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To a continuous action of a vector group on a C ∗-algebra, twisted by the imaginary

exponential of a symplectic form, one associates a Rieffel deformed algebra as well as

a twisted crossed product. We show that the second one is isomorphic to the tensor

product of the first one with the C ∗-algebra of compact operators in a separable Hilbert

space and we indicate some applications.

1 Introduction

In order to provide a unified framework for a large class of examples in deformation

quantization, Rieffel [15] significantly extended the basic part of the Weyl pseudodiffer-

ential calculus. Rieffel’s calculus starts from the action Θ of a finite-dimensional vector

space Ξ on a C ∗-algebra A, together with a skew-symmetric linear operator J : Ξ → Ξ

that serves to twist the product on A. Using J, one defines first a new composition

law # on the set of smooth elements of A under the action and then a completion is
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taken in a suitable C ∗-norm. The outcome is a new C ∗-algebra A, also endowed with

an action of the vector space Ξ . The corresponding subspaces of smooth vectors under

the two actions, A∞ and A∞, respectively, coincide. In [15], the functorial properties of

the correspondence A �→ A are studied in detail and many examples are given. It is also

shown that one gets a strict deformation quantization of a natural Poisson structure

defined on A∞ by the couple (Θ, J).

Assuming J nondegenerate (so it defines a symplectic form on Ξ ), one gets a

twisted action (Θ, κ) of Ξ on the C ∗-algebra A, where κ is the 2-cocycle on Ξ given

by (X, Y) �→ κ(X, Y) := exp(iX · JY). To such a twisted action, one associates canoni-

cally [11, 12] a twisted crossed product C ∗-algebra A �
κ
Θ Ξ , whose representations are

determined by covariant representations of the quadruplet (A,Θ, κ,Ξ).

In the present article, we are going to show that the two C ∗-algebras A and

A �
κ
Θ Ξ that can be constructed from the data (A,Θ, κ,Ξ) are actually stably isomor-

phic. This happens in a particularly precise way: one has an isomorphism (called the

canonical mapping) M : K ⊗ A →A �
κ
Θ Ξ , where K is an elementary C ∗-algebra, that is,

it is faithfully represented as the ideal of all compact operators in a separable Hilbert

space. The mapping M is naturally defined first between convenient Fréchet subalgebras

(vector-valued Schwartz spaces); the extension to a C ∗-isomorphism needs a nontrivial

isometry argument.

Such a stable isomorphism has standard consequences [14]: the (closed, bi-sided

self-adjoint) ideals of the two algebras A and A �
κ
Θ Ξ are in one-to-one correspondence,

the spaces of primitive ideals are homeomorphic, and the two representation theories

are identical. By using basic information about the twisted crossed product, we also get

a simple proof of the known fact [8, 17] that the K-groups of the Rieffel deformed algebra

A are the same as those of the initial algebra A. A covariant morphism R : (A1,Θ1) →
(A2,Θ2) can be raised both to a morphism R : A1 → A2 and to a morphism R� : A1

�
κ
Θ1

Ξ →A2
�

κ
Θ2 Ξ . The canonical mappings M1, M2 have the intertweening property R� ◦

M1 = M2 ◦ (id ⊗ R).

When the initial algebra A is commutative, it is associated by Gelfand theory

with a locally compact topological dynamical system (Σ,Θ,Ξ). Under some assump-

tions on this system, one can get information on the primitive ideal space of the C ∗-

algebra A. A choice of an invariant measure on Σ leads to L2-orthogonality relations for

the canonical mapping M. We hope to continue to investigate the canonical mappings in

the commutative case (the one closest in spirit with traditional pseudodifferential the-

ory), having in view a more detailed study of representations, modulation spaces, and

applications to spectral analysis [9].
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Rieffel Deformation and Twisted Crossed Products 553

2 Involutive Algebras Associated to a Twisted C∗-Dynamical System

We shall recall briefly, in a particular setting, some constructions and results concerning

twisted crossed products algebras and Rieffel’s pseudodifferential calculus.

The common starting point is a 2n-dimensional real vector space Ξ endowed

with a symplectic form �·, ·�. When needed we are going to suppose that Ξ = X × X ∗,

with X ∗ the dual of the n-dimensional vector space X , and that, for X := (x, ξ), Y :=
(y, η) ∈ Ξ , the symplectic form reads �X, Y� := y · ξ − x · η.

An action Θ of Ξ by automorphisms of a (maybe noncommutative) C ∗-algebra

A is also given. For ( f, X) ∈A × Ξ , we are going to use the notation Θ( f, X) = ΘX( f) =
Θ f (X) ∈A for the X-transform of the element f . This action is assumed strongly con-

tinuous, that is, for any f ∈A the mapping Ξ 
 X �→ ΘX( f) ∈A is continuous. The initial

object, containing the classical data, is a quadruplet (A,Θ,Ξ, �·, ·, �) with the properties

defined above.

To arrive at twisted crossed products, we define

κ : Ξ × Ξ → T := {λ ∈ C | |λ| = 1}, κ(X, Y) := exp
(

− i

2
�X, Y�

)
, (1)

and note that it is a group 2-cocycle, that is, for all X, Y, Z ∈ Ξ , one has

κ(X, Y)κ(X + Y, Z) = κ(Y, Z)κ(X, Y + Z), κ(X, 0) = 1 = κ(0, X).

Thus, the classical data is converted into (A,Θ,Ξ, κ), a very particular case of twisted

C ∗-dynamical system [11, 12]. To any twisted C ∗-dynamical system, one associates

canonically a C ∗-algebra A �
κ
Θ Ξ (called twisted crossed product). This is the enveloping

C ∗-algebra of the Banach ∗-algebra (L1(Ξ ;A),�,� , ‖ · ‖1), where

‖ G ‖1:=
∫
Ξ

dX ‖ G(X) ‖A, G�(X) := G(−X)∗,

and (symmetrized version of the standard form; cf. Remark 4.3)

(G1 � G2)(X) :=
∫
Ξ

dYκ(X, Y)Θ(Y−X)/2[G1(Y)]ΘY/2[G2(X − Y)]. (2)

In [11, 12] A is supposed separable; since our cocycle is explicit and very simple, this

will not be needed here.
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We turn now to Rieffel deformation [15, 16]. Let us denote by A∞ the family of

elements f such that the mapping Ξ 
 X �→ ΘX( f) ∈A is C ∞. It is a dense ∗-algebra of A
and also a Fréchet algebra with the family of seminorms

| f |kA :=
∑
|α|=k

1

α!
‖ ∂α

X[ΘX( f)]X=0 ‖A≡
∑
|α|=k

1

α!
‖ δα( f) ‖A k∈ N. (3)

To quantize the above structure, one keeps the involution but introduces A∞ the product

f # g := 22n
∫
Ξ

∫
Ξ

dY dZ e2i�Y,Z�ΘY( f)ΘZ (g), (4)

suitably defined by oscillatory integral techniques. Thus, one gets a ∗-algebra (A∞, #, ∗),

which admits a C ∗-completion A in a C ∗-norm ‖ · ‖A defined by Hilbert module tech-

niques; we are going to call A the R-deformation of A. The action Θ leaves A∞ invariant

and extends to a strongly continuous action on the C ∗-algebra A, which will also be

denoted by Θ. The space A∞ of C ∞-vectors coincide with A∞, even topologically, that is,

the family (3) on A∞ = A∞ is equivalent to the family of seminorms

| f |kA :=
∑
|α|=k

1

α!
‖ ∂α

X[ΘX( f)]X=0 ‖A≡
∑
|α|=k

1

α!
‖ δα( f) ‖A, k∈ N. (5)

An important particular case is obtained when A is the C ∗-algebra BCu(Ξ) of

bounded uniformly continuous functions on the group Ξ , which is invariant under

translations, that is, if a∈A and X ∈ Ξ , then [TX(a)](·) := a(· − X) ∈A. Note that the ∗-

algebra of smooth vectors coincides with BC∞(Ξ), the space of all smooth complex func-

tions on Ξ with bounded derivatives of every order. In this case, Rieffel’s construction,

done for Θ = T , reproduces essentially the standard Weyl calculus; we are going to use

the special notations � (instead of #) for the corresponding composition law and B(Ξ)

for the R-deformation of BCu(Ξ).

One can also consider C ∗-subalgebras A of BCu(Ξ) that are invariant under

translations. An important one is C0(Ξ), formed of all the complex continuous func-

tions on Ξ that decay at infinity. Its Rieffel deformation will be denoted by K (Ξ); it

contains the Schwartz space S (Ξ) densely. By Rieffel [15, Example 10.1 and Proposi-

tion 5.2], it is elementary, that is, isomorphic to the C ∗-algebra of all compact operators

in a separable Hilbert space.

Following [15], we introduce the Fréchet space S (Ξ ;A∞) composed of smooth

functions F : Ξ →A∞ = A∞ with derivatives that decay rapidly with respect to all | · |kA.
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Rieffel Deformation and Twisted Crossed Products 555

The relevant seminorms on the space S (Ξ ;A∞) are {‖ · ‖k,β,N
A | k, N ∈ N, β ∈ N

2n} where

‖ F ‖k,β,N
A := sup

X∈Ξ

{(1 + |X|)N |(∂β F )(X)|kA}, (6)

and the index A can be replaced by A, by the argument above. We are going to use

repeatedly the identification of S (Ξ ;A∞) with the topological tensor product S (Ξ)⊗̂A∞

(recall that the Fréchet space S (Ξ) is nuclear). On it (and on many other larger spaces),

one can define obvious actions T := T ⊗ 1 and T ⊗ Θ of the vector spaces Ξ and Ξ ×
Ξ , respectively. Explicitly, for all A, Y, X ∈ Ξ , one sets [TA(F )](X) := F (X − A) and [(TA ⊗
ΘY)F ](X) := ΘY[F (X − A)]. Then on S (Ξ ;A∞) one can introduce the composition law

(F1�F2)(X) = 22n
∫
Ξ

∫
Ξ

dAdB e−2i�A,B�[TA(F1)](X)# [TB(F2)](X) (7)

= 24n
∫
Ξ

∫
Ξ

∫
Ξ

∫
Ξ

dAdB dY dZ e−2i�A,B� e2i�Y,Z� (8)

[(TA ⊗ ΘY)(F1)](X)[(TB ⊗ ΘZ )(F2)](X).

Note that the last expression should be interpreted as an oscillatory integral [15] and

that it involves the multiplication in the C ∗-algebra A. If the involution is given by

F �(X) := F (X)∗, ∀ X ∈ Ξ , it can be shown that one gets a Fréchet ∗-algebra.

Remark 2.1. We recall that A∞ = A∞, even topologically, but the algebraic structures

are different. When the forthcoming arguments will involve the composition #, in order

to be more suggestive, we will use the notation S (Ξ ;A∞). In other situations, the nota-

tion S (Ξ ;A∞) will be more natural. For instance, it is easy to check that S (Ξ ;A∞) is

a (dense) ∗-subalgebra of the Banach ∗-algebra (L1(Ξ ;A),�,� , ‖ · ‖1), which is defined in

terms of the product · on A and has a priori nothing to do with the composition law #.

Proposition 4.2 is a good illustration for this distinction. �

Remark 2.2. One can also consider BCu(Ξ ;A), the C ∗-algebra of all bounded and uni-

formly continuous functions F : Ξ → A. Rieffel deformation can also be applied to the

new classical data (BCu(Ξ ;A),T, Ξ,−�·, ·�), getting essentially (7) as the corresponding

composition law. By using the second part (8) of the formula, this can also be regarded

as the Rieffel composition constructed from the extended twisted C ∗-dynamical sys-

tem (BCu(Ξ ;A), T ⊗ Θ, Ξ × Ξ, κ̄ ⊗ κ). This will not be needed in this form. But we

are going to use below the fact that, for elements f, g ∈ A∞, a, b ∈ S (Ξ), one has
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(a ⊗ f)� (b ⊗ g) = (b� a) ⊗ ( f#g), so � can be seen as the tensor product between # and

the law opposite to �. By Rieffel [16, Proposition 2.1], one can identify K (Ξ) ⊗ A with

the R-deformation of C0(Ξ) ⊗ A≡ C0(Ξ ;A) and B(Ξ) ⊗ A with the R-deformation of

BCu(Ξ) ⊗ A. �

3 The Schrödinger Representation

We are going to denote by B(M,N ) the space of all linear continuous operators acting

between the topological vector spaces M and N and use the abbreviation B(M) for

B(M,M).

Let us recall that X is a finite-dimensional vector space. The corresponding

Heisenberg algebra hX = X × X ∗ × R is the Lie algebra with the bracket

[(x, ξ, t), (y, η, s)] := (0, 0, y · ξ − x · η).

We use notations as X̄ = (x, ξ, t) and X = (x, ξ). The Heisenberg group HX is just hX ,

thought of as a group with the multiplication ∗ defined by

X̄ ∗ Ȳ = X̄ + Ȳ + 1
2 [X̄, Ȳ], X̄, Ȳ ∈ HX .

The unit element is 0 ∈ HX and the inversion mapping given by X̄−1 := −X̄.

The Schrödinger representation is the unitary representation Π : HX → B(L) in

the Hilbert space L := L2(X ), defined by

[Π(X̄)u](y) = [Π(x, ξ, t)u](y) = ei(y·ξ+ 1
2 x·ξ+t)u(y + x) for a.e. y∈ X , (9)

for arbitrary u∈ L2(X ) and X̄ = (x, ξ, t) ∈ HX . When restricted to Ξ = X × X ∗ (which is

not a subgroup and should be regarded as a quotient of HX ), Π becomes a projective

representation that will be denoted by π : it satisfies

π(X)π(Y) = κ(X, Y)π(X + Y), ∀X, Y ∈ Ξ.

The Wigner distributions defined by π are given by

W (u, v) :=F(〈u, π(·)v〉), u, v ∈L.

We used the symplectic Fourier transform

(Fa)(X) :=
∫
Ξ

dY e−i�X,Y�a(Y),
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Rieffel Deformation and Twisted Crossed Products 557

and forced it to be L2-unitary and satisfy F2 = id, by a suitable choice of Lebesgue

measure dY on Ξ . Recall that W (u, v) ∈ S (Ξ) when u, v ∈ S (X ), W : L × L→ L2(Ξ) is

an isometry and extends to a unitary mapping W : L2(X ) ⊗ L2(X ) → L2(Ξ). The Weyl

pseudodifferential calculus is then a linear isomorphism

Op : S ′(Ξ) → B[S (X ),S ′(X )], 〈v, Op(a)u〉 = 〈W (v, u), a〉. (10)

Recall also that Op[W (u, v)] = 〈· | v〉u for all u, v ∈L, and Op : L2(Ξ) → S2(L) (Hilbert–

Schmidt operators) is unitary. For a, b ∈ S ′(Ξ), a� b is the symbol of the operator

Op(a) Op(b) whenever this is well defined and continuous from S (X ) to S ′(X ). Of

course, the symbol � is an extension of the one used in the previous section. The action

of Op(a) on S (X ) or L := L2(X ) (under various assumptions on the symbol a and with

various interpretations) is given by

[Op(a)v](x) :=
∫
X

dy
∫
X ∗

dξ ei(x−y)·ξ a
(

x + y

2
, ξ

)
v(y). (11)

Consider next the space of operators

Bu(L) = {T ∈ B(L) | Ξ 
 X → π(X)Tπ(−X) ∈ B(L) is norm continuous}.

Then Bu(L) is a proper C ∗-subalgebra of B(L) with the norm given by the operator norm

and involution given by Hilbert space adjoint, and it contains the ideal K(L) of compact

operators on L (see [6, Theorem 1.1]). The representation

π ⊗ π̄ : Ξ → B[Bu(L)], (π ⊗ π̄)(X)T = π(X)Tπ(−X)

is then strongly continuous. Let B
∞
u (L) be the space of smooth vectors for this rep-

resentation. Then B
∞
u (L) is dense in Bu(L) [6, Theorem 1.1], and consists precisely of

those Weyl pseudodifferential operators with symbols in BC∞(Ξ) [6, Theorem 1.2, 7,

Theorem 2.3.7].

Lemma 3.1. The Weyl calculus Op realizes an isomorphism between B(Ξ) (the

R-deformation of BCu(Ξ)) and Bu(L). The image through Op of K (Ξ) is precisely

K(L). �
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Proof. Indeed, recall that when a∈ BC∞(Ξ), the norm ‖ a‖B(Ξ) of a in the Rieffel algebra

is given by the norm of the operator La : S (Ξ) → S (Ξ), La(b) = a#b, where on S (Ξ)

one considers the L2-norm (a particular case of Rieffel [15, Proposition 4.15]). Taking

b = W (u, v), with u, v ∈ S (X ), one obtains that a#W (u, v) = W (Op(a)u, v), hence

‖La[W (u, v)]‖L2(Ξ) = ‖v‖ ‖Op(a)u‖, u, v ∈ S (X ).

Thus, ‖Op(a)‖B(L) ≤ ‖a‖B(Ξ). On the other hand, denoting by ‖ · ‖S2(L) the Hilbert–Schmidt

norm, one has

‖La(b)‖L2(Ξ) = ‖Op(a#b)‖S2(L) ≤ ‖Op(a)‖
B(L)‖Op(b)‖S2(L) = ‖Op(a)‖

B(L)‖b‖L2(Ξ),

hence ‖Op(a)‖B(L) ≥ ‖a‖B(Ξ). It follows that the norm of the operator La is in fact equal

to the norm of Op(a) in B(L). The Rieffel algebra B(Ξ) is the closure of BC∞(Ξ) in the

norm a→ ‖a‖B(Ξ) = ‖La‖B[L2(Ξ)], hence it is isomorphic to Bu(L), the closure of B
∞
u (L) =

Op[BC∞(Ξ)], as stated.

Now the last statement of the lemma is trivial if we recall that Op[S (Ξ)] ⊂
K(L). �

4 The Canonical Mappings

Definition 4.1. On S (Ξ ;A∞) we introduce the canonical mappings

[M(F )](X) :=
∫
Ξ

dY e−i�X,Y�ΘY[F (Y)] (12)

and

[M−1(G)](X) :=
∫
Ξ

dY e−i�X,Y�Θ−X[G(Y)]. (13)
�

To give a precise meaning to these relations, use the (symplectic) partial Fourier

transform

F ≡F ⊗ 1 : S (Ξ ;A∞) → S (Ξ ;A∞), (FF )(X) :=
∫
Ξ

dY e−i�X,Y�F (Y).

Defining also C by [C (F )](X) := ΘX[F (X)], we have M = F ◦ C and M−1 = C −1 ◦ F.

 at U
niversidad de C

hile on July 7, 2015
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


Rieffel Deformation and Twisted Crossed Products 559

Proposition 4.2. The mapping M : (S (Ξ ;A∞),�, �) → (S (Ξ ;A∞),�, �) is an

isomorphism of Fréchet ∗-algebras and M−1 is its inverse. �

Proof. The partial Fourier transform is an isomorphism. One also checks that C is

an isomorphism of S (Ξ ;A∞); this follows from the explicit form of the seminorms on

S(Ξ ; A∞), from the fact that ΘX is isometric, and from the formula

∂β [ΘX(F (X))] =
∑
γ≤β

Cβγ ΘX{δγ [(∂β−γ F )(X)]}.

With these remarks, we conclude that M = F ◦ C and M−1 = C −1 ◦ F are reciprocal topo-

logical linear isomorphisms.

We still need to show that M is a ∗-morphism. For the involution:

[M(F )]�(X) =
{∫

Ξ

dY ei�X,Y�ΘY[F (Y)]
}∗

=
∫
Ξ

dY e−i�X,Y�ΘY[F (Y)∗] = [M(F �)](X).

For the product: it is enough to show that M−1[M(F ) � M(G)] = F�G for all F, G ∈
S (Ξ ;A∞). One has (iterated integrals):

(M−1[MF � MG])(X) =
∫
Ξ

dY1 e−i�X,Y1�Θ−X{[MF � MG](Y1)}

=
∫
Ξ

dY1 e−i�X,Y1�Θ−X

{∫
Ξ

dY2 e− i
2 �Y1,Y2�Θ(Y2−Y1)/2[(MF )(Y2)]ΘY2/2[(MG)(Y1 − Y2)]

}

=
∫
Ξ

dY1

∫
Ξ

dY2 e−i�X,Y1� e− i
2 �Y1,Y2�Θ−X{Θ(Y2−Y1)/2[(MF )(Y2)]ΘY2/2[(MG)(Y1 − Y2)]}

=
∫
Ξ

dY1

∫
Ξ

dY2 e−i�X,Y1� e− i
2 �Y1,Y2� · Θ(Y2−Y1)/2−X

{∫
Ξ

dY3 e−i�Y2,Y3�ΘY3 [F (Y3)]
}

· ΘY2/2−X

{∫
Ξ

dY4 e−i�Y1−Y2,Y4�ΘY4 [G(Y4)]
}

=
∫
Ξ

dY1

∫
Ξ

dY2

∫
Ξ

dY3

∫
Ξ

dY4 e−i�X,Y1� e− i
2 �Y1,Y2� e−i�Y2,Y3� e−i�Y1−Y2,Y4�

· ΘY3+(Y2−Y1)/2−X[F (Y3)]ΘY4+Y2/2−X[G(Y4])

= 24n
∫
Ξ

dY
∫
Ξ

dZ
∫
Ξ

dY3

∫
Ξ

dY4 e−2i�X,Y3−Y4� e2i�Y,Z� e−2i�Y3,Y4�ΘY[F (Y3)]ΘZ [G(Y4)].
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For the last equality, we made the substitution Y = Y3 + 1
2 (Y2 − Y1) − X, Z = Y4 + 1

2 Y2 − X.

Finally, setting Y3 = X − A, Y4 = X − B, we get

(M−1[MF � MG])(X) = [F�G](X)

= 24n
∫
Ξ

dY
∫
Ξ

dZ
∫
Ξ

dA
∫
Ξ

dB e−2i�A,B� e2i�Y,Z�ΘY[F (X − A)]ΘZ [G(X − B)]. �

Remark 4.3. Let us make some comments about how one could modify the definitions

above. We are going to need the notation [Cα(F )](X) := ΘαX[F (X)], where X ∈ Ξ, F ∈
S (Ξ ;A∞) (or F ∈ L1(Ξ ;A)) and α is a real number. All these operations are isomor-

phisms and our previous transformation C coincides with C1. The traditional composi-

tion law in the twisted crossed product is not (2), but

(G1 �′ G2)(X) :=
∫
Ξ

dYκ(X, Y)G1(Y)ΘY[G2(X − Y)].

The distinction is mainly an ordering matter and it corresponds to the distinction

between the Weyl and the Kohn–Nirenberg forms of pseudodifferential theory. Apply-

ing C1/2 leads to an isomorphism between the two algebraic structures. So, if we want

to use this second realization, we should replace M = FC1 with M′ := C1/2FC1, leading

explicitly to

[M′(F )](X) :=
∫
Ξ

dY e−i�X,Y�ΘY+X/2[F (Y)]. �

5 The C∗-Algebraic Isomorphism

We recall that K (Ξ), with multiplication �, has been defined as the R-deformation of

the commutative C ∗-algebra C0(Ξ) on which Ξ acts by translations. Then K (Ξ) is an

elementary (hence nuclear) C ∗-subalgebra of B(Ξ), and S (Ξ) is dense in K (Ξ). The

Fréchet ∗-algebra S (Ξ ;A∞) ≡ S (Ξ)⊗̂A∞ with the composition law � given in (8) is

dense in the C ∗-algebra K (Ξ) ⊗ A, which can be viewed (see Remark 2.2 and [16, Propo-

sition 2.1]) as the R-deformation of C0(Ξ) ⊗ A with respect to the action of Ξ × Ξ com-

posed of translations in the first variable and the initial action Θ in the second.

This section is mainly dedicated to the proof of the next result.

Theorem 5.1. The mapping M extends to a C ∗-isomorphism : K (Ξ) ⊗ A →A �
κ
Θ Ξ . �

The following definition (see [18, Definition 1.2] and the concept of differential

seminorm in [5, Definition 3.1]) isolates a situation in which any injective morphism
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Rieffel Deformation and Twisted Crossed Products 561

between a dense ∗-subalgebra of a C ∗-algebra and another C ∗-algebra can be extended

to a C ∗-algebraic monomorphism.

Definition 5.2. Let F be a dense Fréchet subalgebra of a C ∗-algebra C . We say that F

satisfies the Blackadar–Cuntz condition in C if the topology on F is given by a family

of seminorms {pk}k≥0 such that p0 is the C ∗-norm giving the topology on C and

pk(ab) ≤
∑

i+ j=k

pi(a)pj(b), a, b ∈ F . �

Tracing back through [5], one realizes that if F satisfies the Blackadar–Cuntz

condition in C , it is a smooth algebra in the sense of Blackadar and Cuntz [5, Definition

6.6]. Actually, the more general concept of derived seminorm [5, Definition 5.1] involved

in the definition of a smooth algebra is meant to model quotients of differential semi-

norms. Therefore, the following result is in fact a particular case of Blackadar and Cuntz

[5, Proposition 6.8].

Proposition 5.3. Assume that F is a dense Fréchet subalgebra of a C ∗-algebra C and

satisfies the Blackadar–Cuntz condition in C . Then if D is another C ∗-algebra and Φ :

F �→ D is an injective ∗-morphism, then Φ is isometric for the C ∗-norm on C . �

We now prove Theorem 5.1.

Proof. The algebra S (Ξ)⊗̂A∞ is a dense subalgebra of K (Ξ) ⊗ A. As mentioned

before, it can be identified to S (Ξ ;A∞). Proposition 4.2 gives an injective ∗-morphism

M : S (Ξ ;A∞) →A �
κ
Θ Ξ with dense range. If one proves that S (Ξ)⊗̂A∞ satisfies

Blackadar–Cuntz condition in K (Ξ) ⊗ A, Proposition 5.3 shows that M is isometric for

the C ∗-norm on K (Ξ) ⊗ A, so it extends to an isomorphism : K (Ξ) ⊗ A →A �
κ
Θ Ξ .

To show the Blackadar–Cuntz condition for S (Ξ)⊗̂ A∞, we are going to express

it as the space of smooth vectors for a continuous group action in K (Ξ) ⊗ A.

Using the Schrödinger representation (9) of the Heisenberg group HX in

L= L2(X ), we consider the strongly continuous representation (by Banach space

isomorphisms)

Δ : HX × HX → B[K(L)],

Δ(X̄, Ȳ)T = Π(X̄)TΠ(−Ȳ), X̄, Ȳ ∈ HX .
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562 I. Beltiţă and M. Măntoiu

Note that K(L) is an admissible ideal in B(L), as in [2, Definition 3.8]. Also recall that

the Weyl–Pedersen calculus for general nilpotent Lie groups G, introduced in [13] and

developed in [1–3], particularizes to the usual Weyl calculus if G = HX is the Heisen-

berg group; therefore one can use the results of these papers. It follows from [2, The-

orems 4.6 and 3.13] (see also [3, 13, Theorem 4.1.4]) that the space K(L)∞ of smooth

vectors of the representation Δ is precisely Op[S (Ξ)] and that Op : S (Ξ) → K(L)∞ is a

topological isomorphism of Fréchet spaces (a restriction of the isomorphism given by

Lemma 3.1). Hence, Op⊗̂ id : S (Ξ)⊗̂A∞ → K(L)∞⊗̂ A∞ is also an isomorphism of Fréchet

spaces. Thus, to complete the proof, it will be enough to show that K(L)∞⊗̂ A∞ satisfies

the Blackadar–Cuntz condition in K(L) ⊗ A.

We set

Ω : HX × HX × Ξ → B[K(L) ⊗ A],

Ω(X̄, Ȳ, Z) = Δ(X̄, Ȳ) ⊗ ΘZ , X̄, Ȳ ∈ HX , Z ∈ Ξ.

It is easy to check that Ω is a strongly continuous representation and that its space

of smooth vectors [K(L) ⊗ A]∞ coincides with the (unique) topological tensor product

K(L)∞⊗̂ A∞. The transformations Ω(X̄, Ȳ, Z) are isometric.

It follows that the topology of the tensor product K(L)∞⊗̂ A∞ is also given by the

countable family of seminorms

pk(Φ) :=
∑

|α|+|β|≤k

1

α!β!
‖∂α1

X̄
∂

α2

Ȳ
∂

β

Z [Ω(X̄, Ȳ, Z)Φ]X̄=Ȳ=Z=0‖K(L)⊗A,

where α = (α1, α2) ∈ N
4n+2 and β ∈ N

2n. When computing on products Φ ◦ Ψ , one has to

face the fact that the action Δ is not automorphic on K(L). Note, however, that when S,

T ∈ K(L), we have
Δ(X̄, Ȳ)(ST) = [Δ(X̄, 0)S][Δ(0, Ȳ)T ],

implying for all Φ,Ψ ∈ K(L) ⊗ A and all (X̄, Ȳ, Z) ∈ HX × HX × Ξ ,

Ω(X̄, Ȳ, Z)(Φ ◦ Ψ ) = [Ω(X̄, 0, Z)Φ] ◦ [Ω(0, Ȳ, Z)Ψ ].

Then a simple calculation shows that

pk(Φ ◦ Ψ ) ≤
∑

i+ j=k

pi(Φ)pj(Ψ ),

for all Φ,Ψ ∈ K(L)∞⊗̂ A∞. One also has p0(Φ) =‖ Φ ‖K(L)⊗ A, so the proof is completed. �
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Rieffel Deformation and Twisted Crossed Products 563

Remark 5.4. Let us consider the continuous action β : Ξ → Aut(A �
κ
Θ Ξ) given for G ∈

L1(Ξ ;A) by

[βZ (G)](X) := ei�X,Z�G(X), X, Z ∈ Ξ

(this is the dual action in disguise). Then a short computation gives, for any Z ∈ Ξ ,

M ◦ (T−Z ⊗ ΘZ ) = βZ ◦ M, (14)

and so actually M can be seen as an isomorphism of C ∗-dynamical systems. Thus, the

twisted crossed product A �
κ
Θ Ξ endowed with the action β can be seen as (an isomor-

phic copy of) the Rieffel deformation of the C ∗-algebra C0(Ξ ;A). �

6 Applications

One can rephrase Theorem 5.1 by saying that A �
κ
Θ Ξ is (isomorphic to) the stable

algebra of A. In particular, A and A �
κ
Θ Ξ are stably isomorphic. Therefore, they have

identical representation theories (indexed by covariant representations of the sys-

tem (A,Θ, κ,Ξ)), isomorphic ideal lattices, and there are canonical homeomorphisms

between the corresponding spaces of primitive ideals [14].

We investigate now the interplay between the canonical maps and Ξ-morphisms.

Let (A j,Θ j, Ξ, κ), j = 1, 2, be two sets of classical data and let R : A1 →A2 be a Ξ-

morphism, that is, a C ∗-morphism intertwining the two actions Θ1,Θ2. Then R acts

coherently on C ∞-vectors (R[A1,∞] ⊂A2,∞) and extends to a morphism R : A1 → A2 of

the R-quantized C ∗-algebras that also intertwines the corresponding actions (see [15]).

On the other hand [11, 12], another C ∗-morphism R� : A1
�

κ
Θ1 Ξ →A2

�
κ
Θ2 Ξ is assigned

canonically to R, uniquely defined by

[R�(F )](X) :=R[F (X)], ∀ F ∈ L1(Ξ ;A1).

Proposition 6.1. Denoting by id the identical map on K (Ξ) and by M j the canonical

map for the data (A j,Θ j, κ,Ξ), one has

R� ◦ M1 = M2 ◦ (id ⊗ R). (15)

�
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Proof. It is enough to compute on F ∈ S (Ξ ;A∞):

[(R� ◦ M1)(F )](X) =R[(M1 F )(X)]

=R
[∫

Ξ

dY e−i�X,Y�Θ1
Y(F (Y))

]

=
∫
Ξ

dY e−i�X,Y�R[Θ1
Y(F (Y))]

=
∫
Ξ

dY e−i�X,Y�Θ2
Y[R(F (Y))]

= M2[(id ⊗ R)F ](X). �

The next two results have been proved in [17] without asking the skew-symmetric

operator J to be nondegenerate (see also [8]). The proofs relying on Theorem 5.1 are very

simple.

Corollary 6.2. The C ∗-algebras A and A have the same K-groups. �

Proof. Since A and A �
κ
Θ Ξ are stably isomorphic, they have the same K-theory [4]. On

the other hand, by ‘the stabilization trick’ [11], A �
κ
Θ Ξ is stably isomorphic to a usual

(untwisted) crossed product (A ⊗ K ) �Γ Ξ associated to an action Γ of Ξ on the tensor

product of A with an elementary algebra K . The vector space Ξ has even dimension, and

hence, by Connes’ Thom isomorphism [4], the K-groups of the crossed product coincide

with the K-groups of A ⊗ K , that is, with those of A. �

Corollary 6.3. The C ∗-algebras A and A are simultaneously nuclear. �

Proof. The argument is analogous to the previous one. One must also recall [4, Theorem

15.8.2] that nuclearity is preserved under stable isomorphism and that the crossed prod-

uct with a commutative group of a C ∗-algebra B is nuclear iff B is nuclear (for the con-

verse use Takai duality). �

If A is commutative, by Gelfand theory, it is isomorphic (and will be identified) to

C0(Σ), the C ∗-algebra of all complex continuous functions on the locally compact space

Σ which converge to zero at infinity. The space Σ is a homeomorphic copy of the Gelfand

spectrum of A and it is compact iff A is unital. Then the group Θ of automorphisms is
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Rieffel Deformation and Twisted Crossed Products 565

induced by an action (also called Θ) of Ξ by homeomorphisms of Σ . We are going to use

the convention

[ΘX( f)](σ ) := f [ΘX(σ )], ∀ σ ∈ Σ, X ∈ Ξ, f ∈A,

as well as the notation ΘX(σ ) = Θ(X, σ ) for the X-transform of the point σ . Let us set A =:

C(Σ) for the (noncommutative) Rieffel C ∗-algebra associated to C0(Σ) by deformation

and C∞(Σ) for the space of smooth vectors under the action Θ.

Remark 6.4. A rather surprising picture follows from a symmetry argument. Using [15,

Theorem 6.5], one gets easily an isomorphism K (Ξ) ⊗ A∼= A �
κ̄
Θ Ξ . The complex conju-

gated cocycle κ̄ is defined by the symplectic form −�·, ·�. One usually thinks of A as a

rather simple C ∗-algebra, giving after deformation a more complicated one A. In the

commutative case, for instance, we might be surprised that the twisted crossed product

C(Σ) �
κ̄
Θ Ξ decomposes as C0(Σ;K (Ξ)). �

Remark 6.5. Twisted crossed products with commutative C ∗-algebras are discussed

in [10]. In some situations, their primitive ideal space is understood (as a topological

space) and this can be transferred by our stable isomorphism to the level of C(Σ). By

Packer [10, Example 4.3], for instance, if the action Θ is free (all the isotropy groups are

trivial), then Prim[C(Σ)] is homeomorphic to the quasiorbit space QΘ(Σ). If, in addition,

Θ is minimal, C(Σ) will be a simple C ∗-algebra. If Θ is minimal without being free, the

situation is described in [10, Example 4.11]. �

Remark 6.6. Assume that Ξ act freely on Σ . By Theorem 5.1 and [10, Theorem 4.5],

C(Σ) is a continuous trace C ∗-algebra if and only if the action Θ is proper. �

We discuss briefly orthogonality matters. On Σ , we pick a Θ-invariant mea-

sure dσ . The relationship between the spaces S (Ξ ;A∞) and L2(Ξ × Σ) depends on

the assumptions we impose on (Σ, dσ). If dσ is a finite measure, for instance, one has

S (Ξ ;A∞) ⊂ L2(Ξ × Σ). Anyhow, the canonical map can be defined independently on

L2(Ξ × Σ).

Proposition 6.7. One has the orthogonality relations valid for F, G ∈ L2(Σ × Ξ):

〈M(F ), M(G)〉Ξ×Σ = 〈F̄ , G〉Ξ×Σ. (16)

Thus, the operator M : L2(Ξ × Σ) → L2(Ξ × Σ) is unitary. �
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566 I. Beltiţă and M. Măntoiu

Proof. It is enough to note that M = F ◦ C and to use the fact that F and C are

isomorphisms of L2(Σ × Ξ) if dσ is Θ-invariant. �
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[2] Beltiţă, I. and D. Beltiţă. “Smooth vectors and Weyl–Pedersen calculus for representations

of nilpotent lie groups.” Annals of the University of Bucharest (Mathematical Series) 1 (LIX),

no. 1 (2010): 17–46.

[3] Beltiţă, I. and D. Beltiţă. “Continuity of magnetic Weyl calculus.” Journal of Functional

Analysis 260, no. 7 (2011): 1944–68.

[4] Blackadar, B. K-Theory for Operator Algebras. New York: Springer, 1986.

[5] Blackadar, B. and J. Cuntz. “Differential Banach algebra norms and smooth subalgebras of

C ∗-algebras.” Journal of Operator Theory 26, no. 2 (1991): 255–82.

[6] Cordes, H. O. “On pseudodifferential operators and smoothness of special Lie-group repre-

sentations. Manuscripta Mathematica 28, no. 1–3 (1979): 51–69.

[7] Folland, G. B. Harmonic Analysis in Phase Space. Princeton, NJ: Princeton University Press,

1989.

[8] Kasprzak, P. “Rieffel deformation via crossed products.” Journal of Functional Analysis 257,

no. 1 (2009): 1288–332.
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