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a b s t r a c t

A graph is clique-perfect if the maximum number of pairwise disjoint maximal cliques
equals the minimum number of vertices intersecting all maximal cliques for each induced
subgraph. In this work, we give necessary and sufficient conditions for the complement of
a line graph to be clique-perfect and an O(n2)-time algorithm to recognize such graphs.
These results follow from a characterization and a linear-time recognition algorithm for
matching-perfect graphs, which we introduce as graphs where the maximum number of
pairwise edge-disjoint maximal matchings equals the minimum number of edges inter-
secting all maximal matchings for each subgraph. Thereby, we completely describe the lin-
ear and circular structure of the graphs containing no bipartite claw, fromwhich we derive
a structure theorem for all those graphs containing no bipartite claw that are Class 2 with
respect to edge-coloring.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Numerous major theorems in combinatorics are formulated in terms of min–max relations of dual graph parameters.
Perfect graphswere defined by Berge in terms of amin–max inequality involving clique and chromatic number. The chro-

matic number χ(G) of a graph G is the minimum number of colors needed to assign different colors to adjacent vertices of G.
Themaximum size of a clique in G is its clique number ω(G). Clearly, themin–max type inequalityω(G) ≤ χ(G) holds for ev-
ery graphG. Berge [3] called a graphG perfect if and only if the equalityω(H) = χ(H) holds for each induced subgraphH ofG.

An important result about perfect graphs is the Perfect Graph Theorem which states that the complement of a perfect
graph is also perfect [29,40]. Thus, a graph G is perfect if and only if clique and chromatic number coincide for each induced
subgraph of its complement G. The clique number of G is the stability number α(G), which is the maximum number of pair-
wise nonadjacent vertices ofG. The chromatic number ofG is the clique covering number θ(G), which is theminimumnumber
of cliques of G covering all its vertices. Hence, the min–max type inequality α(G) ≤ θ(G) holds for every graph G and, by
virtue of the Perfect Graph Theorem, a graph G is perfect if and only if α(H) = θ(H) holds for each induced subgraph H of G.

A hole or antihole in a graphG is an induced subgraph isomorphic to the chordless cycle on k vertices Ck or its complement
Ck, respectively, for some k ≥ 5. If k is odd, then the hole or antihole is odd; otherwise it is even. Berge [3] conjectured that a
graph is perfect if and only if it has no odd holes and no odd antiholes. This conjecture was proved to be true about 40 years
later and is now known as the Strong Perfect Graph Theorem [19].
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Fig. 1. Some small graphs. The circled vertex is the center of the bipartite claw.

Theorem 1.1 (Strong Perfect Graph Theorem [19]). A graph is perfect if and only if it has no odd holes and no odd antiholes.

A polynomial-time recognition algorithm for perfect graphs was given in [18].
The class of clique-perfect graphs is defined by requiring equality in amin–max type inequality related to the Kőnig prop-

erty of the family of maximal cliques. Consider a family F of nonempty subsets of a finite ground set X , then the transversal
number τ(F ) is the minimum number of elements of X needed to intersect every member of F and the matching number
ν(F ) of F is the maximum size of a collection of pairwise disjoint members of F . If these two numbers coincide, the family
F is said to have the Kőnig property [4].

Let Q be the family of all maximal cliques of G. A collection of pairwise disjoint maximal cliques of a graph is a clique-
independent set and a vertex set intersecting everymaximal clique of a graph is a clique-transversal. Accordingly, we call ν(Q)
the clique-independence number αc(G) and τ(Q) the clique-transversal number τc(G). Clearly, the min–max type inequality
αc(G) ≤ τc(G) holds for every graph G. A graph G is clique-perfect [30] if αc(H) = τc(H) holds for each induced subgraph
H of G. In other words, a graph G is clique-perfect if and only if, for each induced subgraph of G, the family of all maximal
cliques has the Kőnig property.

The Kőnig property has its origins in the study of matchings and transversals in bipartite graphs. The matching number
ν(G) of a graph G is the maximum size of a matching (a set of vertex-disjoint edges) and the transversal number τ(G) is the
minimum size of a vertex cover (a set of vertices intersecting every edge). Clearly, themin–max type inequality ν(G) ≤ τ(G)
holds for every graph G. In 1931, Kőnig [36] and Egerváry [27] proved that every bipartite graph B satisfies ν(B) = τ(B). This
result is now known as the Kőnig–Egerváry Theorem. Notice that if B is bipartite, then αc(B) = ν(B)+ i(B) and τc(B) = τ(B)+
i(B) where i(B) denotes the number of isolated vertices of B; consequently, αc(B) = τc(B) if and only if ν(B) = τ(B). There-
fore, since each induced subgraph of a bipartite graph is also bipartite, the Kőnig–Egerváry Theoremcan be restated by saying
that every bipartite graph is clique-perfect. Apart from bipartite graphs, some other graph classes are known to be clique-
perfect: comparability graphs [1], balanced graphs [5], complements of forests [7], and distance-hereditary graphs [37].

It is important to mention that not all clique-perfect graphs are perfect and that not all perfect graphs are clique-perfect.
For instance, the even antihole C6k+2 is perfect but not clique-perfect, whereas the odd antihole C6k+3 is clique-perfect but
not perfect, for each k ≥ 1. In fact, we have:

Theorem 1.2 ([26,30]). A hole Cn is clique-perfect if and only if n is even. An antihole Cn is clique-perfect if and only if n is a
multiple of 3.

Notice also that if the equality αc(G) = τc(G) holds for a graph G, then the same equality may not hold for all its induced
subgraphs. For instance, every graph G in the class of dually chordal graphs [14] satisfies the equality αc(G) = τc(G), but
dually chordal graphs are not clique-perfect in general; e.g., the 5-wheel (the graph that arises from C5 by adding a vertex
adjacent to every other vertex) is dually chordal but it is not clique-perfect because it contains an induced C5, for which
αc(C5) = 2 but τc(C5) = 3.

Unlike perfect graphs, the class of clique-perfect graphs is not closed under graph complementation; e.g., the net and the
3-sun (see Fig. 1) are complement graphs of each other such that the former is clique-perfect but the latter is not clique-
perfect.Moreover, a complete characterization of clique-perfect graphs by forbidden induced subgraphs is not known either.
Another open question regarding clique-perfect graphs is the computational complexity of their recognition problem. Nev-
ertheless, some partial results in this direction appeared in [8,9,11,38], where necessary and sufficient conditions for a graph
G to be clique-perfect in terms of forbidden induced subgraphs as well as polynomial-time algorithms for deciding whether
a given graph G is clique-perfect were found when restricting G to belong to one of several different graph classes. Interest-
ingly, the problems of determining αc(G) and τc(G) are both NP-hard even if G is a split graph [17] and determining τc(G)
is NP-hard even if G is a triangle-free graph [28]. More NP-hardness results of this type for αc and τc were proved in [30].
Some polynomial-time algorithms for determining αc(G) and τc(G) when G belongs to one of several different graph classes
were devised in [1,13,17,22,24–26,30,37].

The line graph L(H) of a graphH is the graphwhose vertices are the edges ofH and such that, for every two different edges
e and f of H , ef is an edge of L(H) if and only if e and f share an endpoint. A graph G is a line graph [51] if it is the line graph
of some graph H; if so, H is called a root graph of G. Perfectness of line graphs (or, equivalently, of their complements) was
studied in [42,43]. In [8], clique-perfectness of line graphs was characterized by forbidden induced subgraphs, as follows
(see Fig. 1 for a 3-sun).

Theorem 1.3 ([8]). If G is a line graph, then G is clique-perfect if and only if G contains no induced 3-sun and has no odd hole.
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Since the class of clique-perfect graphs is not closed under graph complementation, the above result does not deter-
mine which complements of line graphs are clique-perfect. The main result of this work is the theorem below which gives
necessary and sufficient conditions for the complement of a line graph to be clique-perfect, in terms of forbidden induced
subgraphs.

Theorem 1.4. If G is the complement of a line graph, then G is clique-perfect if and only if G contains no induced 3-sun and has
no antihole Ck for any k ≥ 5 such that k is not a multiple of 3.

Let G be the complement of the line graph of a graph H . In order to prove Theorem 1.4, we profit from the fact that the
maximal cliques of G are precisely the maximal matchings of H . (In this work, maximal means inclusion-wise maximal,
whereasmaximummeansmaximum-sized.)We call any set of edges intersecting all the nonemptymaximal matchings ofH
amatching-transversal of H , and any collection of edge-disjoint nonempty maximal matchings of H amatching-independent
set of H . We define the matching-transversal number τm(H) of H as the minimum size of a matching-transversal of H
and the matching-independence number αm(H) of H as the maximum size of a matching-independent set of H .1Clearly,
αc(G) = αm(H) and τc(G) = τm(H). We say that H is matching-perfect if αm(H ′) = τm(H ′) for every subgraph H ′ (in-
duced or not) of H . Equivalently, H is matching-perfect if and only if the nonempty maximal matchings of H ′ have the Kőnig
property for each subgraph H ′ (induced or not) of H . Hence, G is clique-perfect if and only if H is matching-perfect, and
Theorem 1.4 can be reformulated as follows (see Fig. 1 for a bipartite claw).

Theorem 1.5. A graph H is matching-perfect if and only if H contains no bipartite claw and the length of each cycle of H is at
most 4 or a multiple of 3.

In this work, ‘H contains no J ’ means that H contains no subgraph (induced or not) isomorphic to J .
The structure of the paper is as follows. In the next subsection, we give basic definitions and preliminaries. In Section 2,

we collect all structural theorems needed to establish our main results. In Section 2.1, we give a precise description of the
linear and circular structure of those graphs containing no bipartite claw, which is used all along this work. In Section 2.2,
we give a structure theorem for those graphs containing no bipartite claw that are Class 2 with respect to edge-coloring.
This structure theorem is key for finding the matching-independent sets needed for the proofs given in Section 2.3 of the
main results of this work (Theorems 1.4 and 1.5). This leads to a linear-time recognition algorithm for matching-perfect
graphs and an O(n2)-time algorithm for deciding whether or not any given complement of a line graph is clique-perfect,
that follow from our main results. In Section 3, we present the proofs for all results. The main results of this paper appeared
in the extended abstract [10].

Basic definitions and preliminaries

All graphs in thiswork are finite, undirected, without loops, andwithoutmultiple edges. For all basic graph-theoretic def-
initions and notations not defined in this section, we refer toWest [50]. The only exceptions to this rule are the notions ofmi-
nors and tree-width,whichwewillmention only incidentally; for a gentle introduction to these notions, see [23, Chapter 12].

LetG be a graph. The vertex set ofG is denoted by V (G), the edge set by E(G), and the complement byG. The neighborhood
of a vertex v in G is denoted by NG(v), whereas NG[v] denotes NG(v)∪{v}. We denote by EG(v) the set of edges of G incident
to a vertex v. Two nonadjacent vertices v and w of G are false twins if NG(v) = NG(w), whereas two adjacent vertices v and
w are true twins if NG[v] = NG[w]. For any set S, |S| denotes its cardinality. The degree dG(v) of a vertex v of G is |NG(v)|.
The maximum degree among the vertices of G is denoted by ∆(G) and the minimum degree by δ(G). A vertex is pendant if
its degree is 1. An edge is pendant if at least one of its endpoints is a pendant vertex. The center of the bipartite claw is its
vertex of degree 3. A vertex of G is universal if it is adjacent to every other vertex of G. A graph is complete if its vertices are
pairwise adjacent and Kn denotes the complete graph on n vertices. A clique of a graph is a set of pairwise adjacent vertices.
A stable set of a graph is a set of pairwise nonadjacent vertices.

Let Z be a path or a cycle. We denote by E(Z) the set of edges joining two consecutive vertices of Z and the length of Z is
|E(Z)|. A chord of Z is an edge joining two nonconsecutive vertices of Z and Z is chordless if Z has no chords. A chord ab of Z is
short if there is some vertex c of Z that is consecutive to each of a and b in Z; if so, c is called amidpoint of the short chord ab.
Three short chords are consecutive if they admit three consecutive vertices of Z as their midpoints. A chord of Z which is not
short is called long. Two chords ab and cd of a cycle C such that their endpoints are four different vertices of C that appear in
the order a, c, b, dwhen traversing C are called crossing. An n-path (or n-cycle) is a path (or cycle, respectively) on n vertices.
The chordless path (or cycle) on n vertices is denoted by Pn (or Cn, respectively). The endpoints of a path are the initial and
final vertices of the path. If P = v1v2 . . . vn is a path and v is a vertex adjacent to v1, then vP denotes the path vv1v2 . . . vn.
If P = v1v2 . . . vn and P ′

= w1w2 . . . wm are two paths whose only common vertex is vn = w1, then PP ′ denotes the path
v1v2 . . . vnw2w3 . . . wm.

Let G andH be two graphs.We say that G contains H ifH is a subgraph (induced or not) of G and that G contains an induced
H if H is an induced subgraph of G. A graph G is spanned by H if H is a subgraph of G and V (H) = V (G). We say that G is

1 Notice that only nonemptymaximalmatchings are consideredwhen definingmatching-transversals andmatching-independent sets to guarantee that
for every edgeless graph H the equality αm(H) = τm(H) holds because both parameters are equal to 0; otherwise, αm(H) would be 1 because of the empty
set being a maximal matching of H .
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Fig. 2. Basic two-terminal graphs with terminals s and t .

H-free if G contains no induced H . A graph is triangle-free if it contains no K3. The subgraph of G induced by a subset W of
vertices ofG is denoted byG[W ] andG−W denotesG[V (G)−W ]. A cut-vertex of a graph is a vertexwhose removal increases
the number of components. A component is trivial if it has precisely one vertex. A block of a graph is a maximal connected
subgraph that has no cut-vertex. We say that a subsetW of the vertices of a graph H is edge-dominating in H if each edge of
H has at least one endpoint inW . A subgraph J of a graph H is edge-dominating in H if V (J) is edge-dominating in H .

If F is a subset of the edge set of a graph G, G − F denotes the graph that arises from G by removing the members of F
from the edge set of G. If G is a graph and e is an edge of G, we denote G−{e} simply by G− e. For each n ≥ 2, Kn − e denotes
the graph that arises from Kn by removing exactly one edge from its edge set.

By contracting a subgraph H of Gwemean replacing V (H) with a new vertex h andmaking each vertex v ∈ V (G)−V (H)
adjacent to h if and only if v was adjacent in G to some vertex of H . By identifying two vertices u and v of a graph Gwemean
contracting the subgraph H of G induced by {u, v}. Let G and H be two graphs and assume, without loss of generality, that
V (G) ∩ V (H) = ∅. The disjoint union G + H of G and H is the graph with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H).
If t is a positive integer, we denote by tG the disjoint union of t graphs, each of which isomorphic to G.

A vertex v is saturated by a matching M if v is the endpoint of some edge of M . A graph H is bipartite if its vertex set is
the union of two disjoint (possibly empty) stable sets X and Y ; if so, {X, Y } is called a bipartition of H . The following is a
well-known result about matchings in bipartite graphs.

Theorem 1.6 (Hall’s Theorem [31]). If H is a bipartite graph with bipartition {X, Y }, then there is a matching M of H that
saturates each vertex of X if and only if

a∈A

NH(a)

 ≥ |A| for each A ⊆ X .

2. Structural characterizations

2.1. Linear and circular structure of graphs containing no bipartite claw

In this subsection, we present a structure theorem for graphs containing no bipartite claw that will turn out to be very
useful along this work.

The linear and circular structure of net-free ∩ claw-free graphs is studied in [15]. As the line graphs of those graphs con-
taining no bipartite claw are the net-free ∩ line graphs, the main result of this subsection (Theorem 2.4) may be regarded
as describing a more explicit linear and circular structure for the more restricted class of net-free ∩ line graphs.

Our structure theorem will be stated in terms of linear and circular concatenations of two-terminal graphs that we now
introduce. A two-terminal graph is a triple Γ = (H, s, t), whereH is a graph and s and t are two different vertices ofH , called
the terminals of Γ .

We now introduce in some detail the two-terminal graphs depicted in Fig. 2. For each m ≥ 0, the m-crown is the two-
terminal graph (H, s, t) where V (H) = {s, t, a1, a2, . . . , am} and E(H) = {st} ∪ {sai: 1 ≤ i ≤ m} ∪ {tai: 1 ≤ i ≤ m}. The
0-crown and the 1-crown are called edge and triangle, respectively. For each m ≥ 2, the m-fold is the two-terminal graph
(H, s, t) where V (H) = {s, t, a1, a2, . . . , am} and E(H) = {sai: 1 ≤ i ≤ m} ∪ {tai: 1 ≤ i ≤ m}. The 2-fold is also called
square. By a crown we mean an m-crown for some m ≥ 0 and by a fold we mean an m-fold for some m ≥ 2. Finally, K4 will
also denote the two-terminal graph (K4, s, t) for any two vertices s and t of the K4. We will refer to the crowns, the folds,
the rhombus, and the K4 as the basic two-terminal graphs.

If Γ = (H, s, t) is a two-terminal graph, then H is the underlying graph of Γ , s is the source of Γ , and t is the sink of Γ .
If Γ1 = (H1, s1, t1) and Γ2 = (H2, s2, t2) are two-terminal graphs, the p-concatenation Γ1 & pΓ2 is the two-terminal graph
(H, s1, t2) where H arises from the disjoint union H1 + H2 by identifying t1 and s2 into one vertex u and then attaching p
pendant vertices adjacent to u. The 0-concatenation Γ1 & 0Γ2 is denoted simply by Γ1 & Γ2. If a two-terminal graph Γ =

(H, s, t) is such that NH [s]∩NH [t] = ∅, we define its p-closure, denoted Γ & p �, as the graph that arises by identifying s and
t into one vertex u and then attaching p pendant vertices adjacent to u. The 0-closure Γ & 0 � is simply denoted by Γ & �.
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a
b

Fig. 3. A linear and a circular concatenation of the sequence Γ1, Γ2, Γ3, Γ4 of two-terminal graphs, where Γ1 is a square, Γ2 and Γ4 are rhombi, and Γ3 is
a triangle: (a) Underlying graph of Γ1 & Γ2 & 2Γ3 & 1Γ4 and (b) Γ1 & Γ2 & 2Γ3 & 1Γ4 & 3 �. Concatenation vertices are circled.

Let Γ1, Γ2, . . . , Γn be a sequence of two-terminal graphs. A linear concatenation of Γ1, Γ2, . . . , Γn is the underlying graph
of the two-terminal graph Γ1 & p1Γ2 & p2 · · · & pn−1Γn for some nonnegative integers p1, p2, . . . , pn−1. The two-terminal
graphs Γ1, Γ2, . . . , Γn are called the links of the linear concatenation. The concatenation vertices of such a linear concatena-
tion are the n − 1 vertices that arise by identifying the sink of Γi with the source of Γi+1 for each i ∈ {1, 2, . . . , n − 1}. The
two links Γi and Γi+1 are called adjacent in the linear concatenation, for each i ∈ {1, 2, . . . , n − 1}. The graph K1 will be
regarded as the linear concatenation of an empty sequence of two-terminal graphs. See Fig. 3(a) for an example of a linear
concatenation. A circular concatenation of Γ1, Γ2, . . . , Γn is any graph Γ1 & p1Γ2 & p2 · · · & pn−1Γn & pn � for some nonneg-
ative integers p1, p2, . . . , pn. The two-terminal graphs Γ1, Γ2, . . . , Γn are called the links of the circular concatenation. The
concatenation vertices of such a circular concatenation are the n − 1 vertices that arise by identifying the sink of Γi with the
source of Γi+1 for each i ∈ {1, 2, . . . , n− 1}, as well as the vertex that arises by identifying the sink of Γn with the source of
Γ1. The two links Γi and Γi+1 are called adjacent in the circular concatenation, for each i ∈ {1, 2, . . . , n − 1}, as well as the
links Γn and Γ1. See Fig. 3(b) for an example of a circular concatenation.

A caterpillar [32] is a connected graph containing no bipartite claw and having no cycle. The fact that caterpillars have
edge-dominating chordless paths, gives them a very simple linear structure that can be expressed using our notion of linear
concatenation, as follows.

Theorem 2.1 ([33]). A graph is a caterpillar if and only if it is the linear concatenation of edge links.

We say fat caterpillars to those connected graphs containing no bipartite claw and having no cycle of length greater than
4. Our first result characterizes fat caterpillars depending on whether or not they contain an A or a net:

Theorem 2.2. If H is a graph, then each of the following holds:
(i) H is a fat caterpillar containing no A and no net if and only if H is a linear concatenation of crowns, folds, rhombi, and K4’s

where the K4 links may occur only as the first and/or last links of the concatenation.
(ii) H is a fat catepillar containing A if and only if H has an edge-dominating 4-cycle C = v1v2v3v4v1 and two different vertices

x1, x2 ∈ V (H) − V (C) such that xi is adjacent to vi for each i ∈ {1, 2}, each non-pendant vertex in V (H) − V (C) is a false
twin of v4 of degree 2, and one of the following holds: C is chordless; v1v3 is the only chord of C and dH(v4) = 2; C has two
chords and dH(v3) = dH(v4) = 3.

(iii) H is a fat caterpillar containing a net but no A if and only if H has some edge-dominating triangle C such that for each vertex
v ∈ V (C) there is a pendant vertex x adjacent to v and every vertex in V (H) − V (C) is pendant.

In summary, we proved the following structure of fat caterpillars that will be useful in the proof of the main result of this
subsection.

Corollary 2.3. A graph H is a fat caterpillar if and only if exactly one of the following conditions holds:
(i) H is a linear concatenation of crowns, folds, rhombi, and K4’s where the K4 links may occur only as the first and/or last links

of the concatenation.
(ii) H is the circular concatenation edge & p1edge & p2edge & p3edge & p4 � for some nonnegative integers p1, p2, p3, p4 such

that p1, p2 ≥ 1.
(iii) H is the circular concatenation edge & p1edge & p2m-fold & p3 � for some m ≥ 2 and some nonnegative integers p1, p2, p3

such that p1, p2 ≥ 1.
(iv) H is the circular concatenation edge & p1edge & p2m-crown& p3 � for somem ≥ 1 and some nonnegative integers p1, p2, p3

such that p1, p2 ≥ 1.
(v) H is the underlying graph of edge & p1K4 & p2edge for some nonnegative integers p1, p2.
(vi) H is the circular concatenation edge & p1edge & p2edge & p3 � for some positive integers p1, p2, p3.

This enables us to prove that, except for a few sporadic cases (assertions (i), (ii), and (iii)), connected graphs containing
no bipartite claw are linear and circular concatenations of basic two-terminal graphs (assertion (iv)).

Theorem 2.4. If H is a connected graph, then H contains no bipartite claw if and only if at least one of the following assertions
holds:
(i) H is spanned by a 6-cycle having a long chord or three consecutive short chords.
(ii) H has a 5-cycle C and a vertex u ∈ V (C) such that: (1) each v ∈ V (H) − V (C) is a pendant vertex adjacent to u and (2) C

has three consecutive short chords or u is the midpoint of a chord of C.
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Fig. 4. Graphs P∗ , SK4 , K5 − e, L5 , and SK5 .

(iii) H has a clique Q of size 4 and q1, q2 ∈ Q such that: (1) each v ∈ V (H) − V (Q ) is a pendant vertex adjacent to q1 or q2
and (2) there is at least one pendant vertex adjacent to qi for each i ∈ {1, 2}.

(iv) H is a linear or circular concatenation of crowns, folds, rhombi, and K4’s, where the K4 links may occur only in the case of
linear concatenation and only as the first and/or last links of the concatenation.

Notice that, although those graphs satisfying (iii) are also linear concatenations of basic two-terminal graphs (namely, the
underlying graphs of edge & p1K4 & p2edge for some positive integers p1 and p2), we prefer to consider (iii) a sporadic case.

2.2. Edge-coloring graphs containing no bipartite claw

The chromatic index χ ′(H) of a graph H is the minimum number of colors needed to color all the edges of H so that no
two incident edges receive the same color. Clearly, χ ′(H) ≥ ∆(H). In fact, Vizing [48] proved that for every graph H either
χ ′(H) = ∆(H) or χ ′(H) = ∆(H) + 1. The problem of deciding whether or not any given graph H satisfies χ ′(H) = ∆(H)
is NP-complete even for graphs having only vertices of degree 3 [35]. Interestingly, if H contains no bipartite claw, then
χ ′(H) can be computed in linear-time via the algorithm devised in [52] (in fact, H has bounded tree-width because the
bipartite claw is not a minor of H [44,45]). Here, we give a structure theorem for those graphs containing no bipartite claw
and satisfying χ ′

≠ ∆.
Weneed to introduce some terminology related to edge-coloring. Amajor vertexof a graph is a vertex ofmaximumdegree.

If H is a graph, the core H∆ of H is the subgraph of H induced by the major vertices of H . Graphs H for which χ ′(H) = ∆(H)
are Class 1, and otherwise they are Class 2. A graph H is critical if H is Class 2, connected, and χ ′(H − e) < χ ′(H) for each
e ∈ E(H). Some graphs needed in what follows are introduced in Fig. 4.

We rely on the following results.

Theorem 2.5 ([34]). If H is a connected Class 2 graph with ∆(H∆) ≤ 2, then the following conditions hold:
(i) H is critical.
(ii) δ(H∆) = 2.
(iii) δ(H) = ∆(H) − 1, unless H is an odd chordless cycle.
(iv) Every vertex of H is adjacent to some major vertex of H.

Theorem 2.6 ([16]). If H is a connected graph such that ∆(H∆) ≤ 2 and ∆(H) = 3, then H is Class 1, unless H is P∗.

Theorem 2.7 ([49]). If H is a graph of Class 2, then H contains a critical subgraph of maximum degree k for each k such that
2 ≤ k ≤ ∆(H).

Theorem 2.8 ([2]). There are no critical graphs having 4 or 6 vertices. The only critical graphs having 5 vertices are C5, SK4, and
K5 − e.

By exploiting our structure theorem for graphs containing no bipartite claw (Theorem 2.4) and the results above, we give
a structure theorem for all connected graphs containing no bipartite claw that are Class 2.

Theorem 2.9. If H is a connected graph containing no bipartite claw, then χ ′(H) = ∆(H) if and only if none of the following
statements holds:
(i) ∆(H) = 2 and H is an odd chordless cycle.
(ii) ∆(H) = 3 and H is the circular concatenation of a sequence of edges, triangles, and rhombi, where the number of edge links

equals one plus the number of rhombus links.
(iii) ∆(H) = 4 and H is K5 − e, K5, L5, or SK5.

As a corollary, we obtain the complete list of critical graphs containing no bipartite claw.

Corollary 2.10. The critical graphs containing no bipartite claw are the odd chordless cycles, K5−e, and those graphs H satisfying
∆(H) = 3 that are circular concatenations of edges, triangles, and rhombi having exactly one more edge link than rhombus links
and without pendant edges.

2.3. Matching-perfect graphs

Notice that the bipartite claw is not matching-perfect (because it satisfies αm = 1 but τm = 2) and that the cycles of
length k ≥ 5 such that k is not a multiple of 3 are not matching-perfect (because they satisfy αm = 2 but τm = 3). Hence,
since the class of matching-perfect graphs is monotone (i.e., all the subgraphs of matching-perfect graphs are matching-
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perfect) by definition, in order to prove Theorem 1.5 (and hence Theorem 1.4), it will be enough to show that if H is a graph
containing no bipartite claw and the length of each cycle of H is at most 4 or is a multiple of 3, then αm(H) = τm(H). More-
over, we can assume that H is connected because αm(H) (resp. τm(H)) is the minimum of αm(H ′) (resp. τm(H ′)) among the
nontrivial components H ′ of H (except when H has only trivial components, in which case αm(H) = τm(H) = 0). Therefore,
it suffices to prove the theorem below:

Theorem 2.11. If H is a connected graph containing no bipartite claw and such that the length of each cycle of H is at most 4 or
is a multiple of 3, then αm(H) = τm(H).

For the proof, we will consider several different cases and in all of them we will prove the existence of a matching-
transversal and a matching-independent set of the same size, which means that αm(H) = τm(H). To produce these
matching-independent sets, we strongly rely on edge-coloring H or some graphs derived from it, via Theorem 2.9. In fact,
the proof of Theorem 2.11 splits into the following two parts:

Theorem 2.12. Let H be a connected graph containing no bipartite claw and such that the length of each cycle of H is at most 4
or is a multiple of 3. If H has some cycle of length 3k for some k ≥ 2, then αm(H) = τm(H).

Theorem 2.13. If H is a fat caterpillar, then αm(H) = τm(H).

Theorem2.13 togetherwith Theorem2.12, implies Theorem2.11, fromwhich themain results of thiswork (Theorems 1.4
and 1.5) follow.

Finally, the reader acquainted with the theory of tree-width and second-order logic may notice the following. Since for-
bidding the bipartite claw as a subgraph or as a minor is equivalent, graphs containing no bipartite claw have bounded tree-
width [44] and have a linear-time recognition algorithm [6]. Moreover, as our characterization of matching-perfect graphs
given in Theorem 1.5 can be expressed in counting monadic second-order logic with edge set quantifications (see [21]), its
validity can be verified in linear time within any graph class of bounded tree-width [12,20]. In particular, matching-perfect
graphs can be recognized in linear time. Nevertheless, the resulting algorithm is not elementary. Instead, we propose an
elementary linear-time recognition algorithm for matching-perfect graphs which relies on depth-first search only.

We first show that there is a simple linear-time algorithm to recognize fat caterpillars. Let H be a graph. We denote by
H1 the graph that arises from H by removing all vertices that are pendant in H . We denote by H2 some maximal induced
subgraph of H having no vertices that are pendant in H and no two vertices that are false twins of degree 2 in H . Finally, we
denote by H3 some maximal induced subgraph of H having no two vertices that are false twins of degree 2 in H . We claim
that there is an elementary linear-time algorithm that either computes H3 or determines that H contains a bipartite claw.
Let us consider an algorithm that keeps a list L(v) for each vertex v of H and that stores at each vertex v of H a boolean
variable indicating whether or not the vertex is marked for deletion. Initially, all the lists are empty and no vertex is marked
for deletion. The algorithm proceeds by visiting every vertex v of H and, for each neighbor u ∈ NH(v) that was not marked
for deletion and such that NH(u) = {v, w} for some w ∈ V (H), we do the following: if w is already in the list of L(v), then
we mark u for deletion, otherwise we add w to L(v). To make the algorithm linear-time, we stop whenever we attempt to
add a third vertex to any of the lists L(v), as this means that v is the center of a bipartite claw. If all vertices of H are visited
and no bipartite claw is detected, thenwe output asH3 the subgraph ofH induced by those vertices not marked for deletion.
The algorithm is clearly correct and linear-time. It follows that there is an elementary algorithm that either computes H1,
H2, and H3 in linear time or detects that H contains a bipartite claw. By relying on this algorithm and analyzing the structure
of the graphs H1, H2, and H3, we further prove the following.

Theorem 2.14. There is a simple linear-time algorithm that decides whether a given graph H is matching-perfect and, if affirma-
tive, computes a matching-transversal of H of minimum size within the same time bound.

In particular, ifH is matching-perfect, we can determine the common value of αm(H) and τm(H) in linear time.We do not
know if it is possible to also compute a matching-independent set of maximum size of any given matching-perfect graph
within the same time bound. Notice however that the only non-constructive argument used in the proofs of Section 3.3
is the existence of optimal edge-colorings for some Class 1 graphs containing no bipartite claw. This means that using an
algorithm such as the one given in [52] to produce the necessary edge-colorings, our proofs in Section 3.3 can actually be
turned into an algorithm to compute a matching-independent set of maximum size of any given matching-perfect graph.

Let G be graph on n vertices which is the complement of a line graph. We can compute a root graph H of G in O(n2) time
by relying on [39,46] and then decide whether G is clique-perfect by determining whether H is matching-perfect as above.
Thus, we conclude the following.

Theorem 2.15. There is anO(n2)-time algorithm that given any graphG,which is the complement of a line graph, decideswhether
or not G is clique-perfect and, if affirmative, computes a clique-transversal of G of minimum size within the same time bound.

Notice that the bottleneck of the algorithm is computing a root graph H of G.

3. Proofs of the structure theorems

In this section, we present all proofs of the previously stated structure theorems.



26 F. Bonomo et al. / Discrete Applied Mathematics 186 (2015) 19–44

3.1. Proofs for the structure of graphs containing no bipartite claw

Our first result below shows that fat caterpillars containing no A and no net are linear concatenations of basic two-
terminal graphs, as is the case of the graph depicted in Fig. 3(a).

Lemma 3.1. A graph H is a fat caterpillar containing no A and no net if and only if H is a linear concatenation of crowns, folds,
rhombi, and K4’s where the K4 links may occur only as the first and/or last links of the concatenation.

The proof of Lemma 3.1 will follow from Lemmas 3.2 and 3.3.

Lemma 3.2. If H is a fat caterpillar containing no A and no net, then H has an edge-dominating path P = u0u1 . . . uℓ having
no long chords and no three consecutive short chords, and such that each vertex v ∈ V (H) − V (P) satisfies one the following
assertions:
(i) v is a pendant vertex and the only neighbor of v is neither an endpoint of P nor the midpoint of any short chord of P.
(ii) v has degree 2 and is a false twin of uj for some j ∈ {1, 2, . . . , ℓ − 1}.
(iii) v has degree 3 and is a true twin of uj for some j ∈ {1, ℓ − 1} such that uj−1 is adjacent to uj+1.
Proof. IfH is the underlying graph of anm-crown for somem ≥ 3, then the lemma holds trivially by letting P be any path of
H of length 2whose endpoints are the two vertices ofH of degreem+1. Therefore, without loss of generality, wewill assume
that H is not the underlying graph of an m-crown for any m ≥ 3. Among the longest paths of H without long chords, let us
choose some path P = u0u1u2 . . . uℓ that maximizes dH(u0) + dH(uℓ) and, among those with maximum dH(u0) + dH(uℓ),
we choose one that minimizes min{dH(u0), dH(uℓ)}. We will show that P satisfies the thesis of the lemma. Notice that P has
no long chords by construction and that P has no three consecutive short chords simply because H has no 5-cycle. Wemake
the following claims.

Claim 1. P is edge-dominating.
Proof. Suppose, by the way of contradiction, that P is not edge-dominating. Since H is connected, there is some edge vw of
H such that none of v andw is a vertex of P and v is adjacent to uj for some j ∈ {0, 1, 2, . . . , ℓ}. Since H contains no bipartite
claw, j ∈ {0, 1, ℓ − 1, ℓ}. Let us consider first the case j = 0. Hence, the path vP must have some long chord because it is
longer than P . Since P has no long chords and H has no cycle of length greater than 4, necessarily v is adjacent to u2. Thus,
as H contains no A, ℓ = 2. Hence, as P ′

= u1u0vw is a path longer than P , P ′ must have some long chord; i.e., w is adjacent
to u1. In addition, {u0, u2, w} is a stable set because H has no 5-cycles. Moreover, NH(u0) = NH(u2) = NH(w) = {u1, v}

because H contains no A. Now, P ′′
= u1u0v is a path of the same length than P but the sum of the degrees of the endpoints

of P ′′ is dH(u1) + dH(v) > 4 = dH(u0) + dH(u2), which contradicts the choice of P . The contradiction arose from assuming
that j = 0. Hence, j ≠ 0 and, symmetrically, j ≠ ℓ. Therefore, also by symmetry, we assume, without loss of generality, that
j = 1. As P ′′′

= wvu1u2 . . . uℓ is longer than P , P ′′′ must have some long chord. Hence, as H is a fat caterpillar containing no
A and no net, this means that w is adjacent to u2 and ℓ = 2. But then, we find ourselves in the case j = ℓ by letting w play
the role of v and vice versa, which leads again to a contradiction. As this contradiction arose from assuming that P was not
edge-dominating, Claim 1 follows. �

Claim 2. If v ∈ V (H) − V (P) is pendant, then (i) holds.
Proof. Suppose that v ∈ V (H) − V (P) is pendant. As P is edge-dominating, NH(v) = {uj} for some j ∈ {0, 1, 2, . . . , ℓ}.
If j = 0, then vP would be a path longer than P and without long chords, contradicting the choice of P . This contradiction
proves that j ≠ 0 and, by symmetry, j ≠ ℓ. Suppose, by the way of contradiction, that uj is the midpoint of some short chord
of P; i.e., uj−1 is adjacent to uj+1. SinceH contains no net and by symmetry, we assume, without loss of generality, that j = 1.
As vu1u0u2u3 . . . uℓ is longer than P , it must have some long chord and, necessarily, u1 is adjacent to u3. Hence, asH contains
no A and P has no long chords, ℓ = 3 and dH(u0) = dH(u3) = 2. Thus, P ′

= vu1u0u2 is a path of the same length than P with-
out long chords and such that dH(v) + dH(u2) ≥ 4 = dH(u0) + dH(u3) but min{dH(v), dH(u2)} = 1 < min{dH(u0), dH(u3)},
which contradicts the choice of P . This contradiction arose from assuming that v was adjacent to themidpoint of some short
chord of P . Now, Claim 2 follows. �

Claim 3. If v ∈ V (H) − V (P) has degree 2, then (ii) holds.
Proof. Let v ∈ V (H) − V (P) of degree 2 and suppose, by the way of contradiction, that v is adjacent to two consecutive
vertices of P; i.e., NH(v) = {uj, uj+1} for some j ∈ {0, 1, 2, . . . , ℓ − 1}. If j = 0, then vP would be a path without
long chords and longer than P , contradicting the choice of P . Therefore, j ≥ 1 and, by symmetry, j ≤ ℓ − 1. The path
u0u1 . . . ujvuj+1uj+2 . . . uℓ must have some long chord because it is longer than P and, as P has no long chords, thismeans that
ujuj+2 or uj+1uj−1 is a chord of P . By symmetry, suppose, without loss of generality, that ujuj+2 is a chord of P . Thus, j = ℓ−2
since otherwise H would contain A. Moreover, NH(uℓ) = {uℓ−2, uℓ−1} because P has no long chords and H contains no A.
Hence, dH(uℓ) = 2 < dH(uℓ−1). Now, P ′

= u0u1 . . . uℓ−2vuℓ−1 is a path of the same length than P but dH(u0) + dH(uℓ−1) >
dH(u0)+dH(uℓ). Because of the choice of P , P ′ must have some long chord and, necessarily, uℓ−1 is adjacent to uℓ−3; i.e., uj+1
is adjacent to uj−1. As we derived from the adjacency of uj and uj+2 that j = ℓ − 2 and dH(uℓ) = 2, symmetrically we can
prove the fact that uj+1 and uj−1 are adjacent implies that j = 1 and dH(u0) = 2. Therefore, ℓ = 3, dH(u0) = dH(uℓ) = 2,
and NH(v) = {u1, u2}. Hence, as H is connected and P is edge-dominating, every vertex v ∈ V (H) − V (P) is adjacent to u1
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and/or to u2 only. If some vertex w ∈ V (H) − V (P) were adjacent to u1 but not to u2, then P ′′
= wu1u0u2 would be a path

without long chords of the same length than P and such that dH(w) + dH(u2) > 4 = dH(u0) + dH(u3), contradicting the
choice of P . By symmetry, this proves that each vertex w ∈ V (H) − V (P) satisfies NH(w) = {u1, u2}. We conclude that H is
the underlying graph of anm-crown for somem ≥ 3, which contradicts our initial hypothesis. This contradiction arose from
assuming that v was adjacent to two consecutive vertices of P . Hence, as P is edge-dominating and H has no cycle of length
greater than 4, necessarily NH(v) = {vj−1, vj+1} for some j ∈ {1, 2, . . . , ℓ − 1}. Suppose, by the way of contradiction, that
dH(uj) > 2 and let w be a neighbor of uj different from uj−1 and uj+1. Thus, since H contains no A and has no 5-cycle, ℓ = 2
and j = 1. But then,wu1u2v is a path longer than P andwithout long chords, contradicting the choice of P . This contradiction
arose from assuming that dH(uj) > 2. Consequently, uj is a false twin of v and (ii) holds. Hence, Claim 3 follows. �

Claim 4. If v ∈ V (H) − V (P) has degree at least 3, then (iii) holds.
Proof. Let v ∈ V (H) − V (P) of degree at least 3. As P is edge-dominating and H has no cycles of length greater than 4,
NH(v) = {uj−1, uj, uj+1} for some j ∈ {1, 2, . . . , ℓ − 1}. Since the paths u0u1 . . . uj−1vujuj+1 . . . uℓ and u0u1 . . . uj−1ujvuj+1
. . . uℓ are longer than P , they have at least one long chord each. Thus, if uj−1 were nonadjacent to uj+1, then uj would be
adjacent to uj−2 and to uj+2 and vuj+1uj+2ujuj−2uj−1v would be a 6-cycle of H , a contradiction. Therefore, uj−1 is adjacent
to uj+1. As H contains no A, j = 1 or j = ℓ − 1. By symmetry, assume that NH(v) = {u0, u1, u2}. Suppose, by the way of
contradiction, that u1 is not a true twin of v. Hence, there is some w ∈ NH(u1) − {v, u0, u2} and, since P is edge-dominating
and H has no cycle of length greater than 4, w is pendant. But then, wu1u0u2u3 . . . uℓ is a path longer than P and without
long chords, a contradiction with the choice of P . This contradiction proves that v is a true twin of u1 and (iii) holds. This
completes the proof of Claim 4. �

Now, the lemma follows from the four above claims. �

Lemma 3.3. If H is a fat caterpillar containing no A and no net, P = u0u1 . . . uℓ is as in the statement of Lemma 3.2, and ℓ ≥ 1,
then H is the underlying graph of Γ1 & p1Γ2 & p2 · · · & pn−1Γn for some basic two-terminal graphs Γ1, Γ2, . . . , Γn and some
nonnegative integers p1, p2, . . . , pn−1 such that the source of Γ1 is u0 and the sink of Γn is uℓ.
Proof. The proof will be by induction on ℓ. If ℓ = 1, then H is the underlying graph of an edge link with source u0 and sink
u1. Let ℓ ≥ 2 and assume that the lemma holds whenever the edge-dominating path has length less than ℓ. We will define
a two-terminal graph Γ1 by considering several cases. In each case, we assume, without loss of generality, that none of the
preceding cases holds.

Case 1: u0 is adjacent to some vertex v ∈ V (H) − V (P) of degree 3. By assertions (i)–(iii) of Lemma 3.2, we have that v is a
true twin of u1 and NH(u0) = {v, u1, u2}. We define Γ1 to be the two-terminal graph with source u0 and sink u2 and whose
underlying graph is the subgraph of H induced by NH [v]. Hence, Γ1 is a K4.

Case 2: u0 is adjacent to some vertex in v ∈ V (H) − V (P) of degree 2. By assertions (i)–(iii) of Lemma 3.2, we have that v is
a false twin of u1 and each neighbor of u0 in V (H) − V (P) is also a false twin of u1. We define Γ1 as the two-terminal graph
with source u0 and sink u2, and whose underlying graph is the subgraph of H induced by NH [u0] ∪ {u2}. Notice that Γ1 is a
crown or a fold, depending on whether or not u0 is adjacent to u2.

As Lemma3.2 implies that each neighbor of u0 inV (H)−V (P)has degree 2 or 3, in the cases belowwe are assuming,with-
out loss of generality, that u0 has no neighbors in V (H) − V (P). Hence, since P has no long chords, either NH(u0) = {u1, u2}

or NH(u0) = {u1}, depending on whether u0 is adjacent to u2 or not.
Case 3: u0 is adjacent to u2 and u1 is adjacent to u3. By assertions (i)–(iii) of Lemma 3.2, NH(u1) = {u0, u2, u3} and NH(u2)

= {u0, u1, u3}. Let Γ1 be the two-terminal graph with source u0 and sink u3, and whose underlying graph is the subgraph of
H induced by {u0, u1, u2, u3}. Thus, Γ1 is a rhombus.

Case 4: u0 is adjacent to u2 and u1 is nonadjacent to u3. As u1 is the midpoint of the short chord u0u2 and we are assuming
that u0 has no neighbors in V (H) − V (P), assertions (i)–(iii) of Lemma 3.2 imply that u1 has no neighbors in V (H) − V (P).
Therefore, as u1 is nonadjacent to u3 and P has no long chords, NH(u1) = {u0, u2}. Let Γ1 be the two-terminal graph whose
source is u0 and sink u2, and whose underlying graph is the subgraph of H induced by {u0, u1, u2}. Thus, Γ1 is a triangle.

Case 5: u0 is nonadjacent to u2. In this case, NH(u0) = {u1} and we define Γ1 as the two-terminal graph with source u0,
sink u1, and whose underlying graph is the induced subgraph of H induced by {u0, u1}. Hence, Γ1 is an edge.

Once definedΓ1 as prescribed in Cases 1 to 5 above, we let j be such that uj is the sink ofΓ1, v1, v2, . . . , vp1 be the pendant
vertices adjacent to uj, P ′

= ujuj+1 . . . uℓ, and H ′
= H − ((V (Γ1) − {uj}) ∪ {v1, . . . , vp1}). Notice that, unless V (Γ1) = V (H),

vj is a cut-vertex ofH because we have proved that each vertex of Γ1 different from vj has only neighbors in Γ1. By construc-
tion, H ′ and P ′ satisfy the statement of Lemma 3.2 by letting H ′ and P ′ play the roles of H and P , respectively. If j = ℓ, then
H is the underlying graph of Γ1 with source u0 and sink uℓ and the lemma holds for H . If j < ℓ, by induction hypothesis, H ′

is the underlying graph of some Γ2 & p2Γ3 & p3 · · · & pn−1Γn where each Γi is a basic two-terminal graph, each pi ≥ 0, the
source of Γ2 is uj, and the sink of Γn is uℓ. Thus, H is the underlying graph of Γ1 & p1Γ2 & p2Γ3 & p3 · · · & pn−1Γn where u0 is
the source of Γ1 and uℓ is the sink of Γn. Now, Lemma 3.3 follows by induction. �

As a consequence of the two above results, we now prove Lemma 3.1.

Proof (of Lemma 3.1). Suppose that H is a linear concatenation of a sequence Γ1, . . . , Γn of basic two-terminal graphs such
that if Γj is a K4, then j ∈ {1, n}. Let v0 be the source of Γ1, vn be the sink of Γn and, for each i ∈ {1, . . . , n − 1}, let vi be
the concatenation vertex of H that arose by identifying the sink of Γi and the source of Γi+1. Notice that H contains no A
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and no net because each 4-cycle of H has two nonconsecutive vertices adjacent to vertices of the 4-cycle only, each triangle
contained in a K4 link of H has at least two vertices u and v of degree 3 in H each such that NH [u] = NH [v], and each trian-
gle contained in any other link of H has at least one vertex of degree 2. Moreover, H has no cycle of length greater than 4
because each cycle of H is contained in one of the links and we are assuming that the links are basic. Suppose, by the way
of contradiction, that H contains a bipartite claw B. Let b0 be the center of B and let b1, b2, and b3 be the neighbors of b0 in
B. As b0 has degree at least 3 in H , the vertex b0 is either vj for some j ∈ {0, . . . , n} or a non-terminal vertex of a rhombus
link. If b0 were the non-terminal vertex of a rhombus link, then the remaining non-terminal vertex of the rhombus link is
bk for some k ∈ {1, 2, 3} and NH(bk) = {b0, b2, b3}, which contradicts the choice of b0, b1, b2, and b3. Therefore, b0 = vj
for some j ∈ {0, . . . , n} and, by symmetry, we assume without loss of generality that j ≠ n. As b1, b2, and b3 are non-
pendant vertices, at least two of them belong to the same link of H . By symmetry, we assume, without loss of generality,
that b1 and b2 are two vertices of Γj. By construction, b1, b2 ∈ NH(b0), NH(b1) − {b0, b2} ≠ ∅, NH(b2) − {b0, b1} ≠ ∅, and
|(NH(b1) ∪ NH(b2)) − {b0, b1, b2}| ≥ 2. Thus, since Γj is basic, necessarily Γj is a K4 and either b1 or b2 is vj+1. Since the K4
links may only occur at the beginning or end of the concatenation, necessarily j = 1, b1 is the sink of Γ1, and b2 and b3 are
the non-terminal vertices of Γ1. Hence, NH [b2] = NH [b3] = {b0, b1, b2, b3}, contradicting the choice of b0, b1, b2, and b3.
This contradiction shows that H contains no bipartite claw and we conclude that H is a fat caterpillar.

Conversely, let H be a fat caterpillar containing no A and no net. If H is K1, then, by definition, H is the linear concate-
nation of an empty sequence of two-terminal graphs. Otherwise, there is some path P = u0u1 . . . uℓ as in the statement
of Lemma 3.2 for some ℓ ≥ 1. Thus, Lemma 3.3 implies that H is the linear concatenation of basic two-terminal graphs.
Moreover, as H contains no A, the K4 links, if any, occur as first and/or last links of the concatenation, which completes the
proof of Lemma 3.1. �

The next lemmas describe the structure of the remaining fat caterpillars.

Lemma 3.4. A graph H is a fat caterpillar containing A if and only if H has an edge-dominating 4-cycle C = v1v2v3v4v1 and two
different vertices x1, x2 ∈ V (H)−V (C) such that xi is adjacent to vi for each i ∈ {1, 2}, each non-pendant vertex in V (H)−V (C)
is a false twin of v4 of degree 2, and one of the following holds:
(i) C is chordless.
(ii) v1v3 is the only chord of C and dH(v4) = 2.
(iii) C has two chords and dH(v3) = dH(v4) = 3.

Proof. The ‘if’ part is clear. In order to prove the ‘only if’, suppose that H is a fat caterpillar containing A. Thus, there is some
4-cycle C = v1v2v3v4v1 and two different vertices x1, x2 ∈ V (H) − V (C) such that xi is adjacent to vi for each i ∈ {1, 2}.
As H contains no bipartite claw and H is connected, C is edge-dominating in H . Therefore, as H has no 5-cycle, each vertex
in V (H) − V (C) is pendant or has exactly two neighbors which are two nonconsecutive vertices of C . If there are two non-
pendant vertices w1, w2 ∈ V (H) − V (C), then w1 and w2 are false twins because H contains no bipartite claw. Hence, we
assume, without loss of generality, that each non-pendant vertex in V (H) − V (C) is adjacent in H precisely to v1 and v3.
Thus, if there is some non-pendant vertexw ∈ V (H)−V (C), then v4 has degree 2 and is a false twin ofw becauseH contains
no bipartite claw and has no 5-cycle. If C is chordless, then (i) holds. If C has two chords, then, as H contains no bipartite
claw, dH(v3) = dH(v4) = 3 and (iii) holds. Suppose that C has exactly one chord and assume, without loss of generality,
that v1v3 is the only chord of C . As H has no 5-cycle and contains no bipartite claw, dH(v4) = 2 and (ii) holds. �

Lemma 3.5. A graph H is a fat caterpillar containing net but containing no A if and only if H has some edge-dominating triangle
C such that for each vertex v ∈ V (C) there is a pendant vertex x adjacent to v and every vertex in V (H) − V (C) is pendant.

Proof. The ‘if’ part is clear. For the converse, suppose that H contains no bipartite claw. Since H contains net, there are six
different vertices v1, v2, v3, x1, x2, x3 such that v1, v2, v3 are pairwise adjacent and vi is adjacent to xi for each i ∈ {1, 2, 3}.
As H contains no bipartite claw and H is connected, C = v1v2v3v1 is edge-dominating in H . In addition, as H contains no A,
each vertex in V (H) − V (C) is pendant. �

Combining the assertions of Lemmas 3.1, 3.4 and 3.5 yields the statement of Theorem 2.2, which can be rephrased to
the structure of fat caterpillars given in Corollary 2.3 that will be useful in the proof of the main result of this subsection,
Theorem 2.4.

This theorem proves that, except for a few sporadic cases (assertions (i), (ii), and (iii)), connected graphs containing no
bipartite claw are linear and circular concatenations of basic two-terminal graphs (assertion (iv)). For the proof of these
assertions, we need the following lemma.

Lemma 3.6. Let H be a connected graph containing no bipartite claw and having some cycle of length at least 5. Assume
further that the 5-cycles of H are chordless and the 6-cycles of H have no long chords and no three consecutive short chords.
If C = u1u2 . . . uℓu1 is a longest cycle of H, then C has no long chords and no three consecutive short chords and, for each vertex
v ∈ V (H) − V (C), one of the following assertions holds:
(i) v is pendant and its only neighbor is not the midpoint of any short chord of C.
(ii) v has degree 2 and is a false twin of uj for some j ∈ {1, 2, . . . , ℓ}.
As a result, H is a circular concatenation of crowns, folds, and rhombi.
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Proof. By hypothesis, C has length at least 5. Notice also that C is edge-dominating in H because H contains no bipartite
claw. Moreover, C has no long chords and no three consecutive short chords, since otherwise C would have length at least
7 (because we are assuming that the 6-cycles have no long chords and no consecutive short chords) and, as a consequence,
H would contain a bipartite claw, a contradiction.

Let v ∈ V (H) − V (C). As C is edge-dominating and H is connected, dH(v) ≥ 1. Suppose first that v is pendant. If the only
neighbor of v were the midpoint of some short chord of C , then C should have length at least 6 (because we are assuming
that 5-cycles are chordless) and, consequently,H would contain a bipartite claw, a contradiction. Hence, if v is pendant, then
(i) holds. Suppose now that v is non-pendant. As C is a longest cycle of H , no two consecutive vertices of C are adjacent to
v. Moreover, as H contains no bipartite claw, v has no two neighbors at distance larger than 2 within C . Thus, the neighbors
of v are at distance 2 in C from each other. This means that if v had at least three neighbors, then C would be a 6-cycle and
v would be adjacent to every second vertex of C , but then H would contain a bipartite claw. We conclude that v has exactly
two neighbors and that these two neighbors are at distance 2 within C; i.e., NH(v) = {uj−1, uj+1} for some j ∈ {1, . . . , ℓ}
(from this point on, subindices should be understood modulo ℓ) and, due to the fact that H contains no bipartite claw and
its 5-cycles are chordless, uj is a false twin of v. This proves that if v is not pendant, then (ii) holds.

It only remains to prove that H is a circular concatenation of crowns, folds, and rhombi.
We claim that there is some k ∈ {1, 2, . . . , ℓ} such that uk is neither the midpoint of any short chord of C nor a false twin

of any vertex outside V (C). Indeed, if no vertex of C is a false twin of a vertex outside V (C), the existence of k is guaranteed
by the fact that C has no three consecutive short chords. Suppose, on the contrary, that there is some j ∈ {1, . . . , ℓ} such
that uj is a false twin of a vertex outside V (C). Thus, as C is a longest cycle of H , uj−1 is not the midpoint of a short chord
of C and uj−1 is not the false twin of any vertex outside V (C) because dH(uj−1) > 2. Therefore, the claim holds by letting
k = j − 1. This concludes the proof of the claim.

Assume, without loss of generality, that uℓ is neither the midpoint of any short chord nor a false twin of any vertex out-
side V (C). Let v1, v2, . . . , vq be the pendant vertices of H incident to uℓ. We create a new vertex u0 and we add the edge
u0u1 and the edges joining u0 to every false twin of u1 outside V (C) (if any). If uℓ is adjacent to u2, then we also add an edge
joining u0 to u2. Finally, we remove every edge joining uℓ to a neighbor of u0. Let H ′ be the graph that arises this way and let
P ′

= u0u1u2 . . . uℓ. Clearly, H ′ and P ′ satisfy Lemma 3.2 by letting H ′ and P ′ play the roles of H and P , respectively. Hence,
by Lemma 3.3 and its proof, H ′ is the underlying graph of some Γ1 & p1Γ2 & p2 & · · · & pn−1Γn where each Γi is a crown, a
fold, or a rhombus, and each pi ≥ 0. (Indeed, no Γi is a K4 because no vertex v ∈ V (H ′) − V (P ′) has degree 3.) Finally, H is
the circular concatenation Γ1 & p1Γ2 & p2 & · · · & pn−1Γn & q �, where each link is a crown, a fold, or a rhombus. �

Now we are ready to give the proof of Theorem 2.4.

Proof (of Theorem 2.4). Suppose that H contains no bipartite claw and we will prove that at least one of the assertions
(i)–(iv) holds. Since H contains no bipartite claw and H is connected, every cycle of H of length at least 5 is edge-dominating
in H .

If H contains a 6-cycle C having a long or three consecutive short chords, then, as H contains no bipartite claw, H is
spanned by C and assertion (i) holds. Hence, from now on, we assume, without loss of generality, that H contains no 6-cycle
having a long or three consecutive short chords.

Suppose now that H contains antenna. Thus, H has some 5-cycle C = v1v2v3v4v5v1 and some vertex v ∈ V (H) − V (C)
such that v is adjacent to v2 and v1 is adjacent to v3. If v were adjacent to any vertex of C different from v2, thenH would have
a 6-cycle having a long chord, contradicting our assumption. If any vertex of C different from v2 were adjacent to some ver-
tex outside V (C) different from v, then H would contain a bipartite claw. Thus, as H is connected and C is edge-dominating,
each vertex v ∈ V (H) − V (C) is a pendant vertex adjacent to v2. Hence, (ii) holds. Therefore, from now on, we assume,
without loss of generality, that H contains no antenna.

Suppose now H has a 5-cycle C with three consecutive short chords. If there were any vertex v ∈ V (H) − V (C) adjacent
to the two vertices v1 and v2 of C that are nomidpoints of any of these three short chords, then H would have a 6-cycle with
three consecutive short chords, contradicting our assumption. Since H contains no antenna, the midpoints of the chords of
C have neighbors in V (C) only. Therefore, as C is edge-dominating, each v ∈ V (H)−V (C) is a pendant vertex adjacent to v1
or v2. If there were two different vertices u1, u2 ∈ V (H)−V (C) such that ui is adjacent to vi for each i ∈ {1, 2}, thenH would
contain a bipartite claw. Hence, without loss of generality, each v ∈ V (H) − V (C) is a pendant vertex adjacent to v1 and (ii)
holds. From now on, we assume without loss of generality that H has no 5-cycle with three consecutive short chords.

Suppose now thatH has a 5-cycle C = v1v2v3v4v5v1 with at least three chords. By hypothesis, C has exactly three chords
and, without loss of generality, the chords of C are v1v3, v1v4, and v3v5. As C is edge-dominating and H contains no antenna,
each vertex v ∈ V (H)−V (C) is adjacent to v1 and/or to v3 only. Thus,H = rhombus & p1m-crown& p2 � for some p1, p2 ≥ 0
and somem ≥ 1 and, in particular, (iv) holds. Hence, from now on, we assume, without loss of generality, that each 5-cycle
of H has at most two chords.

Suppose that H has a 5-cycle C = v1v2v3v4v5v1 with two crossing chords. Without loss of generality, let v2v4 and v3v5
be the chords of C . As H contains no antenna, v3 and v4 have neighbors in V (C) only. Suppose that there is some vertex
v ∈ V (H) − V (C) such that v is adjacent simultaneously to v1, v2, and v5. Since H contains no bipartite claw, it follows that
the only neighbors of v1 are v, v2, and v5, and the only vertex outside V (C) adjacent simultaneously to v2 and v5 is v. Thus,
since C is edge-dominating, we conclude that H = rhombus & p1rhombus & p2 � for some p1, p2 ≥ 0 and, in particular, (iv)
holds. Therefore, without loss of generality, suppose that there is no vertex outside V (C) adjacent simultaneously to v1, v2,
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and v5. Suppose now that there is some vertex v ∈ V (H)−V (C) which is adjacent to v2 and v5 and nonadjacent to v1. Since
H contains no bipartite claw, v1 has no neighbors apart from v2 and v5. Thus, since C is edge-dominating, we conclude that
H = rhombus & p1m-fold & p2 � for some p1, p2 ≥ 0 andm ≥ 2 and, in particular, (iv) holds. Finally, assume, without loss of
generality, that there is no vertex v ∈ V (H)−V (C) adjacent to v2 and v5 simultaneously. Hence, since C is edge-dominating,
H = rhombus & p1m1-crown & p2m2-crown & p3 � for some p1, p2, p3,m1,m2 ≥ 0 and (iv) holds.

Suppose that H has a 5-cycle C = v1v2v3v4v5v1 with two noncrossing chords. Without loss of generality, assume that
v1v3 and v1v4 are the chords of C . Since H contains no antenna, vertices v2 and v5 have neighbors in V (C) only. If there
were a vertex outside V (C) which were adjacent to v1, v3, and v4, then H would have a 6-cycle with a long chord, con-
tradicting our assumption. Hence, as C is edge-dominating, H = m1-crown & p1m2-crown & p2m3-crown & p3 � for some
p1, p2, p3,m1 ≥ 0 and somem2,m3 ≥ 1 and (iv) holds. Therefore, from now on, we assume, without loss of generality, that
each 5-cycle of H has at most one chord.

Suppose now that H has a 5-cycle C = v1v2v3v4v5v1 with exactly one chord. Without loss of generality, assume that the
only chord is v1v3. Since H has no antenna, no vertex outside V (C) is adjacent to v2. Moreover, each vertex outside V (C) is
adjacent to at most two vertices of C , since otherwise H would have a 5-cycle with at least two chords, contradicting our
hypothesis. Suppose that there is some vertex v ∈ V (H) − V (C) which is adjacent to two nonconsecutive vertices of C but
NH(v) ≠ {v1, v3}. By symmetry, assume that the two neighbors of v are v1 and v4. Since H contains no bipartite claw, v5 has
no neighbors outside V (C). As C is edge-dominating, we conclude that H = m1-fold & p1m2-crown & p2m3-crown & p3 � for
somem1 ≥ 2,m2 ≥ 1, and somem3, p1, p2, p3 ≥ 0. If, on the contrary, every vertex v ∈ V (H) − V (C) adjacent to two non-
consecutive vertices of C satisfies NH(v) = {v1, v3}, then H = m1-crown & p1m2-crown & p2m3-crown & p3m4-crown & p4 �
for some m1 ≥ 1 and some m2,m3,m4, p1, p2, p3, p4 ≥ 0. In either case, (iv) holds. Hence, from now on, we assume that
every 5-cycle of H is chordless.

Since we are assuming that H has no 6-cycle having a long chord or three consecutive short chords and that each 5-cycle
of H is chordless, if H has a cycle of length at least 5, then Lemma 3.6 implies that H is a circular concatenation of crowns,
folds, and rhombi, which means that (iv) holds. Therefore, we assume, without loss of generality, that each cycle of H has
length at most 4. But then, H is a fat caterpillar and assertion (iii) or (iv) holds by virtue of Theorem 2.2.

Conversely, if H satisfies one of the assertions (i)–(iii), then clearly H contains no bipartite claw. Finally, if H satisfies as-
sertion (iv), then also H contains no bipartite claw by reasoning as in the first part of the proof of Lemma 3.1. This completes
the proof of Theorem 2.4. �

3.2. Proofs for edge-coloring graphs containing no bipartite claw

By exploiting our structure theorem for graphs containing no bipartite claw (Theorem 2.4) and Theorems 2.5–2.8, we
arrive at the structure of all connected graphs containing no bipartite claw that are Class 2 (Theorem 2.9):

Proof (of Theorem 2.9). Let H be a connected graph containing no bipartite claw and such that χ ′(H) ≠ ∆(H). We need to
prove that H satisfies (i), (ii), or (iii). Since the result holds trivially if ∆(H) ≤ 2, we assume, without loss of generality, that
∆(H) ≥ 3. The proof splits into three cases.

Case 1: ∆(H∆) ≤ 2.We claim that H is K5 − e. Since P∗ contains a bipartite claw, Theorem 2.6 implies that if ∆(H) = 3,
then H would be Class 1, contradicting the hypothesis. Hence, ∆(H) ≥ 4. Thus, by Theorem 2.5, H is critical, δ(H∆) = 2,
and δ(H) = ∆(H) − 1 ≥ 3. Suppose, by the way of contradiction, that assertion (iv) of Theorem 2.4 holds for H . Since the
vertices of H that are not concatenation vertices have degree at most 3, all major vertices of H are concatenation vertices.
Since δ(H∆) = 2, H is necessarily a circular concatenation of crowns. Finally, since δ(H) ≥ 3, each of the crowns of the con-
catenation is an edge and H has no pendant vertices; i.e., H is a chordless cycle, contradicting ∆(H) ≥ 4. This contradiction
proves that assertion (iv) of Theorem 2.4 does not hold. Thus, assertion (i), (ii), or (iii) of Theorem 2.4 holds. As δ(H) ≥ 3, H
has no pendant vertices and necessarily |V (H)| is 5 or 6. Thus, since H is critical and ∆(H) ≥ 4, it follows from Theorem 2.8
that H is K5 − e, as claimed.

Case 2: ∆(H∆) ≥ 3 and ∆(H) ≥ 4. We claim that H is K5, L5, or SK5. Suppose first that H has a 6-cycle C having a long
chord. This implies that C is spanning in H because H is connected and contains no bipartite claw. In particular, |V (H)| ≤ 6.
Hence, since we are assuming that ∆(H) ≥ 4, Theorems 2.7 and 2.8 imply that H contains K5 − e and ∆(H) = 4. Therefore,
as H has a spanning 6-cycle, H arises from K5 − e by adding one vertex adjacent precisely to the two vertices of degree 3 of
the K5 − e; i.e., H is SK5. Thus, for the remaining of this case, we assume that H has no 6-cycle having a long chord.

As ∆(H∆) ≥ 3, there is some major vertex w0 of H that is adjacent in H to three other major vertices w1, w2, w3 of H
and letW = {w0, w1, w2, w3}. Let B be the bipartite graph with bipartition {X, Y } and edge set F , where X = {w1, w2, w3},
Y = (NH(w1) ∪ NH(w2) ∪ NH(w3)) − W , and F = E(H) ∩ (X × Y ). Notice that, by construction, δ(B) ≥ 1.

We claim that dB(wj) = 1 for some j ∈ {1, 2, 3} and, in particular, ∆(H) = 4. Suppose, on the contrary, that dB(wi) ≥ 2
for each i ∈ {1, 2, 3}. If |Y | ≥ 3, then Theorem 1.6 would imply that B has a matching that saturates every vertex of X and,
consequently,w0 would be the center of a bipartite claw contained in H , a contradiction. This contradiction implies |Y | < 3.
Thus,NB(w1) = NB(w2) = NB(w3) = Y = {y1, y2}where y1 and y2 are twodifferent vertices. Hence, C = w0w1y1w2y2w3w0
is a 6-cycle in H having three long chords, a contradiction. This contradiction proves the claim; i.e., dB(wj) = 1 for some
j ∈ {1, 2, 3} and, in particular, ∆(H) = 4. By symmetry, from now on, we assume that dB(w3) = 1.
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Suppose that |Y | = 1 andwewill prove thatH is K5 or L5. The fact that the vertices ofW aremajor vertices and∆(H) = 4
implies that NH [w1] = NH [w2] = NH [w3] = W ∪ {y} where Y = {y}. If w0 is adjacent to y, then H is K5. If, on the contrary,
the neighbor of w0 outsideW is a vertex z different from y, then, as H contains no bipartite claw and has no 6-cycle having
a long chord, H is L5. Hence, from now on, we assume without loss of generality that |Y | ≥ 2.

Suppose that |NB(w1)∪NB(w2)| = 1 andwewill prove thatH is L5. Let y1 be the only neighbor in B ofw1 andw2. By con-
struction, Y = {y0, y1} where y0 is the only neighbor of w3 in B and y0 ≠ y1 (because we are assuming that dB(w3) = 1 and
|Y | ≥ 2). Sincew1,w2, andw3 aremajor vertices and∆(H) = 4,W is a clique. SinceH is connected and contains no bipartite
claw, V (H) = W ∪ Y . Moreover, as H has no 6-cycle with a long chord, w0 is nonadjacent to y0, respectively. Hence, since
w0 is a major vertex and ∆(H) = 4, NH(w0) = {w1, w2, w3, y1}. Since H has no 6-cycle with a long chord, y0 is nonadjacent
to y1. Therefore, H is L5, as desired. Thus, from now on, we assume without loss of generality that |NB(w1) ∪ NB(w2)| ≥ 2.

Since |NB(w1)∪NB(w2)| ≥ 2, there are two different vertices y1, y2 ∈ Y such thatwi is adjacent to yi for each i ∈ {1, 2}. As
w3 is amajor vertex andwe are assuming that dB(w3) = 1,w3 is necessarily adjacent tow1 andw2. As∆(H) = 4 andH con-
tains no bipartite claw, for each ofw3 andw0 its only neighbor outsideW is either y1 or y2. By symmetry, we assume,without
loss of generality, that NH [w3] = W ∪ {y1}. Thus, as H contains no bipartite claw and has no 6-cycle having a long chord,
NH [w0] = W ∪ {y1}, NH [w1] = W ∪ {y1}, NH [w2] = W ∪ {y2}, NH(y1) = {w0, w1, w3}, and NH(y2) = {w2}. Hence, H is L5.

We have verified that if ∆(H∆) ≥ 3 and ∆(H) ≥ 4, then H is K5, L5, or SK5, as claimed.
Case 3: ∆(H∆) ≥ 3 and ∆(H) = 3. As ∆(H) = 3, assertion (iii) of Theorem 2.4 does not hold. Suppose, by the way of

contradiction, that assertion (i) or (ii) of Theorem 2.4 holds for H . Thus, |V (H)| is 5 or 6 and, by Theorems 2.7 and 2.8, H
contains SK4. Hence, since H contains no bipartite claw, H is connected, and ∆(H) = 3, it follows that either H is SK4 or H
arises from SK4 by adding a pendant vertex adjacent to the vertex of degree 2 of the SK4, contradicting the assumption that
assertion (i) or (ii) of Theorem 2.4 holds. We conclude that, necessarily, H is a linear or circular concatenation as described
in assertion (iv) of Theorem 2.4. As ∆(H) = 3, no link of the linear or circular concatenation is an m-crown for any m ≥ 3
or an m-fold for any m ≥ 4. Moreover, if any of the links in the linear or circular concatenation were a 2-crown, 3-fold,
or K4, then H would be precisely the underlying graph of a 2-crown, 3-fold, or K4, and H would be Class 1, a contradiction.
Therefore, H is a linear or circular concatenation of edges, triangles, squares, and rhombi. As ∆(H) = 3, if any link of the
concatenation is a triangle, square, or rhombus, then its adjacent links in the concatenation are edges. Hence, it is clear that
there is a 3-edge-coloring of H if and only if there is a coloring of only the edge links of H such that:

(1) Each two edge links that are adjacent to the same triangle link are colored with different colors.
(2) Each two edge links that are adjacent to the same rhombus link are colored with the same color.
(3) Each two adjacent edge links are colored with different colors.

Thus, if H is a linear concatenation, a greedy coloring of only the edge links following the order of their occurrence in the
linear concatenation and following rules (1)–(3) above, ends up successfully, implying that H has a 3-edge-coloring, a con-
tradictionwith the fact thatH is Class 2. Since the links adjacent to the same squaremay receive the same or different colors,
ifH is a circular concatenationwhere some link is a square, then also a greedy coloring of only the edge links, following rules
(1)–(3) around the concatenation starting at one of the edge links adjacent to the square and ending at the other one, ends up
successfully, contradicting the fact that H is Class 2. These contradictions prove that H is a circular concatenation of edges,
triangles, and rhombi only.

We will now prove that if H is a circular concatenation of edges, triangles, and rhombi such that ∆(H∆) ≥ 3 and
∆(H) = 3, then H is Class 2 if and only if H has exactly one more edge link than rhombus links. As ∆(H∆) ≥ 3, H has
at last one rhombus link. Thus, without loss of generality, H = edge & p1Γ2 & p2 · · · & pn−1edge & rhombus & �. Notice that
H is Class 2 if and only if there is no 3-edge-coloring of the edge links of H ′

= edge & p1Γ2 & p2 · · · & pn−1edge satisfying
rules (1)–(3) above and such that the first and the last link of H ′ are colored with the same color. Moreover, H ′ is not 3-edge-
colorable satisfying rules (1)–(3) above if and only if the graph H ′′, that arises from H ′ by contracting each triangle link to
a vertex and contracting each pair formed by a rhombus link followed by an edge link also to a vertex, consists of precisely
two edges; i.e., H ′ has two more edge links than rhombus links. We conclude that H has exactly one more edge link than
rhombus links; i.e., (ii) holds. This completes Case 3 and the proof of the ‘only if’ part of the theorem.

Notice also that we have just proved that if assertion (ii) holds, then H is Class 2. As a result, the ‘if’ part of the theorem
is also proved, because if assertion (i) or (iii) holds, then H is clearly Class 2. �

3.3. Proofs for matching-perfect graphs

We start with the proof of Theorem 2.11. For that, we will consider several cases and in all of them we will ensure the
existence of a matching-transversal and a matching-independent set of the same size, which means that αm(H) = τm(H).
To produce these matching-independent sets, we strongly rely on edge-coloring H or some graphs derived from it, via
Theorem 2.9.

The next lemma states a simple yet useful upper bound on τm(H).

Lemma 3.7. If H is a graph and v1 and v2 are two adjacent vertices of H, then the set of edges of H that are incident to v1 and/or
to v2 is a matching-transversal of H and, in particular, τm(H) ≤ dH(v1) + dH(v2) − 1.
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Proof. No matchingM of H disjoint from EH(v1) ∪ EH(v2) is maximum becauseM ∪ {v1v2} is a larger matching of H . �

Let k be a nonnegative integer. A partial k-edge-coloring of a graph H is a map φ : E(H) → {0, 1, 2, . . . , k} such that, for
each pair of incident edges e1, e2 of H , φ(e1) = φ(e2) implies φ(e1) = φ(e2) = 0. If φ(e) ≠ 0, then e is said to be colored
with color φ(e); otherwise, e is said to be uncolored. A k-edge-coloring of H is a partial k-edge-coloring that colors all edges
of H . The color classes of a partial k-edge-coloring are the sets ξ1, ξ2, . . . , ξk where ξj is the set of edges of H with color j, for
each j ∈ {1, 2, . . . , k}.

We complement the upper bounds on τm with lower bounds on αm obtained with the help of a special kind of partial
edge-colorings that we call profuse-colorings. A k-profuse-coloring of a graph H is a partial k-edge-coloring φ : E(H) →

{0, 1, 2, . . . , k} satisfying the following conditions:

(1) If k = 1, then there is at least one edge e of H colored with color 1.
(2) If k ≥ 2, then each edge e (either colored or not) of H is incident to edges colored with at least k − 1 different colors.

We say that a k-profuse-coloring φ ismaximal if, for each uncolored edge, there are edges incident to it that are colored with
the k different colors (i.e., no uncolored edge can be colored while keeping φ a k-profuse-coloring). We first show that every
k-profuse-coloring uses all the colors 1, . . . , k.

Lemma 3.8. Each k-profuse-coloring of a graph H colors some edge of H with color i for each i ∈ {1, . . . , k}.

Proof. If k = 0, there is nothing to prove. If k = 1, then the lemma holds by condition (1) of the definition. Thus, assume
that k ≥ 2 and let e be any edge of H . Since k − 1 ≥ 1, condition (2) implies that e is incident to some edge ej colored with
some color j ∈ {1, . . . , k}. Since φ is a partial edge-coloring and by virtue of condition (2), ej is incident to some edge ei
colored with color i for each i ∈ {1, . . . , k} − {j}. By construction, edge ei is colored with color i for each i ∈ {1, . . . , k}. �

We now show that the maximum value of k for which a graph H has a k-profuse-coloring is k = αm(H). Hence, in order
to prove that αm(H) ≥ k it will suffice to exhibit a k-profuse-coloring of H .

Lemma 3.9. For each graph H and each nonnegative integer k, the following assertions are equivalent:

(i) αm(H) ≥ k.
(ii) H has a k-profuse-coloring.
(iii) H has a maximal k-profuse-coloring.

Moreover, the collection of color classes of a maximal k-profuse-coloring of H is a matching-independent set of size k.

Proof. If k = 0, the three assertions (i)–(iii) are true; in fact, for every graphH , the constant 0 function is the only 0-profuse-
coloring of H and it is also maximal. Hence, we assume that k ≥ 1.

Let us prove first that (i) ⇒ (iii). Suppose that αm(H) ≥ k and let M = {M1,M2, . . . ,Mk} be a collection of k pairwise
disjoint nonempty maximal matchings of H . Let φM : E(H) → {0, 1, 2, . . . , k} be defined for each e ∈ E(H) and each
i ∈ {1, . . . , k} by

φM(e) = i if and only if e ∈ Mi.

Notice that φM(e) = 0 if and only if e ∉ M1 ∪ M2 ∪ · · · ∪ Mk. We claim that φM is a maximal k-profuse-coloring of H . Since
each Mi is a matching, φM is a k-partial edge-coloring of H . If k = 1, then φM is a maximal 1-profuse-coloring because the
fact thatM1 is nonempty and maximal implies that there is at least one edge of H colored by φM with color 1 and that each
uncolored edge is incident to an edge colored with color 1. Thus, we are left to consider the case k ≥ 2. Let e be any edge
of H . Assume first that e ∈ Mj for some j ∈ {1, 2, . . . , k}. For each i ∈ {1, 2, . . . , k} such that i ≠ j, the maximality of Mi
implies that there is some edge ei of H incident to e such that φM(ei) = i. Hence, the set {ei: i ≠ j} consists of k − 1 edges
incident to e that are coloredwith k−1 different colors. Suppose now that e ∉ M1 ∪M2 ∪· · ·∪Mk. For each i ∈ {1, 2, . . . , k},
the maximality of Mi implies that there is some edge ei of H incident to e such that φM(ei) = i. We conclude that φM is a
maximal k-profuse-coloring of H and (iii) holds.

We now prove that (ii) ⇒ (i). Suppose (ii) holds and let φ : E(H) → {0, 1, 2, . . . , k} be a k-profuse-coloring of H . Thus,
for each i ∈ {1, 2, . . . , k}, the color class ξi = {e ∈ E(H) : φ(e) = i} is a matching of H and ξi ≠ ∅ by Lemma 3.8. For
each i ∈ {1, 2, . . . , k}, let Mi be any maximal matching of H containing ξi. If k = 1, then αm(G) ≥ 1 because the fact that
M1 ≠ ∅ implies that {M1} is a clique-independent set of H . Hence, assume that k ≥ 2. Let e be any edge of H . As φ is a
k-profuse-coloring, there are k− 1 edges e1, e2, . . . , ek−1 of H incident to e such that φ(e1), φ(e2), . . . , φ(ek−1) are positive
and pairwise different. Hence, as ei ∈ ξφ(ei) andMφ(ei) is a matching containing ξφ(ei), e ∉ Mφ(ei) for each i ∈ {1, 2, . . . , k−1}.
This proves that each edge e of H belongs to at most one ofM1,M2, . . . ,Mk. Thus, by construction, M = {M1,M2, . . . ,Mk} is
a collection of k disjoint nonempty maximal matchings of H and αm(H) ≥ k; i.e., (i) holds, as desired.

Since (iii) trivially implies (ii), this completes the proof of the equivalence among (i)–(iii). Finally, notice that, in the
preceding paragraph, if φ is maximal, then Mi = ξi because each e ∈ E(H) − ξi is incident to some edge in ξi. Therefore,
if φ is maximal, then {ξ1, . . . , ξk} is a collection of k disjoint nonempty maximal matchings, proving the last statement of
Lemma 3.9. �
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As immediate consequence of Lemma 3.9 we obtain:

Corollary 3.10. If φ is a maximal k-profuse-coloring of a graph H, then every matching-transversal of H has at least one edge
colored with color i for each i ∈ {1, 2, . . . , k}.

More upper bounds on τm and lower bounds on αm will be proved later in this subsection. Some of them depend on the
degrees of what we call hubs. The hubs of a graph are the vertices of degree at least 3. The minimum hub degree δh(H) of a
graph H is the infimum of the degrees of the hubs of H . Notice that δh(H) ≥ 3 for any graph H and that δh(H) = +∞ if and
only ifH has no hubs. A hub isminimum if its degree is theminimum hub degree. An edge of a graph is hub-covered if at least
one of its endpoints is a hub. A graph H is hub-covered if each of its edges is hub-covered. Equivalently, H is hub-covered if
and only if its hub set is edge-dominating. A graph is hub-regular if all its hubs have the same degree. Equivalently, a graph
H is hub-regular if and only if either δh(H) = ∆(H) or δh(H) = +∞.

The proof of Theorem 2.11 splits into two parts: Theorem 2.12, the case when H has some cycle of length greater than 4
(which is necessarily a cycle of length 3k for some k ≥ 2), and Theorem 2.13, the case when H has no cycle of length greater
than 4.

Theorem 2.12 will follow by considering separately the cases when the graph is hub-covered (Lemma 3.16) or not
(Lemma 3.17). The lemma below implies that if a graph H containing no bipartite claw has a cycle of a certain length, then
H is triangle-free.

Lemma 3.11. Let H be a connected graph containing no bipartite claw such that the length of each cycle is at most 4 or a multiple
of 3. If H contains a cycle C of length 3k for some k ≥ 2, then one of the following assertions holds:
(i) H arises from C6 by adding 1, 2, or 3 long chords.
(ii) C is chordless and each vertex v ∈ V (H) − V (C) is either: (1) a false twin of a vertex of C of degree 2 in H or (2) a pendant

vertex adjacent to a vertex of C.
In particular, H is triangle-free.
Proof. Let C ′ be any cycle of H of length ℓ for any ℓ ≥ 5. By hypothesis, ℓ is a multiple of 3. Moreover, C ′ has no short chords
since otherwise H would have a cycle of length ℓ − 1, where ℓ − 1 is at least 5 and not a multiple of 3. Thus, if C ′ has a
chord, then this chord must be long and, as H contains no bipartite claw and is connected, C ′ is a spanning 6-cycle of H and
(i) holds. Hence, we assume, without loss of generality, that every cycle of H of length at least 5 is chordless. It now follows
from Lemma 3.6 that (ii) holds. �

We start considering the case of hub-covered graphs with the following upper bound on τm.

Lemma 3.12. Let H be a triangle-free graph containing no bipartite claw. If v is a hub of H, then EH(v) is a matching-transversal
of H. In particular, if H has at least one hub, then τm(H) ≤ δh(H).
Proof. Let v be any hub of H and let w1, w2 and w3 be three of its neighbors in H . Suppose, by the way of contradiction, that
EH(v) is not a matching-transversal of H and letM be amaximal matchingM of H disjoint from EH(v). In particular, for each
i ∈ {1, 2, 3}, there is some ei ∈ M incident to wi and non-incident to v. As H is triangle-free, wi is the only endpoint of ei
in {w1, w2, w3}, for each i ∈ {1, 2, 3}. Thus, {vw1, vw2, vw3, e1, e2, e3} is the edge set of a bipartite claw contained in H , a
contradiction. This contradiction proves that EH(v) is a matching-transversal of H and that τm(H) ≤ δh(H). �

The counterpart of the above upper bound on τm(H) is the following lemma fromwhich we deduce sufficient conditions
for δh(H) to be also a lower bound on αm(H).

Lemma 3.13. In a triangle-free graph H containing no bipartite claw, there exists a set F of hub-covered edges such that the
graph H ′

= H − F is hub-regular and has the same hub set and the same minimum hub degree as H.
Proof. Let H be a counterexample to the lemma with minimum number of edges. If H were hub-regular, the lemma would
hold by letting F = ∅. Hence, H is not hub-regular; i.e., ∆(H) > δh(H). Let v be any hub of H that is not minimum.

We claim that v has some neighbor w in H which is not a minimum hub. Suppose, by the way of contradiction,
that all the neighbors of v are minimum hubs. By construction, v has at least four neighbors w1, w2, w3, w4 and let
W = {v, w1, w2, w3, w4}. As H is triangle-free and wi is a hub, |NH(wi)−W | = δh(H)− 1 ≥ 2 for each i ∈ {1, 2, 3}. Hence,
|(NH(w1) ∪ NH(w2) ∪ NH(w3)) − W | ≤ 2, since otherwise |


a∈A NH(a) − W | ≥ |A| for every nonempty A ⊆ {w1, w2, w3}

and Theorem1.6 (applied to the bipartite graphwith bipartition {X, Y } and edge set E(H)∩(X×Y ), where X = {w1, w2, w3}

and Y = V (H) − W ) would imply that v is the center of a bipartite claw contained in H . Therefore, δh(H) = 3 and there
are two different vertices y1, y2 outside W such that NH(w1) = NH(w2) = NH(w3) = {v, y1, y2} and, by symmetry, also
NH(w4) = {v, y1, y2}. But this means that w4 is the center of a bipartite claw contained in H , a contradiction. This contra-
diction proves that v has some neighbor w which is not a minimum hub, as claimed.

Let w be a neighbor of v which is not a minimum hub of H . Thus, vw is a hub-covered edge of H and H1 = H − {vw}

has the same hub set and the same minimum hub degree as H . By minimality of the counterexample H , the lemma holds
for H1. Hence, there exists a set F1 of hub-covered edges of H1 such that H ′

= H1 − F1 is hub-regular and has the same hub
set and the same minimum hub degree as H1. By construction, F = F1 ∪ {vw} is a set of hub-covered edges of H such that
H ′

= H − F is hub-regular and H ′ has the same hub set and the same minimum hub degree as H . Therefore, the lemma
holds for H , contradicting the choice of H . This contradiction proves the lemma. �
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Lemma 3.14. Let H be a triangle-free graph containing no bipartite claw. If H is hub-covered and has at least one edge, then
αm(H) ≥ δh(H).

Proof. By Lemma 3.13, there exists a set F of hub-covered edges of H such that H ′
= H − F is hub-regular and has the same

hub set and the sameminimum hub degree as H . Since H has at least one edge and H is hub-covered, H has at least one hub;
i.e., 3 ≤ δh(H) < +∞. By construction, H ′ is also hub-covered and ∆(H ′) = δh(H ′) = δh(H) ≥ 3. Since H ′ is a subgraph
of H , H ′ is also triangle-free and contains no bipartite claw. By Theorem 2.9, χ ′(H ′) = ∆(H ′); i.e., there is an edge-coloring
φ′ of H ′ using ∆(H ′) = δh(H) colors. Let φ : E(H) → {0, 1, 2, . . . , δh(H)} be defined by φ(e) = φ′(e) for each e ∈ E(H ′)
and φ(e) = 0 for each e ∈ E(H) − E(H ′). Since H is hub-covered, φ is a δh(H)-profuse-coloring of H by construction and
Lemma 3.9 implies that αm(H) ≥ δh(H). �

From Lemmas 3.12 and 3.14, we can determine αm and τm for all connected hub-covered triangle-free graphs containing
no bipartite claw and having at least one edge.

Lemma 3.15. If H is a hub-covered triangle-free graph containing no bipartite claw and having at least one edge, then αm(H) =

τm(H) = δh(H).

Using the above lemma and Lemma 3.11, we prove Theorem 2.12 for hub-covered graphs, as follows.

Lemma 3.16. Let H be a connected graph containing no bipartite claw and such that the length of each cycle of H is at most 4 or
is a multiple of 3. If H has a cycle of length 3k for some k ≥ 2 and H is hub-covered, then αm(H) = τm(H) = δh(H).

Finally, we also settle Theorem 2.12 for graphs that are not hub-covered.

Lemma 3.17. Let H be a connected graph containing no bipartite claw and such that the length of each cycle of H is at most 4
or is a multiple of 3. If H has a cycle of length 3k for some k ≥ 2 and H is not hub-covered, then αm(H) = τm(H) = 3.

Proof. Since H is not hub-covered and H has at least one edge, Lemma 3.7 implies τm(H) ≤ 3. Thus, we just need to prove
that αm(H) ≥ 3. Since the length of C is a multiple of 3, there is a 3-edge-coloring of C , φ′

: E(C) → {1, 2, 3} such that
each three consecutive edges of C are colored with three different colors by φ′. Let φ : E(H) → {0, 1, 2, 3} be defined by
φ(e) = φ′(e) for each e ∈ E(C) andφ(e) = 0 for each e ∈ E(H)−E(C). SinceH is connected and contains no bipartite claw, C
is edge-dominating inH and, consequently,φ is a 3-profuse-coloring ofH . By virtue of Lemma3.9,αm(H) ≥ 3, as needed. �

Clearly, Lemmas 3.16 and 3.17 together imply Theorem 2.12.
As Theorem 2.12 is now proved, to complete the proof of Theorem 2.11, it only remains to prove Theorem 2.13.
To begin with, the next lemma provides several upper bounds on τm.

Lemma 3.18. If H is a graph containing no bipartite claw and having no 5-cycle and v is a hub of H, then each of the following
holds:

(i) If v has degree at least 5 in H, then EH(v) is a matching-transversal of H and, in particular, τm(H) ≤ dH(v).
(ii) If v has degree 4 in H, then τm(H) ≤ 5. Moreover, if v has degree 4 and NH(v) does not induce 2K2 in H, then EH(v) is a

matching-transversal of H and, in particular, τm(H) ≤ 4.
(iii) If v has degree 3 in H, then τm(H) ≤ 5. Moreover, if NH(v) induces 3K1 in H, then EH(v) is a matching-transversal of H

and, in particular, τm(H) ≤ 3. If, instead, NH(v) induces K2 + K1 in H, then τm(H) ≤ 4.

Proof. If EH(v) is a matching-transversal of H , then τm(H) ≤ dH(v) and there is nothing left to prove. Hence, we assume,
without loss of generality, that EH(v) is not a matching-transversal of H . Therefore, there exists a maximal matchingM of H
such that M ∩ EH(v) = ∅. Because of the maximality of M , for each neighbor w of v there is exactly one edge ew ∈ M that
is incident to w. Notice that there could be two different neighbors w1 and w2 of v such that ew1 = ew2 .

We claim that |{ew: w ∈ NH(v)}| ≤ 2. In fact, if ew1 , ew2 , ew3 were three different edges for some w1, w2, w3 ∈ NH(v),
then v would be the center of a bipartite claw contained in H with edge set {vw1, ew1 , vw2, ew2 , vw3, ew3}, a contradiction.
This contradiction proves the claim. Therefore, as each edge ew is incident to at most two vertices of NH(v), in particular,
dH(v) ≤ 4. So far, we have proved (i).

Suppose that dH(v) = 3 and letNH(v) = {w1, w2, w3}. We denote by FH(v) the set of edges ofH joining two neighbors of
v. Suppose, by the way of contradiction, that EH(v) ∪ FH(v) is not a matching-transversal of H . Thus, there is some maximal
matching M ′ such that M ′

∩ (EH(v) ∪ FH(v)) = ∅. Because of the maximality of M ′, for each i ∈ {1, 2, 3}, there is an
edge e′

wi
∈ M ′ and v is the center of a bipartite claw whose edge set is {vw1, e′

w1
, vw2, e′

w2
, vw3, e′

w3
}, a contradiction. This

contradiction proves that EH(v) ∪ FH(v) is a matching-transversal of H . In particular, τm(H) ≤ 3 + |FH(v)|. This proves (iii)
when NH(v) is not a clique. Thus, assume that NH(v) is a clique. Since H has no 5-cycle, every vertex x ∈ V (H) − NH [v]

having at least one neighbor in NH(v), has exactly one neighbor in NH(v). Hence, since H contains no bipartite claw, there is
at least one vertex w in NH(v) that has degree 3 in H and, by Lemma 3.7, τm(H) ≤ dH(v) + dH(w) − 1 = 5. This completes
the proof of (iii).

Finally, we consider the case dH(v) = 4. Since |{ew: w ∈ NH(v)}| ≤ 2 and each edge ew is incident to at most two neigh-
bors of v, we assume, without loss of generality, that ew1 = ew2 = w1w2 and ew3 = ew4 = w3w4. In particular, the graph
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induced by NH(v) contains 2K2. Moreover, since H has no 5-cycle, NH(v) induces 2K2. To complete the proof of (ii) it only
remains to prove that τm(H) ≤ 5. Suppose, by the way of contradiction, that EH(v) ∪ {w1w2} is not a matching-transversal;
i.e., there is a maximal matching M ′ of H such that M ′

∩ (EH(v) ∪ {w1w2}) = ∅. Because of the maximality of M ′, for each
w ∈ NH(v), there is some edge e′

w ∈ M ′ incident to w. Since w1w2 ∉ M ′, e′
w1

≠ e′
w2

. Since w3 is nonadjacent to w1 and
w2, e′

w3
is different from e′

w1
and e′

w2
. We conclude that v is the center of a bipartite claw contained in H whose edge set is

{vw1, e′
w1

, vw2, e′
w2

, vw3, e′
w3

}. This contradiction proves that EH(v)∪ {w1w2} is a matching-transversal, which means that
τm(H) ≤ 5. This completes the proof of (ii) and of the lemma. �

We now prove a lower bound on αm (Lemma 3.21), which will be the last of the three lemmas below.

Lemma 3.19. Let H be a graph. If v is a vertex of H that is neither the center of a bipartite claw nor a vertex of a 5-cycle, then at
most two of the neighbors of v have degree at least 4 each.

Proof. Suppose, by theway of contradiction, that there is some vertex v ofH that is neither the center of a bipartite claw nor
a vertex of a 5-cycle and such that v has three different neighborsw1, w2, w3 inH such that dH(wi) ≥ 4 for each i ∈ {1, 2, 3}.
In particular, for each i ∈ {1, 2, 3}, wi is adjacent to at least one vertex xi different from v, w1, w2, w3.

We claim that {w1, w2, w3} is a stable set of H . Suppose, by the way of contradiction, that {w1, w2, w3} is not a stable set
ofH . By symmetry, we assume, without loss of generality, thatw1 is adjacent tow2. Since there is no 5-cycle passing through
v, x3 is different from x1 and x2. Thus, x1 = x2 and NH(w1) ⊆ {v, w2, w3, x1} because v is not the center of a bipartite claw.
Hence, since dH(w1) ≥ 4, necessarily w1 is adjacent to w3 and w1x1w2vw3w1 is a 5-cycle of H passing through v, which is
a contradiction. This contradiction proves that {w1, w2, w3} is a stable set of H .

Since {w1, w2, w3} is a stable set and dH(wi) ≥ 4, there are three pairwise different vertices xi1, xi2, xi3 ∈ NH(wi)−{v, w1,
w2, w3}, for each i ∈ {1, 2, 3}. By Theorem 1.6, there are some j1, j2, j3 ∈ {1, 2, 3} such that M = {w1x1j1 , w2x2j2 , w3x3j3} is
a matching of H of size 3. Therefore, {vw1, vw2, vw3} ∪ M is the edge set of a bipartite claw with center v, a contradiction.
This contradiction completes the proof of the lemma. �

Lemma 3.20. Let H be a graph containing no bipartite claw and having no 5-cycle. If δh(H) ≥ 4, then there exists a set F of
hub-covered edges of H such that the graph H ′

= H − F is hub-regular and has the same hub set and the same minimum hub
degree as H.

Proof. Suppose, by the way of contradiction, that the lemma is false and let H be a counterexample to the lemma with
minimum number of edges. If H were hub-regular, then the lemma would hold for H by letting F = ∅, a contradiction.
Hence, H is not hub-regular; i.e., ∆(H) > δh(H). Let v be a hub of H that is not minimum. As δh(H) ≥ 4, the vertex v has at
least 5 neighbors. Thus, sinceH contains no bipartite claw and has no 5-cycle, Lemma 3.19 implies that v has some neighbor
w that is not a hub (recall that δh(H) ≥ 4). Hence, since vw is not incident to any minimum hub of H , H1 = H − {vw}

has the same hub set and the same minimum hub degree as H . The proof ends exactly in the same way as the proof of
Lemma 3.13. �

Lemma 3.21. Let H be a graph containing no bipartite claw and having no 5-cycle. If H is hub-covered, has at least one edge,
and δh(H) ≥ 4, then αm(H) ≥ δh(H).

Proof. By Lemma 3.20, there exists a set F of hub-covered edges of H such that H ′
= H − F is hub-regular and has the same

hub set and the same minimum hub degree as H . Since H is hub-covered and has at least one edge, δh(H) < +∞. Hence,
H ′ is also hub-covered and ∆(H ′) = δh(H ′) = δh(H) ≥ 4. Since H ′ is a subgraph of H , H ′ contains no bipartite claw and has
no 5-cycle. Therefore, by Theorem 2.9, χ ′(H ′) = ∆(H ′); i.e., there is an edge-coloring φ′ of H ′ using ∆(H ′) = δh(H) colors.
Let φ : E(H) → {0, 1, 2, . . . , δh(H)} be such that φ(e) = φ′(e) for each e ∈ E(H ′) and φ(e) = 0 for each e ∈ E(H) − E(H ′).
Since H is hub-covered, φ is a δh(H)-profuse-coloring of H by construction. Thus, by Lemma 3.9, αm(H) ≥ δh(H). �

We now use Lemmas 3.18 and 3.21 to prove the two lemmas below which settle Theorem 2.13 for fat caterpillars
containing A or net.

Lemma 3.22. Let H be a fat caterpillar containing A. Hence, αm(H) = τm(H). More precisely, there are some C = v1v2v3v4v1
and x1, x2 ∈ V (H) − V (C) as in the statement of Lemma 3.4 and one of the following assertions holds:
(i) C is chordless and

αm(H) = τm(H) =


3 if dH(v3) = dH(v4) = 2
δh(H) otherwise.

(ii) v1v3 is the only chord of C, dH(v4) = 2, and

αm(H) = τm(H) =


4 if dH(v2) ≥ 4 and δh(H) = 3
δh(H) otherwise.

(iii) C has two chords, dH(v3) = dH(v4) = 3, and

αm(H) = τm(H) =


5 if each of v1 and v2 has degree at least 5
4 otherwise.
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a b c d

Fig. 5. Some profuse-colorings for the proof of Lemma 3.22.

Proof. Let C = v1v2v3v4v1 and x1, x2 ∈ V (H) − V (C) as in the statement of Lemma 3.4. In particular, each non-pendant
vertex in V (H) − V (C) is a false twin of v4 of degree 2. Notice that αm(H) ≥ 3 because a 3-profuse-coloring of H arises by
coloring the edges in E(C) ∪ {v1x1, v2x2} as in Fig. 5(a) and leaving the remaining edges of H uncolored.

We now claim that if δh(H) ≥ 4, then τm(H) ≤ δh(H). On the one hand, if some minimum hub of H is adjacent to a
pendant vertex, then τm(H) ≤ δh(H) due to Lemma 3.7. On the other hand, if δh(H) ≥ 4 and no minimum hub of H is
adjacent to a pendant vertex, then v3 is the only minimum hub of H and Lemma 3.18 implies that τm(H) ≤ δh(H) because
dH(v3) = δh(H) ≥ 4 and NH(v3) does not induce 2K2 in H . Thus, the claim follows.

The proof splits into three cases corresponding to assertions (i)–(iii) of Lemma 3.4.
Case 1: C is chordless. Suppose first that neither dH(v3) = dH(v4) = 2 nor δh(H) = 3 holds. Thus, H is hub-covered and

δh(H) ≥ 4, which implies that αm(H) = τm(H) = δh(H) because αm(H) ≥ δh(H) (by Lemma 3.21) and τm(H) ≤ δh(H) (by
the above claim). Hence, (i) holds.

Suppose now that dH(v3) = dH(v4) = 2 or δh(H) = 3. If dH(v3) = dH(v4) = 2 or some vertex of degree 3 is adjacent to
a pendant vertex, then αm(H) = τm(H) = 3 because τm(H) ≤ 3 by Lemma 3.7 and we have already seen that αm(H) ≥ 3.
Otherwise, the onlyminimumhub is v3 andNH(v3) induces 3K1 which also leads toαm(H) = τm(H) = 3 because τm(H) ≤ 3
by Lemma 3.18 and we have seen that αm(H) ≥ 3. We conclude again that (i) holds.

Case 2: v1v3 is the only chord of C and dH(v4) = 2. Assume first that dH(v2) ≥ 4 and δh(H) = 3. Necessarily, dH(v3) = 3.
Thus, as dH(v4) = 2, Lemma 3.7 implies that τm(H) ≤ 4. Let y2 be a neighbor of v2 outside V (C) different from x2. Hence,
αm(H) ≥ 4 because a 4-profuse-coloring ofH arises by coloring the edges of the subgraph ofH induced by V (C)∪{x1, x2, y2}
as in Fig. 5(b) and leaving the remaining edges of H uncolored. We have proved that if dH(v2) ≥ 4 and δh(H) = 3, then (ii)
holds (because αm(H) = τm(H) = 4).

Assume now that, on the contrary, dH(v2) = 3 or δh(H) ≥ 4. If the former holds, then αm(H) = τm(H) = 3 = δh(H)
because we know that αm(H) ≥ 3 and Lemma 3.7 would imply that τm(H) ≤ 3. If the latter holds, then αm(H) = τm(H) =

δh(H) because, since H is hub-covered, Lemma 3.21 would imply that αm(H) ≥ δh(H) and because we have proved that
τm(H) ≤ δh(H) whenever δh(H) ≥ 4. We conclude that if dH(v1) = 3 or δh(H) ≥ 4, then αm(H) = τm(H) = δh(H) and (ii)
holds.

Case 3: C has two chords and dH(v3) = dH(v4) = 3. If v1 or v2 has degree 4, then τm(H) ≤ 4 (by Lemma 3.18) and
a 4-profuse-coloring of H arises by coloring the edges of the subgraph of H induced by V (C) ∪ {x1, x2} as in Fig. 5(c) and
leaving all the remaining edges of H uncolored. Therefore, if v1 or v2 has degree 4, then αm(H) = τm(H) = 4 and (iii) holds.

Assume now that each of v1 and v2 has degree at least 5 and, for each i ∈ {1, 2}, let yi be a neighbor of vi outside V (C)
different from xi. As dH(v3) = dH(v4) = 3, Lemma 3.7 implies that τm(H) ≤ 5. In addition, αm(H) ≥ 5 because a 5-profuse-
coloring of H arises by coloring the edges of the subgraph of H induced by V (C) ∪ {x1, x2, y1, y2} as in Fig. 5(d) and leaving
the remaining edges of H uncolored. Hence, αm(H) = τm(H) = 5 and we conclude again that (iii) holds. �

Now we deal with the case of fat caterpillars containing net but no A.

Lemma 3.23. If H is a fat caterpillar containing net but containing no A, then αm(H) = τm(H) = δh(H).
Proof. That H has an edge-dominating triangle C such that each vertex v ∈ V (C) is adjacent to some pendant vertex and
each vertex in V (H) − V (C) is pendant follows from Lemma 3.5. As the hubs of H are the vertices of C and each of them
is adjacent to some pendant vertex, Lemma 3.7 implies that τm(H) ≤ δh(H). For the proof of the lemma to be complete,
it suffices to show that αm(H) ≥ δh(H). On the one hand, if δh(H) ≥ 4, then as H is hub-covered, αm(H) ≥ δh(H) by
Lemma 3.21. On the other hand, if δh(H) = 3, then αm(H) ≥ 3 because a 3-profuse-coloring of H arises by 3-edge-coloring
the net induced in H by {v1, v2, v3, u1, u2, u3} and leaving the remaining edges of H uncolored, where ui is some pendant
neighbor of vi for each i ∈ {1, 2, 3}. �

Given the two lemmas above, in order to settle Theorem 2.13, it only remains to prove the following result.

Theorem 3.24. If H is a fat caterpillar containing no A and no net and k ≥ 1, then αm(H) ≥ k if and only if τm(H) ≥ k.

By Lemma 3.1, fat caterpillars containing no A and not net are certain linear concatenations of basic two-terminal graphs.
To begin with, the following lemma, whose proof is straightforward, enumerates the values of αm and τm for the underlying
graphs of each of the basic two-terminal graphs.

Lemma 3.25. The underlying graph of each of the basic two-terminal graphs satisfies αm = τm. Moreover, the following
assertions hold:
(i) For the underlying graph of the edge, αm = τm = 1.
(ii) For the underlying graphs of the triangle, the rhombus, and the K4, αm = τm = 3.
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(iii) For each m ≥ 2, the underlying graph of the m-crown has αm = τm = m + 1.
(iv) For each m ≥ 2, the underlying graph of the m-fold has αm = τm = m.

Our proof of Theorem 3.24 is indirect. The theorem clearly holds for k = 1. In the remaining of this subsection, we deal
separately with the cases k = 2, k = 3, k = 4, k = 5, and k ≥ 6.

Case k = 2 of Theorem 3.24 can be derived from [41]. For each n ≥ 1, let Q2n+1 be the graph having 4n + 2 vertices
u1, u2, . . . , u2n+1, v1, v2, . . . , v2n+1 such that Q2n+1[{v1, v2, . . . , v2n+1}] = C2n+1 and NQ2n+1(ui) = V (Q2n+1)−{vi}, for each
i ∈ {1, 2, . . . , 2n + 1}. These graphs Q2n+1 were introduced in [41] in connection with the following result.

Theorem 3.26 ([41]). For each n ≥ 1, αc(Q2n+1) = 1 and τc(Q2n+1) = 2. Moreover, if G is a graph such that αc(G) = 1 but
τc(G) > 1, then G contains an induced Q2n+1 for some n ≥ 1.

Now we are ready to prove the case k = 2 of Theorem 3.24.

Lemma 3.27. Let H be a fat caterpillar. Hence, αm(H) ≥ 2 if and only if τm(H) ≥ 2.

Proof. The ‘only if’ part is trivial. For the converse, suppose, by the way of contradiction, that τm(H) ≥ 2 but αm(H) ≤ 1.
Hence, if G = L(H), then τc(G) ≥ 2 and αc(G) ≤ 1. Thus, by Theorem 3.26, G contains an induced Q2n+1 for some n ≥ 1.
As G is the complement of a line graph but Q2n+1[{v1, v2, v3, u2}] is the complement of the claw, necessarily G contains an
induced Q3 (i.e., 3-sun) and, as a result, H contains a bipartite claw, a contradiction. This contradiction proves the ‘if’ part
and completes the proof of the lemma. �

Case k = 3 can be dealt as follows.

Lemma 3.28. Let H be a fat caterpillar containing no A and no net and having at least one edge. Hence, αm(H) ≥ 3 if and only
if τm(H) ≥ 3. In fact, each of the inequalities holds if and only if H satisfies all of the following assertions:
(i) For each pair of adjacent vertices v1 and v2, dH(v1) + dH(v2) − 1 ≥ 3.
(ii) Each 4-cycle of H has at most two vertices of degree 2 in H.
(iii) H is not the underlying graph of triangle & ptriangle for any p ≥ 0.

Proof. Since αm(H) ≤ τm(H), clearly αm(H) ≥ 3 implies τm(H) ≥ 3. Suppose that τm(H) ≥ 3. Hence, (i) holds because of
Lemma 3.7. If there were some 4-cycle C = v1v2v3v4v1 such that dH(v1) = dH(v2) = dH(v3) = 2, then {v1v2, v2v3} would
be a matching-transversal of H , contradicting τm(H) ≥ 3. Similarly, if H were the underlying graph of triangle & ptriangle
for some p ≥ 0, then the set consisting of the two edges ofH non-incident to the concatenation vertexwould be amatching-
transversal of H , another contradiction. These contradictions prove that (ii) and (iii) also hold.

To complete the proof of the lemma, let us assume that (i)–(iii) hold and we will prove that αm(H) ≥ 3, or, equivalently,
thatH has a 3-profuse-coloring. AsH is a fat caterpillar containingnoA andnonet, Lemma3.1 implies thatH is the underlying
graph of Γ1 & p1Γ2 & p2 · · · & pn−1Γn where each Γi is a basic two-terminal graph and each pi ≥ 0. If n = 1, then H is the
underlying graph of some two-terminal graph different from an edge and a square and H admits a 3-profuse-coloring by
Lemma 3.25. Hence, from now on we assume that n ≥ 2.

Case 1: H is the underlying graph of Γ1 & pΓ2 where each of Γ1 and Γ2 is an edge or a triangle and p ≥ 0. By (iii), assume,
without loss of generality, that Γ1 is an edge. If Γ2 is also an edge, then (i) implies that p ≥ 1 and clearly αm(H) ≥ 3 because
a 3-profuse-coloring ofH arises by coloringwith three different colors any three edges ofH and leaving the remaining edges
of H uncolored. If, on the contrary, Γ2 is a triangle, then also αm(H) ≥ 3 because a 3-profuse-coloring of H arises by coloring
the edge of Γ1 and the two edges of Γ2 incident to the concatenation vertex with three different colors and leaving the
remaining edges of H uncolored.

Case 2: H does not fulfill Case 1. For each i ∈ {1, . . . , n}, let Pi be some shortest path in Γi joining its two terminal vertices.
Thus, P = P1P2 . . . Pn is a chordless path in H and let P = u0u1 . . . uℓ where u0 is the source of Γ1 and uℓ is the sink of Γn.
Consider a coloring of the edges of P with the colors 1, 2, and 3, such that any three consecutive edges of P receive three
different colors. As P is edge-dominating, every edge of H is incident to at least two differently colored edges, except for the
edges incident to u0 and uℓ. Assume without loss of generality that u0u1 is colored with color 1 and u1u2 with color 2. We
make the edges incident to u0 adjacent to at least two differently colored edges as follows:

(1) If there are at least two edges joining u0 to vertices outside P , we color two of these edges using colors 2 and 3.
(2) If there is exactly one vertex u′ outside P adjacent to u0, then Γ1 is a triangle or a rhombus (because (ii) ensures that Γ1

is not a square). In particular, u1 is also adjacent to u′. We color u1u′ with color 3.
(3) If there is no vertex outside P adjacent to u0, then Γ1 is an edge and, by (i), u1 is adjacent to some vertex u′ outside P .

We color u1u′ with color 3.

Symmetrically, let x be the color of uℓ−1uℓ, y be the color of uℓ−2uℓ−1, and z ∈ {1, 2, 3}− {x, y}. Wemake the edges incident
to uℓ adjacent to at least two differently colored edges as follows:

(1′) If there are at least two edges joining uℓ to vertices outside P , we color two of these edges using colors y and z.
(2′) If there is exactly one vertex u′′ outside P adjacent to uℓ, then u′′ is adjacent to uℓ−1 (as in (2)). If there were an edge

incident to uℓ−1 colored with color z, then n = 2, Γ2 is a triangle, and either Γ1 is a triangle or an edge, contradicting
the hypothesis. Thus, we color the edge uℓ−1u′′ with color z.
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(3′) If there is no vertex outside P adjacent to uℓ, then Γn would be an edge and uℓ−1 is adjacent to some vertex u′′ outside
P (as in (3)). If there were some edge incident to uℓ−1 colored with color z, then n = 2 and Γ1 is an edge or a triangle,
which would contradict our hypothesis because Γ2 is a triangle. We color uℓ−1u′′ with color z.

The resulting partial 3-edge-coloring is a 3-profuse-coloring ofH because each edge ofH is incident to at least two differently
colored edges. Hence, αm(H) ≥ 3, as needed. �

For case k = 4, we prove the following.

Lemma 3.29. Let H be a fat caterpillar containing no net and no A and having at least one edge. Hence, αm(H) ≥ 4 if and only
if τm(H) ≥ 4. In fact, each of the inequalities holds if and only if H satisfies all of the following conditions:
(i) For each pair of adjacent vertices v1 and v2, dH(v1) + dH(v2) − 1 ≥ 4.
(ii) No block of H is a clique on four vertices.
(iii) Each vertex of degree 3 that is not a cut-vertex has only neighbors of degree at least 3.
(iv) The neighborhood of each cut-vertex of degree 3 induces K2 + K1 in H.

Proof. By Lemma 3.1, H is the underlying graph of some Γ1 & p1Γ2 & p2 · · · & pn−1Γn where each Γi is a basic two-terminal
graph and each pi ≥ 0. For each i ∈ {1, 2, . . . , n − 1}, let vi be the concatenation vertex of H that arose by identifying the
sink of Γi with the source of Γi+1 and let v0 be the source of Γ1 and vn be the sink of Γn. Clearly, the cut-vertices of H are the
concatenation vertices v1, v2, . . . , vn−1 and the underlying graph of each Γi is a block of H .

Since αm(H) ≤ τm(H), αm(H) ≥ 4 implies that τm(H) ≥ 4. Suppose now that H satisfies τm(H) ≥ 4. Thus, H satisfies (i)
because of Lemma 3.7. If some block of H were a clique of size four, this block would have at least three vertices of degree
3 in H (because H contains no A and has no 5-cycle) and the edges of the K3 induced by these three vertices would be a
matching-transversal of H . Hence, since τm(H) ≥ 4, H satisfies (ii). If there were a vertex v of H of degree 3 that were not a
cut-vertex and had a neighbor of degree less than 3, then, up to symmetry, either: (1) v is a non-terminal vertex of Γ1 and Γ1
is a rhombus, or (2) v is the source of Γ1 and Γ1 is a 2-crown or a 3-fold. If (1) holds, then the edges of the triangle induced by
NH [v0] form a matching-transversal of H of size 3. If (2) holds, then EH(v0) is a matching-transversal of H of size 3. In either
case, we reach a contradiction with τm(H) ≥ 4. This contradiction proves that H satisfies (iii). Finally, if v is a cut-vertex of
H of degree 3, then NH(v) induces a disconnected graph on three vertices; i.e., NH(v) induces 3K1 or K2 + K1. But, if NH(v)
induces 3K1, then Lemma 3.18 implies that τm(H) ≤ 3, a contradiction. This proves that H satisfies (iv). Altogether, we have
proved that if τm(H) ≥ 4, then H satisfies conditions (i)–(iv).

To complete the proof of the lemma, we assume that H satisfies conditions (i)–(iv) and show that αm(H) ≥ 4 or,
equivalently, by Lemma 3.9, that H has a 4-profuse-coloring. To start, we prove the following claims about H .

Claim 1. Each of Γ1 and Γn is either an edge, m-crown for some m ≥ 3, or m-fold for some m ≥ 4.

Proof. Each of Γ1 and Γn is different from triangle and square because of (i), different from 2-crown, 3-fold, and rhombus
because of (iii), and different from K4 because of (ii). As Γ1 and Γn are basic, the claim follows. �

Claim 2. If there is a maximal 4-profuse-coloring φ of H and there are at least three edges of Γj incident to the same terminal
vertex of Γj, then each terminal vertex of Γj is incident to four edges of H colored by φ.

Proof. Without loss of generality, assume that there are at least three edges of Γj incident to vj. As Γj is basic, there are
also at least three edges of Γj incident to vj−1 and Γj is either an m-crown for some m ≥ 2 or an m-fold for some m ≥ 3.
Hence, if dH(vj) = 3, then j = n and either Γn would be a 2-crown or a 3-fold, contradicting Claim 1. Therefore, dH(vj) ≥ 4
and, symmetrically, dH(vj−1) ≥ 4. In addition, neither NH(vj) nor NH(vj−1) induces 2K2 in H and, by Lemma 3.18, EH(vj) and
EH(vj−1) are matching-transversals of H . Hence, by Corollary 3.10, the maximality of φ implies that each of vj and vj−1 is
incident to four edges of H colored by φ. �

Claim 3. If n ≥ 2, Γn−1 and Γn are both edges, pn−1 = 2, and there is some 4-profuse-coloring of H, then either n = 2 or there
is some 4-profuse-coloring of H that colors at least two of the edges incident to vn−2.

Proof. Suppose that n ≥ 3 andwehave to prove that there is a 4-profuse-coloring ofH that colors at least two edges incident
to vn−2. Let φ be a 4-profuse-coloring of H that maximizes the number of colored edges incident to vn−2 and, without loss of
generality, assume that φ is maximal. Suppose, by the way of contradiction, that φ colors at most one edge incident to vn−2.
Asφ ismaximal, the four edges incident to vn−1 are colored byφ and, in particular, vn−2vn−1 is colored. Hence, by hypothesis,
all edges incident to vn−2 different from vn−2vn−1 are uncolored. If there were an edge joining vn−2 to some non-cut-vertex
of H , then this edge would be uncolored and, at the same time, incident to at most three colored edges, contradicting the
maximality of φ. Therefore, pn−2 = 0 and Γn−2 is an edge. As vn−3vn−2 is uncolored and vn−2vn−1 is the only colored
edge incident to vn−2, there are at least three colored edges incident to vn−3 such that each of them is colored differently
from vn−2vn−1. If there were some pendant edge q incident to vn−3 and colored differently from vn−2vn−1, then, by coloring
vn−3vn−2 with the color of q and uncoloring q, a new 4-profuse-coloring of H arises that colors at least two edges incident
to vn−2, a contradiction with the choice of φ. This contradiction shows that there are at least three colored edges of Γn−2
incident to vn−3. Hence, by Claim 2, vn−4 is incident to four colored edges. Let e be any of the colored edges incident to vn−3
but not to vn−4 such that e is colored differently from vn−2vn−1. Thus, coloring vn−3vn−2 with the color of e and uncoloring



F. Bonomo et al. / Discrete Applied Mathematics 186 (2015) 19–44 39

e, a new 4-profuse-coloring of H arises that colors two of the edges incident to vn−2, contradicting the choice of φ. This
contradiction arose from assuming that φ does not color at least two edges incident to vn−2. Hence, the claim follows. �

Claim 4. If H has a 4-profuse-coloring, Γ1 is an edge, n ≥ 2, p1 = 1, and NH(v1) induces K2 + 2K1 in H, then there is a
4-profuse-coloring φ of H that colors the only edge of H joining two neighbors of v1.

Proof. Let φ′ be a maximal 4-profuse-coloring of H and let e be the only edge of H joining two vertices in NH(v1). As dH(v1)
= 4 and NH(v1) does not induce 2K2, Lemma 3.18 implies that EH(v1) is a matching-transversal of H and the four edges
incident to v1 are colored by φ′ because of the maximality of φ′ and because of Corollary 3.10. If φ′ colors e, then the claim
holds by letting φ = φ′. Hence, suppose that e is not colored by φ′. Thus, the maximality of φ′ implies that e is incident to at
least four other edges of H .

Suppose first that e is incident to exactly four edges of H; i.e., either Γ2 is triangle and dH(v2) = 4, or Γ2 is rhombus. Let
w be an endpoint of e different from v2 and let e′

= v1w. Let e′′ be a pendant edge incident to v1 and colored differently
from each of the colored edges incident to w. Notice that the maximality of φ, Lemma 3.7, and Corollary 3.10 imply that the
four edges of H incident to e are colored by φ′ using four different colors. Hence, if we define φ : E(H) → {0, 1, 2, 3, 4} to
coincide with φ′ except that φ colors e and e′′ with color φ′(e′) and e′ with color φ′(e′′), then φ is a 4-profuse-coloring of H
that colors e, as claimed.

It only remains to consider the case where e is incident to more than four edges of H . Necessarily, Γ2 is a triangle and
dH(v2) ≥ 5. In particular, Lemma3.18 and Corollary 3.10 imply that there are four edges incident to v2 colored byφ′. Letw be
the non-terminal vertex of Γ2. Suppose that there is some pendant edge q incident to v2 that is colored by φ′. By permuting,
if necessary, the colors of the edges of H incident to v1 that are different from v1v2, we assume, without loss of generality,
that v1w is colored differently from q and, then, by coloring ewith the color of q and uncoloring q, a new 4-profuse-coloring
of H arises that colors e, as claimed. Hence, from now on, we assume, without loss of generality, that there is no pendant
edge incident to v2 colored by φ′. Since there are four edges incident to v2 colored by φ′, necessarily three of them are edges
of Γ3. By Claim 2, there are four colored edges incident to v3. Therefore, if we let e′ be any edge of Γ3 incident to v2 but not to
v3 and colored by φ′ differently from v1w, then by coloring ewith the color of e′ and uncoloring e′, a new 4-profuse-coloring
of H arises that colors e, as claimed. �

Claim 5. If H has a 4-profuse-coloring, Γ1 is an edge, n ≥ 2, and p1 ≥ 1, then there is a 4-profuse-coloring of H that colors at
least two pendant edges incident to v1.

Proof. Suppose, by the way of contradiction, that φ is a 4-profuse-coloring of H that maximizes the number of colored pen-
dant edges incident to v1 and that, nevertheless, φ colors at most one pendant edge incident to v1. Since p1 ≥ 1, there is at
least one uncolored pendant edge incident to v1. Thus, the maximality of φ means that there are four colored edges incident
to v1. Hence, there are at least three colored edges of Γ2 incident to v1 and, by Claim 2, there are four colored edges incident
to v2. Let e be any colored edge of Γ2 incident to v1 but not to v2 and let q be any of the uncolored pendant edges incident to
v1. If we color q with the color of e and uncolor e, a new 4-profuse-coloring of H arises that colors one more pendant edge
incident to v1 than φ, contradicting the choice of φ. This contradiction proves that the claim holds. �

We turn back to the proof of the lemma. The proof proceeds by induction on the number of cut-vertices of H . Clearly, the
cut-vertices of H are the n − 1 vertices v1, . . . , vn−1. Consider first the case where H has no cut-vertices; i.e., n = 1 and H
is the underlying graph of Γ1 which, by Claim 1, is an edge, m-crown for some n ≥ 3, or m-fold for some m ≥ 2. If Γ1 were
an edge, then dH(v0) + dH(v1) − 1 = 1, contradicting (i). Therefore, if n = 1, then H is m-crown for some m ≥ 3 or m-fold
for somem ≥ 4 and, by Lemma 3.25, αm(H) ≥ 4.

Assume that n ≥ 2 and that the lemma holds for graphs with less than n − 1 cut-vertices. Suppose that H has some
cut-vertex of degree 3; i.e., there is some j ∈ {1, 2, . . . , n− 1} such that vj has degree 3 in H . By (iv), NH(vj) induces K2 + K1
in H . Therefore, pj = 0 and, by symmetry, assume, without loss of generality, that Γj is an edge and Γj+1 is either a triangle
or a rhombus. Let H1 be the graph that arises from H by first removing all vertices and edges from Γj+1, Γj+2, . . . , Γn, except
for the vertices of NH [vj] and the edges incident to vj, and then adding one pendant edge q incident to vj. Notice that H1
can be regarded as the underlying graph of Γ1 & p1Γ2 & p1 . . . & pj−1Γj & 2edge. Clearly, H1 satisfies (i)–(iv) and, by induction
hypothesis, there is a maximal 4-profuse-coloring ofH1. By Claim 3, there is a 4-profuse-coloring φ1 ofH1 that colors at least
two of the edges of H1 incident to vj−1. Thus, by permuting, if necessary, the colors of the pendant edges incident to vj in
H1, we assume, without loss of generality, that φ1 colors some edge incident to vj−1 with color φ1(q). Let H2 be the graph
that arises from H by first removing all vertices and edges of Γ1, Γ2, . . . , Γj, except for the vertices of NH [vj] and the edges
incident to vj, and then adding one pendant edge incident to vj. The graph H2 can also be regarded as the underlying graph
of edge & 1Γj+1 & pj+1Γj+2 & pj+2 · · · & pn−1Γn. By Claim 4, there is a maximal 4-profuse-coloring φ2 of H2 that colors the only
edge e joining two neighbors of vj. By permuting, if necessary, the pendant edges incident to vj, we assume, without loss of
generality, that φ2 colors e differently from the edge of Γj. Moreover, by permuting, if necessary, the colors of φ2, we assume
without loss of generality, that φ1 and φ2 color exactly in the same way the edge of Γj and each of the edges of Γj+1 incident
to vj. Thus, there is no edge of H where φ1 and φ2 differ and the partial edge-coloring φ that results by merging φ1 and φ2 is
easily seen to be a 4-profuse-coloring of H , as desired. Therefore, from now on, we assume, without loss of generality, that
H has no cut-vertex of degree 3.
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Suppose now that there is some j ∈ {1, 2, . . . , n} such that Γj is a rhombus. Let H1 be the graph that arises from H by
removing all the vertices and edges from Γj, Γj+1, . . . , Γn except for the vertices of NH [vj−1] and the edges incident to vj−1,
and let H2 be the graph that arises from H by removing all vertices and edges from Γ1, Γ2, . . . , Γj except for the vertices
of NH [vj] and the edges incident to vj. Moreover, as H has no cut-vertex of degree 3, dH1(vj−1) ≥ 4, from which it follows
that H1 satisfies (i)–(iv) and, by induction hypothesis, H1 admits a 4-profuse-coloring φ1. Similarly, dH2(vj+1) ≥ 4 and H2
admits a 4-profuse-coloring φ2. By Claim 5, we assume, without loss of generality, that φi colors both edges of Γj that belong
to Hi, for each i ∈ {1, 2}. By permuting, if necessary, the colors of φ2, we assume, without loss of generality, that φ1 and φ2
color the four edges of Γj that belong to H1 or H2 using 4 different colors. Let φ : E(H) → {0, 1, 2, 3, 4} be defined as φ1
in E(H1), as φ2 in E(H2), and that leaves the only edge of Γj that belongs neither to H1 nor to H2 uncolored. Clearly, φ is a
4-profuse-coloring of H , as desired.

It only remains to consider the case where H has no cut-vertices of degree 3 and no Γj is a rhombus; i.e., the case
where δh(H) ≥ 4. Since (i) ensures that H is hub-covered and since H has at least one edge, Lemma 3.21 implies that
αm(H) ≥ δh(H) ≥ 4, which completes the proof of the lemma. �

The following lemma settles case k = 5.

Lemma 3.30. Let H be a fat caterpillar containing no A and no net and having at least one edge. Hence, αm(H) ≥ 5 if and only
if τm(H) ≥ 5. In fact, each of the inequalities holds if and only if H satisfies all of the following assertions:

(i) For each pair of adjacent vertices v1 and v2, dH(v1) + dH(v2) − 1 ≥ 5.
(ii) No block of H is a clique on four vertices.
(iii) No cut-vertex of H has degree 3 in H.
(iv) The neighborhood of each vertex of degree 4 induces 2K2 in H.

Proof. Since αm(H) ≤ τm(H), αm(H) ≥ 5 implies τm(H) ≥ 5. Suppose now that H satisfies τm(H) ≥ 5. Thus, H satisfies (i)
because of Lemma3.7. If therewere someblock ofH of size four, itwould have at least three vertices of degree 3 inH (because
H contains no A and has no 5-cycle) and the edges of the K3 induced by these three vertices would be amatching-transversal
of H , contradicting τm(H) ≥ 5. Thus, H satisfies (ii). Since the neighborhood of a cut-vertex induces a disconnected graph,
if H had some cut-vertex of degree 3, then by Lemma 3.18, τm(H) ≤ 4. Hence, H satisfies (iii). Finally, Lemma 3.18 implies
that H satisfies (iv). Hence, we have proved that if τm(H) ≥ 5, then H satisfies (i)–(iv). To complete the proof of the lemma,
we assume that H satisfies assertions (i)–(iv) and we will show that αm(H) ≥ 5, or, equivalently, by Lemma 3.9, that H has
a 5-profuse-coloring.

By virtue of Lemma 3.1, H is the underlying graph of some Γ1 & p1Γ2 & p2 · · · & pn−1Γn where each Γi is a basic two-
terminal graph and each pi ≥ 0. Clearly, the underlying graph of each Γi is a block of H . Therefore, because of (ii), none of
Γ1, Γ2, . . . , Γn is a K4. For each i ∈ {1, 2, . . . , n − 1}, let vi be the concatenation vertex of H that arises by identifying the
sink of Γi with the source of Γi+1. Let v0 be the source of Γ1 and let vn be the sink of Γn. We make the following claims.

Claim 6. Each of Γ1 and Γn is either an edge, m-crown for some m ≥ 4, or m-fold for some m ≥ 5.

Proof. Indeed, each of Γ1 and Γn is different from triangle, square, 2-crown, 3-fold, and rhombus because of (i), different
from 3-crown and 4-fold because of (iv), and different from K4 because of (ii). The claim follows. �

Claim 7. If there is a maximal 5-profuse-coloring φ of H and there are at least three edges of Γj incident to the same terminal
vertex of Γj, then each terminal vertex of Γj is incident to five edges of H colored by φ.

Proof. Without loss of generality, suppose that there are at least three edges of Γj incident to vj. As Γj is basic, there are
also at least three edges of Γj incident to vj−1 and Γj is either and m-crown for some m ≥ 2 or an m-fold for some m ≥ 3. If
dH(vj) = 3, then j = n and Γn is either a 3-crown or a 4-fold, contradicting Claim 1. Thus, dH(vj) ≥ 4 and, symmetrically,
dH(vj−1) ≥ 4. In addition, neither NH(vj) nor NH(vj−1) induces 2K2 and, by (iv), dH(vj) ≥ 5 and dH(vj−1) ≥ 5. Hence,
Lemma 3.18, Corollary 3.10, and the maximality of φ imply that each of vj and vj−1 is incident to five edges colored of H by
φ, as claimed. �

Claim 8. If H has a 5-profuse-coloring andΓj is a triangle of H, then there is a 5-profuse-coloring of H that colors the three edges
of Γj.

Proof. By the way of contradiction, suppose that the claim is false. Hence, there is some link Γj that is a triangle and some
5-profuse-coloring φ of H that maximizes the number of colored edges of Γj such that, nevertheless, φ does not color the
three edges of Γj. Without loss of generality, assume that φ is maximal. Let w be the non-terminal vertex of Γj. By Claim 1
and (iii), dH(vj−1) ≥ 4 and dH(vj) ≥ 4. Suppose, by the way of contradiction, that dH(vj) = 4. Thus, Lemma 3.7 implies that
the set of five edges EH(vj) ∪ EH(w) is a matching-transversal of H and, by the maximality of φ and Corollary 3.10, these
five edges are colored by φ, contradicting the fact that not all the edges of Γj are colored. Thus, necessarily dH(vj) ≥ 5 and,
symmetrically, dH(vj−1) ≥ 5. Let e be any uncolored edge of Γj and assume, without loss of generality, that e is incident to
vj. As dH(vj) ≥ 5, there are five colored edges incident to vj because of Lemma 3.18, Corollary 3.10, and the maximality of
φ. If there were some pendant edge q incident to vj and colored differently from vj−1w (if colored), then, by coloring ewith
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ba

c

Fig. 6. Rules for transforming φ′ into φ in the proof of Lemma 3.30. Here A, B, C,D, E represents any permutation of the colors 1, 2, 3, 4, 5 and rule (a),
(b), or (c) apply depending on whether each of Γj and Γj+1 is a triangle or a rhombus.

the color of q and uncoloring q, a new 5-profuse-coloring of H that colors one more edge of Γj would arise, contradicting
the choice of φ. This contradiction proves that among the colored edges incident to vj, there are at least three of them that
are edges of Γj+1. Therefore, by Claim 2, there are five colored edges incident to vj+1. Symmetrically, if e were incident to
vj−1, then there would be five colored edges incident to vj−2. Finally, let c ∈ {1, 2, 3, 4, 5} be different from the colors of
the colored edges of Γj and different from the colors of vjvj+1 (if present and colored) and vj−2vj−1 (if present and colored).
Let φ′ be the partial edge-coloring of H defined as φ except that φ′ colors ewith color c and uncolors the edge of H incident
to e colored by φ with color c. By construction, φ′ is a 5-profuse-coloring of H and φ′ colors one more edge of Γj than φ, a
contradiction with the choice of φ. This contradiction proves that φ colors all the edges of Γj and the claim holds. �

Claim 9. If H has a 5-profuse-coloring, Γ1 is an edge, n ≥ 2, and p1 ≥ 1, then there is a 5-profuse-coloring φ of H that colors at
least two pendant edges incident to v1.

Proof. By the way of contradiction, suppose that there is a 5-profuse-coloring φ of H that maximizes the number of colored
pendant edges incident to v1 and that, nevertheless, φ colors at most one pendant edge incident to v1. Without loss of
generality, assume that φ is maximal. Since p1 ≥ 1, there is still at least one uncolored pendant edge incident to v1. Thus,
themaximality of φ implies that there are five colored edges incident to v1 and, as there is at most one colored pendant edge
incident to v1, there are at least four colored edges ofΓ2 incident to v1. By Claim 2, there are five colored edges incident to v2.
Let e be any of the colored edges of Γ2 incident to v1 but not to v2 and let q be any of the uncolored pendant edges incident
to v1. If we color qwith the color of e and uncolor e, a new 5-profuse-coloring of H arises that colors one more pendant edge
incident to v1 than φ, contradicting the choice of φ. This contradiction proves the claim. �

We turn back to the proof of the lemma. The proof proceeds by induction on the number of cut-vertices of H . Consider
the case H has no cut-vertices; i.e., n = 1 and H is the underlying graph of Γ1 which, by Claim 1, is an edge, m-crown for
some m ≥ 4, or m-fold for some m ≥ 5. If H were an edge, v0 and v1 would be two adjacent pendant vertices of H and
dH(v0) + dH(v1) − 1 = 1, which would contradict (i). Hence, H is m-crown for some m ≥ 4 or m-fold for some m ≥ 5 and,
by Lemma 3.25, αm(H) ≥ 5.

Assume now that n ≥ 2 and that the lemma holds for graphs with less than n − 1 cut-vertices. Suppose first that H
has a cut-vertex of degree 4 and let j ∈ {1, 2, 3, . . . , n − 1} such that dH(vj) = 4. Because of (iv), NH(vj) induces 2K2 in H .
Therefore, pj = 0 and each of Γj and Γj+1 is a triangle or a rhombus. If one of Γj and Γj+1 is a triangle and the other is a
rhombus, we assume, without loss of generality, that Γj is the one that is a triangle. Let H ′ be the graph that arises from H
by contracting Γj+1 to a vertex. Thus, H ′ is the underlying graph of Γ1 & p1Γ2 & p2 · · · & pj−1Γj & pj+1Γj+2 & pj+2 · · · & pn−1Γn

and H ′ satisfies (i)–(iv). By induction hypothesis, H ′ has a 5-profuse-coloring φ′. Without loss of generality, assume that φ′

is maximal. Moreover, we can further assume that φ′ colors all the edges of Γj. (In fact, if Γj is a rhombus then it is true by
the maximality of φ′, whereas if Γj is a triangle then it can be assumed by Claim 3.) We define a new partial 5-edge-coloring
φ : E(H) → {0, 1, 2, 3, 4, 5} as follows. Let φ coincide with φ′ in those edges of H that are neither of Γj nor of Γj+1 and we
define φ on the edges of Γj and Γj+1 depending on how φ′ colors the edges of Γj as described in Fig. 6, where A, B, C,D, E
is any permutation of the colors 1, 2, 3, 4, 5. Clearly, φ is a 5-profuse-coloring of H and αm(H) ≥ 5, as desired. Therefore,
from now on, we assume that dH(vi) ≥ 5 for each i ∈ {1, 2, . . . , n − 1}.

Next, we suppose that Γj is a rhombus for some j. As Claim 1 implies that neither Γ1 nor Γn is rhombus, 2 ≤ j ≤ n − 1.
Let H1 be the graph that arises from H by removing all the vertices and edges of Γj, Γj+1, . . . , Γn except for the vertices of
NH [vj−1] and the edges incident to vj−1. Let H2 be the graph that arises from H by removing all the vertices and edges of
Γ1, Γ2, . . . , Γj except the vertices of NH [vj] and the edges incident to vj. Thus, we can regard H1 as the underlying graph of
Γ1 & p1Γ2 & p2 · · · & pj−2Γj−1 & pj−1+1edge and H2 as the underlying graph of edge & pj+1Γj+1 & pj+1Γj+2 & pj+2 · · · & pn−1Γn.
Since we are assuming that dH(vj−1) ≥ 5 and dH(vj) ≥ 5, H1 and H2 satisfy conditions (i)–(iv). By induction hypothesis,
there are 5-profuse-colorings of H1 and H2. By Claim 4, we can assume that the 5-profuse-colorings of H1 and H2 are such
that the two edges of Γj incident to vj−1 are colored by the 5-profuse-coloring of H1 and the two edges of Γj incident to vj
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are colored by the 5-profuse-coloring of H2. By permuting, if necessary, the colors in the 5-profuse-coloring of H2, we can
assume that the four edges of Γj that are incident to some terminal vertex of Γj are colored by these profuse-colorings using
four different colors. Thus, a 5-profuse-coloring of H arises by merging the profuse-colorings of H1 and H2 and letting the
edge joining the two non-terminal vertices of Γj uncolored. Hence, Lemma 3.9 implies αm(H) ≥ 5. Therefore, from this
point on, we assume that no Γi is a rhombus.

Because of (iii) and because we are assuming that no cut-vertex of H has degree 4, each of the vertices v1, v2, . . . , vn−1
has either degree 2 or degree at least 5. In addition, since each of Γ1 and Γn is either an edge, m-crown for some m ≥ 4, or
m-fold for some m ≥ 5, each of v0 and vn has degree 1 or at least 5. Finally, since no Γi is rhombus or K4, each vertex of H
different from v0, v1, . . . , vn has degree at most 2. Hence, δh(H) ≥ 5. Since H has at least one edge and H is hub-covered
(because of (i)), Lemma 3.21 implies that αm(H) ≥ δh(H) ≥ 5, which completes the proof of Lemma 3.30. �

Finally, for the case k ≥ 6 we prove the following.

Lemma 3.31. Let H be a fat caterpillar containing no A and no net and having at least one edge. If k ≥ 6, then the following
assertions are equivalent:
(i) αm(H) ≥ k.
(ii) τm(H) ≥ k.
(iii) H is hub-covered and δh(H) ≥ k.
Proof. Clearly, (i) implies (ii) because αm(H) ≤ τm(H). As k ≥ 6 and H has at least one edge, Lemma 3.21 shows that (iii)
implies (i). For the proof to be complete, it suffices to show that (ii) implies (iii). Suppose that τm(H) ≥ k. Since k ≥ 6, H is
hub-covered because of Lemma 3.7. By virtue of Lemma 3.1, H is the underlying graph of some Γ1 & p1Γ2 & p2 · · · & pn−1Γn
where each Γi is a basic two-terminal graph and each pi ≥ 0. If there were some i ∈ {1, 2, . . . , n} such that Γi is a rhombus
or K4, then the two non-terminal vertices of Γi would be two adjacent vertices of degree 3 and Lemma 3.7 would imply that
τm(H) ≤ 5, a contradiction. Therefore, each Γi is an m-crown for some m ≥ 0 or an m-fold for some m ≥ 2. Let vi be the
vertex of H that arises by identifying the sink of Γi and the source of Γi+1 and let v0 be the source of Γ1 and vn be the sink
of Γn. Thus, for each i ∈ {1, . . . , n − 1}, vi has degree 2 in H or has a neighbor in H of degree 2 in H and, consequently,
Lemma 3.7 implies that either dH(vi) = 2 or dH(vi) ≥ k− 1. Notice that either dH(v0) = 1 or dH(v0) ≥ k because if v0 is not
pendant then H has a matching-transversal of size at most max{5, dH(v0)} (by Lemmas 3.7 and 3.18) but we are assuming
τm(H) ≥ k ≥ 6. Symmetrically, either dH(vn) = 1 or dH(vn) ≥ k. Finally, all vertices of H different from v0, v1, . . . , vn
are vertices of degree 2 because no block of H is a rhombus or K4. We conclude that δh(H) ≥ k − 1. Since k − 1 ≥ 5,
Lemma 3.18 implies that τm(H) ≤ δh(H). Since we are assuming τm(H) ≥ k, δh(H) ≥ k. Thus, (ii) implies (iii) and the proof
is complete. �

As we have proved Lemmas 3.22 and 3.23 and all the cases of Theorem 3.24, now Theorem 2.13 follows.
This, together with Theorem 2.12, implies Theorem 2.11, from which the main results of this work (Theorems 1.4 and

1.5) follow. It only remains to prove Theorem 2.14, i.e., to present the elementary linear-time recognition algorithm for
matching-perfect graphs:

Proof (of Theorem 2.14).We claim that there is an elementary linear-time algorithm that decides whether a given graph is
a fat caterpillar and, if affirmative, computes a matching-transversal of minimum size. To begin with, we proceed as in the
paragraph preceding the statement of Theorem 2.14 in order to either compute H1, H2, and H3, or detect that H contains a
bipartite claw. If the latter occurs, we can be certain that H is not a fat caterpillar and stop. Hence, without loss of generality,
assume that H1, H2, and H3 were successfully computed in linear time. If H1 is a triangle and each vertex of H1 has some
neighbor in H outside H1, then Theorem 2.2(iii), 3.23 imply that H is a fat caterpillar and the set of edges incident to any
minimum hub of H is a matching-transversal of minimum size. Suppose now that H2 is spanned by a 4-cycle C having at
least two consecutive vertices that are adjacent in H to some vertex outside H2. In this case, it is straightforward to deter-
mine whether or not H is a fat caterpillar thanks to Theorem 2.2(ii) and, if affirmative, compute a matching-transversal of
minimum size in linear time by means of Lemma 3.22. Assume now that neither H1 is a triangle such that each vertex of H1
is adjacent in H to some vertex outside H1, nor H2 is spanned by a 4-cycle having at least two consecutive vertices adjacent
in H to vertices outside H2. Thus, by Theorem 2.2, H is a fat caterpillar if and only if H is a linear concatenation of basic
two-terminal graphs where the K4 links may occur only as the first and/or last links of the concatenation. Therefore, H is
a fat caterpillar if and only if H3 is a linear concatenation of edge, triangle, rhombus, and K4 links where the K4 links may
occur only as the first/and or last link of the concatenation and no vertex of a rhombus link has a false twin of degree 2 in
H . Equivalently, H is a fat caterpillar if and only if H3 satisfies each of the following conditions:
(1) H3 is connected.
(2) Each of the blocks of H3 is K2, K3, K4 − e, or K4.
(3) Each block of H3 has at most two cut-vertices.
(4) The cut-vertices of each K4 − e block are vertices of degree 2 in the block.
(5) Each K4 block has at most one cut-vertex.
(6) Each cut-vertex of H3 belongs to at most two blocks of H3 that are not pendant edges.
(7) No vertex of a K4 − e block of H3 of degree 2 in H has a false twin in H .
All these conditions can be easily verified in linear time once the blocks and the cut-vertices of H3 are determined, which in
turn can be done in linear time by performing a depth-first search [47]. Finally, if all the above conditions are met, H is a fat
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caterpillar containing no A and no net and a matching-transversal of H of minimum size can be determined in linear time
as follows from the characterizations given in Lemmas 3.28–3.31.

Suppose now that we need to determine whether a given graph H is matching-perfect and assume, without loss of gen-
erality, that H is connected and has more than 6 vertices. We begin by deciding whether H is a fat caterpillar as in the
preceding discussion. If H is found to be a fat caterpillar, we are done because we know that H is matching-perfect and stop.
Therefore, assume without loss of generality that H is not a fat caterpillar. Hence, H is matching-perfect if and only if H is
a matching-perfect graph containing a cycle of length 3k for some k ≥ 2. Thus, by Lemma 3.11, if H is matching-perfect,
then H3 is a chordless cycle of length 3k for some k ≥ 2. Conversely, if H3 is a chordless cycle of length 3k for some k ≥ 2,
then H contains no bipartite claw (because H3 contains no claw) and, moreover, H is matching-perfect by Theorem 1.5. This
shows that we can decide in linear time whether H is matching-perfect. Finally, if there is any edge e = uv of H3 that is not
hub-covered in H , then EH(u)∪ EH(v) is a matching-transversal of H of minimum size by Lemma 3.17; otherwise, if v is any
minimum hub v of H , then EH(v) is a matching-transversal of H of minimum size by Lemma 3.16. �
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