, CA, USA). In vitro experi-
mentation and micro-CT results were analyzed with the unpaired
non-parametric Mann–Whitney U-test using two-tailed P values.
Each RANK siRNA group was compared independently with the
LucF siRNA group. The histological results were analyzed with
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ANOVA and an unpaired parametric two-tailed t-test. Results are
given considering a P value <0.05 as representing significance.

3. Results

3.1. RANK-811 siRNA prevents the bone loss induced by implanted PE
particles by inhibiting osteoclastogenesis and osteoclast activation

A first assessment of the anti-resorptive effect of RANK-811 siR-
NA in vivo at day 9 after implantation of PE particles using micro-CT
showed that the inner cortical of the calvaria was protected from
osteolysis in the groups treated with 5 or 10 lg of RANK-811 siR-
NAs. However, an increase in the bone volume was only observed
at a dose of 10 lg of RANK-811 siRNA (BV/TV = 19.11% ± 2.3)
compared to the control siRNA (BV/TV = 10.57% ± 0.6; P = 0.006).
However, severe bone loss of the inner cortical area was
observed for the group treated with 2.5 lg of RANK-811 siRNAs
(Fig. 1A, B).
Fig. 1. RANK-811 siRNA exhibits a significant protective effect against PE particle-ind
periosteum of calvaria for 9 days. Increasing doses (2.5, 5 and 10 lg) of RANK-811 siRNA
siRNA. PE particle-induced osteolysis and the efficacy of RANK-811 siRNA was followed q
the BV/TV (B). Bone preserved areas were recognized in spongy bone as well as in exter
TRAP staining revealed that osteoclasts detected in the groups
injected with 5 or 10 lg of RANK-811 siRNAs were smaller than
those in the groups injected with 2.5 lg LucF- or RANK-811 siRNAs
(Fig. 2A). In addition, RANK-811 siRNAs inhibited osteoclast differ-
entiation in a dose-dependent manner. Indeed, the percentage of
TRAP-positive cells was reduced by 70% with 2.5 lg RANK-811
siRNA (P = 0.003) and by 90% with 5 (P = 0.0009) and 10 lg
(P = 0.0007) RANK-811 siRNA administration (Fig. 2B).

The inhibitory effect of RANK-811 siRNAs on osteoclast activity
was also confirmed by the downregulation of Rank expression after
5 (P = 0.0001) and 10 lg (P = 0.006) RANK-811 siRNA administra-
tion (Fig. 2B). In addition to the inhibition of osteoclastogenesis,
RANK-811 siRNAs was also decreased Cathepsin K expression
(Fig. 2B), demonstrating the inhibition of the osteoclast activity
with 5 (P = 0.001) and 10 lg (P = 0.001) RANK-811 siRNA. In con-
trast, 2.5 lg RANK-811 siRNA did not modify Rank expression
(not significant (NS)) and induced an increase of Cathepsin K
expression (P = 0.01) (Fig. 2B).
uced osteolysis in vivo. PE particles were implanted or not (Sham-NaCl) over the
were injected locally and bone quantity was followed, compared to the control LucF
ualitatively by micro-CT scan (A) and quantitatively determined by the measure of
nal and inner corticals (black arrows). ⁄⁄P < 0.01.



Fig. 2. RANK-811 siRNA inhibits in vivo the number of osteoclasts in a dose dependent manner. PE particles were implanted or not (Sham-NaCl) over the periosteum site of
calvaria for 9 days. Increasing doses (2.5, 5 and 10 lg) of RANK-811 siRNA were injected locally and bone loss intensity was followed compared to the control LucF siRNA.
Osteoclasts were detected by TRAP staining (A) and their number was quantified by the percentage of osteoclasts/ROI (B upper). Rank (B middle) and cathepsin K (B lower)
expression was determined by qRT-PCR from calvaria tissue explants compared to the LucF siRNA. ⁄P < 0.05; ⁄⁄P < 0.01; ⁄⁄⁄P < 0.001.
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3.2. Local treatment with the formulated siRNA induces an anabolic
bone response characterized by the total renewal of osteoblastic cell
lineage

PE-implanted mice exhibit osteonecrotic and osteolytic lesions.
Thus, we confirmed the presence of empty lacunae, without osteo-
cytes, in the external cortex of the calvaria of PE-implanted mice
compared with non-implanted mice (Fig. 3A). However, character-
istic osteocytes located in their cavities were observed in the inner
cortex of the calvariae in all groups assessed (Fig. 3A). Interestingly,
new bone formation was observed in the PE-implanted and siRNA-
treated mice compared to the Sham group, as demonstrated by ALP
(Fig. 3A) and osterix (Fig. 3B) positive immunostaining in the area
of interest.
3.3. RANK-811. siRNA reduced the inflammatory environment without
depletion of macrophages

Because it is known that wear debris induces an inflammatory
reaction [7,42], we assessed the consequence of a Rank blockade
on the inflammatory process. Histological analysis showed that
the implantation of PE particles resulted in a reaction characterized
by the thickening of an inflammatory membrane more infiltrated
by cells compared with the non-implanted group (Fig. 4A). F4/
80+ macrophages were detected either in the Sham group (loosely
distributed in the subcutaneous connective tissue) as well as in the
implanted groups (highly localized within the inflammatory mem-
brane and surrounding the implanted particles) (Fig. 4A). Similarly,
we observed the proinflammatory effect of PE particles by the
increased expression of proinflammatory cytokines genes (Tnf-a,
Il-6 and Il-1b) from the PE-LucF-siRNA group compared with the
Sham–NaCl group (Fig. 4B). We observed that the injections of
2.5 lg RANK-811 siRNAs decreased Tnf-a expression (P = 0.007)
and slightly increased the expression of Il-1b (P = 0.04) compared
to the LucF siRNA injections. Il-6 expression was not modulated
using the same dose of siRNA (NS). In contrast, the injections of 5
and 10 lg of RANK-811 siRNAs decreased the expression of Tnf-a
(P = 0.0001 and P = 0.0002, respectively), Il-6 (P = 0.0001 and
P = 0.0009, respectively) and Il-1b (P = 0.0001 and P = 0.008, respec-
tively) (Fig. 4B). Interestingly and despite the down-regulation of
proinflammatory genes associated with the injection of 5 and
10 lg of RANK-811 siRNA and the variable response of the same
parameters for the same genes using 2.5 lg RANK-811 siRNA, the
macrophage infiltration was not repressed (Fig. 4A).
4. Discussion

Targeting the components of the triad OPG/RANKL/RANK by
interference of RNA seems to be a promising approach. Experimen-
tal studies blocking RANKL–RANK signalling by siRNAs targeting



Fig. 3. RANK-811 siRNA induces the renewal of osteoblastic cell lineage after osteolytic/osteonecrotic stimulus induced by PE. PE particles were implanted or not (Sham-
NaCl) over the periosteum of calvaria for 9 days. Increasing doses (2.5, 5 and 10 lg) of RANK-811 siRNA were injected locally and bone formation was followed compared to
the Sham group. ALP (A) and Osterix (B) immunostaining was used to detect mature osteoblasts and pre-osteoblasts, respectively. Empty lacunae were recognized in external
cortex of calvaria (black arrows in A, continuous zoomed window). ALP+ (A, discontinuous zoomed windows, middle and bottom) and OSX+ (B, middle and bottom) cells
associated with new trabecular bone were detected in central area from the edges of external cortex and internal cortex.
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M. musculus Rank have previously been reported in in vitro systems
with an effective inhibition of Rank expression, osteoclast differen-
tiation and osteolysis [25–27]. Furthermore, the efficacy of siRNAs
targeting Rankl was reported in in vitro culture of RANKL-express-
ing HEK 293 cells and in a murine model of osteosarcoma [32,37].
Our study provides strong evidence of the efficacy of three formu-
lated cross-species sequences of RANK siRNAs in both human
RANK-expressing HEK 293 cells and in murine RAW 264.7 cells
in vitro (Fig. S1). Then, once the down-regulation of RANK and Rank
was confirmed, we selected the most efficient sequence among the
three evaluated (RANK-811 siRNA with 48.7% of inhibition) to
assess its effect on osteolysis in vivo (Fig. S1).

Our study shows for the first time an effective inhibition of par-
ticle-induced osteolysis in an in vivo model using a RANK-directed
siRNA sequence. We observed a large reduction in the number of
TRAP+ activated cells in the parasagittal area on implanted
calvariae using three different doses of RANK-811 siRNAs. This
observation revealed a high ability of the osteoclast precursors to
uptake the injected lipoplex (RANK-811 siRNA with synthetic vec-
tor, cationic liposome DMAPAP/DOPE and plasmid). This synthetic
vector has also shown efficacy in the local delivery of formulated
Rankl-directed siRNA by intra-tumour injection in previous reports
[32,37]. Moreover, Khoury et al. [29,30], reported a successful sys-
temic delivery of siRNAs targeting proinflammatory cytokines (Tnf-
a, Il-1b, Il-6 and Il-18) in a mouse model of rheumatoid arthritis
using the same siRNA formulation [29,30].

While the doses of 5 and 10 lg of RANK-811 siRNAs decreased
the number of TRAP+ cells and the expression of osteolytic genes
(Rank and Cathepsin K), confirming the inhibition of osteoclasto-
genesis and osteolysis, we observed a contradictory response with
the dose of 2.5 lg. These findings may be explained by an imbal-
ance between the amount of Rank transcript and the weak dose
of siRNA (2.5 lg). Supporting this observation, the volumetric
assessment by micro-CT showed that only the maximal dose
assessed, 10 lg of RANK-811 siRNA, prevented bone loss compared
to the control group (PE-LucF-siRNA). Furthermore, a major effec-
tiveness of lipoplex in the external cortical area rather than in
the inner cortical area of the calvaria was also observed. These dif-
ferences may be explained by a reduced diffusion of the injected
volume to the inner cortical area due to the modified local anat-
omy (eroded surface of bone and trabecular spaces in the diploe),
by the local inflammatory reaction and/or the viscosity of the



Fig. 4. RANK-811 siRNA does not modulate the invading macrophages. PE particles were implanted or not (Sham-NaCl) over the periosteum of calvaria for 9 days. Increasing
doses (2.5, 5 and 10 lg) of RANK siRNA-811 were injected locally and inflammatory status was followed compared to the control LucF siRNA. Macrophages were identified by
anti-F4-80 antibody in all groups (implanted and sham) mice (A). The relative expression of Tnf-a, Il-6 and Il-1b was determined in explanted tissues by qRT-qPCR. While 5
and 10 lg RANK-811 siRNA decreases the expression of pro-inflammatory Tnf-a, Il-6 and Il-1b cytokines, the dose of 2.5 lg induces a variable response decreasing Tnf-a,
maintaining Il-6 and increasing Il-1b expression. (B). ⁄P < 0.05; ⁄⁄P < 0.01; ⁄⁄⁄P < 0.001.

156 L.A. Córdova et al. / Acta Biomaterialia 13 (2015) 150–158
lipoplex. The present results were consistent with a direct
antiresorptive effect of RANK-811 siRNA, presumably on RANK+

pre-osteoclasts and/or mature osteoclasts, demonstrated by the inhi-
bition of osteoclastogenesis and the decrease of osteoclast activity
(Figs. 1 and 2) similarly to the zoledronic acid treatment (Fig. S2).

Interestingly, the unexpected bone formation observed in siR-
NA-treated mice suggests that the injection of this lipoplex might
create a favourable local anabolic microenvironment. Thus, a
complete renewal of osteoblastic lineage characterized by a
sequence of localized osteolysis/osteonecrosis induced by PE par-
ticles, followed by a pulse of bone formation induced by the
RANK-811 siRNA may be proposed. The osteogenic signs observed
in the central area of calvariae may be secondary to the inflam-
matory microenvironment generated by particle implantation
and/or possibly, the immunogenic effect of lipoplex. The link
between inflammation and osteogenesis was recently proposed
and might be regulated by oncostatin M signalling produced by
monocytes/macrophages [43]. In addition, a STAT3 activation in
mesenchymal stem cells was reported [44]. Further studies need
to be performed to elucidate the osteogenic effect showed in our
report.

On the other hand, the dramatic inhibition of the expression of
proinflammatory cytokines in harvested tissues of RANK-811
siRNA-treated mice (including RANK+ pre-osteoclasts and
osteoclasts) could also actively participate in the modulation of
the inflammatory response. We also observed the persistence of
macrophages both in non-implanted (Sham) and in RANK-811 siR-
NA-treated groups. While those observed in the Sham group exhib-
ited a heterogeneous distribution in connective tissue and could be
associated with the inflammatory process after a surgical
approach, those observed in the RANK-811 siRNA-treated groups
were always closely related to the PE particles (presumably phago-
cytosed by them). This fact could be related with the paradoxical
rise of the cytokine expression observed with the highest dose
(10 lg) of siRNA. A potential immunoactivation role of the lipoplex
[45,46] (or some of its components, i.e. cationic liposome or nucleic
acids) could explain these findings. However, in a previous study,
we showed that the same construct used in an intra-osseous site
did not activate the systemic immune response [32]. These contra-
dictory data reinforce our hypothesis for the existence of non-iden-
tified cellular sources for pro-inflammatory mediators (i.e.
osteoclast precursors, dendritic cells, lymphoid cells and/or stro-
mal cells).

The difficulty in determining the cell(s) type(s) that effectively
internalize(s) the RANK-811 siRNA administered is the first limita-
tion of the present study. The use of carboxyfluorescein-labelled-
siRNAs (FAM-siRNAs) would allow the identification of the cells
incorporating this siRNA. The interest of FAM-siRNAs delivered
by cationic liposomes to detect its trafficking in bone tissue was
previously shown by Zhang et al. [47]. In addition, the cationic
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liposome used in Zhang et al.’s study has been combined with a
peptide for delivering siRNAs specifically to bone-forming surfaces.
In our study, the liposome DMAPAP/DOPE was not functionalized
for such bone targeting. However, we observed a delivery of
RANK-siRNAs by the cationic liposome in osteoclasts of implanted
calvaria as demonstrated by the marked decrease in the TRAP+ cell
number. Moreover the internalization of siRNAs using the cationic
liposome DMAPAP/DOPE was confirmed in monocyte/macro-
phages in a murine model of rheumatoid arthritis [30]. Further
studies will be necessary to reveal the specific cell(s) that uptake
RANK-811 siRNA and to determine the intracellular sites of interac-
tion. Finally, while we present consistent evidence about the anti-
resorptive effects of siRNA in experimental conditions, the promise
of using anti-inflammatory and bone anabolic effects needs to be
confirmed in a large number of samples.
5. Conclusions

Following local treatment with three doses of RANK-811 siRNA
delivered by the cationic lipid DMAPAP/DOPE in a PE particle-
induced osteolytic mouse model, the bone volume was preserved
with the dose of 10 lg. We also observed that 5 and 10 lg RANK-
811 siRNA dramatically decreased the osteoclastogenesis, osteolysis
and inflammation, while the dose of 2.5 lg revealed contradictory
effects. However, we showed consistent microarchitectural, histo-
logical and molecular findings to support the effectiveness of a
siRNA-based approach locally delivered targeting RANK in the
prevention of experimental osteolysis induced by PE particles.
Further studies will be necessary to specify the optimal conditions
for siRNA administration, the site of interaction and potential side
effects. This study strengthens the concept for the usefulness of
siRNA-based therapy targeting RANK, an innovative actor in the
pathophysiology of particle-induced osteolysis.
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