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1. Introduction

Numerous major theorems in combinatorics are formulated in terms of min-max relations of dual graph parameters.

Perfect graphs were defined by Berge in terms of a min-max inequality involving clique and chromatic number. The chro-
matic number yx (G) of a graph G is the minimum number of colors needed to assign different colors to adjacent vertices of G.
The maximum size of a clique in G is its clique number w(G). Clearly, the min-max type inequality w(G) < x (G) holds for ev-
ery graph G. Berge [3] called a graph G perfect if and only if the equality w(H) = yx (H) holds for each induced subgraph H of G.

An important result about perfect graphs is the Perfect Graph Theorem which states that the complement of a perfect
graph is also perfect [29,40]. Thus, a graph G is perfect if and only if clique and chromatic number coincide for each induced
subgraph of its complement G. The clique number of G is the stability number «(G), which is the maximum number of pair-
wise nonadjacent vertices of G. The chromatic number of G is the clique covering number 6 (G), which is the minimum number
of cliques of G covering all its vertices. Hence, the min-max type inequality «(G) < 6(G) holds for every graph G and, by
virtue of the Perfect Graph Theorem, a graph G is perfect if and only if « (H) = 6 (H) holds for each induced subgraph H of G.
__Aholeorantihole in a graph G is an induced subgraph isomorphic to the chordless cycle on k vertices Cy or its complement
C, respectively, for some k > 5. 1f k is odd, then the hole or antihole is odd; otherwise it is even. Berge [3] conjectured that a
graph is perfect if and only if it has no odd holes and no odd antiholes. This conjecture was proved to be true about 40 years
later and is now known as the Strong Perfect Graph Theorem [19].
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Fig. 1. Some small graphs. The circled vertex is the center of the bipartite claw.

Theorem 1.1 (Strong Perfect Graph Theorem [19]). A graph is perfect if and only if it has no odd holes and no odd antiholes.

A polynomial-time recognition algorithm for perfect graphs was given in [18].

The class of clique-perfect graphs is defined by requiring equality in a min-max type inequality related to the Kénig prop-
erty of the family of maximal cliques. Consider a family ¥ of nonempty subsets of a finite ground set X, then the transversal
number t(¥) is the minimum number of elements of X needed to intersect every member of # and the matching number
v(F) of F is the maximum size of a collection of pairwise disjoint members of . If these two numbers coincide, the family
F is said to have the Kénig property [4].

Let @ be the family of all maximal cliques of G. A collection of pairwise disjoint maximal cliques of a graph is a clique-
independent set and a vertex set intersecting every maximal clique of a graph is a clique-transversal. Accordingly, we call v(Q)
the clique-independence number a.(G) and 7 (@) the clique-transversal number t.(G). Clearly, the min-max type inequality
c(G) < 7.(G) holds for every graph G. A graph G is clique-perfect [30] if «c(H) = 7.(H) holds for each induced subgraph
H of G. In other words, a graph G is clique-perfect if and only if, for each induced subgraph of G, the family of all maximal
cliques has the Kénig property.

The Kénig property has its origins in the study of matchings and transversals in bipartite graphs. The matching number
v(G) of a graph G is the maximum size of a matching (a set of vertex-disjoint edges) and the transversal number t(G) is the
minimum size of a vertex cover (a set of vertices intersecting every edge). Clearly, the min-max type inequality v(G) < 7(G)
holds for every graph G. In 1931, Kénig [36] and Egervary [27] proved that every bipartite graph B satisfies v(B) = 7(B). This
result is now known as the Kénig—Egervdry Theorem. Notice that if B is bipartite, then «.(B) = v(B)+i(B) and 7.(B) = t(B) +
i(B) where i(B) denotes the number of isolated vertices of B; consequently, «(B) = t.(B) if and only if v(B) = t(B). There-
fore, since each induced subgraph of a bipartite graph is also bipartite, the Kénig-Egervary Theorem can be restated by saying
that every bipartite graph is clique-perfect. Apart from bipartite graphs, some other graph classes are known to be clique-
perfect: comparability graphs [ 1], balanced graphs [5], complements of forests [7], and distance-hereditary graphs [37].

It is important to mention that not all clique-perfect graphs are perfect and that not all perfect graphs are clique-perfect.
For instance, the even antihole Cg; is perfect but not clique-perfect, whereas the odd antihole Cg3 is clique-perfect but
not perfect, for each k > 1. In fact, we have:

Theorem 1.2 ([26,30]). A hole C; is clique-perfect if and only if n is even. An antihole C;, is clique-perfect if and only if n is a
multiple of 3.

Notice also that if the equality a(G) = 7.(G) holds for a graph G, then the same equality may not hold for all its induced
subgraphs. For instance, every graph G in the class of dually chordal graphs [14] satisfies the equality «.(G) = t.(G), but
dually chordal graphs are not clique-perfect in general; e.g., the 5-wheel (the graph that arises from Cs by adding a vertex
adjacent to every other vertex) is dually chordal but it is not clique-perfect because it contains an induced Cs, for which
Olc(CS) = 2 but TC(C5) =3.

Unlike perfect graphs, the class of clique-perfect graphs is not closed under graph complementation; e.g., the net and the
3-sun (see Fig. 1) are complement graphs of each other such that the former is clique-perfect but the latter is not clique-
perfect. Moreover, a complete characterization of clique-perfect graphs by forbidden induced subgraphs is not known either.
Another open question regarding clique-perfect graphs is the computational complexity of their recognition problem. Nev-
ertheless, some partial results in this direction appeared in [8,9,11,38], where necessary and sufficient conditions for a graph
G to be clique-perfect in terms of forbidden induced subgraphs as well as polynomial-time algorithms for deciding whether
a given graph G is clique-perfect were found when restricting G to belong to one of several different graph classes. Interest-
ingly, the problems of determining o (G) and t.(G) are both NP-hard even if G is a split graph [17] and determining 7.(G)
is NP-hard even if G is a triangle-free graph [28]. More NP-hardness results of this type for o and 7. were proved in [30].
Some polynomial-time algorithms for determining o (G) and 7.(G) when G belongs to one of several different graph classes
were devised in [1,13,17,22,24-26,30,37].

The line graph L(H) of a graph H is the graph whose vertices are the edges of H and such that, for every two different edges
eand f of H, ef is an edge of L(H) if and only if e and f share an endpoint. A graph G is a line graph [51] if it is the line graph
of some graph H; if so, H is called a root graph of G. Perfectness of line graphs (or, equivalently, of their complements) was
studied in [42,43]. In [8], clique-perfectness of line graphs was characterized by forbidden induced subgraphs, as follows
(see Fig. 1 for a 3-sun).

Theorem 1.3 ([8]). If G is a line graph, then G is clique-perfect if and only if G contains no induced 3-sun and has no odd hole.
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Since the class of clique-perfect graphs is not closed under graph complementation, the above result does not deter-
mine which complements of line graphs are clique-perfect. The main result of this work is the theorem below which gives
necessary and sufficient conditions for the complement of a line graph to be clique-perfect, in terms of forbidden induced
subgraphs.

Theorem 1.4. If G is the complement of a line graph, then G is clique-perfect if and only if G contains no induced 3-sun and has
no antihole Cy for any k > 5 such that k is not a multiple of 3.

Let G be the complement of the line graph of a graph H. In order to prove Theorem 1.4, we profit from the fact that the
maximal cliques of G are precisely the maximal matchings of H. (In this work, maximal means inclusion-wise maximal,
whereas maximum means maximum-sized.) We call any set of edges intersecting all the nonempty maximal matchings of H
a matching-transversal of H, and any collection of edge-disjoint nonempty maximal matchings of H a matching-independent
set of H. We define the matching-transversal number t,(H) of H as the minimum size of a matching-transversal of H
and the matching-independence number a,(H) of H as the maximum size of a matching-independent set of H.!Clearly,
ac(G) = ap(H) and 1.(G) = 1, (H). We say that H is matching-perfect if ay(H') = t,(H") for every subgraph H’ (in-
duced or not) of H. Equivalently, H is matching-perfect if and only if the nonempty maximal matchings of H’ have the K6nig
property for each subgraph H’ (induced or not) of H. Hence, G is clique-perfect if and only if H is matching-perfect, and
Theorem 1.4 can be reformulated as follows (see Fig. 1 for a bipartite claw).

Theorem 1.5. A graph H is matching-perfect if and only if H contains no bipartite claw and the length of each cycle of H is at
most 4 or a multiple of 3.

In this work, ‘H contains no J’ means that H contains no subgraph (induced or not) isomorphic to J.

The structure of the paper is as follows. In the next subsection, we give basic definitions and preliminaries. In Section 2,
we collect all structural theorems needed to establish our main results. In Section 2.1, we give a precise description of the
linear and circular structure of those graphs containing no bipartite claw, which is used all along this work. In Section 2.2,
we give a structure theorem for those graphs containing no bipartite claw that are Class 2 with respect to edge-coloring.
This structure theorem is key for finding the matching-independent sets needed for the proofs given in Section 2.3 of the
main results of this work (Theorems 1.4 and 1.5). This leads to a linear-time recognition algorithm for matching-perfect
graphs and an O(n?)-time algorithm for deciding whether or not any given complement of a line graph is clique-perfect,
that follow from our main results. In Section 3, we present the proofs for all results. The main results of this paper appeared
in the extended abstract [10].

Basic definitions and preliminaries

All graphs in this work are finite, undirected, without loops, and without multiple edges. For all basic graph-theoretic def-
initions and notations not defined in this section, we refer to West [50]. The only exceptions to this rule are the notions of mi-
nors and tree-width, which we will mention only incidentally; for a gentle introduction to these notions, see [23, Chapter 12].

Let G be a graph. The vertex set of G is denoted by V (G), the edge set by E(G), and the complement by G. The neighborhood
of avertex v in G is denoted by N;(v), whereas Ng[v] denotes Ng(v) U {v}. We denote by E¢(v) the set of edges of G incident
to a vertex v. Two nonadjacent vertices v and w of G are false twins if Ng(v) = Ng(w), whereas two adjacent vertices v and
w are true twins if Ng[v] = Ng[w]. For any set S, |S| denotes its cardinality. The degree dg(v) of a vertex v of G is [Ng(v)]|.
The maximum degree among the vertices of G is denoted by A(G) and the minimum degree by 5(G). A vertex is pendant if
its degree is 1. An edge is pendant if at least one of its endpoints is a pendant vertex. The center of the bipartite claw is its
vertex of degree 3. A vertex of G is universal if it is adjacent to every other vertex of G. A graph is complete if its vertices are
pairwise adjacent and K, denotes the complete graph on n vertices. A clique of a graph is a set of pairwise adjacent vertices.
A stable set of a graph is a set of pairwise nonadjacent vertices.

Let Z be a path or a cycle. We denote by E(Z) the set of edges joining two consecutive vertices of Z and the length of Z is
|E(Z)|. A chord of Z is an edge joining two nonconsecutive vertices of Z and Z is chordless if Z has no chords. A chord ab of Z is
short if there is some vertex c of Z that is consecutive to each of a and b in Z; if so, c is called a midpoint of the short chord ab.
Three short chords are consecutive if they admit three consecutive vertices of Z as their midpoints. A chord of Z which is not
short is called long. Two chords ab and cd of a cycle C such that their endpoints are four different vertices of C that appear in
the order a, c, b, d when traversing C are called crossing. An n-path (or n-cycle) is a path (or cycle, respectively) on n vertices.
The chordless path (or cycle) on n vertices is denoted by P, (or C,, respectively). The endpoints of a path are the initial and
final vertices of the path. If P = vqv, ... v, is a path and v is a vertex adjacent to vy, then vP denotes the path vvqv; ... v,.
IfP = vivy...v, and P/ = wyw, ... w,, are two paths whose only common vertex is v, = w1, then PP’ denotes the path
ViV2 ... 0pWoW3 ... Wpy.

Let G and H be two graphs. We say that G contains H if H is a subgraph (induced or not) of G and that G contains an induced
H if H is an induced subgraph of G. A graph G is spanned by H if H is a subgraph of G and V(H) = V(G). We say that G is

1 Notice that only nonempty maximal matchings are considered when defining matching-transversals and matching-independent sets to guarantee that
for every edgeless graph H the equality o, (H) = 7,,(H) holds because both parameters are equal to 0; otherwise, o, (H) would be 1 because of the empty
set being a maximal matching of H.
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Fig. 2. Basic two-terminal graphs with terminals s and t.

H-free if G contains no induced H. A graph is triangle-free if it contains no K3. The subgraph of G induced by a subset W of
vertices of G is denoted by G[W ] and G— W denotes G[V (G) — W1. A cut-vertex of a graph is a vertex whose removal increases
the number of components. A component is trivial if it has precisely one vertex. A block of a graph is a maximal connected
subgraph that has no cut-vertex. We say that a subset W of the vertices of a graph H is edge-dominating in H if each edge of
H has at least one endpoint in W. A subgraph J of a graph H is edge-dominating in H if V (J) is edge-dominating in H.

If F is a subset of the edge set of a graph G, G — F denotes the graph that arises from G by removing the members of F
from the edge set of G. If G is a graph and e is an edge of G, we denote G — {e} simply by G — e. For each n > 2, K, — e denotes
the graph that arises from K, by removing exactly one edge from its edge set.

By contracting a subgraph H of G we mean replacing V (H) with a new vertex h and making each vertex v € V(G) — V(H)
adjacent to h if and only if v was adjacent in G to some vertex of H. By identifying two vertices u and v of a graph G we mean
contracting the subgraph H of G induced by {u, v}. Let G and H be two graphs and assume, without loss of generality, that
V(G) NV (H) = @. The disjoint union G + H of G and H is the graph with vertex set V(G) U V(H) and edge set E(G) U E(H).
If t is a positive integer, we denote by tG the disjoint union of t graphs, each of which isomorphic to G.

A vertex v is saturated by a matching M if v is the endpoint of some edge of M. A graph H is bipartite if its vertex set is
the union of two disjoint (possibly empty) stable sets X and Y; if so, {X, Y} is called a bipartition of H. The following is a
well-known result about matchings in bipartite graphs.

Theorem 1.6 (Hall’s Theorem [31]). If H is a bipartite graph with bipartition {X, Y}, then there is a matching M of H that
saturates each vertex of X if and only if

UNu(@

aeA

> |A| foreachA C X.

2. Structural characterizations
2.1. Linear and circular structure of graphs containing no bipartite claw

In this subsection, we present a structure theorem for graphs containing no bipartite claw that will turn out to be very
useful along this work.

The linear and circular structure of net-free N claw-free graphs is studied in [ 15]. As the line graphs of those graphs con-
taining no bipartite claw are the net-free N line graphs, the main result of this subsection (Theorem 2.4) may be regarded
as describing a more explicit linear and circular structure for the more restricted class of net-free N line graphs.

Our structure theorem will be stated in terms of linear and circular concatenations of two-terminal graphs that we now
introduce. A two-terminal graph is a triple I' = (H, s, t), where H is a graph and s and t are two different vertices of H, called
the terminals of I".

We now introduce in some detail the two-terminal graphs depicted in Fig. 2. For each m > 0, the m-crown is the two-
terminal graph (H, s, t) where V(H) = {s,t,a;,a,...,an} and E(H) = {st} U {sa;: 1 <i <m} U {ta;: 1 < i < m}. The
0-crown and the 1-crown are called edge and triangle, respectively. For each m > 2, the m-fold is the two-terminal graph
(H, s, t) where V(H) = {s,t,ai,as,...,ay}and E(H) = {sa;: 1 < i < m}U {ta;: 1 < i < m}. The 2-fold is also called
square. By a crown we mean an m-crown for some m > 0 and by a fold we mean an m-fold for some m > 2. Finally, K4 will
also denote the two-terminal graph (Ky, s, t) for any two vertices s and t of the K;. We will refer to the crowns, the folds,
the rhombus, and the K, as the basic two-terminal graphs.

If I = (H,s,t) is a two-terminal graph, then H is the underlying graph of I', s is the source of I'", and t is the sink of I".
If I = (Hy, 51, t1) and I, = (Ha, sy, ) are two-terminal graphs, the p-concatenation I'y & , I is the two-terminal graph
(H, s1, t;) where H arises from the disjoint union H; + H, by identifying t; and s, into one vertex u and then attaching p
pendant vertices adjacent to u. The 0-concatenation I'y & oI5 is denoted simply by I'; & I. If a two-terminal graph I" =
(H, s, t) is such that Ny [s] Ny [t] = ¥, we define its p-closure, denoted I" & , O, as the graph that arises by identifying s and
t into one vertex u and then attaching p pendant vertices adjacent to u. The 0-closure I" & ¢ © is simply denoted by I" & .
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a %
Fig. 3. Alinear and a circular concatenation of the sequence I'y, I, I3, I'; of two-terminal graphs, where I7 is a square, I, and I’ are rhombi, and I is
a triangle: (a) Underlying graph of Iy & I'; & ;I3 & Iy and (b) I't & I, & ;I3 & 114 & 3 0. Concatenation vertices are circled.

Let Iy, I, ..., I, be asequence of two-terminal graphs. A linear concatenation of I'y, Iy, . . ., I, is the underlying graph
of the two-terminal graph Iy & p, I3 &p, - -+ &, , I, for some nonnegative integers p1, p2, ..., ps—1. The two-terminal
graphs I'1, I3, ..., I, are called the links of the linear concatenation. The concatenation vertices of such a linear concatena-
tion are the n — 1 vertices that arise by identifying the sink of I'; with the source of I}, foreachi € {1, 2,...,n — 1}. The
two links I5 and I}, are called adjacent in the linear concatenation, for each i € {1, 2, ..., n — 1}. The graph K; will be
regarded as the linear concatenation of an empty sequence of two-terminal graphs. See Fig. 3(a) for an example of a linear
concatenation. A circular concatenation of I, I, ..., I isany graph It & ,, I3 & p, - -+ &, I &, O for some nonneg-
ative integers p1, pa, . . ., Pn. The two-terminal graphs Iy, I, . .., I}, are called the links of the circular concatenation. The
concatenation vertices of such a circular concatenation are the n — 1 vertices that arise by identifying the sink of I; with the
source of I}, foreachi € {1, 2,...,n— 1}, as well as the vertex that arises by identifying the sink of I';, with the source of
I'1. The two links 75 and 7,1 are called adjacent in the circular concatenation, for eachi € {1,2,...,n — 1}, as well as the
links I';, and I7. See Fig. 3(b) for an example of a circular concatenation.

A caterpillar [32] is a connected graph containing no bipartite claw and having no cycle. The fact that caterpillars have
edge-dominating chordless paths, gives them a very simple linear structure that can be expressed using our notion of linear
concatenation, as follows.

Theorem 2.1 ([33]). A graph is a caterpillar if and only if it is the linear concatenation of edge links.

We say fat caterpillars to those connected graphs containing no bipartite claw and having no cycle of length greater than
4. Our first result characterizes fat caterpillars depending on whether or not they contain an A or a net:

Theorem 2.2. If H is a graph, then each of the following holds:

(i) H is a fat caterpillar containing no A and no net if and only if H is a linear concatenation of crowns, folds, rhombi, and K4's
where the K4 links may occur only as the first and/or last links of the concatenation.

(ii) H is a fat catepillar containing A if and only if H has an edge-dominating 4-cycle C = v{vyv3v4v; and two different vertices
X1, Xy € V(H) — V(C) such that x; is adjacent to v; for each i € {1, 2}, each non-pendant vertex in V(H) — V(C) is a false
twin of v4 of degree 2, and one of the following holds: C is chordless; vivs is the only chord of C and dy(v4) = 2; C has two
chords and dy (v3) = dy(vgq) = 3.

(iii) H is a fat caterpillar containing a net but no A if and only if H has some edge-dominating triangle C such that for each vertex
v € V(C) there is a pendant vertex x adjacent to v and every vertex in V(H) — V(C) is pendant.

In summary, we proved the following structure of fat caterpillars that will be useful in the proof of the main result of this
subsection.

Corollary 2.3. A graph H is a fat caterpillar if and only if exactly one of the following conditions holds:

(i) H is a linear concatenation of crowns, folds, rhombi, and K4's where the K4 links may occur only as the first and/or last links

of the concatenation.

(ii) H is the circular concatenation edge & p, edge & ,,edge & ,,edge & ,, © for some nonnegative integers p1, pz, p3, P4 such
that p1,p, > 1.

(iii) H is the circular concatenation edge & , edge & ,,m-fold & ,,, © for some m > 2 and some nonnegative integers p1, pz, p3
such that p1, p, > 1.

(iv) H is the circular concatenation edge & ,, edge & p, m-crown & ,, O for somem > 1and some nonnegative integers p1, p2, P3
such that p1,p; > 1.

(v) H is the underlying graph of edge & p, K4 & ,, edge for some nonnegative integers pq, pa.

(vi) H is the circular concatenation edge & , edge & ,,edge & ,, © for some positive integers py, pz, ps3.

This enables us to prove that, except for a few sporadic cases (assertions (i), (ii), and (iii)), connected graphs containing
no bipartite claw are linear and circular concatenations of basic two-terminal graphs (assertion (iv)).

Theorem 2.4. If H is a connected graph, then H contains no bipartite claw if and only if at least one of the following assertions
holds:

(i) H is spanned by a 6-cycle having a long chord or three consecutive short chords.
(ii) H has a 5-cycle C and a vertex u € V(C) such that: (1) each v € V(H) — V(C) is a pendant vertex adjacent to u and (2) C
has three consecutive short chords or u is the midpoint of a chord of C.
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Fig. 4. Graphs P*, SKy, K5 — e, Ls, and SKs.

(iii) H has a clique Q of size 4 and q1, g2 € Q such that: (1) each v € V(H) — V(Q) is a pendant vertex adjacent to q; or ¢
and (2) there is at least one pendant vertex adjacent to q; for eachi € {1, 2}.

(iv) H is a linear or circular concatenation of crowns, folds, rhombi, and K,'s, where the K4 links may occur only in the case of
linear concatenation and only as the first and/or last links of the concatenation.

Notice that, although those graphs satisfying (iii) are also linear concatenations of basic two-terminal graphs (namely, the
underlying graphs of edge & ,, K4 & , edge for some positive integers p; and p, ), we prefer to consider (iii) a sporadic case.

2.2. Edge-coloring graphs containing no bipartite claw

The chromatic index x'(H) of a graph H is the minimum number of colors needed to color all the edges of H so that no
two incident edges receive the same color. Clearly, x'(H) > A(H). In fact, Vizing [48] proved that for every graph H either
x'(H) = A(H) or x'(H) = A(H) + 1. The problem of deciding whether or not any given graph H satisfies x'(H) = A(H)
is NP-complete even for graphs having only vertices of degree 3 [35]. Interestingly, if H contains no bipartite claw, then
x'(H) can be computed in linear-time via the algorithm devised in [52] (in fact, H has bounded tree-width because the
bipartite claw is not a minor of H [44,45]). Here, we give a structure theorem for those graphs containing no bipartite claw
and satisfying x’ # A.

We need to introduce some terminology related to edge-coloring. A major vertex of a graph is a vertex of maximum degree.
If H is a graph, the core H, of H is the subgraph of H induced by the major vertices of H. Graphs H for which x'(H) = A(H)
are Class 1, and otherwise they are Class 2. A graph H is critical if H is Class 2, connected, and x'(H — e) < x'(H) for each
e € E(H). Some graphs needed in what follows are introduced in Fig. 4.

We rely on the following results.

Theorem 2.5 ([34]).If H is a connected Class 2 graph with A(H,) < 2, then the following conditions hold:
(i) H is critical.

(ii) 8(Hp) = 2.

(iii) §(H) = A(H) — 1, unless H is an odd chordless cycle.

(iv) Every vertex of H is adjacent to some major vertex of H.

Theorem 2.6 ([16]). If H is a connected graph such that A(H,) < 2 and A(H) = 3, then H is Class 1, unless H is P*.

Theorem 2.7 ([49]). If H is a graph of Class 2, then H contains a critical subgraph of maximum degree k for each k such that
2 <k< A(H).

Theorem 2.8 ([2]). There are no critical graphs having 4 or 6 vertices. The only critical graphs having 5 vertices are Cs, SKy4, and
K5 —e.

By exploiting our structure theorem for graphs containing no bipartite claw (Theorem 2.4) and the results above, we give
a structure theorem for all connected graphs containing no bipartite claw that are Class 2.

Theorem 2.9. If H is a connected graph containing no bipartite claw, then x'(H) = A(H) if and only if none of the following
statements holds:
(i) A(H) = 2 and H is an odd chordless cycle.
(ii) A(H) = 3 and H is the circular concatenation of a sequence of edges, triangles, and rhombi, where the number of edge links
equals one plus the number of rhombus links.
(iii) A(H) =4andH is Ks — e, Ks, Ls, or SKs.

As a corollary, we obtain the complete list of critical graphs containing no bipartite claw.
Corollary 2.10. The critical graphs containing no bipartite claw are the odd chordless cycles, Ks — e, and those graphs H satisfying

A(H) = 3 that are circular concatenations of edges, triangles, and rhombi having exactly one more edge link than rhombus links
and without pendant edges.

2.3. Matching-perfect graphs
Notice that the bipartite claw is not matching-perfect (because it satisfies o, = 1 but t, = 2) and that the cycles of

length k > 5 such that k is not a multiple of 3 are not matching-perfect (because they satisfy o, = 2 but 7, = 3). Hence,
since the class of matching-perfect graphs is monotone (i.e., all the subgraphs of matching-perfect graphs are matching-
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perfect) by definition, in order to prove Theorem 1.5 (and hence Theorem 1.4), it will be enough to show that if H is a graph
containing no bipartite claw and the length of each cycle of H is at most 4 or is a multiple of 3, then o, (H) = 71, (H). More-
over, we can assume that H is connected because o, (H) (resp. 7, (H)) is the minimum of ., (H') (resp. t,,(H')) among the
nontrivial components H’ of H (except when H has only trivial components, in which case a,(H) = t,,(H) = 0). Therefore,
it suffices to prove the theorem below:

Theorem 2.11. If H is a connected graph containing no bipartite claw and such that the length of each cycle of H is at most 4 or
is a multiple of 3, then oy (H) = 1 (H).

For the proof, we will consider several different cases and in all of them we will prove the existence of a matching-
transversal and a matching-independent set of the same size, which means that a,(H) = tm(H). To produce these
matching-independent sets, we strongly rely on edge-coloring H or some graphs derived from it, via Theorem 2.9. In fact,
the proof of Theorem 2.11 splits into the following two parts:

Theorem 2.12. Let H be a connected graph containing no bipartite claw and such that the length of each cycle of H is at most 4
or is a multiple of 3. If H has some cycle of length 3k for some k > 2, then ay,(H) = tmy (H).

Theorem 2.13. If H is a fat caterpillar, then an(H) = tm (H).

Theorem 2.13 together with Theorem 2.12, implies Theorem 2.11, from which the main results of this work (Theorems 1.4
and 1.5) follow.

Finally, the reader acquainted with the theory of tree-width and second-order logic may notice the following. Since for-
bidding the bipartite claw as a subgraph or as a minor is equivalent, graphs containing no bipartite claw have bounded tree-
width [44] and have a linear-time recognition algorithm [6]. Moreover, as our characterization of matching-perfect graphs
given in Theorem 1.5 can be expressed in counting monadic second-order logic with edge set quantifications (see [21]), its
validity can be verified in linear time within any graph class of bounded tree-width [12,20]. In particular, matching-perfect
graphs can be recognized in linear time. Nevertheless, the resulting algorithm is not elementary. Instead, we propose an
elementary linear-time recognition algorithm for matching-perfect graphs which relies on depth-first search only.

We first show that there is a simple linear-time algorithm to recognize fat caterpillars. Let H be a graph. We denote by
H, the graph that arises from H by removing all vertices that are pendant in H. We denote by H, some maximal induced
subgraph of H having no vertices that are pendant in H and no two vertices that are false twins of degree 2 in H. Finally, we
denote by H3 some maximal induced subgraph of H having no two vertices that are false twins of degree 2 in H. We claim
that there is an elementary linear-time algorithm that either computes Hs or determines that H contains a bipartite claw.
Let us consider an algorithm that keeps a list L(v) for each vertex v of H and that stores at each vertex v of H a boolean
variable indicating whether or not the vertex is marked for deletion. Initially, all the lists are empty and no vertex is marked
for deletion. The algorithm proceeds by visiting every vertex v of H and, for each neighbor u € Ny (v) that was not marked
for deletion and such that Ny (u) = {v, w} for some w € V(H), we do the following: if w is already in the list of L(v), then
we mark u for deletion, otherwise we add w to L(v). To make the algorithm linear-time, we stop whenever we attempt to
add a third vertex to any of the lists L(v), as this means that v is the center of a bipartite claw. If all vertices of H are visited
and no bipartite claw is detected, then we output as H; the subgraph of H induced by those vertices not marked for deletion.
The algorithm is clearly correct and linear-time. It follows that there is an elementary algorithm that either computes Hy,
H,, and Hs in linear time or detects that H contains a bipartite claw. By relying on this algorithm and analyzing the structure
of the graphs Hy, H,, and Hs, we further prove the following.

Theorem 2.14. There is a simple linear-time algorithm that decides whether a given graph H is matching-perfect and, if affirma-
tive, computes a matching-transversal of H of minimum size within the same time bound.

In particular, if H is matching-perfect, we can determine the common value of o, (H) and t, (H) in linear time. We do not
know if it is possible to also compute a matching-independent set of maximum size of any given matching-perfect graph
within the same time bound. Notice however that the only non-constructive argument used in the proofs of Section 3.3
is the existence of optimal edge-colorings for some Class 1 graphs containing no bipartite claw. This means that using an
algorithm such as the one given in [52] to produce the necessary edge-colorings, our proofs in Section 3.3 can actually be
turned into an algorithm to compute a matching-independent set of maximum size of any given matching-perfect graph.

Let G be graph on n vertices which is the complement of a line graph. We can compute a root graph H of G in O(n?) time
by relying on [39,46] and then decide whether G is clique-perfect by determining whether H is matching-perfect as above.
Thus, we conclude the following.

Theorem 2.15. Thereisan O(n?)-time algorithm that given any graph G, which is the complement of a line graph, decides whether
or not G is clique-perfect and, if affirmative, computes a clique-transversal of G of minimum size within the same time bound.

Notice that the bottleneck of the algorithm is computing a root graph H of G.
3. Proofs of the structure theorems

In this section, we present all proofs of the previously stated structure theorems.
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3.1. Proofs for the structure of graphs containing no bipartite claw

Our first result below shows that fat caterpillars containing no A and no net are linear concatenations of basic two-
terminal graphs, as is the case of the graph depicted in Fig. 3(a).

Lemma 3.1. A graph H is a fat caterpillar containing no A and no net if and only if H is a linear concatenation of crowns, folds,
rhombi, and K,4's where the K4 links may occur only as the first and/or last links of the concatenation.

The proof of Lemma 3.1 will follow from Lemmas 3.2 and 3.3.

Lemma 3.2. If H is a fat caterpillar containing no A and no net, then H has an edge-dominating path P = upu; ... u, having
no long chords and no three consecutive short chords, and such that each vertex v € V(H) — V(P) satisfies one the following
assertions:

(i) v is a pendant vertex and the only neighbor of v is neither an endpoint of P nor the midpoint of any short chord of P.

(ii) v has degree 2 and is a false twin of u; for somej e {1,2,...,£ — 1}
(iii) v has degree 3 and is a true twin of u; for some j € {1, £ — 1} such that u;_, is adjacent to uj, 1.
Proof. If H is the underlying graph of an m-crown for some m > 3, then the lemma holds trivially by letting P be any path of
H oflength 2 whose endpoints are the two vertices of H of degree m+ 1. Therefore, without loss of generality, we will assume
that H is not the underlying graph of an m-crown for any m > 3. Among the longest paths of H without long chords, let us
choose some path P = uguqu, ... uy that maximizes dy (ug) + dy (u¢) and, among those with maximum dy (ug) + dy (uy),
we choose one that minimizes min{dy (ug), dy (u¢)}. We will show that P satisfies the thesis of the lemma. Notice that P has
no long chords by construction and that P has no three consecutive short chords simply because H has no 5-cycle. We make
the following claims.

Claim 1. P is edge-dominating.

Proof. Suppose, by the way of contradiction, that P is not edge-dominating. Since H is connected, there is some edge vw of
H such that none of v and w is a vertex of P and v is adjacent to u; for somej € {0, 1, 2, ..., £}. Since H contains no bipartite
claw,j € {0, 1, £ — 1, £}. Let us consider first the case j = 0. Hence, the path vP must have some long chord because it is
longer than P. Since P has no long chords and H has no cycle of length greater than 4, necessarily v is adjacent to u,. Thus,
as H contains no A, £ = 2. Hence, as P’ = ujugvw is a path longer than P, P’ must have some long chord; i.e., w is adjacent
to u4. In addition, {ug, u;, w} is a stable set because H has no 5-cycles. Moreover, Ny (ug) = Ny(uz) = Ny(w) = {uq, v}
because H contains no A. Now, P” = ujugv is a path of the same length than P but the sum of the degrees of the endpoints
of P” is dy(uy) + dy(v) > 4 = dy(ug) + dy(uy), which contradicts the choice of P. The contradiction arose from assuming
thatj = 0. Hence, j # 0 and, symmetrically, j # £. Therefore, also by symmetry, we assume, without loss of generality, that
j=1.AsP” = wvuqu, . ..u, is longer than P, P"” must have some long chord. Hence, as H is a fat caterpillar containing no
A and no net, this means that w is adjacent to u, and £ = 2. But then, we find ourselves in the case j = ¢ by letting w play
the role of v and vice versa, which leads again to a contradiction. As this contradiction arose from assuming that P was not
edge-dominating, Claim 1 follows. <

Claim 2. If v € V(H) — V(P) is pendant, then (i) holds.

Proof. Suppose that v € V(H) — V(P) is pendant. As P is edge-dominating, Ny(v) = {u;} for somej € {0,1,2,...,¢}.
If j = 0, then vP would be a path longer than P and without long chords, contradicting the choice of P. This contradiction
proves thatj # 0 and, by symmetry, j # £. Suppose, by the way of contradiction, that u; is the midpoint of some short chord
of P; i.e., uj_q is adjacent to u;,1. Since H contains no net and by symmetry, we assume, without loss of generality, thatj = 1.
As vuqlglyus . . . Ug is longer than P, it must have some long chord and, necessarily, u is adjacent to us. Hence, as H contains
no A and P has no long chords, £ = 3 and dy (ug) = dy(u3) = 2.Thus, P’ = vuqugls, is a path of the same length than P with-
out long chords and such that dy (v) + dy (u) > 4 = dy(ug) + dy (u3) but min{dy (v), dy(u)} = 1 < min{dy (up), dy (u3)},
which contradicts the choice of P. This contradiction arose from assuming that v was adjacent to the midpoint of some short
chord of P. Now, Claim 2 follows. ¢

Claim 3. If v € V(H) — V(P) has degree 2, then (ii) holds.

Proof. Let v € V(H) — V(P) of degree 2 and suppose, by the way of contradiction, that v is adjacent to two consecutive
vertices of P; i.e, Ny(v) = {uj, uj41} for somej € {0,1,2,...,€ — 1}. If j = 0, then vP would be a path without
long chords and longer than P, contradicting the choice of P. Therefore, j > 1 and, by symmetry, j < ¢ — 1. The path
Uglly . .. UjvUjtqUjty . . . Up must have some long chord because it is longer than P and, as P has no long chords, this means that
Ujlj4p OF Uj1Uj—1 is a chord of P. By symmetry, suppose, without loss of generality, that uju;,, is a chord of P. Thus,j = £ —2
since otherwise H would contain A. Moreover, Ny (u;) = {u¢_», u¢_1} because P has no long chords and H contains no A.
Hence, dy (u;) = 2 < dy(ue—_1). Now, P’ = uguy ... us_pvu,_q is a path of the same length than P but dy (ug) + dy (ue—1) >
dy (uo) +dy (ue). Because of the choice of P, P’ must have some long chord and, necessarily, u,_; is adjacent to u,_s; i.e., ujq
is adjacent to u;_;. As we derived from the adjacency of u; and uj;, thatj = ¢ — 2 and dy(u,) = 2, symmetrically we can
prove the fact that u;q and uj_; are adjacent implies that j = 1 and dy (1) = 2. Therefore, £ = 3, dy(up) = dy(ue) = 2,
and Ny (v) = {uq, uy}. Hence, as H is connected and P is edge-dominating, every vertex v € V(H) — V(P) is adjacent to u4
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and/or to u; only. If some vertex w € V(H) — V(P) were adjacent to u; but not to u,, then P” = wujugu, would be a path
without long chords of the same length than P and such that dy(w) + dy(uz) > 4 = dy(ug) + dy(u3), contradicting the
choice of P. By symmetry, this proves that each vertex w € V(H) — V(P) satisfies Ny (w) = {u;, u,}. We conclude that H is
the underlying graph of an m-crown for some m > 3, which contradicts our initial hypothesis. This contradiction arose from
assuming that v was adjacent to two consecutive vertices of P. Hence, as P is edge-dominating and H has no cycle of length
greater than 4, necessarily Ny (v) = {vj_1, vj+1} for somej € {1,2,..., £ — 1}. Suppose, by the way of contradiction, that
dy(uj) > 2 and let w be a neighbor of u; different from u;_; and u;;4. Thus, since H contains no A and has no 5-cycle, £ = 2
andj = 1.But then, wuqu,v is a path longer than P and without long chords, contradicting the choice of P. This contradiction
arose from assuming that dy (u;) > 2. Consequently, u; is a false twin of v and (ii) holds. Hence, Claim 3 follows. ¢

Claim 4. If v € V(H) — V(P) has degree at least 3, then (iii) holds.

Proof. Let v € V(H) — V(P) of degree at least 3. As P is edge-dominating and H has no cycles of length greater than 4,
Ny (v) = {uj_1, uj, ujy1} for some j € {1,2,...,£€ — 1}. Since the paths upuy . .. uj_jvujttjq . . . ug and Uglly . . . Uji—1UjVUj41
... ug are longer than P, they have at least one long chord each. Thus, if uj_; were nonadjacent to uj;4, then u; would be
adjacent to uj_, and to uj;, and vuj Ui oUU;_u;—1v would be a 6-cycle of H, a contradiction. Therefore, u;_; is adjacent
to uj;q. As H contains no A, j = 1orj = £ — 1. By symmetry, assume that Ny(v) = {uo, u1, up}. Suppose, by the way of
contradiction, that u; is not a true twin of v. Hence, there is some w € Ny (uq) — {v, up, Uy} and, since P is edge-dominating
and H has no cycle of length greater than 4, w is pendant. But then, wujugtsus . . . u, is a path longer than P and without
long chords, a contradiction with the choice of P. This contradiction proves that v is a true twin of u; and (iii) holds. This
completes the proof of Claim 4. ¢

Now, the lemma follows from the four above claims. O

Lemma 3.3. If H is a fat caterpillar containing no A and no net, P = ugu; . .. uy is as in the statement of Lemma 3.2, and £ > 1,
then H is the underlying graph of I't & p, I3 &p, - -+ &p,_, I for some basic two-terminal graphs Iy, I, ..., I, and some
nonnegative integers p1, p2, - . . , Pn—1 Such that the source of Iy is ug and the sink of I}, is u,.

Proof. The proof will be by induction on £. If £ = 1, then H is the underlying graph of an edge link with source ug and sink
uy. Let £ > 2 and assume that the lemma holds whenever the edge-dominating path has length less than ¢. We will define
a two-terminal graph I'; by considering several cases. In each case, we assume, without loss of generality, that none of the
preceding cases holds.

Case 1: u is adjacent to some vertex v € V(H) — V(P) of degree 3. By assertions (i)-(iii) of Lemma 3.2, we have that v is a
true twin of u; and Ny (up) = {v, uq, u}. We define I'y to be the two-terminal graph with source u and sink u, and whose
underlying graph is the subgraph of H induced by Ny[v]. Hence, I'; is a Kj.

Case 2: ug is adjacent to some vertexinv € V(H) — V(P) of degree 2. By assertions (i)—(iii) of Lemma 3.2, we have that v is
a false twin of u; and each neighbor of uy in V(H) — V(P) is also a false twin of u;. We define I'y as the two-terminal graph
with source 1y and sink u5,, and whose underlying graph is the subgraph of H induced by Ny[u] U {u,}. Notice that I'; is a
crown or a fold, depending on whether or not ug is adjacent to u,.

As Lemma 3.2 implies that each neighbor of uy in V(H) —V (P) has degree 2 or 3, in the cases below we are assuming, with-
out loss of generality, that ug has no neighbors in V(H) — V(P). Hence, since P has no long chords, either Ny (ug) = {uq, uy}
or Ny (up) = {uy}, depending on whether 1 is adjacent to u;, or not.

Case 3: ug is adjacent to u, and uy is adjacent to us. By assertions (i)—(iii) of Lemma 3.2, Ny (u1) = {uo, o, us} and Ny (u3)
= {up, uy, us}. Let I'; be the two-terminal graph with source ug and sink u3, and whose underlying graph is the subgraph of
H induced by {uy, uy, uy, us}. Thus, I'y is a rhombus.

Case 4: ug is adjacent to u, and u, is nonadjacent to us. As u; is the midpoint of the short chord ugu, and we are assuming
that ug has no neighbors in V(H) — V(P), assertions (i)-(iii) of Lemma 3.2 imply that u; has no neighbors in V(H) — V(P).
Therefore, as u; is nonadjacent to us and P has no long chords, Ny (u;) = {ug, u»}. Let I'; be the two-terminal graph whose
source is up and sink u,, and whose underlying graph is the subgraph of H induced by {ug, u1, uy}. Thus, I'y is a triangle.

Case 5: ug is nonadjacent to u,. In this case, Ny (up) = {uq} and we define I'; as the two-terminal graph with source u,
sink u1, and whose underlying graph is the induced subgraph of H induced by {ug, u;}. Hence, I'; is an edge.

Once defined I'y as prescribed in Cases 1to 5 above, we let j be such that u; is the sink of Iy, vq, vy, . . ., vp, be the pendant
vertices adjacent to uj, P’ = ujujq ... ug,and H' = H — (V(I'1) — {y}) U {v1, ..., vp, }). Notice that, unless V (/) = V(H),
vj is a cut-vertex of H because we have proved that each vertex of Iy different from v; has only neighbors in I'y. By construc-
tion, H" and P’ satisfy the statement of Lemma 3.2 by letting H and P’ play the roles of H and P, respectively. If j = ¢, then
H is the underlying graph of I'; with source ug and sink u, and the lemma holds for H. If j < £, by induction hypothesis, H’
is the underlying graph of some I &, I3 &, - - - &, _, I where each [} is a basic two-terminal graph, each p; > 0, the
source of I is uj, and the sink of I'; is u,. Thus, H is the underlying graph of I't & ,, I3 & p, I3 & p, - -+ &, Iy where ug is
the source of I' and uy is the sink of I},. Now, Lemma 3.3 follows by induction. O

As a consequence of the two above results, we now prove Lemma 3.1.
Proof (of Lemma 3.1). Suppose that H is a linear concatenation of a sequence I, ..., I, of basic two-terminal graphs such

that if I; is a Ky, then j € {1, n}. Let vy be the source of I, v, be the sink of I'; and, for eachi € {1,...,n — 1}, let v; be
the concatenation vertex of H that arose by identifying the sink of I; and the source of I, ;. Notice that H contains no A
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and no net because each 4-cycle of H has two nonconsecutive vertices adjacent to vertices of the 4-cycle only, each triangle
contained in a Ky link of H has at least two vertices u and v of degree 3 in H each such that N;[u] = Ny[v], and each trian-
gle contained in any other link of H has at least one vertex of degree 2. Moreover, H has no cycle of length greater than 4
because each cycle of H is contained in one of the links and we are assuming that the links are basic. Suppose, by the way
of contradiction, that H contains a bipartite claw B. Let by be the center of B and let by, by, and bs be the neighbors of by in
B. As by has degree at least 3 in H, the vertex by is either v; for some j € {0, ..., n} or a non-terminal vertex of a rhombus
link. If by were the non-terminal vertex of a rhombus link, then the remaining non-terminal vertex of the rhombus link is
by for some k € {1, 2, 3} and Ny(br) = {bo, bz, b3}, which contradicts the choice of by, b1, by, and bs. Therefore, by = v;
for some j € {0, ..., n} and, by symmetry, we assume without loss of generality that j # n. As by, by, and bs are non-
pendant vertices, at least two of them belong to the same link of H. By symmetry, we assume, without loss of generality,
that b; and b, are two vertices of Ij. By construction, b1, by € Ny (bo), Niy(b1) — {bo, b2} # @, Nu(by) — {bo, b1} # ¥, and
|(Ny(b1) U Ny(by)) — {bo, b1, bo}| > 2. Thus, since I} is basic, necessarily I is a K4 and either by or b, is vjy. Since the Ky
links may only occur at the beginning or end of the concatenation, necessarily j = 1, b is the sink of I}, and b, and bs are
the non-terminal vertices of I';. Hence, Ny[b,] = Ny[bs] = {bo, b1, b2, b3}, contradicting the choice of by, by, b,, and bs.
This contradiction shows that H contains no bipartite claw and we conclude that H is a fat caterpillar.

Conversely, let H be a fat caterpillar containing no A and no net. If H is K3, then, by definition, H is the linear concate-
nation of an empty sequence of two-terminal graphs. Otherwise, there is some path P = ugu; ... u, as in the statement
of Lemma 3.2 for some £ > 1. Thus, Lemma 3.3 implies that H is the linear concatenation of basic two-terminal graphs.
Moreover, as H contains no A, the K, links, if any, occur as first and/or last links of the concatenation, which completes the
proof of Lemma 3.1. O

The next lemmas describe the structure of the remaining fat caterpillars.

Lemma 3.4. Agraph H is a fat caterpillar containing A if and only if H has an edge-dominating 4-cycle C = v{v,v3v4v1 and two
different vertices x1, x, € V(H) — V(C) such that x; is adjacent to v; for eachi € {1, 2}, each non-pendant vertexin V(H) — V(C)
is a false twin of v4 of degree 2, and one of the following holds:

(i) Cis chordless.
(ii) vqvsis the only chord of C and dy(v4) = 2.
(iii) C has two chords and dy (v3) = dy(vq) = 3.

Proof. The ‘if part is clear. In order to prove the ‘only if’, suppose that H is a fat caterpillar containing A. Thus, there is some
4-cycle C = vqvv3v4v1 and two different vertices xq, x, € V(H) — V(C) such that x; is adjacent to v; for eachi € {1, 2}.
As H contains no bipartite claw and H is connected, C is edge-dominating in H. Therefore, as H has no 5-cycle, each vertex
in V(H) — V(C) is pendant or has exactly two neighbors which are two nonconsecutive vertices of C. If there are two non-
pendant vertices wq, wy € V(H) — V(C), then wy and w, are false twins because H contains no bipartite claw. Hence, we
assume, without loss of generality, that each non-pendant vertex in V(H) — V(C) is adjacent in H precisely to v; and vs.
Thus, if there is some non-pendant vertex w € V(H) — V(C), then v, has degree 2 and is a false twin of w because H contains
no bipartite claw and has no 5-cycle. If C is chordless, then (i) holds. If C has two chords, then, as H contains no bipartite
claw, dy(v3) = dy(v4) = 3 and (iii) holds. Suppose that C has exactly one chord and assume, without loss of generality,
that vqvs is the only chord of C. As H has no 5-cycle and contains no bipartite claw, dy(v4) = 2 and (ii) holds. O

Lemma 3.5. A graph H is a fat caterpillar containing net but containing no A if and only if H has some edge-dominating triangle
C such that for each vertex v € V(C) there is a pendant vertex x adjacent to v and every vertex in V(H) — V(C) is pendant.

Proof. The ‘if’ part is clear. For the converse, suppose that H contains no bipartite claw. Since H contains net, there are six
different vertices vy, vy, v3, X1, X2, X3 such that vy, v,, v3 are pairwise adjacent and v; is adjacent to x; for each i € {1, 2, 3}.
As H contains no bipartite claw and H is connected, C = v{v,v3v; is edge-dominating in H. In addition, as H contains no A,
eachvertex in V(H) — V(C) is pendant. 0O

Combining the assertions of Lemmas 3.1, 3.4 and 3.5 yields the statement of Theorem 2.2, which can be rephrased to
the structure of fat caterpillars given in Corollary 2.3 that will be useful in the proof of the main result of this subsection,
Theorem 2.4.

This theorem proves that, except for a few sporadic cases (assertions (i), (ii), and (iii)), connected graphs containing no
bipartite claw are linear and circular concatenations of basic two-terminal graphs (assertion (iv)). For the proof of these
assertions, we need the following lemma.

Lemma 3.6. Let H be a connected graph containing no bipartite claw and having some cycle of length at least 5. Assume
further that the 5-cycles of H are chordless and the 6-cycles of H have no long chords and no three consecutive short chords.
If C = uquy ... ueuy is a longest cycle of H, then C has no long chords and no three consecutive short chords and, for each vertex
v € V(H) — V(C), one of the following assertions holds:

(i) v is pendant and its only neighbor is not the midpoint of any short chord of C.
(ii) v has degree 2 and is a false twin of u; for somej e {1,2, ..., £}.

As a result, H is a circular concatenation of crowns, folds, and rhombi.
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Proof. By hypothesis, C has length at least 5. Notice also that C is edge-dominating in H because H contains no bipartite
claw. Moreover, C has no long chords and no three consecutive short chords, since otherwise C would have length at least
7 (because we are assuming that the 6-cycles have no long chords and no consecutive short chords) and, as a consequence,
H would contain a bipartite claw, a contradiction.

Letv € V(H) — V(C). As C is edge-dominating and H is connected, dy (v) > 1. Suppose first that v is pendant. If the only
neighbor of v were the midpoint of some short chord of C, then C should have length at least 6 (because we are assuming
that 5-cycles are chordless) and, consequently, H would contain a bipartite claw, a contradiction. Hence, if v is pendant, then
(i) holds. Suppose now that v is non-pendant. As C is a longest cycle of H, no two consecutive vertices of C are adjacent to
v. Moreover, as H contains no bipartite claw, v has no two neighbors at distance larger than 2 within C. Thus, the neighbors
of v are at distance 2 in C from each other. This means that if v had at least three neighbors, then C would be a 6-cycle and
v would be adjacent to every second vertex of C, but then H would contain a bipartite claw. We conclude that v has exactly
two neighbors and that these two neighbors are at distance 2 within C; i.e,, Ny(v) = {uj_1, uj11} forsomej € {1,...,¢}
(from this point on, subindices should be understood modulo ¢) and, due to the fact that H contains no bipartite claw and
its 5-cycles are chordless, u; is a false twin of v. This proves that if v is not pendant, then (ii) holds.

It only remains to prove that H is a circular concatenation of crowns, folds, and rhombi.

We claim that there is some k € {1, 2, ..., £} such that uy is neither the midpoint of any short chord of C nor a false twin
of any vertex outside V (C). Indeed, if no vertex of C is a false twin of a vertex outside V (C), the existence of k is guaranteed
by the fact that C has no three consecutive short chords. Suppose, on the contrary, that there is some j € {1, ..., £} such
that u; is a false twin of a vertex outside V(C). Thus, as C is a longest cycle of H, u;_; is not the midpoint of a short chord
of C and u;_; is not the false twin of any vertex outside V(C) because dy (uj—1) > 2. Therefore, the claim holds by letting
k = j — 1. This concludes the proof of the claim.

Assume, without loss of generality, that u, is neither the midpoint of any short chord nor a false twin of any vertex out-
side V(C). Let vq, vy, ..., vg be the pendant vertices of H incident to u,. We create a new vertex uo and we add the edge
uot; and the edges joining ug to every false twin of u; outside V (C) (if any). If u, is adjacent to u,, then we also add an edge
joining ug to u,. Finally, we remove every edge joining u, to a neighbor of ug. Let H' be the graph that arises this way and let
P’ = uguquy ... u,. Clearly, H and P’ satisfy Lemma 3.2 by letting H' and P’ play the roles of H and P, respectively. Hence,
by Lemma 3.3 and its proof, H' is the underlying graph of some I'y & p, I3 & 5, & - - &, I, where each I is a crown, a
fold, or a rhombus, and each p; > 0. (Indeed, no I; is a K4 because no vertex v € V(H') — V(P’) has degree 3.) Finally, H is
the circular concatenation It & p, I3 &, & -+ &, I & ¢ O, where each link is a crown, a fold, or arhombus. O

Now we are ready to give the proof of Theorem 2.4.

Proof (of Theorem 2.4). Suppose that H contains no bipartite claw and we will prove that at least one of the assertions
(i)-(iv) holds. Since H contains no bipartite claw and H is connected, every cycle of H of length at least 5 is edge-dominating
inH.

If H contains a 6-cycle C having a long or three consecutive short chords, then, as H contains no bipartite claw, H is
spanned by C and assertion (i) holds. Hence, from now on, we assume, without loss of generality, that H contains no 6-cycle
having a long or three consecutive short chords.

Suppose now that H contains antenna. Thus, H has some 5-cycle C = vjv,v3v4v5v7 and some vertex v € V(H) — V(C)
such that v is adjacent to v, and vy is adjacent to vs. If v were adjacent to any vertex of C different from v,, then H would have
a 6-cycle having a long chord, contradicting our assumption. If any vertex of C different from v, were adjacent to some ver-
tex outside V(C) different from v, then H would contain a bipartite claw. Thus, as H is connected and C is edge-dominating,
each vertex v € V(H) — V(C) is a pendant vertex adjacent to v,. Hence, (ii) holds. Therefore, from now on, we assume,
without loss of generality, that H contains no antenna.

Suppose now H has a 5-cycle C with three consecutive short chords. If there were any vertex v € V(H) — V(C) adjacent
to the two vertices vy and v, of C that are no midpoints of any of these three short chords, then H would have a 6-cycle with
three consecutive short chords, contradicting our assumption. Since H contains no antenna, the midpoints of the chords of
C have neighbors in V (C) only. Therefore, as C is edge-dominating, each v € V(H) — V(C) is a pendant vertex adjacent to v,
or v,. If there were two different vertices u, u, € V(H) — V(C) such that u; is adjacent to v; for each i € {1, 2}, then H would
contain a bipartite claw. Hence, without loss of generality, each v € V(H) — V(C) is a pendant vertex adjacent to vy and (ii)
holds. From now on, we assume without loss of generality that H has no 5-cycle with three consecutive short chords.

Suppose now that H has a 5-cycle C = vjv,v3v4vs5v1 With at least three chords. By hypothesis, C has exactly three chords
and, without loss of generality, the chords of C are vqvs, v1v4, and vsvs. As C is edge-dominating and H contains no antenna,
eachvertexv € V(H)—V(C) is adjacent to vy and/or to v3 only. Thus, H = rhombus & ,, m-crown & ,, © for some p1, p, > 0
and some m > 1 and, in particular, (iv) holds. Hence, from now on, we assume, without loss of generality, that each 5-cycle
of H has at most two chords.

Suppose that H has a 5-cycle C = viv,v3v4v5v7 With two crossing chords. Without loss of generality, let v,v4 and v3vs
be the chords of C. As H contains no antenna, vz and v4 have neighbors in V(C) only. Suppose that there is some vertex
v € V(H) — V(C) such that v is adjacent simultaneously to vy, v;, and vs. Since H contains no bipartite claw, it follows that
the only neighbors of vy are v, v, and vs, and the only vertex outside V(C) adjacent simultaneously to v, and vs is v. Thus,
since C is edge-dominating, we conclude that H = rhombus & ,, thombus & ,, © for some p1, p, > 0 and, in particular, (iv)
holds. Therefore, without loss of generality, suppose that there is no vertex outside V (C) adjacent simultaneously to vy, v,
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and vs. Suppose now that there is some vertex v € V(H) — V(C) which is adjacent to v, and vs and nonadjacent to v,. Since
H contains no bipartite claw, vy has no neighbors apart from v, and vs. Thus, since C is edge-dominating, we conclude that
H = rhombus & ,, m-fold & ,, © for some p;, p, > 0and m > 2 and, in particular, (iv) holds. Finally, assume, without loss of
generality, that there is no vertex v € V(H) — V(C) adjacent to v, and vs simultaneously. Hence, since C is edge-dominating,
H = rhombus & ,, m;-crown & p, m,-crown & ,, © for some py, py, p3, my, my > 0 and (iv) holds.

Suppose that H has a 5-cycle C = vqv,v3v4v5v7 With two noncrossing chords. Without loss of generality, assume that
v1v3 and vqvy4 are the chords of C. Since H contains no antenna, vertices v, and vs have neighbors in V(C) only. If there
were a vertex outside V(C) which were adjacent to vy, vs, and vg4, then H would have a 6-cycle with a long chord, con-
tradicting our assumption. Hence, as C is edge-dominating, H = m;-crown & ,, mp-crown & p,ms-crown & ,, © for some
D1, P2, P3, M1 > 0and some my, m3 > 1 and (iv) holds. Therefore, from now on, we assume, without loss of generality, that
each 5-cycle of H has at most one chord.

Suppose now that H has a 5-cycle C = v{v,v3v4v5v1 with exactly one chord. Without loss of generality, assume that the
only chord is vqvs. Since H has no antenna, no vertex outside V(C) is adjacent to v,. Moreover, each vertex outside V(C) is
adjacent to at most two vertices of C, since otherwise H would have a 5-cycle with at least two chords, contradicting our
hypothesis. Suppose that there is some vertex v € V(H) — V(C) which is adjacent to two nonconsecutive vertices of C but
Ny (v) # {v1, v3}. By symmetry, assume that the two neighbors of v are v; and vy. Since H contains no bipartite claw, vs has
no neighbors outside V(C). As C is edge-dominating, we conclude that H = m;-fold & ,, m,-crown & ,,, ms-crown & ,,, O for
some m; > 2,m, > 1,and some ms, p1, p2, p3 > 0. If, on the contrary, every vertex v € V(H) — V(C) adjacent to two non-
consecutive vertices of C satisfies Ny (v) = {v1, v3}, then H = m;-crown & p, my-crown & p, m3-crown & p,my-crown & p, O
for some m; > 1 and some my, ms3, my, p1, P2, P3, P4 > 0. In either case, (iv) holds. Hence, from now on, we assume that
every 5-cycle of H is chordless.

Since we are assuming that H has no 6-cycle having a long chord or three consecutive short chords and that each 5-cycle
of H is chordless, if H has a cycle of length at least 5, then Lemma 3.6 implies that H is a circular concatenation of crowns,
folds, and rhombi, which means that (iv) holds. Therefore, we assume, without loss of generality, that each cycle of H has
length at most 4. But then, H is a fat caterpillar and assertion (iii) or (iv) holds by virtue of Theorem 2.2.

Conversely, if H satisfies one of the assertions (i)-(iii), then clearly H contains no bipartite claw. Finally, if H satisfies as-
sertion (iv), then also H contains no bipartite claw by reasoning as in the first part of the proof of Lemma 3.1. This completes
the proof of Theorem 2.4. O

3.2. Proofs for edge-coloring graphs containing no bipartite claw

By exploiting our structure theorem for graphs containing no bipartite claw (Theorem 2.4) and Theorems 2.5-2.8, we
arrive at the structure of all connected graphs containing no bipartite claw that are Class 2 (Theorem 2.9):

Proof (of Theorem 2.9). Let H be a connected graph containing no bipartite claw and such that x'(H) # A(H). We need to
prove that H satisfies (i), (ii), or (iii). Since the result holds trivially if A(H) < 2, we assume, without loss of generality, that
A(H) > 3. The proof splits into three cases.

Case 1: A(H,) < 2. We claim that H is Ks — e. Since P* contains a bipartite claw, Theorem 2.6 implies that if A(H) = 3,
then H would be Class 1, contradicting the hypothesis. Hence, A(H) > 4. Thus, by Theorem 2.5, H is critical, §(H,) = 2,
and §(H) = A(H) — 1 > 3. Suppose, by the way of contradiction, that assertion (iv) of Theorem 2.4 holds for H. Since the
vertices of H that are not concatenation vertices have degree at most 3, all major vertices of H are concatenation vertices.
Since §(H,) = 2, H is necessarily a circular concatenation of crowns. Finally, since §(H) > 3, each of the crowns of the con-
catenation is an edge and H has no pendant vertices; i.e., H is a chordless cycle, contradicting A(H) > 4. This contradiction
proves that assertion (iv) of Theorem 2.4 does not hold. Thus, assertion (i), (ii), or (iii) of Theorem 2.4 holds. As §(H) > 3, H
has no pendant vertices and necessarily |V (H)| is 5 or 6. Thus, since H is critical and A(H) > 4, it follows from Theorem 2.8
that H is K5 — e, as claimed.

Case 2: A(H,) > 3 and A(H) > 4. We claim that H is Ks, Ls, or SKs. Suppose first that H has a 6-cycle C having a long
chord. This implies that C is spanning in H because H is connected and contains no bipartite claw. In particular, |V (H)| < 6.
Hence, since we are assuming that A(H) > 4, Theorems 2.7 and 2.8 imply that H contains Ks — e and A(H) = 4. Therefore,
as H has a spanning 6-cycle, H arises from K5 — e by adding one vertex adjacent precisely to the two vertices of degree 3 of
the K5 — e; i.e., H is SKs. Thus, for the remaining of this case, we assume that H has no 6-cycle having a long chord.

As A(H,) > 3, there is some major vertex wqg of H that is adjacent in H to three other major vertices w1, w;, w3 of H
and let W = {wy, w1, w,, ws}. Let B be the bipartite graph with bipartition {X, Y} and edge set F, where X = {w1, w;, ws},
Y = (Ny(wq) U Ny (w;) UNg(ws)) —W,and F = E(H) N (X x Y). Notice that, by construction, §(B) > 1.

We claim that dg(w;) = 1for somej € {1, 2, 3} and, in particular, A(H) = 4. Suppose, on the contrary, that dg(w;) > 2
foreachi € {1, 2, 3}.1f |Y| > 3, then Theorem 1.6 would imply that B has a matching that saturates every vertex of X and,
consequently, wo would be the center of a bipartite claw contained in H, a contradiction. This contradiction implies |Y| < 3.
Thus, Ng(w1) = Ng(w,) = Ng(ws3) = Y = {y1, ¥} where y; and y, are two different vertices. Hence, C = wow1y1w,y>w3wq
is a 6-cycle in H having three long chords, a contradiction. This contradiction proves the claim; i.e., dg(w;) = 1 for some
j € {1,2, 3} and, in particular, A(H) = 4. By symmetry, from now on, we assume that dg(w3) = 1.
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Suppose that |Y| = 1 and we will prove that H is K5 or Ls. The fact that the vertices of W are major vertices and A(H) = 4
implies that Ny[wq] = Ny[w,] = Ny[ws] = W U {y} where Y = {y}. If wq is adjacent to y, then H is Ks. If, on the contrary,
the neighbor of wq outside W is a vertex z different from y, then, as H contains no bipartite claw and has no 6-cycle having
along chord, H is Ls. Hence, from now on, we assume without loss of generality that |Y| > 2.

Suppose that |[Ng(w1) UNg(w,)| = 1and we will prove that H is Ls. Let y; be the only neighbor in B of w; and w,. By con-
struction, Y = {yq, y1} where y, is the only neighbor of w3 in B and y, # y; (because we are assuming that dg(w3) = 1 and
|Y] > 2).Since wy, w,, and w3 are major vertices and A(H) = 4, W is a clique. Since H is connected and contains no bipartite
claw, V(H) = W U Y. Moreover, as H has no 6-cycle with a long chord, wq is nonadjacent to yg, respectively. Hence, since
wo is a major vertex and A(H) = 4, Ny (wg) = {wq, wy, ws, y1}. Since H has no 6-cycle with a long chord, y, is nonadjacent
to y;. Therefore, H is Ls, as desired. Thus, from now on, we assume without loss of generality that |[Ng(w{) U Ng(w,)| > 2.

Since |[Ng(w1)UNg(w,)| > 2, there are two different vertices y;, y, € Y such that w; is adjacent to y; foreachi € {1, 2}.As
w3 is a major vertex and we are assuming that dg(w3) = 1, ws is necessarily adjacent to wq and w,. As A(H) = 4and H con-
tains no bipartite claw, for each of w3 and wy its only neighbor outside W is either y, or y,. By symmetry, we assume, without
loss of generality, that Ny[w3] = W U {y,}. Thus, as H contains no bipartite claw and has no 6-cycle having a long chord,
Nu[wo] = W U {y1}, Ny[w1] = W U {y1}, Nu[wz] = W U {y,}, Ny(y1) = {wo, w1, w3}, and Ny (y2) = {w.}. Hence, H is Ls.

We have verified that if A(H,) > 3 and A(H) > 4, then H is Ks, Ls, or SKs, as claimed.

Case 3: A(Hy) > 3and A(H) = 3. As A(H) = 3, assertion (iii) of Theorem 2.4 does not hold. Suppose, by the way of
contradiction, that assertion (i) or (ii) of Theorem 2.4 holds for H. Thus, |V (H)| is 5 or 6 and, by Theorems 2.7 and 2.8, H
contains SK,. Hence, since H contains no bipartite claw, H is connected, and A(H) = 3, it follows that either H is SK; or H
arises from SK4 by adding a pendant vertex adjacent to the vertex of degree 2 of the SKj, contradicting the assumption that
assertion (i) or (ii) of Theorem 2.4 holds. We conclude that, necessarily, H is a linear or circular concatenation as described
in assertion (iv) of Theorem 2.4. As A(H) = 3, no link of the linear or circular concatenation is an m-crown for any m > 3
or an m-fold for any m > 4. Moreover, if any of the links in the linear or circular concatenation were a 2-crown, 3-fold,
or Ky, then H would be precisely the underlying graph of a 2-crown, 3-fold, or K4, and H would be Class 1, a contradiction.
Therefore, H is a linear or circular concatenation of edges, triangles, squares, and rhombi. As A(H) = 3, if any link of the
concatenation is a triangle, square, or rhombus, then its adjacent links in the concatenation are edges. Hence, it is clear that
there is a 3-edge-coloring of H if and only if there is a coloring of only the edge links of H such that:

(1) Each two edge links that are adjacent to the same triangle link are colored with different colors.
(2) Each two edge links that are adjacent to the same rhombus link are colored with the same color.
(3) Each two adjacent edge links are colored with different colors.

Thus, if H is a linear concatenation, a greedy coloring of only the edge links following the order of their occurrence in the
linear concatenation and following rules (1)-(3) above, ends up successfully, implying that H has a 3-edge-coloring, a con-
tradiction with the fact that H is Class 2. Since the links adjacent to the same square may receive the same or different colors,
if H is a circular concatenation where some link is a square, then also a greedy coloring of only the edge links, following rules
(1)-(3) around the concatenation starting at one of the edge links adjacent to the square and ending at the other one, ends up
successfully, contradicting the fact that H is Class 2. These contradictions prove that H is a circular concatenation of edges,
triangles, and rhombi only.

We will now prove that if H is a circular concatenation of edges, triangles, and rhombi such that A(H,) > 3 and
A(H) = 3, then H is Class 2 if and only if H has exactly one more edge link than rhombus links. As A(H,) > 3, H has
at last one rhombus link. Thus, without loss of generality, H = edge & p, 2 &, - - - &, ,edge & rhombus & ©. Notice that
H is Class 2 if and only if there is no 3-edge-coloring of the edge links of H' = edge & ,, 2 &, - - - &, ,edge satisfying
rules (1)-(3) above and such that the first and the last link of H” are colored with the same color. Moreover, H’ is not 3-edge-
colorable satisfying rules (1)-(3) above if and only if the graph H”, that arises from H’ by contracting each triangle link to
a vertex and contracting each pair formed by a rhombus link followed by an edge link also to a vertex, consists of precisely
two edges; i.e., H' has two more edge links than rhombus links. We conclude that H has exactly one more edge link than
rhombus links; i.e., (ii) holds. This completes Case 3 and the proof of the ‘only if’ part of the theorem.

Notice also that we have just proved that if assertion (ii) holds, then H is Class 2. As a result, the ‘if’ part of the theorem
is also proved, because if assertion (i) or (iii) holds, then H is clearly Class 2. O

3.3. Proofs for matching-perfect graphs

We start with the proof of Theorem 2.11. For that, we will consider several cases and in all of them we will ensure the
existence of a matching-transversal and a matching-independent set of the same size, which means that o, (H) = 71, (H).
To produce these matching-independent sets, we strongly rely on edge-coloring H or some graphs derived from it, via
Theorem 2.9.

The next lemma states a simple yet useful upper bound on 7, (H).

Lemma 3.7. If H is a graph and v, and v, are two adjacent vertices of H, then the set of edges of H that are incident to v, and/or
to vy is a matching-transversal of H and, in particular, t,,(H) < dy(v1) + dy(vy) — 1.
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Proof. No matching M of H disjoint from Ey (v) U Ey(v,) is maximum because M U {v,v,} is a larger matchingof H. O

Let k be a nonnegative integer. A partial k-edge-coloring of a graph Hisamap ¢ : E(H) — {0, 1, 2, ..., k} such that, for
each pair of incident edges e, e; of H, ¢p(e1) = ¢(e;) implies ¢p(e1) = ¢(ez) = 0.1f ¢p(e) # 0, then e is said to be colored
with color ¢ (e); otherwise, e is said to be uncolored. A k-edge-coloring of H is a partial k-edge-coloring that colors all edges
of H. The color classes of a partial k-edge-coloring are the sets &1, &, . . ., & where &; is the set of edges of H with color j, for
eachje{1,2,...,k}.

We complement the upper bounds on t,, with lower bounds on «, obtained with the help of a special kind of partial
edge-colorings that we call profuse-colorings. A k-profuse-coloring of a graph H is a partial k-edge-coloring ¢ : E(H) —
{0, 1, 2, ..., k} satisfying the following conditions:

(1) If k = 1, then there is at least one edge e of H colored with color 1.
(2) If k > 2, then each edge e (either colored or not) of H is incident to edges colored with at least k — 1 different colors.

We say that a k-profuse-coloring ¢ is maximal if, for each uncolored edge, there are edges incident to it that are colored with
the k different colors (i.e., no uncolored edge can be colored while keeping ¢ a k-profuse-coloring). We first show that every
k-profuse-coloring uses all the colors 1, ..., k.

Lemma 3.8. Each k-profuse-coloring of a graph H colors some edge of H with color i foreachi € {1, ..., k}.

Proof. If k = 0, there is nothing to prove. If k = 1, then the lemma holds by condition (1) of the definition. Thus, assume
that k > 2 and let e be any edge of H. Since k — 1 > 1, condition (2) implies that e is incident to some edge e; colored with
some color j € {1,..., k}. Since ¢ is a partial edge-coloring and by virtue of condition (2), ; is incident to some edge e;
colored with color i for eachi € {1, ..., k} — {j}. By construction, edge e; is colored with color i for eachi € {1,...,k}. O

We now show that the maximum value of k for which a graph H has a k-profuse-coloring is k = o, (H). Hence, in order
to prove that o, (H) > kit will suffice to exhibit a k-profuse-coloring of H.

Lemma 3.9. For each graph H and each nonnegative integer k, the following assertions are equivalent:

(i) om(H) = k.
(ii) H has a k-profuse-coloring.
(iii) H has a maximal k-profuse-coloring.

Moreover, the collection of color classes of a maximal k-profuse-coloring of H is a matching-independent set of size k.

Proof. If k = 0, the three assertions (i)-(iii) are true; in fact, for every graph H, the constant O function is the only 0-profuse-
coloring of H and it is also maximal. Hence, we assume that k > 1.

Let us prove first that (i) = (iii). Suppose that o, (H) > k and let M = {M1, Ma, ..., M} be a collection of k pairwise
disjoint nonempty maximal matchings of H. Let ¢ : E(H) — {0, 1,2, ..., k} be defined for each e € E(H) and each
ief{l,...,k} by

¢u(e) =i ifandonlyif e € M;.

Notice that ¢ (e) = Oifand only ife ¢ M; UM, U - - - U M. We claim that ¢, is a maximal k-profuse-coloring of H. Since
each M; is a matching, ¢, is a k-partial edge-coloring of H. If k = 1, then ¢, is a maximal 1-profuse-coloring because the
fact that M, is nonempty and maximal implies that there is at least one edge of H colored by ¢ 4 with color 1 and that each
uncolored edge is incident to an edge colored with color 1. Thus, we are left to consider the case k > 2. Let e be any edge
of H. Assume first thate € M; for somej € {1,2,...,k}. Foreachi € {1,2,..., k} such thati # j, the maximality of M;
implies that there is some edge e; of H incident to e such that ¢4 (e;) = i. Hence, the set {e;: i # j} consists of k — 1 edges
incident to e that are colored with k — 1 different colors. Suppose now thate ¢ M; UM, U - - -UM,.Foreachi € {1, 2, ..., k},
the maximality of M; implies that there is some edge e; of H incident to e such that ¢ (e;) = i. We conclude that ¢ is a
maximal k-profuse-coloring of H and (iii) holds.

We now prove that (ii) = (i). Suppose (ii) holds and let ¢ : E(H) — {0, 1, 2, ..., k} be a k-profuse-coloring of H. Thus,
for eachi € {1,2,...,k}, the color class & = {e € E(H) : ¢(e) = i} is a matching of H and & # @ by Lemma 3.8. For
eachi € {1, 2,...,k}, let M; be any maximal matching of H containing &;. If k = 1, then «,,(G) > 1 because the fact that
M; # () implies that {M;} is a clique-independent set of H. Hence, assume that k > 2. Let e be any edge of H. As ¢ is a
k-profuse-coloring, there are k — 1 edges ey, e,, .. ., ex_1 of H incident to e such that ¢(eq), ¢(ez), ..., ¢p(ex_1) are positive
and pairwise different. Hence, as e; € &4(;) and My, is a matching containing &4, € & Mg, foreachi € {1,2, ..., k—1}.
This proves that each edge e of H belongs to at most one of M1, Mj, ..., M. Thus, by construction, M = {M;, My, ..., M} is
a collection of k disjoint nonempty maximal matchings of H and «, (H) > k; i.e., (i) holds, as desired.

Since (iii) trivially implies (ii), this completes the proof of the equivalence among (i)-(iii). Finally, notice that, in the
preceding paragraph, if ¢ is maximal, then M; = &; because each e € E(H) — §; is incident to some edge in &;. Therefore,
if ¢ is maximal, then {&1, ..., &} is a collection of k disjoint nonempty maximal matchings, proving the last statement of
Lemma3.9. O
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As immediate consequence of Lemma 3.9 we obtain:

Corollary 3.10. If ¢ is a maximal k-profuse-coloring of a graph H, then every matching-transversal of H has at least one edge
colored with color i for eachi € {1, 2, ..., k}.

More upper bounds on 7, and lower bounds on «y, will be proved later in this subsection. Some of them depend on the
degrees of what we call hubs. The hubs of a graph are the vertices of degree at least 3. The minimum hub degree §,(H) of a
graph H is the infimum of the degrees of the hubs of H. Notice that 6, (H) > 3 for any graph H and that §,(H) = +oc if and
only if H has no hubs. A hub is minimum if its degree is the minimum hub degree. An edge of a graph is hub-covered if at least
one of its endpoints is a hub. A graph H is hub-covered if each of its edges is hub-covered. Equivalently, H is hub-covered if
and only if its hub set is edge-dominating. A graph is hub-regular if all its hubs have the same degree. Equivalently, a graph
H is hub-regular if and only if either 6, (H) = A(H) or 6, (H) = +o00.

The proof of Theorem 2.11 splits into two parts: Theorem 2.12, the case when H has some cycle of length greater than 4
(which is necessarily a cycle of length 3k for some k > 2), and Theorem 2.13, the case when H has no cycle of length greater
than 4.

Theorem 2.12 will follow by considering separately the cases when the graph is hub-covered (Lemma 3.16) or not
(Lemma 3.17). The lemma below implies that if a graph H containing no bipartite claw has a cycle of a certain length, then
H is triangle-free.

Lemma 3.11. Let H be a connected graph containing no bipartite claw such that the length of each cycle is at most 4 or a multiple

of 3.If H contains a cycle C of length 3k for some k > 2, then one of the following assertions holds:

(i) H arises from Cg by adding 1, 2, or 3 long chords.

(ii) C is chordless and each vertex v € V(H) — V(C) is either: (1) a false twin of a vertex of C of degree 2 in H or (2) a pendant
vertex adjacent to a vertex of C.

In particular, H is triangle-free.

Proof. Let C’ be any cycle of H of length £ for any £ > 5. By hypothesis, £ is a multiple of 3. Moreover, C’ has no short chords
since otherwise H would have a cycle of length £ — 1, where £ — 1 is at least 5 and not a multiple of 3. Thus, if C’ has a
chord, then this chord must be long and, as H contains no bipartite claw and is connected, C’ is a spanning 6-cycle of H and
(i) holds. Hence, we assume, without loss of generality, that every cycle of H of length at least 5 is chordless. It now follows
from Lemma 3.6 that (ii) holds. O

We start considering the case of hub-covered graphs with the following upper bound on 7y,.

Lemma 3.12. Let H be a triangle-free graph containing no bipartite claw. If v is a hub of H, then Ey (v) is a matching-transversal
of H. In particular, if H has at least one hub, then t,(H) < §p(H).

Proof. Let v be any hub of H and let w1, w, and w5 be three of its neighbors in H. Suppose, by the way of contradiction, that
Ey (v) is not a matching-transversal of H and let M be a maximal matching M of H disjoint from Ey (v). In particular, for each
i € {1, 2, 3}, there is some e; € M incident to w; and non-incident to v. As H is triangle-free, w; is the only endpoint of e;
in {wq, wy, ws}, for eachi € {1, 2, 3}. Thus, {vw, vw,, vws, ey, e,, e3} is the edge set of a bipartite claw contained in H, a
contradiction. This contradiction proves that Ey; (v) is a matching-transversal of H and that 7,(H) < §p(H). O

The counterpart of the above upper bound on 7, (H) is the following lemma from which we deduce sufficient conditions
for &, (H) to be also a lower bound on a, (H).

Lemma 3.13. In a triangle-free graph H containing no bipartite claw, there exists a set F of hub-covered edges such that the
graph H' = H — F is hub-regular and has the same hub set and the same minimum hub degree as H.

Proof. Let H be a counterexample to the lemma with minimum number of edges. If H were hub-regular, the lemma would
hold by letting F = (. Hence, H is not hub-regular; i.e., A(H) > 8,(H). Let v be any hub of H that is not minimum.

We claim that v has some neighbor w in H which is not a minimum hub. Suppose, by the way of contradiction,
that all the neighbors of v are minimum hubs. By construction, v has at least four neighbors wi, w,, w3, wys and let
W = {v, wq, wy, w3, wy}. As H is triangle-free and w; is a hub, |[Ny (w;) — W| = §,(H) — 1 > 2 foreachi € {1, 2, 3}. Hence,
|(Nu(w1) U Ny (w2) U Ny (ws)) — W] < 2, since otherwise | | ,c4 Nu(a) — W| > |A| for every nonempty A C {wy, w, ws}
and Theorem 1.6 (applied to the bipartite graph with bipartition {X, Y} and edge set E(H)N(X x Y), where X = {w1, w,, w3}
and Y = V(H) — W) would imply that v is the center of a bipartite claw contained in H. Therefore, §,(H) = 3 and there
are two different vertices y1, y, outside W such that Ny (w;) = Ny(w;) = Ny(ws) = {v,y1,¥2} and, by symmetry, also
Ny (ws) = {v,y1,¥2}. But this means that wy is the center of a bipartite claw contained in H, a contradiction. This contra-
diction proves that v has some neighbor w which is not a minimum hub, as claimed.

Let w be a neighbor of v which is not a minimum hub of H. Thus, vw is a hub-covered edge of H and Hy = H — {vw}
has the same hub set and the same minimum hub degree as H. By minimality of the counterexample H, the lemma holds
for Hy. Hence, there exists a set F; of hub-covered edges of H; such that H' = H; — F; is hub-regular and has the same hub
set and the same minimum hub degree as H;. By construction, F = F; U {vw} is a set of hub-covered edges of H such that
H' = H — F is hub-regular and H’ has the same hub set and the same minimum hub degree as H. Therefore, the lemma
holds for H, contradicting the choice of H. This contradiction proves the lemma. O
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Lemma 3.14. Let H be a triangle-free graph containing no bipartite claw. If H is hub-covered and has at least one edge, then
om(H) = p(H).

Proof. By Lemma 3.13, there exists a set F of hub-covered edges of H such that H' = H — F is hub-regular and has the same
hub set and the same minimum hub degree as H. Since H has at least one edge and H is hub-covered, H has at least one hub;
ie,3 < 8,(H) < +oo. By construction, H' is also hub-covered and A(H') = 8,(H’) = 8,(H) > 3. Since H' is a subgraph
of H, H' is also triangle-free and contains no bipartite claw. By Theorem 2.9, x’(H') = A(H’); i.e., there is an edge-coloring
¢’ of H using A(H') = 8,(H) colors. Let ¢ : E(H) — {0,1,2,...,8,(H)} be defined by ¢(¢) = ¢'(e) for eache € E(H’)
and ¢(e) = 0 for each e € E(H) — E(H’). Since H is hub-covered, ¢ is a 8, (H)-profuse-coloring of H by construction and
Lemma 3.9 implies that oy, (H) > 8p(H). O

From Lemmas 3.12 and 3.14, we can determine o, and t,,, for all connected hub-covered triangle-free graphs containing
no bipartite claw and having at least one edge.

Lemma 3.15. If H is a hub-covered triangle-free graph containing no bipartite claw and having at least one edge, then o, (H) =
Tm(H) = dn(H).

Using the above lemma and Lemma 3.11, we prove Theorem 2.12 for hub-covered graphs, as follows.

Lemma 3.16. Let H be a connected graph containing no bipartite claw and such that the length of each cycle of H is at most 4 or
is a multiple of 3. If H has a cycle of length 3k for some k > 2 and H is hub-covered, then o, (H) = 7n(H) = 8n(H).

Finally, we also settle Theorem 2.12 for graphs that are not hub-covered.

Lemma 3.17. Let H be a connected graph containing no bipartite claw and such that the length of each cycle of H is at most 4
or is a multiple of 3. If H has a cycle of length 3k for some k > 2 and H is not hub-covered, then o, (H) = t(H) = 3.

Proof. Since H is not hub-covered and H has at least one edge, Lemma 3.7 implies 7,(H) < 3. Thus, we just need to prove
that o, (H) > 3. Since the length of C is a multiple of 3, there is a 3-edge-coloring of C, ¢’ : E(C) — {1, 2, 3} such that
each three consecutive edges of C are colored with three different colors by ¢'. Let ¢ : E(H) — {0, 1, 2, 3} be defined by
¢(e) = ¢'(e) foreache € E(C) and ¢(e) = Oforeache € E(H)—E(C).Since H is connected and contains no bipartite claw, C
isedge-dominating in H and, consequently, ¢ is a 3-profuse-coloring of H. By virtue of Lemma 3.9, o, (H) > 3,asneeded. O

Clearly, Lemmas 3.16 and 3.17 together imply Theorem 2.12.
As Theorem 2.12 is now proved, to complete the proof of Theorem 2.11, it only remains to prove Theorem 2.13.
To begin with, the next lemma provides several upper bounds on t,.

Lemma 3.18. If H is a graph containing no bipartite claw and having no 5-cycle and v is a hub of H, then each of the following
holds:

(i) If v has degree at least 5 in H, then Ey (v) is a matching-transversal of H and, in particular, t,(H) < dy(v).
(ii) If v has degree 4 in H, then t,(H) < 5. Moreover, if v has degree 4 and Ny (v) does not induce 2K, in H, then Ey(v) is a
matching-transversal of H and, in particular, t,(H) < 4.
(iii) If v has degree 3 in H, then t,(H) < 5. Moreover, if Ny(v) induces 3K; in H, then Ey (v) is a matching-transversal of H
and, in particular, T, (H) < 3. If, instead, Ny (v) induces K, + Ky in H, then t,(H) < 4.

Proof. If Ey(v) is a matching-transversal of H, then 7,(H) < dy(v) and there is nothing left to prove. Hence, we assume,
without loss of generality, that Ey; (v) is not a matching-transversal of H. Therefore, there exists a maximal matching M of H
such that M N Ey(v) = @. Because of the maximality of M, for each neighbor w of v there is exactly one edge e,, € M that
is incident to w. Notice that there could be two different neighbors w; and w; of v such thate,, = e,,.

We claim that [{e,,;: w € Ny(v)}| < 2.Infact, if e,,,, ey, , e,, were three different edges for some wy, wy, wz € Ny(v),
then v would be the center of a bipartite claw contained in H with edge set {vw;, e,,,, vws, €,,, vws, €,,}, a contradiction.
This contradiction proves the claim. Therefore, as each edge e, is incident to at most two vertices of Ny (v), in particular,
dy (v) < 4.So far, we have proved (i).

Suppose that dy (v) = 3 and let Ny (v) = {wq, w;, w3}. We denote by Fy (v) the set of edges of H joining two neighbors of
v. Suppose, by the way of contradiction, that Ey; (v) U F4 (v) is not a matching-transversal of H. Thus, there is some maximal
matching M’ such that M’ N (Ey(v) U Fy(v)) = . Because of the maximality of M’, for each i € {1, 2, 3}, there is an
edge e;)i € M’ and v is the center of a bipartite claw whose edge set is {vw;, e’w1 , VW2, e;m, vws, e;)3 }, a contradiction. This
contradiction proves that Ey; (v) U Fy (v) is a matching-transversal of H. In particular, 7, (H) < 3 + |Fg(v)|. This proves (iii)
when Ny (v) is not a clique. Thus, assume that Ny (v) is a clique. Since H has no 5-cycle, every vertex x € V(H) — Ny[v]
having at least one neighbor in Ny (v), has exactly one neighbor in Ny (v). Hence, since H contains no bipartite claw, there is
at least one vertex w in Ny (v) that has degree 3 in H and, by Lemma 3.7, 7,(H) < dy(v) + dy(w) — 1 = 5. This completes
the proof of (iii).

Finally, we consider the case dy (v) = 4. Since |{e,,: w € Ny(v)}| < 2 and each edge e,, is incident to at most two neigh-
bors of v, we assume, without loss of generality, that e,,, = e,,, = wyw, and e,,; = e,, = wsws. In particular, the graph
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induced by Ny (v) contains 2K,. Moreover, since H has no 5-cycle, Ny (v) induces 2K,. To complete the proof of (ii) it only
remains to prove that 7, (H) < 5. Suppose, by the way of contradiction, that Ey (v) U {wqw-} is not a matching-transversal;
i.e., there is a maximal matching M’ of H such that M’ N (Eg(v) U {wiw,}) = @. Because of the maximality of M’, for each
w € Ny (v), there is some edge e/, € M’ incident to w. Since wyw, & M/, e;}l * eiﬂz. Since ws is nonadjacent to w; and
wy, e, is different from e}, and e},,. We conclude that v is the center of a bipartite claw contained in H whose edge set is
{vwy, e;)l , VWy, e;,z, vws, ej“} }. This contradiction proves that E; (v) U {wjw,} is a matching-transversal, which means that

tm(H) < 5. This completes the proof of (ii) and of the lemma. O
We now prove a lower bound on «, (Lemma 3.21), which will be the last of the three lemmas below.

Lemma 3.19. Let H be a graph. If v is a vertex of H that is neither the center of a bipartite claw nor a vertex of a 5-cycle, then at
most two of the neighbors of v have degree at least 4 each.

Proof. Suppose, by the way of contradiction, that there is some vertex v of H that is neither the center of a bipartite claw nor
avertex of a 5-cycle and such that v has three different neighbors w1, w,, w3 in H such that dy (w;) > 4foreachi € {1, 2, 3}.
In particular, for each i € {1, 2, 3}, w; is adjacent to at least one vertex x; different from v, w1, w,, ws.

We claim that {wq, w,, w3} is a stable set of H. Suppose, by the way of contradiction, that {w{, w,, w3} is not a stable set
of H. By symmetry, we assume, without loss of generality, that w is adjacent to w,. Since there is no 5-cycle passing through
v, X3 is different from x; and x,. Thus, x; = x, and Ny (w;) C {v, w,, w3, X1} because v is not the center of a bipartite claw.
Hence, since dy (w1) > 4, necessarily wq is adjacent to w3 and wqx;w,vwswy is a 5-cycle of H passing through v, which is
a contradiction. This contradiction proves that {wq, w,, w3} is a stable set of H.

Since {w1, w,, w3} isastable setand dy (w;) > 4, there are three pairwise different vertices x;1, Xj>, Xi3 € Ny (w;)—{v, wy,
wy, ws}, for eachi € {1, 2, 3}. By Theorem 1.6, there are some j1, jo, j3 € {1, 2, 3} such that M = {w1xyj,, waXyj,, W3X3j,} is
a matching of H of size 3. Therefore, {vw1, vw,, vws} U M is the edge set of a bipartite claw with center v, a contradiction.
This contradiction completes the proof of the lemma. O

Lemma 3.20. Let H be a graph containing no bipartite claw and having no 5-cycle. If §,(H) > 4, then there exists a set F of
hub-covered edges of H such that the graph H' = H — F is hub-regular and has the same hub set and the same minimum hub
degree as H.

Proof. Suppose, by the way of contradiction, that the lemma is false and let H be a counterexample to the lemma with
minimum number of edges. If H were hub-regular, then the lemma would hold for H by letting F = ¢, a contradiction.
Hence, H is not hub-regular; i.e., A(H) > §p(H). Let v be a hub of H that is not minimum. As §,(H) > 4, the vertex v has at
least 5 neighbors. Thus, since H contains no bipartite claw and has no 5-cycle, Lemma 3.19 implies that v has some neighbor
w that is not a hub (recall that 8y (H) > 4). Hence, since vw is not incident to any minimum hub of H, H; = H — {vw}
has the same hub set and the same minimum hub degree as H. The proof ends exactly in the same way as the proof of
Lemma 3.13. 0O

Lemma 3.21. Let H be a graph containing no bipartite claw and having no 5-cycle. If H is hub-covered, has at least one edge,
and §,(H) > 4, then o (H) > 8p(H).
Proof. By Lemma 3.20, there exists a set F of hub-covered edges of H such that H' = H — F is hub-regular and has the same
hub set and the same minimum hub degree as H. Since H is hub-covered and has at least one edge, d,(H) < +oc. Hence,
H’ is also hub-covered and A(H") = 8,(H") = 8,(H) > 4. Since H' is a subgraph of H, H’ contains no bipartite claw and has
no 5-cycle. Therefore, by Theorem 2.9, x'(H") = A(H’); i.e., there is an edge-coloring ¢’ of H' using A(H’) = &, (H) colors.
Let¢ : E(H) — {0,1,2,...,8,(H)} be such that ¢(e) = ¢'(e) for each e € E(H') and ¢p(e) = 0 for eache € E(H) — E(H').
Since H is hub-covered, ¢ is a 8, (H)-profuse-coloring of H by construction. Thus, by Lemma 3.9, o, (H) > 6y (H). O

We now use Lemmas 3.18 and 3.21 to prove the two lemmas below which settle Theorem 2.13 for fat caterpillars
containing A or net.

Lemma 3.22. Let H be a fat caterpillar containing A. Hence, oy (H) = toy (H). More precisely, there are some C = v1v3030401
and xq, x, € V(H) — V(C) as in the statement of Lemma 3.4 and one of the following assertions holds:
(i) Cis chordless and

_ _ )3 if dy(v3) = dy(vy) =2
om(H) = tm(H) = Sn(H) otherwise.
(ii) vqvs is the only chord of C, dy(v4) = 2, and

4 if dy(vy) > 4and §h(H) =3
Sh(H) otherwise.

(iii) C has two chords, dy (v3) = dy(v4) = 3, and

an(H) = tn(H) =

5 ifeach of vy and v, has degree at least 5

am(H) = mH) =14 Jinerwise.
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Fig. 5. Some profuse-colorings for the proof of Lemma 3.22.

Proof. Let C = vivyv3v4v; and x4, X, € V(H) — V(C) as in the statement of Lemma 3.4. In particular, each non-pendant
vertex in V(H) — V(C) is a false twin of v, of degree 2. Notice that o, (H) > 3 because a 3-profuse-coloring of H arises by
coloring the edges in E(C) U {v1x1, v12X>} as in Fig. 5(a) and leaving the remaining edges of H uncolored.

We now claim that if 6, (H) > 4, then t,,(H) < p(H). On the one hand, if some minimum hub of H is adjacent to a
pendant vertex, then 7,(H) < §,(H) due to Lemma 3.7. On the other hand, if 6,(H) > 4 and no minimum hub of H is
adjacent to a pendant vertex, then vs is the only minimum hub of H and Lemma 3.18 implies that t,(H) < 8,(H) because
dy(v3) = 6h(H) > 4 and Ny (v3) does not induce 2K, in H. Thus, the claim follows.

The proof splits into three cases corresponding to assertions (i)—(iii) of Lemma 3.4.

Case 1: C is chordless. Suppose first that neither dy (v3) = dy(v4) = 2 nor §,(H) = 3 holds. Thus, H is hub-covered and
dn(H) > 4, which implies that o, (H) = ty(H) = §n(H) because o (H) > 64 (H) (by Lemma 3.21) and 7,,(H) < 8n(H) (by
the above claim). Hence, (i) holds.

Suppose now that dy (v3) = dy(v4) = 2 or §h(H) = 3.1f dy(v3) = dy(v4) = 2 or some vertex of degree 3 is adjacent to
a pendant vertex, then a,(H) = 1»,(H) = 3 because t,(H) < 3 by Lemma 3.7 and we have already seen that o, (H) > 3.
Otherwise, the only minimum hub is v3 and Ny (v3) induces 3K; which also leads to ¢, (H) = 71 (H) = 3 because 7, (H) < 3
by Lemma 3.18 and we have seen that o, (H) > 3. We conclude again that (i) holds.

Case 2: vyvs is the only chord of C and dy(v4) = 2. Assume first that dy(v,) > 4 and §p(H) = 3. Necessarily, dy (v3) = 3.
Thus, as dy(v4) = 2, Lemma 3.7 implies that t,(H) < 4. Let y, be a neighbor of v, outside V(C) different from x,. Hence,
am(H) > 4 because a 4-profuse-coloring of H arises by coloring the edges of the subgraph of H induced by V (C) U{x, X2, 2}
as in Fig. 5(b) and leaving the remaining edges of H uncolored. We have proved that if d;(v,) > 4 and 6, (H) = 3, then (ii)
holds (because oy, (H) = tn(H) = 4).

Assume now that, on the contrary, dy(v,) = 3 or 8y(H) > 4. If the former holds, then a,(H) = t,(H) = 3 = §,(H)
because we know that o, (H) > 3 and Lemma 3.7 would imply that 7, (H) < 3.If the latter holds, then o, (H) = try(H) =
on(H) because, since H is hub-covered, Lemma 3.21 would imply that o, (H) > 8,(H) and because we have proved that
tm(H) < é,(H) whenever 8, (H) > 4. We conclude that if dy (v1) = 3 or 6,(H) > 4, then o, (H) = o (H) = §,(H) and (ii)
holds.

Case 3: C has two chords and dy(v3) = dy(vs) = 3. If vq or v, has degree 4, then t,(H) < 4 (by Lemma 3.18) and
a 4-profuse-coloring of H arises by coloring the edges of the subgraph of H induced by V(C) U {x1, x,} as in Fig. 5(c) and
leaving all the remaining edges of H uncolored. Therefore, if v; or v, has degree 4, then o, (H) = 7,(H) = 4 and (iii) holds.

Assume now that each of v, and v, has degree at least 5 and, for each i € {1, 2}, let y; be a neighbor of v; outside V(C)
different from x;. As dy (v3) = dy(v4) = 3, Lemma 3.7 implies that t, (H) < 5.In addition, o, (H) > 5 because a 5-profuse-
coloring of H arises by coloring the edges of the subgraph of H induced by V (C) U {x1, X2, ¥1, y>} as in Fig. 5(d) and leaving
the remaining edges of H uncolored. Hence, o, (H) = tn(H) = 5 and we conclude again that (iii) holds. O

Now we deal with the case of fat caterpillars containing net but no A.

Lemma 3.23. If H is a fat caterpillar containing net but containing no A, then oy, (H) = 1 (H) = Sp(H).

Proof. That H has an edge-dominating triangle C such that each vertex v € V(C) is adjacent to some pendant vertex and
each vertex in V(H) — V(C) is pendant follows from Lemma 3.5. As the hubs of H are the vertices of C and each of them
is adjacent to some pendant vertex, Lemma 3.7 implies that t,(H) < &,(H). For the proof of the lemma to be complete,
it suffices to show that o, (H) > 6, (H). On the one hand, if §,(H) > 4, then as H is hub-covered, o, (H) > §,(H) by
Lemma 3.21. On the other hand, if 8, (H) = 3, then o, (H) > 3 because a 3-profuse-coloring of H arises by 3-edge-coloring
the net induced in H by {vq, vy, v3, Uy, Uy, u3} and leaving the remaining edges of H uncolored, where u; is some pendant
neighbor of v; foreachi € {1,2,3}. O

Given the two lemmas above, in order to settle Theorem 2.13, it only remains to prove the following result.

Theorem 3.24. If H is a fat caterpillar containing no A and no net and k > 1, then o, (H) > kif and only if t(H) > k.

By Lemma 3.1, fat caterpillars containing no A and not net are certain linear concatenations of basic two-terminal graphs.
To begin with, the following lemma, whose proof is straightforward, enumerates the values of oy, and t,,, for the underlying
graphs of each of the basic two-terminal graphs.

Lemma 3.25. The underlying graph of each of the basic two-terminal graphs satisfies o, = T, Moreover, the following
assertions hold:

(i) For the underlying graph of the edge, oy, = Ty = 1.

(ii) For the underlying graphs of the triangle, the rhombus, and the K4, oy = T, = 3.
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(iii) For each m > 2, the underlying graph of the m-crown has oy, = 1, = m + 1.
(iv) For each m > 2, the underlying graph of the m-fold has o, = 7, = m.

Our proof of Theorem 3.24 is indirect. The theorem clearly holds for k = 1. In the remaining of this subsection, we deal
separately with the casesk = 2,k = 3,k =4,k =5,and k > 6.
Case k = 2 of Theorem 3.24 can be derived from [41]. For each n > 1, let Q,41 be the graph having 4n + 2 vertices

Uy, Up, ..y Udnyt, V1, U2, + o+, U2pgg SUCh that Qanyq[{v1, v2, . .., Vant1}] = Gopgr and N, (Ui) = V(Qany1) — {vi}, for each
ie{l1,2,...,2n+ 1}. These graphs Q,,,1 were introduced in [41] in connection with the following result.

Theorem 3.26 ([41]). For eachn > 1, ac(Qan+1) = 1 and t.(Qant1) = 2. Moreover, if G is a graph such that a.(G) = 1 but
7.(G) > 1, then G contains an induced Q3,1 for somen > 1.

Now we are ready to prove the case k = 2 of Theorem 3.24.

Lemma 3.27. Let H be a fat caterpillar. Hence, a,(H) > 2 if and only if t,(H) > 2.

Proof. The ‘only if’ part is trivial. For the converse, suppose, by the way of contradiction, that t,(H) > 2 but ap,(H) < 1.
Hence, if G = L(H), then t.(G) > 2 and «(G) < 1. Thus, by Theorem 3.26, G contains an induced Q,,,+; for somen > 1.
As G is the complement of a line graph but Qu,,1[{v1, v2, v3, U3}] is the complement of the claw, necessarily G contains an
induced Q3 (i.e., 3-sun) and, as a result, H contains a bipartite claw, a contradiction. This contradiction proves the ‘if’ part
and completes the proof of the lemma. O

Case k = 3 can be dealt as follows.

Lemma 3.28. Let H be a fat caterpillar containing no A and no net and having at least one edge. Hence, a, (H) > 3 if and only
if T (H) > 3. In fact, each of the inequalities holds if and only if H satisfies all of the following assertions:

(i) For each pair of adjacent vertices vy and v,, dy(v1) + dy(vy) — 1 > 3.
(ii) Each 4-cycle of H has at most two vertices of degree 2 in H.
(iii) H is not the underlying graph of triangle & ,triangle for any p > 0.

Proof. Since a,(H) < tw(H), clearly oy (H) > 3 implies 7,,(H) > 3. Suppose that t,,(H) > 3. Hence, (i) holds because of
Lemma 3.7. If there were some 4-cycle C = vyv,v3v4v7 such that dy(vy) = dy(vy) = dy(v3) = 2, then {viv,, vv3} would
be a matching-transversal of H, contradicting 7,(H) > 3. Similarly, if H were the underlying graph of triangle & ptriangle
for some p > 0, then the set consisting of the two edges of H non-incident to the concatenation vertex would be a matching-
transversal of H, another contradiction. These contradictions prove that (ii) and (iii) also hold.

To complete the proof of the lemma, let us assume that (i)—(iii) hold and we will prove that o, (H) > 3, or, equivalently,
that H has a 3-profuse-coloring. As H is a fat caterpillar containing no A and no net, Lemma 3.1 implies that H is the underlying
graphof I't & p, I3 & p, - -+ &, I, where each 75 is a basic two-terminal graph and each p; > 0.1fn = 1, then H is the
underlying graph of some two-terminal graph different from an edge and a square and H admits a 3-profuse-coloring by
Lemma 3.25. Hence, from now on we assume that n > 2.

Case 1: H is the underlying graph of Iy & , I, where each of I'y and I'; is an edge or a triangle and p > 0. By (iii), assume,
without loss of generality, that I'; is an edge. If I} is also an edge, then (i) implies that p > 1 and clearly o, (H) > 3 because
a 3-profuse-coloring of H arises by coloring with three different colors any three edges of H and leaving the remaining edges
of H uncolored. If, on the contrary, I'; is a triangle, then also o, (H) > 3 because a 3-profuse-coloring of H arises by coloring
the edge of I} and the two edges of I, incident to the concatenation vertex with three different colors and leaving the
remaining edges of H uncolored.

Case 2: H does not fulfill Case 1. For eachi € {1, ..., n}, let P; be some shortest path in I3 joining its two terminal vertices.
Thus, P = PP, ...P, is a chordless path in H and let P = ugu; . ..u, where ug is the source of I and uy is the sink of I7},.
Consider a coloring of the edges of P with the colors 1, 2, and 3, such that any three consecutive edges of P receive three
different colors. As P is edge-dominating, every edge of H is incident to at least two differently colored edges, except for the
edges incident to ug and u,. Assume without loss of generality that ugu; is colored with color 1 and u u, with color 2. We
make the edges incident to ug adjacent to at least two differently colored edges as follows:

(1) If there are at least two edges joining ug to vertices outside P, we color two of these edges using colors 2 and 3.

(2) If there is exactly one vertex u’ outside P adjacent to ug, then I7 is a triangle or a rhombus (because (ii) ensures that Iy
is not a square). In particular, u; is also adjacent to u’. We color u;u’ with color 3.

(3) If there is no vertex outside P adjacent to ug, then Iy is an edge and, by (i), u; is adjacent to some vertex u’ outside P.
We color u;u’ with color 3.

Symmetrically, let x be the color of u,_uy, y be the color of u,_,u,_1,and z € {1, 2, 3} — {x, y}. We make the edges incident
to u, adjacent to at least two differently colored edges as follows:

(1) If there are at least two edges joining u, to vertices outside P, we color two of these edges using colors y and z.

(2') If there is exactly one vertex u” outside P adjacent to u,, then u” is adjacent to u,_; (as in (2)). If there were an edge
incident to u,_1 colored with color z, then n = 2, I3 is a triangle, and either I7 is a triangle or an edge, contradicting
the hypothesis. Thus, we color the edge u,_;u” with color z.
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(3') If there is no vertex outside P adjacent to u,, then I';, would be an edge and u,_ is adjacent to some vertex u” outside
P (as in (3)). If there were some edge incident to u,_; colored with color z, then n = 2 and I} is an edge or a triangle,
which would contradict our hypothesis because I is a triangle. We color u,_ u” with color z.

The resulting partial 3-edge-coloring is a 3-profuse-coloring of H because each edge of H is incident to at least two differently
colored edges. Hence, o, (H) > 3,as needed. 0O

For case k = 4, we prove the following.

Lemma 3.29. Let H be a fat caterpillar containing no net and no A and having at least one edge. Hence, o, (H) > 4 if and only
if Tm(H) > 4. In fact, each of the inequalities holds if and only if H satisfies all of the following conditions:

(i) For each pair of adjacent vertices v and v,, dy(v1) + dy(vy) — 1 > 4.

(ii) No block of H is a clique on four vertices.
(iii) Each vertex of degree 3 that is not a cut-vertex has only neighbors of degree at least 3.
(iv) The neighborhood of each cut-vertex of degree 3 induces K, + K; in H.

Proof. By Lemma 3.1, H is the underlying graph of some Iy & ,, I3 &, - - - &, I, where each I is a basic two-terminal
graph and each p; > 0. For eachi € {1, 2,...,n — 1}, let v; be the concatenation vertex of H that arose by identifying the
sink of I'; with the source of I';,; and let vg be the source of I'; and v, be the sink of I7,. Clearly, the cut-vertices of H are the
concatenation vertices vy, vy, ..., vy_1 and the underlying graph of each I7; is a block of H.

Since o (H) < ty(H), am(H) > 4 implies that t,,(H) > 4. Suppose now that H satisfies t,(H) > 4. Thus, H satisfies (i)
because of Lemma 3.7. If some block of H were a clique of size four, this block would have at least three vertices of degree
3 in H (because H contains no A and has no 5-cycle) and the edges of the K5 induced by these three vertices would be a
matching-transversal of H. Hence, since 7,,(H) > 4, H satisfies (ii). If there were a vertex v of H of degree 3 that were not a
cut-vertex and had a neighbor of degree less than 3, then, up to symmetry, either: (1) v is a non-terminal vertex of I'y and I
isarhombus, or (2) v is the source of I'; and Iy is a 2-crown or a 3-fold. If (1) holds, then the edges of the triangle induced by
Ny [vo] form a matching-transversal of H of size 3. If (2) holds, then E (vg) is a matching-transversal of H of size 3. In either
case, we reach a contradiction with t,(H) > 4. This contradiction proves that H satisfies (iii). Finally, if v is a cut-vertex of
H of degree 3, then Ny (v) induces a disconnected graph on three vertices; i.e., Ny (v) induces 3K; or K; + Kj. But, if Ny (v)
induces 3Ky, then Lemma 3.18 implies that 7, (H) < 3, a contradiction. This proves that H satisfies (iv). Altogether, we have
proved that if 7, (H) > 4, then H satisfies conditions (i)-(iv).

To complete the proof of the lemma, we assume that H satisfies conditions (i)-(iv) and show that a,(H) > 4 or,
equivalently, by Lemma 3.9, that H has a 4-profuse-coloring. To start, we prove the following claims about H.

Claim 1. Each of I'7 and I, is either an edge, m-crown for some m > 3, or m-fold for some m > 4.

Proof. Each of I'] and I}, is different from triangle and square because of (i), different from 2-crown, 3-fold, and rhombus
because of (iii), and different from Ky because of (ii). As I'; and I, are basic, the claim follows. ¢

Claim 2. If there is a maximal 4-profuse-coloring ¢ of H and there are at least three edges of I} incident to the same terminal
vertex of I, then each terminal vertex of I is incident to four edges of H colored by ¢.

Proof. Without loss of generality, assume that there are at least three edges of I; incident to v;. As I} is basic, there are
also at least three edges of [; incident to vj_; and [} is either an m-crown for some m > 2 or an m-fold for some m > 3.
Hence, if dy (v;) = 3, then j = n and either I3, would be a 2-crown or a 3-fold, contradicting Claim 1. Therefore, dy (vj)) > 4
and, symmetrically, dy (vj—1) > 4.In addition, neither Ny (v;) nor Ny (vj_1) induces 2K; in H and, by Lemma 3.18, Ey (v;) and
Ey(vj—1) are matching-transversals of H. Hence, by Corollary 3.10, the maximality of ¢ implies that each of v; and vj_; is
incident to four edges of H colored by ¢p. ¢

Claim 3. If n > 2, I,_; and I, are both edges, p,_1 = 2, and there is some 4-profuse-coloring of H, then either n = 2 or there
is some 4-profuse-coloring of H that colors at least two of the edges incident to v,_».

Proof. Suppose thatn > 3 and we have to prove that there is a 4-profuse-coloring of H that colors at least two edges incident
to v,_». Let ¢ be a 4-profuse-coloring of H that maximizes the number of colored edges incident to v,_, and, without loss of
generality, assume that ¢ is maximal. Suppose, by the way of contradiction, that ¢ colors at most one edge incident to v,_».
As ¢ is maximal, the four edges incident to v,,_1 are colored by ¢ and, in particular, v,_,v,_1 is colored. Hence, by hypothesis,
all edges incident to v,_, different from v,_,v,_1 are uncolored. If there were an edge joining v,_, to some non-cut-vertex
of H, then this edge would be uncolored and, at the same time, incident to at most three colored edges, contradicting the
maximality of ¢. Therefore, p,_, = 0 and I,_, is an edge. As v,_3v,_, is uncolored and v,_,v,_1 is the only colored
edge incident to v,_,, there are at least three colored edges incident to v,_3 such that each of them is colored differently
from v,,_v,_1. If there were some pendant edge q incident to v,_3 and colored differently from v,_,v,_1, then, by coloring
vn—_3vy— With the color of g and uncoloring g, a new 4-profuse-coloring of H arises that colors at least two edges incident
to v,_», a contradiction with the choice of ¢. This contradiction shows that there are at least three colored edges of I,_»
incident to v,_3. Hence, by Claim 2, v,_4 is incident to four colored edges. Let e be any of the colored edges incident to v,_3
but not to v,_4 such that e is colored differently from v,_,v,_1. Thus, coloring v,_3v,_» with the color of e and uncoloring
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e, a new 4-profuse-coloring of H arises that colors two of the edges incident to v,_,, contradicting the choice of ¢. This
contradiction arose from assuming that ¢ does not color at least two edges incident to v,_,. Hence, the claim follows. ¢

Claim 4. If H has a 4-profuse-coloring, I'y is an edge, n > 2, p; = 1, and Ny(vq) induces K, + 2K; in H, then there is a
4-profuse-coloring ¢ of H that colors the only edge of H joining two neighbors of v;.

Proof. Let ¢’ be a maximal 4-profuse-coloring of H and let e be the only edge of H joining two vertices in Ny (v1). As dy (v1)
= 4 and Ny (vq) does not induce 2K;, Lemma 3.18 implies that Ey (vq) is a matching-transversal of H and the four edges
incident to v; are colored by ¢’ because of the maximality of ¢" and because of Corollary 3.10. If ¢’ colors e, then the claim
holds by letting ¢ = ¢'. Hence, suppose that e is not colored by ¢'. Thus, the maximality of ¢’ implies that e is incident to at
least four other edges of H.

Suppose first that e is incident to exactly four edges of H; i.e., either I is triangle and dy (v,) = 4, or I3 is rhombus. Let
w be an endpoint of e different from v, and let ¢ = v;w. Let ¢’ be a pendant edge incident to v, and colored differently
from each of the colored edges incident to w. Notice that the maximality of ¢, Lemma 3.7, and Corollary 3.10 imply that the
four edges of H incident to e are colored by ¢’ using four different colors. Hence, if we define ¢ : E(H) — {0, 1, 2, 3, 4} to
coincide with ¢’ except that ¢ colors e and e” with color ¢’(e") and e’ with color ¢’(e”), then ¢ is a 4-profuse-coloring of H
that colors e, as claimed.

It only remains to consider the case where e is incident to more than four edges of H. Necessarily, I3 is a triangle and
dy(vy) > 5.Inparticular, Lemma 3.18 and Corollary 3.10 imply that there are four edges incident to v, colored by ¢’. Let w be
the non-terminal vertex of I;. Suppose that there is some pendant edge q incident to v, that is colored by ¢'. By permuting,
if necessary, the colors of the edges of H incident to v, that are different from v;v,, we assume, without loss of generality,
that vyw is colored differently from q and, then, by coloring e with the color of g and uncoloring g, a new 4-profuse-coloring
of H arises that colors e, as claimed. Hence, from now on, we assume, without loss of generality, that there is no pendant
edge incident to v, colored by ¢'. Since there are four edges incident to v, colored by ¢’, necessarily three of them are edges
of I3. By Claim 2, there are four colored edges incident to vs. Therefore, if we let e’ be any edge of I'; incident to v, but not to
v3 and colored by ¢’ differently from v;w, then by coloring e with the color of ¢’ and uncoloring e, a new 4-profuse-coloring
of H arises that colors e, as claimed. ¢

Claim 5. If H has a 4-profuse-coloring, I'y is an edge, n > 2, and p; > 1, then there is a 4-profuse-coloring of H that colors at
least two pendant edges incident to v;.

Proof. Suppose, by the way of contradiction, that ¢ is a 4-profuse-coloring of H that maximizes the number of colored pen-
dant edges incident to v; and that, nevertheless, ¢ colors at most one pendant edge incident to v;. Since p; > 1, there is at
least one uncolored pendant edge incident to v;. Thus, the maximality of ¢ means that there are four colored edges incident
to vy. Hence, there are at least three colored edges of I'; incident to v, and, by Claim 2, there are four colored edges incident
to v,. Let e be any colored edge of I3 incident to v; but not to v, and let g be any of the uncolored pendant edges incident to
v1. If we color g with the color of e and uncolor e, a new 4-profuse-coloring of H arises that colors one more pendant edge
incident to v, than ¢, contradicting the choice of ¢. This contradiction proves that the claim holds. ¢

We turn back to the proof of the lemma. The proof proceeds by induction on the number of cut-vertices of H. Clearly, the
cut-vertices of H are the n — 1 vertices v, ..., v,_1. Consider first the case where H has no cut-vertices; i.e,n = 1 and H
is the underlying graph of I'; which, by Claim 1, is an edge, m-crown for some n > 3, or m-fold for some m > 2. If I'; were
an edge, then dy (vg) + dy(v1) — 1 = 1, contradicting (i). Therefore, if n = 1, then H is m-crown for some m > 3 or m-fold
for some m > 4 and, by Lemma 3.25, ai,(H) > 4.

Assume that n > 2 and that the lemma holds for graphs with less than n — 1 cut-vertices. Suppose that H has some
cut-vertex of degree 3; i.e., there is somej € {1, 2, ..., n — 1} such that v; has degree 3 in H. By (iv), Ny (v;) induces K; + K;
in H. Therefore, p; = 0 and, by symmetry, assume, without loss of generality, that Ij is an edge and I}, is either a triangle
or arhombus. Let H; be the graph that arises from H by first removing all vertices and edges from 511, Ij42, ..., Iy, except
for the vertices of Ny[v;] and the edges incident to vj, and then adding one pendant edge q incident to v;. Notice that H;
can be regarded as the underlying graph of Iy & , I3 & p, ... & pia & sedge. Clearly, H; satisfies (i)-(iv) and, by induction
hypothesis, there is a maximal 4-profuse-coloring of H;. By Claim 3, there is a 4-profuse-coloring ¢ of H; that colors at least
two of the edges of H; incident to vj_q. Thus, by permuting, if necessary, the colors of the pendant edges incident to v; in
H;, we assume, without loss of generality, that ¢; colors some edge incident to vj_; with color ¢;(q). Let H, be the graph
that arises from H by first removing all vertices and edges of I'y, I, ..., I;, except for the vertices of Ny[v;] and the edges
incident to vj, and then adding one pendant edge incident to v;. The graph H, can also be regarded as the underlying graph
ofedge & 1[j+1&p [j2 &y, - -+ &, . By Claim 4, there is a maximal 4-profuse-coloring ¢, of H, that colors the only
edge e joining two neighbors of v;. By permuting, if necessary, the pendant edges incident to vj;, we assume, without loss of
generality, that ¢, colors e differently from the edge of I;. Moreover, by permuting, if necessary, the colors of ¢,, we assume
without loss of generality, that ¢; and ¢, color exactly in the same way the edge of I'; and each of the edges of I'}; incident
to v;. Thus, there is no edge of H where ¢, and ¢, differ and the partial edge-coloring ¢ that results by merging ¢ and ¢; is
easily seen to be a 4-profuse-coloring of H, as desired. Therefore, from now on, we assume, without loss of generality, that
H has no cut-vertex of degree 3.
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Suppose now that there is some j € {1, 2, ..., n} such that I; is a rhombus. Let H; be the graph that arises from H by
removing all the vertices and edges from I, Ij41, ..., I, except for the vertices of Ny[vj_1] and the edges incident to vj_1,
and let H, be the graph that arises from H by removing all vertices and edges from I, I3, ..., I; except for the vertices
of Ny[v;] and the edges incident to v;. Moreover, as H has no cut-vertex of degree 3, dy, (vji—1) > 4, from which it follows
that H; satisfies (i)-(iv) and, by induction hypothesis, H; admits a 4-profuse-coloring ¢. Similarly, dy, (vi+1) > 4 and H,
admits a 4-profuse-coloring ¢,. By Claim 5, we assume, without loss of generality, that ¢; colors both edges of I} that belong
to H;, for each i € {1, 2}. By permuting, if necessary, the colors of ¢,, we assume, without loss of generality, that ¢, and ¢,
color the four edges of I; that belong to Hy or H, using 4 different colors. Let ¢ : E(H) — {0, 1, 2, 3, 4} be defined as ¢;
in E(Hy), as ¢, in E(H;), and that leaves the only edge of I that belongs neither to H; nor to H, uncolored. Clearly, ¢ is a
4-profuse-coloring of H, as desired.

It only remains to consider the case where H has no cut-vertices of degree 3 and no [j is a rhombus; i.e,, the case
where §,(H) > 4. Since (i) ensures that H is hub-covered and since H has at least one edge, Lemma 3.21 implies that
am(H) > 8n(H) > 4, which completes the proof of the lemma. O

The following lemma settles case k = 5.

Lemma 3.30. Let H be a fat caterpillar containing no A and no net and having at least one edge. Hence, o, (H) > 5 if and only
if tm(H) > 5. In fact, each of the inequalities holds if and only if H satisfies all of the following assertions:

(i) For each pair of adjacent vertices v and v,, dy(v1) + dy(v2) — 1 > 5.
(ii) No block of H is a clique on four vertices.
(iii) No cut-vertex of H has degree 3 in H.
(iv) The neighborhood of each vertex of degree 4 induces 2K, in H.

Proof. Since a,(H) < t(H), o (H) > 5 implies 7, (H) > 5. Suppose now that H satisfies t,,,(H) > 5. Thus, H satisfies (i)
because of Lemma 3.7. If there were some block of H of size four, it would have at least three vertices of degree 3 in H (because
H contains no A and has no 5-cycle) and the edges of the K3 induced by these three vertices would be a matching-transversal
of H, contradicting t,,(H) > 5. Thus, H satisfies (ii). Since the neighborhood of a cut-vertex induces a disconnected graph,
if H had some cut-vertex of degree 3, then by Lemma 3.18, t,,(H) < 4. Hence, H satisfies (iii). Finally, Lemma 3.18 implies
that H satisfies (iv). Hence, we have proved that if t,,(H) > 5, then H satisfies (i)-(iv). To complete the proof of the lemma,
we assume that H satisfies assertions (i)-(iv) and we will show that o, (H) > 5, or, equivalently, by Lemma 3.9, that H has
a 5-profuse-coloring.

By virtue of Lemma 3.1, H is the underlying graph of some I'y & p, I> & p, - -+ &, I, where each I; is a basic two-
terminal graph and each p; > 0. Clearly, the underlying graph of each 7 is a block of H. Therefore, because of (ii), none of
I, I, ..., IyisaKy Foreachi € {1,2,...,n — 1}, let v; be the concatenation vertex of H that arises by identifying the
sink of I with the source of I} 4. Let vy be the source of I'; and let v, be the sink of I';,. We make the following claims.

Claim 6. Each of I'y and I, is either an edge, m-crown for some m > 4, or m-fold for some m > 5.

Proof. Indeed, each of I and I7, is different from triangle, square, 2-crown, 3-fold, and rhombus because of (i), different
from 3-crown and 4-fold because of (iv), and different from K, because of (ii). The claim follows. ¢

Claim 7. If there is a maximal 5-profuse-coloring ¢ of H and there are at least three edges of I} incident to the same terminal
vertex of I, then each terminal vertex of I is incident to five edges of H colored by ¢.

Proof. Without loss of generality, suppose that there are at least three edges of I} incident to v;. As ] is basic, there are
also at least three edges of I incident to v;_; and [} is either and m-crown for some m > 2 or an m-fold for some m > 3.1If
dy(vj) = 3, thenj = nand I5 is either a 3-crown or a 4-fold, contradicting Claim 1. Thus, dy (v;) > 4 and, symmetrically,
dy(vi—1) > 4. In addition, neither Ny (v;) nor Ny(vj—1) induces 2K, and, by (iv), dy(v;) > 5 and dy(vj—1) > 5. Hence,
Lemma 3.18, Corollary 3.10, and the maximality of ¢ imply that each of v; and v;_; is incident to five edges colored of H by
¢, asclaimed. ©

Claim 8. If H has a 5-profuse-coloring and I is a triangle of H, then there is a 5-profuse-coloring of H that colors the three edges
of I;.

Proof. By the way of contradiction, suppose that the claim is false. Hence, there is some link I; that is a triangle and some
5-profuse-coloring ¢ of H that maximizes the number of colored edges of I} such that, nevertheless, ¢ does not color the
three edges of I';. Without loss of generality, assume that ¢ is maximal. Let w be the non-terminal vertex of I;. By Claim 1
and (iii), dy (vj—1) > 4 and dy (vj) > 4. Suppose, by the way of contradiction, that dy (vj) = 4. Thus, Lemma 3.7 implies that
the set of five edges Ey (vj) U Ey(w) is a matching-transversal of H and, by the maximality of ¢ and Corollary 3.10, these
five edges are colored by ¢, contradicting the fact that not all the edges of I are colored. Thus, necessarily dy (vj) > 5 and,
symmetrically, dy (vi—1) > 5. Let e be any uncolored edge of I'; and assume, without loss of generality, that e is incident to
vj. As dy(vj) > 5, there are five colored edges incident to v; because of Lemma 3.18, Corollary 3.10, and the maximality of
¢. If there were some pendant edge q incident to v; and colored differently from v;_;w (if colored), then, by coloring e with
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Fig. 6. Rules for transforming ¢’ into ¢ in the proof of Lemma 3.30. Here A, B, C, D, E represents any permutation of the colors 1, 2, 3, 4, 5 and rule (a),
(b), or (c) apply depending on whether each of I and I}, is a triangle or a rhombus.

the color of g and uncoloring g, a new 5-profuse-coloring of H that colors one more edge of I would arise, contradicting
the choice of ¢. This contradiction proves that among the colored edges incident to vj, there are at least three of them that
are edges of I, ;. Therefore, by Claim 2, there are five colored edges incident to vj;,. Symmetrically, if e were incident to
vj—1, then there would be five colored edges incident to v;_,. Finally, let ¢ € {1, 2, 3, 4, 5} be different from the colors of
the colored edges of I'; and different from the colors of vjv; (if present and colored) and vj_,v;_; (if present and colored).
Let ¢’ be the partial edge-coloring of H defined as ¢ except that ¢’ colors e with color ¢ and uncolors the edge of H incident
to e colored by ¢ with color c. By construction, ¢’ is a 5-profuse-coloring of H and ¢’ colors one more edge of I; than ¢, a
contradiction with the choice of ¢. This contradiction proves that ¢ colors all the edges of I} and the claim holds. ¢

Claim 9. If H has a 5-profuse-coloring, I'y is an edge, n > 2, and p; > 1, then there is a 5-profuse-coloring ¢ of H that colors at
least two pendant edges incident to v;.

Proof. By the way of contradiction, suppose that there is a 5-profuse-coloring ¢ of H that maximizes the number of colored
pendant edges incident to v, and that, nevertheless, ¢ colors at most one pendant edge incident to v;. Without loss of
generality, assume that ¢ is maximal. Since p; > 1, there is still at least one uncolored pendant edge incident to v;. Thus,
the maximality of ¢ implies that there are five colored edges incident to v, and, as there is at most one colored pendant edge
incident to vq, there are at least four colored edges of I'; incident to v. By Claim 2, there are five colored edges incident to v,.
Let e be any of the colored edges of I3 incident to v; but not to v, and let g be any of the uncolored pendant edges incident
to vy. If we color g with the color of e and uncolor e, a new 5-profuse-coloring of H arises that colors one more pendant edge
incident to v, than ¢, contradicting the choice of ¢. This contradiction proves the claim. ¢

We turn back to the proof of the lemma. The proof proceeds by induction on the number of cut-vertices of H. Consider
the case H has no cut-vertices; i.e, n = 1 and H is the underlying graph of I'; which, by Claim 1, is an edge, m-crown for
some m > 4, or m-fold for some m > 5. If H were an edge, vg and v; would be two adjacent pendant vertices of H and
dy(vo) + dy(v1) — 1 = 1, which would contradict (i). Hence, H is m-crown for some m > 4 or m-fold for some m > 5 and,
by Lemma 3.25, oy (H) > 5.

Assume now that n > 2 and that the lemma holds for graphs with less than n — 1 cut-vertices. Suppose first that H
has a cut-vertex of degree 4 and letj € {1, 2, 3, ..., n — 1} such that dy (v;) = 4. Because of (iv), Ny (v) induces 2K; in H.
Therefore, p; = 0 and each of I and I}, is a triangle or a rhombus. If one of I} and I}, is a triangle and the other is a
rhombus, we assume, without loss of generality, that I} is the one that is a triangle. Let H' be the graph that arises from H
by contracting I} to a vertex. Thus, H' is the underlying graph of It & p, I & p, -+ &p,  [1 &y T2 &y oo &p, (T
and H’ satisfies (i)-(iv). By induction hypothesis, H' has a 5-profuse-coloring ¢'. Without loss of generality, assume that ¢’
is maximal. Moreover, we can further assume that ¢’ colors all the edges of Ij. (In fact, if I is a rhombus then it is true by
the maximality of ¢', whereas if I} is a triangle then it can be assumed by Claim 3.) We define a new partial 5-edge-coloring
¢ E(H) — {0, 1,2, 3,4, 5} as follows. Let ¢ coincide with ¢’ in those edges of H that are neither of I; nor of [, and we
define ¢ on the edges of I} and I}, ; depending on how ¢’ colors the edges of I as described in Fig. 6, where A, B, C, D, E
is any permutation of the colors 1, 2, 3, 4, 5. Clearly, ¢ is a 5-profuse-coloring of H and a,(H) > 5, as desired. Therefore,
from now on, we assume that dy(v;) > 5foreachie {1,2,...,n— 1}.

Next, we suppose that [; is a rhombus for some j. As Claim 1 implies that neither I'; nor I, is thombus, 2 <j <n— 1.
Let H; be the graph that arises from H by removing all the vertices and edges of I}, I}41, ..., I}, except for the vertices of
Ny[vj—1] and the edges incident to vj_;. Let H, be the graph that arises from H by removing all the vertices and edges of
I, I, ..., Ij except the vertices of Ny[v;] and the edges incident to v;. Thus, we can regard H; as the underlying graph of
Iy &p D&y, -+ &y 51 &y, 1edge and H, as the underlying graph of edge & p, 1711 &y Tjo &pyy o0 &p, T
Since we are assuming that dy (vi—1) > 5 and dy(v;) > 5, Hy and H, satisfy conditions (i)-(iv). By induction hypothesis,
there are 5-profuse-colorings of H; and H,. By Claim 4, we can assume that the 5-profuse-colorings of H; and H, are such
that the two edges of I; incident to v;_; are colored by the 5-profuse-coloring of H; and the two edges of I; incident to v;
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are colored by the 5-profuse-coloring of H,. By permuting, if necessary, the colors in the 5-profuse-coloring of H,, we can
assume that the four edges of I that are incident to some terminal vertex of I; are colored by these profuse-colorings using
four different colors. Thus, a 5-profuse-coloring of H arises by merging the profuse-colorings of H; and H; and letting the
edge joining the two non-terminal vertices of /; uncolored. Hence, Lemma 3.9 implies oo, (H) > 5. Therefore, from this
point on, we assume that no 75 is a rhombus.

Because of (iii) and because we are assuming that no cut-vertex of H has degree 4, each of the vertices vy, vy, ..., Vy_1
has either degree 2 or degree at least 5. In addition, since each of I'; and T, is either an edge, m-crown for some m > 4, or
m-fold for some m > 5, each of vy and v, has degree 1 or at least 5. Finally, since no I3 is rhombus or K4, each vertex of H
different from vy, vy, ..., v, has degree at most 2. Hence, §,(H) > 5. Since H has at least one edge and H is hub-covered
(because of (i)), Lemma 3.21 implies that o, (H) > §y(H) > 5, which completes the proof of Lemma 3.30. O

Finally, for the case k > 6 we prove the following.

Lemma 3.31. Let H be a fat caterpillar containing no A and no net and having at least one edge. If k > 6, then the following
assertions are equivalent:

(i) om(H) = k.

(ii) Tm(H) > k.
(iii) H is hub-covered and §,(H) > k.
Proof. Clearly, (i) implies (ii) because o, (H) < tm(H).As k > 6 and H has at least one edge, Lemma 3.21 shows that (iii)
implies (i). For the proof to be complete, it suffices to show that (ii) implies (iii). Suppose that t,(H) > k. Since k > 6, H is
hub-covered because of Lemma 3.7. By virtue of Lemma 3.1, H is the underlying graph of some I} & ,, I3 & p, - -+ &, I}
where each T} is a basic two-terminal graph and each p; > 0. If there were somei € {1, 2, ..., n} such that I; is a rhombus
or K4, then the two non-terminal vertices of I'; would be two adjacent vertices of degree 3 and Lemma 3.7 would imply that
tm(H) < 5, a contradiction. Therefore, each I is an m-crown for some m > 0 or an m-fold for some m > 2. Let v; be the
vertex of H that arises by identifying the sink of I'; and the source of ;7 and let vy be the source of I'; and v, be the sink
of I},. Thus, for eachi € {1,...,n — 1}, v; has degree 2 in H or has a neighbor in H of degree 2 in H and, consequently,
Lemma 3.7 implies that either dy (v;) = 2 or dy(v;) > k — 1. Notice that either dy (vg) = 1 or dy(vo) > k because if vg is not
pendant then H has a matching-transversal of size at most max{5, dy(vo)} (by Lemmas 3.7 and 3.18) but we are assuming
tm(H) > k > 6. Symmetrically, either dy(v,) = 1 or dy(v,) > k. Finally, all vertices of H different from vg, vy, ..., v,
are vertices of degree 2 because no block of H is a rhombus or K;. We conclude that §,(H) > k — 1. Sincek — 1 > 5,
Lemma 3.18 implies that t,(H) < 8, (H). Since we are assuming 7, (H) > k, §,(H) > k. Thus, (ii) implies (iii) and the proof
is complete. O

As we have proved Lemmas 3.22 and 3.23 and all the cases of Theorem 3.24, now Theorem 2.13 follows.

This, together with Theorem 2.12, implies Theorem 2.11, from which the main results of this work (Theorems 1.4 and
1.5) follow. It only remains to prove Theorem 2.14, i.e., to present the elementary linear-time recognition algorithm for
matching-perfect graphs:

Proof (of Theorem 2.14). We claim that there is an elementary linear-time algorithm that decides whether a given graph is
a fat caterpillar and, if affirmative, computes a matching-transversal of minimum size. To begin with, we proceed as in the
paragraph preceding the statement of Theorem 2.14 in order to either compute H;, H, and Hs, or detect that H contains a
bipartite claw. If the latter occurs, we can be certain that H is not a fat caterpillar and stop. Hence, without loss of generality,
assume that Hy, H,, and H3 were successfully computed in linear time. If H; is a triangle and each vertex of H; has some
neighbor in H outside H,, then Theorem 2.2(iii), 3.23 imply that H is a fat caterpillar and the set of edges incident to any
minimum hub of H is a matching-transversal of minimum size. Suppose now that H; is spanned by a 4-cycle C having at
least two consecutive vertices that are adjacent in H to some vertex outside H,. In this case, it is straightforward to deter-
mine whether or not H is a fat caterpillar thanks to Theorem 2.2(ii) and, if affirmative, compute a matching-transversal of
minimum size in linear time by means of Lemma 3.22. Assume now that neither H; is a triangle such that each vertex of H;
is adjacent in H to some vertex outside Hy, nor H, is spanned by a 4-cycle having at least two consecutive vertices adjacent
in H to vertices outside H;. Thus, by Theorem 2.2, H is a fat caterpillar if and only if H is a linear concatenation of basic
two-terminal graphs where the K4 links may occur only as the first and/or last links of the concatenation. Therefore, H is
a fat caterpillar if and only if H; is a linear concatenation of edge, triangle, rhombus, and K, links where the K links may
occur only as the first/and or last link of the concatenation and no vertex of a rhombus link has a false twin of degree 2 in
H. Equivalently, H is a fat caterpillar if and only if H3 satisfies each of the following conditions:

(1) Hs is connected.

2) Each of the blocks of H3 is K5, K3, K4 — e, or Kj.

3) Each block of H; has at most two cut-vertices.

4) The cut-vertices of each K4 — e block are vertices of degree 2 in the block.

5) Each K, block has at most one cut-vertex.

6) Each cut-vertex of H3 belongs to at most two blocks of H3 that are not pendant edges.

7) No vertex of a K, — e block of H; of degree 2 in H has a false twin in H.

All these conditions can be easily verified in linear time once the blocks and the cut-vertices of H; are determined, which in
turn can be done in linear time by performing a depth-first search [47]. Finally, if all the above conditions are met, H is a fat

(
(
(
(
(
(
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caterpillar containing no A and no net and a matching-transversal of H of minimum size can be determined in linear time
as follows from the characterizations given in Lemmas 3.28-3.31.

Suppose now that we need to determine whether a given graph H is matching-perfect and assume, without loss of gen-
erality, that H is connected and has more than 6 vertices. We begin by deciding whether H is a fat caterpillar as in the
preceding discussion. If H is found to be a fat caterpillar, we are done because we know that H is matching-perfect and stop.
Therefore, assume without loss of generality that H is not a fat caterpillar. Hence, H is matching-perfect if and only if H is
a matching-perfect graph containing a cycle of length 3k for some k > 2. Thus, by Lemma 3.11, if H is matching-perfect,
then Hj is a chordless cycle of length 3k for some k > 2. Conversely, if Hs is a chordless cycle of length 3k for some k > 2,
then H contains no bipartite claw (because H3 contains no claw) and, moreover, H is matching-perfect by Theorem 1.5. This
shows that we can decide in linear time whether H is matching-perfect. Finally, if there is any edge e = uv of H3 that is not
hub-covered in H, then Ey (1) U Ey (v) is a matching-transversal of H of minimum size by Lemma 3.17; otherwise, if v is any
minimum hub v of H, then Ey (v) is a matching-transversal of H of minimum size by Lemma 3.16. O
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