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Abstract Some production models in finance require infinite-dimensional commod-
ity spaces, where efficiency is defined in terms of an ordering cone having possi-
bly empty interior. Since weak efficiency is more tractable than efficiency from a
mathematical point of view, this paper characterizes the equality between efficiency
and weak efficiency in infinite-dimensional spaces without further assumptions, like
closedness or free disposability. This is obtained as an application of our main result
that characterizes the solutions to a unified vector optimization problem in terms of
its scalarization. Standard models as efficiency, weak efficiency (defined in terms of
quasi-relative interior), weak strict efficiency, strict efficiency, or strong solutions are
carefully described. In addition, we exhibit two particular instances and compute the
efficient and weak efficient solution set in Lebesgue spaces.
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1 Introduction

Multiobjective or vector optimization problems are being the focus of attention of
researchers coming from mathematics, economics, and many other disciplines, in
recent years. This is mainly because most real-life problems are modeled within this
framework and involve the optimization of several criteria simultaneously. There are
various notions of solutions to vector optimization problems, among them two arise:
efficient (Pareto) and weak efficient (weak Pareto) solutions. From the mathemati-
cal point of view, the efficient solution concept is less tractable than weak efficient;
whereas efficiency is more important for concrete applications than weak efficiency.

The purpose of this paper is twofold: on the one hand, we characterize the coinci-
dence of the efficient and weak efficient solutions without free disposability assump-
tion, where the ordering cones may have possibly empty topological interior, like the
natural cones in the space of square-integrable (or simply integrable) functions. Here,
the notion of quasi-relative interior, which coincides with the relative interior in finite
dimensional spaces, will play an important role. Cones with empty interior arise, for
instance, when considering production models in finance with an infinite dimensional
commodity space; see [1] and references therein. A characterization of the equality
of efficient and weak efficient solution sets within the context of production theory
was given by Bonnisseau and Crettez in [2], under closedness and free disposabil-
ity assumptions in finite dimensional spaces with respect to the standard nonnegative
cone (so that its interior is nonempty). A result ensuring that all points of the bound-
ary of a closed production set under free disposability are weakly efficient was stated
earlier; see for instance [3]. It will be recovered in Sect. 5. On the other hand, we
develop a scalarization procedure for a unified vector optimization problem, allowing
us, in particular, to deal with efficiency and weak efficiency, among other notions of
solution: this will be carried out via a nonlinear scalarizing function when the pref-
erence relations may be induced by sets having possibly empty interior, or they are
nonnecessarily transitive.

We refer to the books [4,5] for a theoretical treatment of vector optimization
problems concerning existence and optimality conditions. Some concrete models in
infinite-dimensional spaces may be found in [5]; and the existence results of effi-
cient points for preference relations, which are reflexive and transitive, not necessarily
coming from an ordering cone, are established in [6].

The paper is structured as follows. Section 2 provides the basic definitions and
preliminaries concerning quasi-interior and quasi-relative interior points of convex
sets. In Sect. 3, the nonlinear scalarizing function to be used is revisited, along with
an analysis of the scalarization procedure. The specializations to the standard models:
efficiency, weak efficiency (defined in terms of quasi-relative interior), weak strict
efficiency, and strict efficiency are described in Remark 4.2. Section 5 establishes the
characterization of the coincidence of efficiency and weak efficiency (involving convex
cones with possibly empty interior), as an application of previous results. A model in
the space of square-integrable functions appeared in finance and the computation of
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the set of efficient solutions for a particular instance are formulated in Sect. 6, whereas
a similar model in the space of square-summable sequences is presented in Sect. 7.
The paper ends with final conclusions in Sect. 8.

2 Formulation of the Problem

Given a nonempty set S ⊆ L , a vector function f : M → L , with L being a (real)
topological vector space and M is any nonempty set, we say that x̄ is a S-minimal of
f on M , iff

x̄ ∈ M : f (y) − f (x̄) �∈ S for all y ∈ M, y �= x̄ . (P)

The set of S-minimal solutions is denoted by ES = ES(M). When f is real valued,
E( f, M) stands for the set of minima of f on M , i.e., E( f, M) = argmin

M
f .

One recognizes in (P) a general vector optimization problem, which was introduced
in [7], see also [8]. In particular, when a convex cone P is given, it induces several
preferences by particularizing S. Thus, we recover efficient, weak efficient, strict
efficient, and (Henig) proper efficient solutions of f on M , among others, in the
classical sense.

In connection to (P), given ε ∈ IR and 0 �= q ∈ Y , we associate (P) with the
approximate problem:

find x̄ ∈ M f (x) − f (x̄) �∈ −εq + S, ∀ x ∈ M, x �= x̄, (P(εq))

where S is any set satisfying S − IR++q ⊆ S, where IR++ := ]0,+∞[. We denote
by ES(εq) the solution set to (P(εq)). The previous inclusion is a natural condition
in approximate efficiency since it yields ε1 < ε2 �⇒ ES(ε1q) ⊆ ES(ε2q); and

ES = ES(0) ⊆ ES(εq) ∀ ε ∈ IR+
.= [0,+∞[.

Consequently, ES ⊆ ⋂
ε>0 ES(εq). In case f is a real function, we denote by

E( f, M, ε) the set of ε-solutions, that is, x̄ ∈ E( f, M, ε) iff f (x) − f (x̄) ≥ −ε

for all x ∈ M . Hence, E( f, M, 0) = E( f, M).
There are several scalarizing functions allowing us to substitute the vector problem

(P) by a scalar one. A detailed and good account of some of those schemes may be
found in the book [9] as well as in [10]. A further nonlinear scalarizing function was
introduced by Hiriart-Urruty [11] for different purposes, which is called the “oriented
distance function” and defined, given A ⊆ L , by

�A(y) := dA(y) − dL\A(y), (1)

where dA(y) is the distance from A to y, i.e., dA(y) = inf x∈A ‖y − x‖. Its main
properties have been established in [12], where the main notions of solution in vector
optimization are formulated in terms of some kind of minima for a certain oriented
distance function. This function was successfully employed in [13] to provide existence
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of Lagrange multiplier in ε-Pareto efficiency using Mordukhovich subdifferential for
cones having empty interior. Note that �−S = d−S , provided int S = ∅. See also the
references therein.

However, the scalarizing function, which still remains useful, because of its impor-
tance in the development of theoretical and algorithmic issues in vector optimization
([9,10]), is the function ξq,S : L −→ IR ∪ {±∞} defined by

ξq,S(y) := inf{t ∈ IR : y ∈ tq + S}, (2)

and ξq,S(y) = +∞ whenever there is no t ∈ IR such that y ∈ tq + S. Here 0 �=
q ∈ L , and S � L . This function was rediscovered in production theory for some
specialization of S and q (see [2,3,14]), where it is called the “shortage function”.
Hence, ξq,S(y) is related with the distance from y to the boundary of S in the q-
direction. It measures the amount in q unit, by which y is short of reaching bd S. Such
a function was independently introduced in [4,15,16], although a similar function
already appeared earlier in [17], [Example 2, p. 139]. Other uses may be found in
[4,8–20] and references therein. We refer also to the good books [9,21,22]. Regarding
nonlinear scalarization for approximate efficiency, we refer to [23,24].

By the scalarizing function (2), we characterize completely the solutions to (P(εq))

via solutions to its scalarization for general ordering sets S having possibly empty
interior (Theorems 4.1 and 4.2). Specializations of this characterization allow us to
cover situations where, for instance, Theorem 4.5 and 4.6 in [25] are not applicable,
since the involved sets are not necessarily closed or may have empty interior. Earlier
results on characterizations of efficient solutions may be found in [26].

3 Basic Definitions and Preliminaries on Quasi-relative Interior

Throughout this paper, L denotes any locally convex and topological vector space. For
given A ⊆ L , we denote by C(A), int A, cl A, and bd A, the complementary of A, the
(topological) interior, the closure and the boundary of A, respectively. Moreover, we
set cone A := ⋃

t≥0 t A = {ta : t ≥ 0, a ∈ A}, which is the smallest cone containing
A, and clcone A := cl(cone A). We say A is solid iff int A �= ∅.

In order to deal with infinite-dimensional commodity spaces (like L p or l p, for
1 ≤ p < +∞), which appear in economies with production (see [1] and references
therein), we will use the notion of quasi-relative interior since in such spaces the
ordering cones (like L p

+ or l p
+) have empty interior. This allows one to substitute the

interior by the quasi-relative interior in the definition of weak efficiency (see Remark
4.2).

Given a convex set A ⊆ L and x ∈ A, NA(x) stands for the normal cone to A at
x , defined by NA(x) := {y∗ ∈ L∗ : 〈y∗, a − x〉 ≤ 0, ∀ a ∈ A}, where L∗ is the
topological dual of L and 〈·, ·〉 stands for the duality product between L∗ and L . We
say that x ∈ A is a (see, for instance, [27,28])

(a) quasi-interior point of A, denoted by x ∈ qi A, iff clcone(A − x) = L , or
equivalently, NA(x) = {0}; and
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(b) quasi-relative interior point of A, denoted by x ∈ qri A, iff clcone(A − x) is a
linear subspace of L , or equivalently, NA(x) is a linear subspace of L∗.

For any convex set A, we have that ([27,28]) qi A ⊆ qri A and int A �= ∅ implies
int A = qi A. Similarly, if qi A �= ∅, then qi A = qri A. Moreover [27], if L is a finite
dimensional space, then qi A = int A and qri A = ri A, where ri A means the relative
interior of A, which is the interior with respect to its affine hull. Obviously, qri A is
convex, and cl(qri A) = cl A provided qri A �= ∅. In addition, [27, Lemma 2.9] if
x1 ∈ qri A and x2 ∈ A, then t x1 + (1 − t)x2 ∈ qri A for all 0 < t ≤ 1. Hence, if P is
a convex cone, then qri P + P = qri P .

The (nonnegative) polar cone of a set A ⊆ L , is defined by

A∗ := {y∗ ∈ L∗ : 〈y∗, a〉 ≥ 0 ∀ a ∈ A}. (3)

The next result [27], which is an useful characterization of the quasi-relative interior,
applies to spaces like L p or l p, 1 ≤ p < +∞.

Theorem 3.1 [27, Theorem 3.10] Let P ⊆ L be a convex cone such that cl(P − P) =
L. Then,

y ∈ qri P ⇐⇒ y ∈ P and 〈y∗, y〉 > 0, ∀ y∗ ∈ P∗\{0}.

Consequently, if additionally P is closed, then

y ∈ qri P ⇐⇒ 〈y∗, y〉 > 0, ∀ y∗ ∈ P∗\{0}.

Remark 3.1 Let A ⊆ L be a convex set such that 0 ∈ A. Then, it is not difficult to
check that (see also [29])

cone(A − A) = cone A − cone A.

Proposition 3.1 Let P ⊆ L be a convex cone such that cl(P − P) = L. Then,

qri P = qi P.

Proof We only need to prove that qri P ⊆ qi P . Let y ∈ qri P . Then, y ∈ P and
0 ∈ qri(P − y), and therefore clcone(P − y) is a linear subspace. Thus, by assumption
and the preceding remark, we obtain

L =cl(P − P)=clcone(P−P)=cl(clcone(P−y)−clcone(P−y))=clcone(P−y).

(4)
Hence, y ∈ qi P . ��

By recalling that a nonsupport point x ∈ A of A is such that every closed supporting
hyperplane to A at x contains A, it is proven that the nonsupport points coincide with
the quasi-relative interior points [27], Proposition 2.6. Some examples where int A = ∅
but qri A �= ∅ may be found in [27].
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In general, we recall that every nonempty and convex subset of a separable Banach
space admits quasi-relative interior points [27], [Theorem 2.19]. There are only a few
infinite-dimensional spaces, whose natural ordering cones have nonempty interior;
among them, we mention l∞, the space of bounded variation on IR, or the space of
continuous real-valued functions defined on a compact set of IRn .

4 The Scalarizing Function Revisited and a Unified Vector Optimization
Problem

As in previous section, L continues to be a locally convex and topological vector space.
In this section, we recall some properties of the function ξq,A defined by (2). It follows
that ξq,a+A(y) = ξq,A(y − a) for all a ∈ L . If A is closed, then y ∈ ξq,A(y)q + A,
provided ξq,A(y) is finite.

This function ξq,A is a nonlinear Minkowski-type functional and has many separa-
tion properties (see [4,8,21,30]) and plays an important role in many areas, including
mathematical economics or finance; see [2,31]. In addition, the function ξq,A enjoys
very nice properties; some of the them are shown in [18,20,21]. Next proposition
collects those to be used later on without further assumptions.

Proposition 4.1 Let λ ∈ IR, 0 �= q ∈ L, and ∅ �= A � L. The following assertions
hold:

(a) {y ∈ L : ξq,A(y) < λ} = λq + A− IR++q and λq + A ⊆ {y ∈ L : ξq,A(y) ≤ λ};
thus, {y ∈ L : ξq,A(y) < 0} = −IR++q + A and {y ∈ L : ξq,A(y) < +∞} =
IRq + A.

(b) λq + intA ⊆ {y ∈ L : ξq,A(y) < λ}.
(c) {y ∈ L : ξq,A(y) ≤ λ} ⊆ λq + cl(A − IR++q).

(d) {y ∈ L : ξq,A(y) = λ} ⊆ λq + cl(A − IR++q)\(A − IR++q).

More simpler expressions are obtained under the assumption A − IR++q ⊆ A, which
is equivalent to A − IR+q ⊆ A or equivalently A − IR+q = A. Next corollary is a
consequence of the preceding proposition.

Corollary 4.1 Let λ ∈ IR, 0 �= q ∈ L,and ∅ �= A � L.

(a) Assume that cl A − IR++q ⊆ A, then

{y ∈ L : ξq,A(y) ≤ λ} = λq + cl A, ∀ λ ∈ IR and ξq,A(y) = ξq,cl A(y).

(b) Assume that intA �= ∅ and A − IR++q ⊆ intA, then

{y ∈ L : ξq,A(y) < λ} = λq + intA, ∀ λ ∈ IR and ξq,A(y) = ξq,intA(y).

(c) If cl A − IR++q ⊆ intA, then for all λ ∈ ξq,A(L),

{y ∈ L : ξq,A(y) = λ} = λq + bd A.
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Given x̄ ∈ M , the value −r0 := (ξq, f (x̄)+S ◦ f )(x̄) = ξq,S(0), which is independent
of f , measures the distance of the origin from the boundary of S in the q-direction.
Later on, we shall provide a wide class of sets for which such a value is computable.
We easily obtain

−IR++q ⊆ clcone(S − IR++q); (5)

ξq,S(0) ∈ IR ⇐⇒ [0 ∈ IRq + S and ∃ t ∈ IR, 0 �∈ tq + S − IR++q]; (6)

q ∈ (−S)\(S − IR++q) �⇒ − 1 ≤ ξq,S(0) ≤ 1. (7)

The preceding assertions can be simplified under the assumption S − IR++q ⊆ S, as
one can check it easily.

The following theorem, which appears for the first time without solidness of S, char-
acterizes solutions to (P((r0 + ε)q)) through solutions to scalar problems, depending
on ξq,S(0) and without additional assumptions on S.

Theorem 4.1 Let ∅ �= S ⊆ L, ε ≥ 0, q ∈ L\{0}, and x̄ ∈ M, and assume that
−r0 := ξq,S(0) is finite. The following assertions are equivalent:

(a) x̄ ∈ ES((ε + r0)q);
(b) x̄ ∈ E(ξq, f (x̄)+S ◦ f, M, ε) and

E(ξq, f (x̄)+S ◦ f, M, ε)\{x̄} ⊆ {x ∈ M\{x̄} : f (x) − f (x̄)

∈ [(ε − r0)q + cl(S − IR++q)] ∩ [−(ε + r0)q + C(S)]}.

Proof (a) �⇒ (b): Since f (x) − f (x̄) �∈ −(ε + r0)q + S for all x ∈ M , x �= x̄ ,
then (ξq, f (x̄)+S ◦ f )(x) ≥ −r0 − ε = (ξq,− f (x̄)+S ◦ f )(x̄) − ε by Proposition 4.1(a),
which implies that x̄ ∈ E(ξq, f (x̄)+S ◦ f, M, ε). On the other hand, take any x ∈ M ,
x �= x̄ , such that x ∈ E(ξq, f (x̄)+S ◦ f, M, ε). Then, (ξq, f (x̄)+S ◦ f )(x ′) ≥ (ξq, f (x̄)+S ◦
f )(x) − ε for all x ′ ∈ M . In particular, (ξq, f (x̄)+S ◦ f )(x) ≤ ε − r0, which gives
f (x)− f (x̄) ∈ (ε−r0)q +cl(S − IR++q) by Proposition 4.1(d). This along with the
fact that f (x) − f (x̄) ∈ −(ε + r0)q + C(S) yield the inclusion in (b). (b) �⇒ (a):
If on the contrary x̄ �∈ ES((ε + r0)q), then there exists x ′ ∈ M , x ′ �= x̄ , such that
f (x ′) − f (x̄) ∈ −(ε + r0)q + S. Thus, (ξq, f (x̄)+S ◦ f )(x ′) ≤ −(ε + r0). Hence,

(ξq, f (x̄)+S ◦ f )(x ′) = −(ε + r0),

since x̄ ∈ E(ξq, f (x̄)+S◦ f, M, ε); therefore, x ′ ∈ E(ξq, f (x̄)+S◦ f, M) ⊆ E(ξq, f (x̄)+S◦
f, M, ε). By the inclusion assumption, we get f (x ′) − f (x̄) ∈ −(ε + r0)q + C(S),
which contradicts a previous relation, proving that (a) holds. ��

Before going further, some remarks are in order.

Remark 4.1 (i) First of all, the nonlinear scalarizing scheme established in Theorem
4.1 allows us to deal with several solution concepts in vector optimization in a unified
manner, simply by taking the set S accordingly; see Remark 4.2 for details. Of course
the choice of q previleges a particular weakly efficient solution (if any) which lies
along the direction q. In case we want to find a solution, we simply take any x̄ ∈ M

123



462 J Optim Theory Appl (2015) 164:455–478

and apply (a) or (b) Corollary 4.2 to conclude whether such x̄ belong to ES(εq) or not.
On the other hand, the entire weakly efficient solution set will be found when some
parameter varies among all possible values, as expressed in part (a2) of Theorem 4.3;
earlier results in this direction may be found in Corollaries 5.1(b) and 5.4(a) of [7].
(i i) (Comparison with the linear scalarization) Assume, we are given a function f :
M ⊆ IRn → IRm . In case we are interested in its weakly efficient minima (denoted by
EW ) with respect to the nonnegative orthant in IRm , i. e., S = −int IRm+ , one desires
to know under which conditions the equivalence

x̄ ∈ EW ⇐⇒ x̄ ∈
⋃

p∗∈IRm+ ,p∗ �=0

argmin
M

〈p∗, f (·)〉 (8)

holds. Assuming the convexity of M , it is well known that equivalence (8) is true
whenever each component of f is convex, but it is still true under weaker assumption
as shown in [32].

In spite of this fact, solving the vector optimization problem via the equivalence
(8) (giving rise to the weighting method), requires to know p∗ in advance. This is the
main drawback of the procedure. In fact, by taking the function f (x) = x = (x1, x2)

and M = {(x1, x2) ∈ IR2 : x1 + x2 ≥ 1}, we get, for given p∗ = (p∗
1, p∗

2) ∈ IR2+,
p∗ �= 0,

inf
x∈M

〈p∗, f (x)〉 ∈ IR ⇐⇒ p∗
1 = p∗

2 .

Thus, there is a huge number of values of p∗ for which the optimal values of the linear
scalarized problems are unbounded. Here, EW = {(x1, x2) ∈ IR2 : x1 + x2 = 1}.
A way of choosing a parameter p∗, leading to optimal solutions, is discussed in [33]
under the boundedness from below of 〈p∗, f (·)〉 on M . Our previous theorem provides
an alternative approach by a nonlinear scalarizing function which already appears in
the literature.
(i i i) (The linear case) Consider f (x) = Ax , where A is a real matrix of order m × n,
q = (1, 1, . . . , 1) ∈ IRn , and S = −int IRm+ . Then, it is not difficult to obtain r0 = 0,
and for a given x ∈ IRn ,

(ξq, f (x)+S ◦ f )(y) = max
1≤i≤m

(Ay − Ax)i , (9)

where ai stands for the i-th component of vector a. Note that this scalarizing function
coincides with that if we consider S = −IRm+\{0}, corresponding to Pareto (efficient)
solutions. Just to give an idea on how this method works, let us consider m = n = 2,

M := {(x1, x2) ∈ IR2 : 2x1 + x2 ≤ 1, x1 + 2x2 ≤ 1, x1 ≥ 0, x2 ≥ 0},

which is compact and convex, and f (x1, x2) = (2x1 − x2,−x1 + 2x2). In this case,
given any (x1, x2) ∈ M , (9) reduces to

123



J Optim Theory Appl (2015) 164:455–478 463

(ξq, f (x)+S ◦ f )(y) = max{2y1 − y2 − 2x1 + x2,−y1 + 2y2 + x1 − 2x2}
=
{

2y1 − y2 − 2x1 + x2, if y1 − y2 ≥ x1 − x2,

−y1 + 2y2 + x1 − 2x2, if y1 − y2 ≤ x1 − x2.
(10)

Thus, our scalar minimization problem becomes, given (x1, x2) ∈ M ,

min
(y1,y2)∈M

(ξq, f (x)+S ◦ f )(y), (11)

which is of minimax-type and it is always solvable, being the objective function convex,
and the feasible set a polyhedron (An simple use of the KKT optimality conditions will
yield the solution set). We can apply Theorem 4.1 and/or Corollary 4.2 to determine
one solution or the whole solution set to the multiobjective optimization problem.
(iv) The strict inclusion in (b) for ε > 0 may happen as it is showed in [7]. Our
Theorem 4.1 largely extends and generalizes, in particular, Theorems 4.5 and 4.6 in
[25]. Indeed, Theorem 4.5 requires that S be closed and free-disposal: S − P = S,
whereas Theorem 4.6 needs that S be solid and free-disposal. Moreover, our theorem
provides more information.

From Theorem 4.1 a simple corollary is obtained.

Corollary 4.2 Let ε ≥ 0, x̄ ∈ M, and −r0
.= ξq,S(0) ∈ IR.

(a) Assume r0 = 0. If E(ξq, f (x̄)+S ◦ f, M, ε) = {x̄}, then x̄ ∈ ES(εq).
(b) Assume that S− IR++q ⊆ S. Then, E(ξq, f (x̄)+S ◦ f, M) = {x̄} �⇒ x̄ ∈ ES(r0q).

If, additionally, S is closed, then

x̄ ∈ ES(r0q) ⇐⇒ E(ξq, f (x̄)+S ◦ f, M) = {x̄}.

(c) Assume that S − IR++q ⊆ S and r0 > ε. If x̄ ∈ ES(εq), then

E(ξq,− f (x̄)+S ◦ f, M) = {x̄}.

Proof (a) and (b) follow from Theorem 4.1. (c): Since ES(εq) ⊆ ES(r0q), x̄ ∈
ES(r0q). By Theorem 4.1 (setting ε = 0), we obtain x̄ ∈ E(ξq, f (x̄)+S ◦ f, M) and

E(ξq, f (x̄)+S ◦ f, M)\{x̄} ⊆ {x ∈ M\{x̄} : f (x) − f (x̄) ∈ −r0q + cl(S)\S}.

If there exists x ′ ∈ E(ξq,− f (x̄)+S ◦ f, M), x ′ �= x̄ , then

−ε > −r0 = (ξq, f (x̄)+S ◦ f )(x̄) ≥ (ξq, f (x̄)+S ◦ f )(x ′).

Thus, by Proposition 4.1(a), one gets f (x ′)− f (x̄) ∈ −εq + S, contradicting the fact
that x̄ ∈ ES(εq). ��

One can realize that the second part of (b) in Corollary 4.2 extends that of Theorem
4.5 in [25], which is valid for improvement closed sets S. The notion of improvement
set was introduced in [34], and it will be recalled after next theorem.

When r0 = 0, a more precise formulation of Theorem 4.1 is obtained.
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Theorem 4.2 Assume that ξq,S(0) = 0 and S − IR++q ⊆ S (which implies −q ∈
clcone S by (5)). Let us consider problem (P(εq)) with ε ≥ 0, and x̄ ∈ M. The
following assertions are equivalent:

(a) x̄ ∈ ES(εq);
(b) x̄ ∈ E(ξq, f (x̄)+S ◦ f, M, ε) and

E(ξq, f (x̄)+S ◦ f, M, ε)\{x̄} ⊆ {x ∈ M : x �= x̄, f (x) − f (x̄)

∈ [εq + cl(S)] ∩ [−εq + C(S)]}.

We now provide two important sets of assumptions implying the fulfillment of the
hypothesis of Theorem 4.2:

• Assumption (B) ([7,35]): 0 ∈ bd S, cl(S) − IR++q ⊆ intS �= ∅. It implies that
−IR++q ⊆ intS.

• Assumption (C): S is conic, q ∈ (−S)\S, and S − IR++q ⊆ S; where a set S is
conic iff IR++S = S, or equivalently, t S = S for all t > 0.

Assumption (B) was introduced in [7] and clearly it implies those imposed in Theorem
4.2; the fact that ξq,S(0) = 0 is a consequence of Corollary 4.1(c). More precisely, the
preceding theorem was obtained in [7] under Assumption (B), and it was employed
to derive complete scalarizations for problems (P(εq)); whereas Lagrange optimality
conditions, both in the convex and non convex cases, were established in [35]. We
recall that a set S is improvement with respect to a convex cone P iff 0 �∈ S and
S − P = S (free disposability). Such a notion was introduced originally in [34] when
K = IRn+. In case int P �= ∅, it is easy to check that if S − P = S, then S satisfies
cl(S)− IR++q ⊆ intS for each q ∈ int P (more details may be found in [7]). Observe
that the requirement 0 ∈ bd S in Assumption (B) is not restrictive, since one can find
y0 ∈ L satisfying 0 ∈ bd(S − y0) once S �= L . Thus, every improvement set satisfies
Assumption (B), provided int P �= ∅. However, there are sets that are not free-disposal
but still satisfy Assumption (B), for instance S = −P\{0} with P being non pointed.

On the other hand, Lemma 4.1 below asserts that the hypothesis of our Theorem
4.2 is implied by Assumption (C). This is new in the literature, since (C) considers
an important class of (not necessarily solid) sets which includes the standard models
described in Remark 4.2.

We point out that there is no relationship between Assumptions (B) and (C).

Lemma 4.1 Let ∅ �= S ⊆ L be a conic set. Then,

ξq,S(0) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if q ∈ (−S)\S,

−∞, if q ∈ S,

+∞, if q �∈ S ∪ (−S), 0 �∈ S,

0, if q �∈ S ∪ (−S), 0 ∈ S,

Proof It is straightforward once one notes that q ∈ S if and only if 0 ∈ −tq + S for
all t > 0, so that ξq,S(0) ≤ −t ; q �∈ S if and only if 0 �∈ −tq + S for all t > 0; and
therefore q �∈ S ∪ (−S) if and only if 0 �∈ tq + S for all t ∈ IR, t �= 0. ��

123



J Optim Theory Appl (2015) 164:455–478 465

The choice for q in the standard models (strong efficiency, weak efficiency, effi-
ciency, weak strict efficiency, and strict efficiency), so that Theorem 4.2 is applicable,
appears in the next remark. Note that Theorems 4.5 and 4.6 of [25] are not applicable
to any of the cases described below, since the sets S are not necessarily closed or solid.

Remark 4.2 Let us consider {0} �= P �= L to be a convex cone satisfying P\(−P) �=
∅, and set l(P) := P ∩ (−P). The assumptions of Theorem 4.2 are satisfied under
any of the following circumstances:

(i) (weak efficiency) S = −qri P �= ∅ with q ∈ qri P and P being such that cl P is
not a subspace; ξq,S(0) = 0. Here, we set EW = ES and obtain

x̄ ∈ EW ⇐⇒

⎧
⎪⎨

⎪⎩

x̄ ∈ E(ξq, f (x̄)−qri P ◦ f, M) and
E(ξq, f (x̄)−qri P ◦ f, M)\{x̄}
⊆
{

x ∈ M\{x̄} : f (x) − f (x̄) ∈ −(cl P\qri P)
}
.

(12)

(ii) (efficiency) S = (−P)\P: we choose q ∈ P\(−P); ξq,S(0) = 0. We set E = ES

and obtain

x̄ ∈ E ⇐⇒

⎧
⎪⎪⎨

⎪⎪⎩

x̄ ∈ E(ξq, f (x̄)−P\l(P) ◦ f, M) and

E(ξq, f (x̄)−P\l(P) ◦ f, M)\{x̄}
⊆
{

x ∈ M\{x̄} : f (x) − f (x̄) ∈ −(cl P\P) ∪ l(P)
}
.

(13)

(iii) (weak strict efficiency) S = −P\{0},
with P being such that cl P is not a subspace and qri P �= ∅: we take q ∈ qri P;
ξq,S(0) = 0. In this case, we set E1W = ES and obtain

x̄ ∈ E1W ⇐⇒

⎧
⎪⎪⎨

⎪⎪⎩

x̄ ∈ E(ξq, f (x̄)−P\{0} ◦ f, M) and

E(ξq, f (x̄)−P\{0} ◦ f, M)\{x̄}
⊆
{

x ∈ M\{x̄} : f (x) − f (x̄) ∈ −(cl P\P) ∪ {0}
}
.

(14)

(iv) (strict efficiency) S = −P: in this case, we choose q ∈ P\(−P); ξq,S(0) = 0.
We set E1 = ES and obtain

x̄ ∈ E1 ⇐⇒

⎧
⎪⎪⎨

⎪⎪⎩

x̄ ∈ E(ξq, f (x̄)−P ◦ f, M) and

E(ξq, f (x̄)−P ◦ f, M)\{x̄}
⊆
{

x ∈ M\{x̄} : f (x) − f (x̄) ∈ −(cl P\P)
}
.

(15)

(v) (strong solutions) S = C(P) with q ∈ P\(−P); ξq,S(0) = 0.

We point out that for any q ∈ qri P , one gets

ξq,ȳ−P (y) = ξq,ȳ−P\{0}(y) = ξq,ȳ−P\l(P)(y) = ξq,ȳ−qri P (y), ∀ ȳ, y ∈ L . (16)
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Moreover,
E1 ⊆ E1W ⊆ E ⊆ EW , (17)

provided cl P is not a subspace, since in such a case, we get

qri P ⊆ P\(−P).

Furthermore, the specializations described in Remark 4.2 encompass the concrete
situations P = L p

+(�), P = l p
+, and in these cases such expressions may be simplified

because of the closednes and pointedness (l(P) = {0}) of those cones.
We are now in a position to establish our main result on complete scalarizations

which is valid, in particular, for efficient, weak efficient, and weak strict efficient solu-
tions as described in Remark 4.2, provided P is a (not necessarily solid or pointed)
closed and convex cone. This is new under Assumption (C). The analog under Assump-
tion (B) was established in [7].

Theorem 4.3 Suppose that ∅ �= S ⊆ Y , S is conic satisfying S − IR++q ⊆ S with
q ∈ (−S)\S.

(a) If 0 ∈ C(S) and S + cl S\S ⊆ S, then
(a1) x ∈ ES ⇐⇒ [x ∈ E(ξq, f (x)+S ◦ f, M) and E(ξq, f (x)+S ◦ f, M) ⊆ ES];
(a2) ES = ⋃

x∈ES
E(ξq, f (x)+S ◦ f, M).

(b) Let x̄ ∈ M and ε ≥ 0, then

x̄ ∈ ES(εq) �⇒ x̄ ∈ E(ξq, f (x)+S ◦ f, M, ε) �⇒ x̄ ∈ ES(δq) ∀ δ > ε

�⇒ x̄ ∈ Eint S(εq),

where the last implication holds provided int S �= ∅.

Proof (a1): One implication is straightforward. For the other, we need only to check
the inclusion due to Theorem 4.2: take any x ′ ∈ E(ξq, f (x)+S ◦ f, M), thus

(ξq, f (x)+S ◦ f )(y) ≥ (ξq, f (x)+S ◦ f )(x ′) = (ξq, f (x)+S ◦ f )(x) = 0, ∀ y ∈ M.

Hence, by the same theorem and the fact that 0 ∈ C(S), we obtain for all y ∈ M ,

f (y) − f (x ′) = f (y) − f (x) + f (x) − f (x ′) ∈ C(S) − cl S\S ⊆ C(S),

proving that x ′ ∈ ES , since S + (cl S\S) ⊆ S ⇐⇒ C(−S)+ (cl S\S) ⊆ C(−S). This
completes the proof. (a2): It is a consequence of (a1). (b): It is straightforward. ��

5 Characterizing when the Efficient and Weakly Efficient Solution Sets
Coincide

We now consider, in the setting of production theory, a production set ∅ �= Y ⊆ L ,
which is not necessarily closed or convex. Here, L is as before, and it is equipped with
a proper and convex cone P (by proper we mean {0} �= P �= L), satisfying qri P �= ∅.
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We denote

EW (Y, P) := {ȳ ∈ Y : y − ȳ �∈ −qri P, ∀ y ∈ Y } (18)

and
E(Y, P) := {ȳ ∈ Y : y − ȳ �∈ −P\l(P), ∀ y ∈ Y }, (19)

where, as before, l(P)
.= P ∩ (−P). As a direct consequence, we obtain

EW (Y, P) = Y\(Y + qri P) ⊆ Y ∩ bd Y, (20)

E(Y, P) = Y\(Y + [P\(−P)]). (21)

As for (17), we get

cl P is not a subspace �⇒ E(Y, P) ⊆ EW (Y, P). (22)

It is worth emphasize that, in case int P �= ∅, the set Y is closed and satisfies the
free disposability condition: Y + P = Y (which implies that Y + int P = int Y , see
[36] for instance), one obtains EW (Y, P) = bd Y , a well-known fact.

Our notion of weakly efficient point, when quasi-relative interior is considered, is
termed quasi minimal point in [37].

From Remark 4.2 (S = −qri P , S = −P\l(P) = (−P)\P , f to be the identity,
and q ∈ qri P), it follows that

ȳ ∈ EW (Y, P) ⇐⇒
{

ȳ ∈ E(ξq,ȳ−qri P , Y )

E(ξq,ȳ−qri P , Y )\{ȳ} ⊆
{

y ∈ Y\{ȳ} : y − ȳ ∈ −(cl P\qri P)
}
,

ȳ ∈ E(Y, P) ⇐⇒
{

ȳ ∈ E(ξq,ȳ−P\l(P), Y )

E(ξq,ȳ−P\l(P), Y )\{ȳ} ⊆
{

y ∈ Y\{ȳ} : y − ȳ ∈ −(P\P) ∪ l(P)
}
.

Let us introduce the following assumption originated in [2]:

Assumption (H): for all y, y′ ∈ Y\(Y + qri P), such that y − y′ ∈ P , y′ − y �∈ P ,

one has
1

2
(y + y′) ∈ Y + qri P .

A simple condition implying the validity of Assumption (H) is the strict convexity
on the set Y satisfying int Y �= ∅. We say that a convex set Y ⊆ L with int Y �= ∅
is strictly convex iff u, v ∈ Y , u �= v, then

1

2
(u + v) ∈ int Y . This condition was

considered in [38] under free disposability.

Proposition 5.1 Assume that Y ⊆ L is strictly convex such that int Y �= ∅. Let P ⊆ L
be a convex cone such that cl P is not a subspace and qri P �= ∅. Then, Assumption
(H) holds, and so by Theorem 5.1 below, EW (Y, P) = E(Y, P).

Proof Let y, y′ ∈ EW (Y, P) = Y\(Y + qri P). Then, y, y′ ∈ Y ∩ bd Y by (20). By

hypothesis,
1

2
(y + y′) ∈ int Y , which implies that

1

2
(y + y′) �∈ EW (Y, P). This means

that there exists y0 ∈ Y such that
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y0 − 1

2
(y + y′) ∈ −qri P.

Thus,
1

2
(y + y′) ∈ Y + qri P , proving the fulfillment of Assumption (H). ��

Theorem 5.1 Let P be a convex cone such that cl P is not a subspace and q ∈ qri P.
Assume that Assumption (H) fulfills and ȳ ∈ EW (Y, P). Then,

E(ξq,ȳ−P\l(P), Y )\{ȳ} ⊆
{

y ∈ Y\{ȳ} : y − ȳ ∈ −(cl P\P) ∪ l(P)
}
, (23)

and therefore ȳ ∈ E(Y, P).

Proof By Theorem 4.2 and (16), we obtain

ȳ ∈ E(ξq,ȳ−qri P , Y ) = E(ξq,ȳ−P\l(P), Y ),

and therefore

E(ξq,ȳ−P\l(P), Y )\{ȳ} ⊆
{

y ∈ Y\{ȳ} : y − ȳ ∈ −(cl P\qri P)
}
.

Thus, any y ∈ E(ξq,ȳ−P\l(P), Y )\{ȳ} satisfies

y − ȳ ∈ −(cl P\qri P). (24)

We know from (20) that
ȳ ∈ Y\(Y + qri P). (25)

We distinguish two cases: (a) y − ȳ �∈ −P: in such a case, y − ȳ ∈ −(cl P\P),
and therefore y belongs to the set on the right-hand side of (23). (b) y − ȳ ∈ −P: in
this situation, if y ∈ Y + qri P , then ȳ ∈ y + P ⊆ Y + qri P + P ⊆ Y + qri P ,
reaching a contradiction to (25). If on the contrary y ∈ Y\(Y + qri P), by assuming

that y − ȳ �∈ P , we can use Assumption (H) to get y′ .= 1

2
(y + ȳ) ∈ Y + qri P . This

implies that ȳ − y′ = 1

2
(ȳ − y) ∈ P , and therefore

ȳ ∈ y′ + P ⊆ Y + qri P + P ⊆ Y + qri P,

giving a contradiction to (25) again. Hence, y − ȳ ∈ P , that is, y − ȳ ∈ P ∩ (−P) =
l(P), proving that y belongs to the set on the right-hand side of (23). This completes the
proof of (23). An application of Theorem 4.2 allows us to conclude that ȳ ∈ E(Y, P).

��
The next result extends and generalizes that due to Bonnisseau and Crettez [2], [The-

orem 1]; no closedness on Y , or pointedness on P , or nonemptiness of the interior
of P , or free disposability is required, apart from the infinite-dimensional setting.
Under the same assumptions on Y as in [2] but in infinite dimension was proved in
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[20], [Proposition 6.1]. We need only quasi-relative interior. An earlier version without
closedness or free disposability was obtained in [39] in finite dimension with ordering
cones having nonempty interior. Existence of efficient points for preference relations
which are reflexive and transitive may be found in [6].

Corollary 5.1 Let P ⊆ L be a convex cone such that cl P is not a subspace and
qri P �= ∅, and ∅ �= Y ⊆ L. Then,

EW (Y, P) = E(Y, P) if, and only if Y satisfies Assumption (H). (26)

Proof The “if” part is a consequence of the preceding theorem. The “only if” part is as
follows. Take y, y′ ∈ Y\(Y + qri P) = EW (Y, P), such that y − y′ ∈ P , y′ − y �∈ P .
The equality EW (Y, P) = E(Y, P) entails y − y′ �∈ (−P)\P and y′ − y �∈ (−P)\P ,
yielding a contradiction. ��

6 Applications in Lp

We now consider the typical situation in L = L p. More precisely, given 1 ≤ p < +∞,
a nonempty, bounded, and open set � in IRn , L p(�; IR) denotes the set of measurable
functions (with respect to Lebesgue measure) such that

∫
�

|u|p = ∫
�

|u(t)|pdt <

+∞. It is equipped with the norm ‖u‖p :=
( ∫

�
|u|p

)1/p
. One can check that the

pointed closed and convex cone

P = L p
+(�; IR) := {y ∈ L p(�; IR) : y ≥ 0 a. e. in �}

has empty interior. For simplicity, we use L p, L p
+, and L p

++, instead of L p(�; IR),
L p

+(�; IR), and qri L p
+, respectively. It is easy to show that L p

+ − L p
+ = L p =

L p
+ − L p

++, and therefore by Proposition 3.1, we get [27], [Examples 3.11]

L p
++ = qi L p

+ = qri L p
+ = {u ∈ L p : u(x) > 0, a. e. in �}.

In what follows |A| denotes the Lebesgue measure of A. The following proposition
is easily obtained.

Proposition 6.1 Let 1 ≤ p < +∞, � ⊆ IRn be nonempty, open, and bounded set. If
∅ �= Y ⊆ L p, then

EW (Y, L p
+)\E(Y, L p

+) =
{

ȳ ∈ EW (Y, L p
+) : ∃ y ∈ Y, ∃ �′ ⊆ �, |�′| > 0;

y = ȳ, a. e. �′; ȳ > y a. e. �\�′, |�\�′| > 0
}
.

Proof Let ȳ ∈ EW (Y, L p
+) = Y\(Y + L p

++). If on the contrary ȳ �∈ E(Y, L p
+) =

Y\(Y + (L p
+\{0})), there exists y ∈ Y such that ȳ − y ∈ L p

+\{0}. On the other hand,
y − ȳ �∈ −L p

++. On combining the last two relations, we get the desired result. ��
We now present an instance which may appear in finance.
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A Model in Finance
Let us consider a model with a single firm and goods (projects), where the state of

nature is represented by � ⊆ IRn . The commodity space is L2, where each element
is a good (firm). It may be interpreted as a random variable with finite variance: given
x ∈ L2, x(t) represents the benefit of the project corresponding to the state of nature
t . We assume that the preference relation is given by the closed and convex cone L2+.
The production (opportunity) set is given by Y ⊆ L2. The standard assumptions our
model must satisfy are the following (see [40,41]):

(a) 0 ∈ Y : it means possibility of inaction;
(b) Y is convex;
(c) −L2+ ⊆ Y : sometimes it is written as Y − L2+ = Y (free disposal); if a project is

possible, then so is every other project having lower profit; and
(d) Y ∩ L2+ is bounded: it asserts that the production possibilities of the economy as

a whole are bounded, i. e., only limited profits by the firm are obtained.

Thus, the problem consists in finding an efficient solution with respect to the order-
ing cone P = −L2+. As a concrete instance, take

Y
.= {x ∈ L2 : ‖x‖2 ≤ 1} − L2+.

Clearly it satisfies (a), (b), (c), and (d). Actually, in this case, the free disposability
assumption becomes Y − L2+ = Y .

In the next instance, we are refering to efficient solutions with respect to the cone
P = L p

+, that is, we are looking for minimal elements contrary to maximal elements
as described in the above model.

Example 6.1 Let us consider p ∈ IN , p ≥ 2, Y1 to be the unit ball in L p, that is,

Y1
.= {x ∈ L p : ‖x‖p ≤ 1},

and Y = Y1 + L p
+. We are interested in the efficient solutions with respect to the cone

P = L p
+. Actually, the free disposability assumption, for the present case, reads as

L p
+ ⊆ Y , which is equivalent to Y + L p

+ = Y ; whereas the boundedness assumption
refers to the set Y ∩ (−L p

+).
We shall prove that

EW (Y1, L p
+) = E(Y1, L p

+) = E(Y, L p
+) ⊆ EW (Y, L p

+), (27)

and
EW (Y1, L p

+) =
{

z ∈ L p : ‖z‖p = 1, z ≤ 0 a. e. in �
}
, (28)

whereas

EW (Y, L p
+) =

⋃

x∈L p
+

{
z ∈ L p : ‖z − x‖p = 1, z ≤ x, a. e. in �;

x = 0, a. e. in �′ ⊆ �, |�′| > 0, x = z, a. e. in �\�′}
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=
⎧
⎨

⎩
z ∈ L p : ∃ �′ ⊆ �, |�′| > 0,

∫

�′
|z|p = 1;

z ≤ 0, a. e. �′; z ≥ 0 a. e. �\�′
⎫
⎬

⎭
. (29)

The first equality in (27) follows from Proposition 5.1 because of the strict convexity
of Y1, and the inclusion comes from (22). For the second equality, one inclusion easily
follows from (21) once we notice that Y1 ⊆ Y and

Y + (L p
+\{0}) = Y1 + L p

+ + (L p
+\{0}) = Y1 + (L p

+\{0}).

Let us prove the opposite inclusion. From above, we have

Y + (L p
+\{0}) = Y1 + (L p

+\{0}) =
⋃

y∈L p
+\{0}

{
z ∈ L p : ‖z − y‖p ≤ 1

}
, (30)

which implies that

E(Y, L p
+) = Y\(Y + (L p

+\{0})

=
⎛

⎜
⎝
⋃

x∈L p
+

{
z ∈ L p : ‖z − x‖p ≤ 1

}

⎞

⎟
⎠

∩
⋂

y∈L p
+\{0}

{
z ∈ L p : ‖z − y‖p > 1

}
. (31)

Let z ∈ E(Y, L p
+). Then, z ∈ L p and ‖z−x‖p ≤ 1 for some x ∈ L p

+, and obviously
x �∈ L p

+\{0}. Thus, x = 0 a. e. in �. Hence, from (31), we obtain

E(Y, L p
+) ⊆ {

z ∈ L p : ‖z‖p ≤ 1
} ∩

⋂

y∈L p
+\{0}

{
z ∈ L p : ‖z − y‖p > 1

}
.

= Y1\(Y1 + (L p
+\{0}) = E(Y1, L p

+),

which completes the second equality in (27). We now compute (29), and (28) can be
deduced from it. Since

Y + L p
++ = Y1 + L p

+ + L p
++ = Y1 + L p

++ =
⋃

y∈L p
++

{
z ∈ L p : ‖z − y‖p ≤ 1

}
,

(32)
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we get

Y\(Y +L p
++)=

⎛

⎜
⎝
⋃

x∈L p
+

{
z ∈ L p : ‖z−x‖p ≤1

}

⎞

⎟
⎠∩

⋂

y∈L p
++

{
z ∈ L p : ‖z−y‖p > 1

}
.

(33)

Let z ∈ Y\(Y + L p
++). Then, z ∈ L p and ‖z − x‖p ≤ 1 for some x ∈ L p

+, and
obviously x �∈ L p

++. Since δx + y ∈ L p
++ for all y ∈ L p

++ and all δ > 0, we also get
‖z − δx − y‖p > 1 for all y ∈ L p

++, and so z − δx �∈ L p
++ ∪ {0}. Set

�δ−
.= {t ∈ � : z(t) − δx(t) < 0}, �δ+

.= {t ∈ � : z(t) − δx(t) > 0} and

�δ
0

.= �\(�δ− ∪ �δ+) = {t ∈ � : z(t) = δx(t)}.

Define for fixed λ > 0 and ε > 0,

y(t) =
⎧
⎨

⎩

−λ(z(t) − δx(t)), if t ∈ �δ−;
z(t) − δx(t), if t ∈ �δ+;

ε, if t ∈ �δ
0.

Then, y ∈ L p
++, and therefore ‖z − δx − y‖p > 1 reduces to

(1 + λ)p
∫

�δ−

|z − δx |p + ε p|�δ
0| > 1.

Letting λ → 0 and ε → 0, the previous inequality yields

∫

�δ−

|z − δx |p ≥ 1,

and so |�δ−| > 0 for all δ ∈ ]0, 1]. We also obtain

0 < δ1 < δ2 ≤ 1 �⇒ �0− ⊆ �
δ1− ⊆ �

δ2− ⊆ �1−. (34)

Thus,

1 ≥
∫

�

|x − z|p ≥
∫

�δ−

|z − x |p ≥
∫

�δ−

|z − δx |p ≥ 1,

which implies that

∫

�

|z − x |p =
∫

�δ−

|z − x |p =
∫

�δ−

|z − δx |p = 1, ∀ δ ∈ ]0, 1]. (35)
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Hence,

∫

�1+

|z − x |p = 0,

yielding |�1+| = 0 (it may occur that �1+ = ∅), which means z ≤ x a. e. in �. For
0 < δ < 1, one obtains

1 =
∫

�δ−

(x − z)p =
∫

�δ−

[δx − z + (1 − δ)x]p

=
∫

�δ−

[
(δx − z)p +

p−1∑

k=1

( p
k

)
(δx − z)k(1 − δ)p−k x p−k + (1 − δ)px p

]

≥
∫

�δ−

(δx − z)p = 1,

where
( p

k

)
.= p!

k!(p − k)! . Then,

x = 0 a. e. in �δ− for all 0 < δ < 1. (36)

Moreover, for 0 < δ < 1,

1 =
∫

�

|z − x |p =
∫

�1−

|z − x |p =
∫

�δ−

|z − x |p +
∫

�1−\�δ−

|z − x |p

= 1 +
∫

�1−\�δ−

|z − x |p.

This gives |�1−\�δ−| = 0, which together with (36) and the fact that |�1+| = 0 yield
x = 0 a. e. in �1− ∪�1+. This proves that any z in EW (Y, L p

+) belongs to the set on the
right-hand side of (29) by taking �′ .= �1− ∪ �1+, and so �\�′ = �1

0. To prove the
reverse implication, take any z in the right-hand side of (29). Then, for each y ∈ L p

++,
we obtain

∫

�

|z − y|p =
∫

�′
|z − y|p +

∫

�\�′
|z − y|p ≥

∫

�′
(y − z)p

=
∫

�′

⎛

⎝y p +
p−1∑

k=1

(
p
k

)

yk(−z)p−k + (−z)p

⎞

⎠ .
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Since y > 0 and z ≤ 0 a.e. in �′, we obtain

∫

�

|z − y|p ≥
∫

�′
y p +

∫

�′
|z|p > 1.

Hence, z belongs to the right-hand side of (33), proving the equality in (29). In order
to check (28), simply note that

EW (Y1, L p
+) = Y1\(Y1 + L p

++) =
⋂

y∈L p
++

{
z ∈ L p : ‖z‖p ≤ 1, ‖z − y‖p > 1

}
,

(37)
and then follows the same reasoning as above.

7 Applications in lp

Here, l p is the set of real sequences x = (xi )i∈IN such that ‖x‖p =
(∑

i∈IN |xi |p
)1/p

< +∞. As above, we also get [27], [p. 29]

l p
++ = qi l p

+ = qri l p
+ = {x = (xi )i∈IN ∈ l p : xi > 0, ∀ i ∈ IN }.

In the following, |I | means the cardinality of the set I .

Example 7.1 Let us consider p ∈ IN , p ≥ 2, Y1 to be the unit ball in l p, that is,

Y1
.= {x ∈ l p : ‖x‖p ≤ 1},

and Y = Y1 + l p
+. We shall prove that

EW (Y1, l p
+) = E(Y1, l p

+) = E(Y, l p
+) ⊆ EW (Y, l p

+), (38)

and
EW (Y1, l p

+) =
{

z ∈ l p : ‖z‖p = 1, zi ≤ 0 ∀ i ∈ IN
}
, (39)

whereas

EW (Y, l p
+)

=
⋃

x∈l p
+

{
z ∈ l p : ‖z − x‖p = 1, zi < xi = 0, ∀ i ∈ I ′; zi = xi ∀ i ∈ IN\I ′}

=
{

z ∈ l p : ∃ ∅ �= I ′ ⊆ IN ,
∑

i∈I ′
|zi |p = 1; zi ≤ 0, ∀ i ∈ I ′; zi ≥ 0 ∀ i ∈ IN\I ′

}

.

(40)

The proof of (38) is similar to that in the preceding example.
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We proceed as in the previous example by computing only (40), since (39) can be
derived from it.
Since

Y + l p
++ = Y1 + l p

+ + l p
++ = Y1 + l p

++ =
⋃

y∈l p
++

{
z ∈ l p : ‖z − y‖p ≤ 1

}
, (41)

we get

Y\(Y + l p
++) =

⎛

⎜
⎝
⋃

x∈l p
+

{
z ∈ l p : ‖z − x‖p ≤ 1

}

⎞

⎟
⎠∩

⋂

y∈l p
++

{
z ∈ l p : ‖z − y‖p > 1

}
.

(42)
Following the reasoning in the preceding example, given 0 < δ ≤ 1, λ > 0, and
1 > ε > 0, we consider

yi =

⎧
⎪⎪⎨

⎪⎪⎩

−λ(zi − δxi ), if i ∈ I δ−;
zi − δxi , if i ∈ I δ+;

ε1/p

2i/p
, if i ∈ I δ

0 ,

where

I δ−
.= {i ∈ IN : zi − δxi < 0}, I δ+

.= {i ∈ IN : zi − δxi > 0},
I δ
0

.= IN\(I δ− ∪ I δ+) = {i ∈ IN : zi = δxi }.

Then, y ∈ l p
++. As before, we deduce that

(1 + λ)p
∑

i∈I δ−

|zi − δxi |p + ε
∑

i∈I δ
0

1

2i
> 1.

Letting λ → 0 and ε → 0, the previous inequality yields

∑

i∈IN

|zi − xi |p =
∑

i∈I δ−

|zi − xi |p =
∑

i∈I δ−

|zi − δxi |p = 1, ∀ δ ∈ ]0, 1], (43)

which implies that I δ− �= ∅ and I 1+ = ∅. Similar to (36), we also obtain

xi = 0 ∀ i ∈ I δ−, and all 0 < δ < 1. (44)
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In addition, from the equalities (1 < δ < 1)

1 =
∑

i∈IN

|zi − xi |p =
∑

i∈I 1−

|zi − xi |p

=
∑

i∈I δ−

|zi − xi |p +
∑

i∈I 1−\I δ−

|zi − xi |p = 1 +
∑

i∈I 1−\I δ−

|zi − xi |p,

we get |I 1−\I δ−| = 0, and so I 1− = I δ− �= ∅, leading to xi = 0 for all i ∈ I 1−. This
proves that any z in EW (Y, l p

+) belongs to the set in the right-hand side of (40) by
taking I ′ .= I 1−; since I 1+ = ∅, zi = xi for all i ∈ IN\I ′ = I 1

0 .
The reverse inclusion is proved in a similar way to the previous example.

8 Conclusions

Motivated by some models in economies with production, which require infinite-
dimensional commodity spaces like L p or l p, and where the ordering cones have
empty interior, we develop further a nonlinear scalarization approach without any
convexity assumptions, started in [7], by the quasi-relative interior or quasi interior. Our
approach is used to characterize the coincidence of the efficient and the weakly efficient
solution sets (in term of quasi-relative interior instead of interior). A couple of models
is presented for which the efficient and weakly efficient solution sets are computed.
Our unified scalarization scheme may be considered as an alternative procedure to
that developed in [13], which uses a different nonlinear scalarization function.

Some issues that deserve to be discussed were left out. One of them is related to
optimality conditions, in terms of Lagrange multipliers, in our very general setting.
This means that we can discuss separately the convex from the nonconvex situation. In
the last case, one may use the Mordukhovich subdifferential. Another interesting topic
regards the specification of large classes of vector functions for which the correspond-
ing scalar optimization problem belongs to some family of known solvable problems.
In Remark 4.1, (iii) is exhibited which kind of scalar problems we can expect once one
scalarize linear vector optimization problems via the nonlinear scalarizing function
used in this paper. Finally, it would be interesting to apply our results to some concrete
problems in optimal control. Some models are described in [5].
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