
Computer Physics Communications 193 (2015) 66–71
Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

A GPU enhanced approach to identify atomic vacancies in solid
materials
Joaquín Peralta a,∗, Claudia Loyola a, Sergio Davis b

a Departamento de Física, Facultad de Ciencias Exactas, Universidad Andrés Bello, Chile
b Departamento de Física, Facultad de Ciencias, Universidad de Chile, Chile

a r t i c l e i n f o

Article history:
Received 10 October 2014
Received in revised form
27 March 2015
Accepted 31 March 2015
Available online 11 April 2015

Keywords:
Atomic vacancy
GPU
Crystal

a b s t r a c t

Identification of vacancies in atomic structures plays a crucial role in the characterization of a material,
from structural to dynamical properties. In this work we introduce a computationally improved vacancy
recognition technique, based in a previous developed search algorithm. The procedure is highly parallel,
based in the use of Graphics Processing Unit (GPU), taking advantage of parallel random number
generation as well as the use of a large amount of simultaneous threads as available in GPU architecture.
This increases the spatial resolution in the sample and the speed during the process of identification
of atomic vacancies. The results show an improvement of efficiency up to two orders of magnitude
compared to a single CPU. Along with the above a reduction of required parameters with respect to the
original algorithm is presented. We show that only the lattice constant and a tunable overlap parameter
are enough as input parameters, and that they are also highly related. A study of those parameters is
presented, suggesting how the parameter choice must be addressed.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Materials that contain defects and impurities can exhibit some
of the most scientifically interesting and economically important
phenomena known. The nature of disorder in solids is a vast sub-
ject. The smallest degree of disorder that can be introduced into a
perfect crystal is a point defect, ofwhich themost common type are
the vacancies. A vacancy forms when an atom is missing from its
expected lattice site. Nowadays there is no well-established pro-
cedure to identify a vacancy in a structure snapshot provided by
computational simulation techniques. It has been shown that the
identification of vacancies is fundamental to understand different
materials properties, such as: (i) electronic andmechanical behav-
ior due to the presence of vacancies in oxide/inter-metallic alloy
interfaces [1,2]; (ii) the relevance of their migration near to the
melting temperature [3,4], which provide a relevant information
on the melting process; and (iii) collapse of crystals, where sim-
ulations suggest a strong connection with ring-like atomic move-
ment, due to the vacancies [5,6], among others. A previous work
of Davis et al. [7] gives us a complete and well-guided process to

∗ Corresponding author.
E-mail addresses: joaquin.peralta@unab.cl (J. Peralta), claudia.loyola@unab.cl

(C. Loyola), sdavis@gnm.cl (S. Davis).

http://dx.doi.org/10.1016/j.cpc.2015.03.022
0010-4655/© 2015 Elsevier B.V. All rights reserved.
identify a vacancy in a crystalline or amorphous structure, by the
use of virtual spheres [8].

This work proposes two main branches: first to redesign the
algorithm by the use of GPU architecture which will improve
computational efficiency; and second, to reduce the number of
input parameters, where the originalmethod [7] calls at least three
different parameters to be tuned independently.

The GPU architecture is a scheme based in multi-threading,
where each thread could be slower than a regular CPU, but the
advantage relays in the large number of simultaneous threads that
a GPU is capable to execute. Albeit the CPU has been widely used
as basis for high performance computing in the last decades, this is
clearly changing [9]. The above is mainly due to the cost, since the
use of commodity-scale processors in supercomputing clusters is
considerably more expensive that the price compared with a GPU
(or a hybrid CPU + GPU system), which is also more amenable to
general-purpose computations than 10 years ago. Along with this
transition, comes the need to adapt the computer codes to these
cache-based systems, because otherwise and due to their different
memory access scheme, the vector-machine codes performance
will be poor. Nowadays a large number of codes are beingmigrated
to GPU or hybrid systems [10], this means they are being modified
or in some cases rewritten from scratch.

In this work we will use the NVIDIA CUDA [11] version 6.0
with double precision floating point arithmetics, to generate the

http://dx.doi.org/10.1016/j.cpc.2015.03.022
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2015.03.022&domain=pdf
mailto:joaquin.peralta@unab.cl
mailto:claudia.loyola@unab.cl
mailto:sdavis@gnm.cl
http://dx.doi.org/10.1016/j.cpc.2015.03.022

J. Peralta et al. / Computer Physics Communications 193 (2015) 66–71 67
GPU code. A good performance scaling is expected when it is
possible to split the calculations in different sub-tasks, and assign
these to each GPU thread. In this particular case, the algorithm
is parallelizable mainly because we can simultaneously analyze
different regions of space and thus perform the vacancy search
faster. Our technique will allow us to improve the analysis time.
On the other hand, we eliminate one tunable parameter and relate
the others in a general way, based completely on the unit cell of
the material under study.

The work is arranged as follows: Section 2 describes the
algorithm step by step; Section 3 shows detailed information of
the material used to test the algorithm and the GPU and CPU
description; Section4presents the results for different stages of the
process: parameter fitting, comparison of the results, and speed-
up tests; a final discussion of the results and scopes of the present
work are shown in Section 5.

2. The search and fill algorithm

The recently developed search and fill (SF) algorithm [7] pro-
vide an atomic vacancies recognition, based in the incorporation of
virtual spheres (VS), which are overlapped with the atomic neigh-
borhood. In this method, each atom is considered as a sphere, with
the same radius as the VS. First, the total spatial overlap of each
atom with its atomic neighborhood is evaluated. For the atoms
with lower overlap, a test vacancy site is taken randomly around
them, then the total spatial overlap between the VS, centered in
the test vacancy site, and the atomic neighborhood is evaluated. If
the total overlap value is below the tolerance parameter, it will be
considered as a vacancy site, and an ‘‘empty sphere’’ will be placed.
Otherwise, the VS is randomly displaced a finite number of times
using a fictitious temperature (simulated annealing minimization
method) in order tominimize local overlap, until a vacancy is found
or the maximum number of iteration is completed. Unfortunately
the SF technique is not directly parallelizable because in the sim-
ulated annealing minimization there is a dependency of the actual
step with the previous one. It is possible to use more elaborate
techniques such as parallel tempering to run in CPU or GPU, but
the alternative proposed in thiswork ismore simple to implement,
computationally efficient and affordable for large systems. In spite
of the above, in Section 4.4wewill present the differences between
the running times of the SF and the proposed technique.

In this work we keep the use of the VS as the main compo-
nent in the atomic vacancy search. However the spatial mapping
of the neighborhood of this VS is analyzed using GPU-based tech-
niques. The use of the GPU allows a more efficient analysis for a
considerable large number of VS (and possible vacancies) in the
search space. The proposed technique GPU SF (GSF)will allow us to
avoid the use of additional refinements, such as simulated anneal-
ing minimization, which also bring additional parameters to be fit
tuned by hand. The overlap function used in this work is given by:

f (r/R0) = 1 − 0.75(r/R0) + 0.0625(r/R0)
3, (1)

where R0 correspond to the VS radius, and must be specifically
tuned to the problem. The f (r/R0) function is restricted to 0 ≤ r ≤

2R0, which implies than an overlap contribution of each neighbor
atom is between 0 and 1. The overall performance of the algorithm
is not dependent on the exact choice of the overlap function. With
this definition in mind, we will proceed to describe the algorithm
below.

As a first step, the algorithm determines the atomic overlap of
each atom in the structure associated to its neighborhood, defined
by r < 2R0, using a single GPU thread for each. A sorting process,
from lower to higher overlap, is carried out on the atoms. For each
atom, we build a three dimensional cube around it of side 2R0. A
large number of random points, n, are generated homogeneously
Table 1
For each crystal structure are presented the distance of the first and second
neighbors and their respective number of neighbors, the virtual sphere radius and
R2/R1 .

Crystal R1 N1 R2 N2 R0 R2/R1

FCC a
√
2/2 12 a 6 a(

√
2 + 2)/8

√
2

BCC a
√
3/2 8 a 6 a(

√
3 + 2)/8 2

√
3/3

SC a 6 a
√
2 12 a(

√
2 + 1)/4

√
2

inside that cube, using the curandGenerateUniformDouble
method of the CUDA CURAND libraries.1 Here a larger value of n
will not significantly improve the accuracy of the vacancy found,
and just will reduce the performance of the search process, as we
will discuss later.

Once the total overlap is determined for each random point (at
each GPU thread), we search for the minimum overlap. Based in a
criteria value, fovp (Eq. (2)), the minimum overlap could or could
not be designated as a vacancy. Once the point is recognized as
a vacancy, a single VS is located in that position, to avoid multi-
vacancies overlap. The overlap value of every atom in the structure
is updated once a vacancy is found.

Finally, recognition of a VS as a vacancy will be directly related
to the choice of fovp as well as the value of R0. This will remove
the requirement of a fictitious temperature or any other additional
parameter, as in the original algorithm [7]. The GSF algorithm is
briefly summarized as follows:

1. Sort the atoms of the original structure by their total overlap
value.

2. Build a cubic structure around each atom, starting for the
atom with minimum total overlap value to the maximum, and
generate uniformly distributed random points inside.

3. Each point is considered as a virtual sphere with radius R0.
4. Using a large number of GPU threads evaluate the total overlap

for each random point.
5. Search and find the minimum total overlap value of the set of

random points.
6. Identify if the point is a vacancy comparing its total overlap

value with the tolerance value, fovp.

In what follows, we present guidelines that could help deter-
mine the necessary parameters to find vacancies in a solidmaterial.

2.1. The parameters

The choice of R0, is suggested to be considered at some value be-
tween R1/2 and R2/2, that correspond to the half of the distances
to the first and second neighbor respectively. A value of R0 close to
R1/2 will give us a larger number of vacancies, because it becomes
most probable to find a lower overlap in some spatial points. On
the other hand, if R0 is close to R2/2 the number of vacancies will
be reduced because the total overlap will include partial contribu-
tion provided by second neighbors. An initial reasonable value for
R0, used here, is the average value between the mentioned limits,
R0 = (R1 + R2)/4. Table 1 presents some values of R0 for typical
crystalline structures. All the following analysis will use the value
of a = 3.1652 Å. The effect of different choice of R0 will be pre-
sented in Section 4.

Once R0 is chosen, the determination of the appropriate value
of fovp is not straightforward. For a perfect crystalline structure,
the expected total overlap value of a missing atom is exactly the
sum of the overlap function with the closest neighbors. As an ex-
ample, a BCC crystalline structure is composed by 8 nearest neigh-
bors; if we remove an atom, the virtual sphere will have a total

1 https://www.clear.rice.edu/comp422/resources/cuda/html/curand/index.html.

https://www.clear.rice.edu/comp422/resources/cuda/html/curand/index.html

68 J. Peralta et al. / Computer Physics Communications 193 (2015) 66–71
overlap value of 8 × f (r/R0), with r = R1. Any value less than
or equal to this, will be considered a vacancy. Particularly, if we
use R0 = (R1 + R2)/4 and r = R1, the total overlap value will
be equal to fovp = N · f (4/(1 + R2/R1)), where N is the number
of first nearest neighbors, and any point with a total overlap value
minor or equal to fovp must be considered as a vacancy. Despite the
above, the structure is not always related to a perfect crystal, be-
cause atoms are vibrating around an equilibrium position at finite
temperature. For those cases, the value of r = R1 must bemodified.
Thus, the right value of fovp is always related to the particular study
case. In order to not introduce additional external parameters, we
will use the same r = R1 value, but with an additional percent-
age of displacement, x. Using this simple approach to choose this
parameter, we are able to define:

fovp = N · f

4(1 − x/100)
1 + R2/R1


, (2)

with R1, and R2 as the first and second neighbor distance respec-
tively, N the number of first nearest neighbors, R0 = (R1 + R2)/4
and r = R1 − xR1/100. The value of x is an estimate of the percent-
age of displacement of the atoms from their equilibrium position.
In the case of x = 0, the process works for a perfect crystalline
structure. A reasonable number for x is around 5%, but it always
will depend on the structure under study. We will discuss this pa-
rameter in Section 4.

3. Computational procedure

The algorithmwas tested using a tungstenBCC crystalline struc-
ture of 2000 atoms, with a lattice constant of a = 3.1652 Å,
at different temperatures. The molecular dynamics simulations
were performed in the microcanonical ensemble using the Fin-
nis–Sinclair [12,13] inter-atomic potential, with a total time of
50,000∆t where ∆t = 1 fs. The temperatures chosen for the sam-
ples were 300 K, 1000 K, 2000 K, 3000 K, 3500 K and 6000 K. In
order to achieve this, each sample was thermalized to the desire
temperature during the first 30,000∆t , by rescaling the velocities.
Then the sample was relaxed during the next 20,000∆t . The final
structure was taken for each temperature, as an example see Fig. 1,
and used to generate random vacancies, and then the new configu-
ration was tested in the vacancies recognition code. We will iden-
tify this structure later on, as the initial structure, associated to each
temperature. All theMD calculationswere performed using a stan-
dard code [14].

In this work we present the results of the algorithm perfor-
mance using a NVIDIA Quadro K6000 card, with compute capa-
bility 3.5. The CUDA version used supports a new shared memory
scheme,2 which is used in the vacancies and atom management,
taking advantage of the C++ object-oriented design in the algo-
rithm. The Central Processing Unit (CPU), to compare with, is an
AMD Opteron 6272 Interlagos 2.1 GHz 16 MB L3 cache. In the CPU,
the algorithm was compiled with GNU-g++ version 4.7 using
the compiler flags -O3 -Wall.

4. Results

For each temperature we use an initial structure with 2000
atoms, as it was mentioned in Section 3, in a cubic cell of 31.652 Å.
For these structures, with different temperature each one, the va-
cancies were randomly generated, from 2% to 12% every 2% one
hundred times for each percentage, taking the same initial struc-
ture. The final results are the average of those hundred structures
analyzed with the algorithm. In the vacancy search process we use
n = 10,000 random points.

2 http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/.
Fig. 1. The figure shows a tungsten crystal at 1000 K. The configuration correspond
to the last step of the molecular dynamics simulation.

4.1. The R0 parameter

A first analysis, related to the parameter R0 with fovp in a range
between 0 and 0.3, was made using the structures with a tem-
perature of 1000 K. The values of R0 used were R1

0 = 1.4765 Å,
R2
0 = 1.3805 Å and R3

0 = 1.5726 Å, and correspond to the av-
erage between R1/2 and R2/2, R1/2 + 0.01 Å and R2/2 − 0.01 Å,
respectively. The results for these three different values of R0 are
displayed in Fig. 2. We can observe a ‘‘plateau’’ for a specific range
of values in fovp associated to each R0, which gives the correct ra-
tio of vacancies found over vacancies generated (vf /vg ∼ 1). For
R1
0, Fig. 2(b), it is found a reasonable number of vacancies when the

overlap value is between 0.11 and 0.19. On the other hand, when
the values are closest to R1/2 and R2/2 (R2

0 and R3
0), the optimal val-

ues of fovp are displaced to lower and higher values respectively, as
we can observe in Fig. 2(a) and (c).

Based on Eq. (2) and taking the value of R1/R2 from Table 1, we
can obtain the adequate percentage, x, from the fovp values found.
If we take R1

0, the suggested value of x is 5% approximately. If we
take this 5% for R2

0 and R3
0, the values of fovp correspond to 0.029

and 0.3549 respectively, which are in agreement with the optimal
expected values in Fig. 2(a) and (c). The above suggests that for
different choices of R0 we must set different values of fovp. Based
on the previous results the choice of fovp (or x) is highly dependent
of the choice of R0. From here, we will use the average as the
parameter choiced for R0, i.e. R1

0. The next step will analyze the
effect of the temperature in the system.

4.2. Temperature effect in overlapping

The effect of the temperature in the fovp value, for a fixed R0, was
also analyzed. The results are presented in Fig. 3 for temperatures
of 300 K, 2000 K, 3500 K, and 6000 K. We can observe that at room
temperature the optimal values of overlap are located in the same
range that the case presented at 1000 K in Fig. 2(b). The plateau,
that is observed clearly at low temperature, starts to disappear
when we approach the melting temperature of tungsten ∼3683
K [15]. Despite this, the optimal values of fovp are in the same
range, and directly related to the number of intrinsic vacancies

http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/

J. Peralta et al. / Computer Physics Communications 193 (2015) 66–71 69
a b

c

Fig. 2. The figure shows the average found vacancies vf with respect to generated ones vg . Three different cases are presented for different values of R0: 1.380571, 1.476586,
and 1.572600, which correspond to (a), (b), and (c) respectively. The optimal values for R0 and fovp are given when vf /vg ∼ 1.
a b

c d

Fig. 3. The figures show the effect of the temperature in the fovp parameter. The temperatures correspond to 300 K, 2000 K, 3500 K and 6000 K, for (a), (b) (c) and (d)
respectively. As the temperature increases, the plateau (that identifies the optimal values of fovp) disappears. Notice that for the liquid case (d), the range of fovp is between
0.11 and 0.19, similar to the case for (a), the solid case.
present in the sample. It is well-known that a vacancy cannot be
defined in a liquid. Regardless, some atoms were removed from a
structure snapshot from a liquid state, to test the behavior of the
algorithm, this could be of interest in the context of amorphous
structures. Interestingly the range is almost the same when the
structure corresponds to a liquid state.
4.3. The algorithm accuracy

The algorithm accuracy was assessed by calculating the dis-
tance ∆x between the position of the vacancies generated and
found, and the total number of vacancies in each case. The results
are presented in Table 2 for three different temperatures and three

70 J. Peralta et al. / Computer Physics Communications 193 (2015) 66–71
Table 2
Estimated distance between the position of the vacancy generated and found, with a confidence of 68% and 95%, for
different temperatures, vacancies and number of random points. This table shows at the same time, the number of
vacancies generated (vg) and the number found (vf) for 100,000 random points.

Temperature %Vac (vg) max∆x %68 confidence max∆x %95 confidence vf (for n2)
n1 n2 n3 n1 n2 n3

300 K
2 (40) 0.4211 0.3991 0.5046 0.8712 0.9036 0.8777 40.77±0.88
6 (120) 0.3979 0.3831 0.4482 0.8221 0.8253 0.8680 119.46±1.45
12 (240) 0.4217 0.4071 0.4353 0.8007 0.7812 0.7971 234.2±2.75

1000 K
2 (40) 0.4016 0.3748 0.3805 0.8121 0.8267 0.8448 40.92±0.67
6 (120) 0.4230 0.3896 0.3612 0.8248 0.8075 0.7959 119.47±1.38
12 (240) 0.4443 0.4160 0.4122 0.8061 0.7917 0.7830 233.69±3.01

3000 K
2 (40) 0.4802 0.4362 0.4266 0.8431 0.8377 0.8358 41.5±1.35
6 (120) 0.4921 0.4595 0.4516 0.8508 0.8411 0.8299 116.37±2.5
12 (240) 0.5063 0.4753 0.4703 0.8572 0.8383 0.8376 223.49±4.26
Table 3
Comparing the GSF and SF algorithm using different architectures.

of Atoms Architecture GSF (seg) SF (seg)

2,000 GPU 8.05 272.61
CPU 19.40/529.78 (32CPU/1CPU) 74.11 (1CPU)

16,000 GPU 42.25 2,328.85
CPU 500.95/15,543.33 (32CPU/1CPU) 1,881.64 (1CPU)
Fig. 4. The error distribution (blue bars) for the case of T = 1000 K, n = n2
and 6% of generated vacancies. The kernel density estimation (red line) was used
to calculate the maximum bounds.

number of random points, n (see Section 2), uniformly distributed:
n1 = 10,000, n2 = 100,000, and n3 = 500,000. The value of fovp
chosen was 0.13, due to the good results obtained for the temper-
ature of 1000 K. The average calculation time for each case were
13.6±0.2s, 30.9±0.7s, 107.0±2.8s for n1, n2 and n3, respectively.

We only present the number of vacancies found, vf , in the case
of n2, because the results are in the same range for n1 and n3. We
report maximum bounds for ∆x with 68% and 95% confidence,
calculated using kernel density estimation [16]. We use these
bounds instead of the center confidence intervals because the error
distribution is not symmetrical, as shown Fig. 4.

The results show that the use of a higher n does not significantly
improve the spatial location of the vacancy, and becomes detri-
mental to the calculation speed. The accuracy of the number of va-
cancies found slightly decreases when the temperature is close to
the melting point or the percentage of vacancies increases. In gen-
eral the GSF algorithm finds (or is close to) the right number and
coordinates of the placed vacancies. The lower vacancies found at
3000 K for 6% and 12% of generated vacancies is expected based
on the overlap value used. As we can see in Fig. 3(b) and (c) for
fovp = 0.13 the rate vf /vg is lower than 1.

In Fig. 5 the structures at 1000 K and 3000 K, show the positions
of generated and found vacancies, both with a 6% of vacancies.
A visual inspection also suggests that a reasonable number of
vacancies were found in the process, and the location of each of
them is near to the original removed atoms.

4.4. Computational efficiency

A time consuming comparison between the original SF [7] and
the GSF algorithms has been made using CPU and GPU architec-
tures. There is no clear procedure to do these comparisons [17,18],
for this reasonwe just consider the simulation time for each case. In
GPU, we have incorporated CUDA code in the SF algorithm (easily
migratable parts), to compare with the GSF. On the other hand the
GSF algorithm has been migrated to CPU using one and multi-CPU
(32 CPU, based in OpenMP), in order to compare with SF. Table 3
shows the results for 2000 and 16,000 atoms with 4% and 2% of
vacancies respectively.

The larger time corresponds to the original SF algorithm with
GPU, the poor result remains in that SF is not directly convertible
to GPU during the Monte Carlo procedure, and the constant calls
to the CUDA kernels implemented dropped the performance. For
the CPU case, the GSF is faster than SF with the use of OpenMP,
however without OpenMP the performance is lower than the
original SF algorithm using a single CPU. The results show that
an improvement is achieved from the original SF algorithm, with
the new GSF (particularly for the GPU implementation). Next, a
comparison between the cases with GPU/GSF and CPU/SF (using
one single CPU) is presented for different cases of vacancies and
number of atoms.

The comparison presented in Table 4 shows five different struc-
ture sizes that were considered: with 2000, 4,000, 8,000, 16,000,
and 32,000 atoms at T = 1000 K. The structures were generated
using the procedure described in Section 3. Three different vacancy
percentages were randomly generated for each case, 2%, 6%, and
12%. The codes were executed using the values of R0 = 1.4766 Å
and fovp = 0.15.

Table 4 shows the calculation time for the different simulation
sizes for GPU/GSF and CPU/SF algorithms. We can see an improve-
ment from ∼15X to ∼100X from the smaller to larger systems re-
spectively. This is a fundamental change in the study of large-scale

J. Peralta et al. / Computer Physics Communications 193 (2015) 66–71 71
Fig. 5. The figure shows the removed atoms (light blue spheres) and the vacancies foundwith the algorithm (white spheres) at twodifferent temperatures. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 4
Values of the calculation time for the different algorithms, GSF and SF, with
different structure sizes and vacancies.

of Atoms 2% 6% 12%
GSF/SF (s) GSF/SF (s) GSF/SF (s)

2,000 6.50/75.23 7.60/95.42 8.9/160.1
4,000 14.58/223.26 12.52/440.76 15.2/461.7
8,000 37.93/1046.34 47.12/1555.72 58.5/2679.0

16,000 118.00/4803.81 137.90/10769.61 177.3/13193.96
32,000 422.01/30917.45 549.08/53870.07 746.1/92219.03

systems. Albeit the speed up seems promising, it is fundamental to
compare with the CPU/GSF case using parallel implementations,
where with 32 CPU using OPENMP, show that the GPU speed up is
just between ∼2X and ∼11X for small and larger systems respec-
tively.

5. Conclusion

The use of GPU architecture in the search and fill algorithm,
to find vacancies in crystalline and non-crystalline structures, has
been incorporated. We have used spatial decomposition which is
straightforward to implement in GPU. The results show a radical
improvement in the calculation speed, due to the use of GPU ar-
chitecture without loss of accuracy. Because simulated annealing
minimization is not longer needed, a reduction of adjustable pa-
rameters is also achieved. We have determined a relation between
the parameters needed by the GSF algorithm, fovp and R0, which
are highly related to the unit cell of the structure under study. The
range of the fovp is mostly preserved independently of the temper-
ature, which allow us to obtain a reasonable percentage of vacan-
cies.

An enhancement was achieved in speed from ∼15X to ∼100X
compared with one-single CPU and SF algorithm, and from ∼2X
to ∼11X compared with multicore-CPU (32 CPU) and GSF algo-
rithm. This means that problems that involve a very large num-
ber of atoms are easily treatable now. Further treatment can be
addressed tomulti-component systems and structures with voids.

Acknowledgments

This work is supported by FONDECYT Iniciación 2013,
11130501. SD and JP also acknowledge partial funding from
FONDECYT 1140514.
References

[1] V. Maurice, G. Despert, S. Zanna, M.-P. Bacos, P. Marcus, Self-assembling of
atomic vacancies at an oxide/intermetallic alloy interface, NatureMater. 3 (10)
(2004) 687–691. http://dx.doi.org/10.1038/nmat1203.

[2] K. Badura-Gergen, H.-E. Schaefer, Thermal formation of atomic vacancies
in Ni3Al, Phys. Rev. B 56 (6) (1997) 3032–3037. http://dx.doi.org/10.1103/
physrevb.56.3032.

[3] H. Zhang, M. Khalkhali, Q. Liu, J.F. Douglas, String-like cooperative mo-
tion in homogeneous melting, J. Chem. Phys. 138 (12) (2013) 12A538.
http://dx.doi.org/10.1063/1.4769267.

[4] M. Forsblom, G. Grimvall, How superheated crystals melt, Nature Mater. 4
(2005) 388–390. http://dx.doi.org/10.1038/nmat1375.

[5] F. Delogu, Cooperative dynamics and self-diffusion in superheated crystals,
J. Phys. Chem. B 109 (32) (2005) 15291–15296. http://dx.doi.org/10.1021/
jp052000x.

[6] X.-M. Bai, M. Li, Ring-diffusion mediated homogeneous melting in the
superheating regime, Phys. Rev. B 77 (13) http://dx.doi.org/10.1103/physrevb.
77.134109.

[7] S.M. Davis, A.B. Belonoshko, B. Johansson, Searchfill: A stochastic optimization
code for detecting atomic vacancies in crystalline and non-crystalline systems,
Comput. Phys. Comm. 182 (5) (2011) 1105–1110. http://dx.doi.org/10.1016/j.
cpc.2010.12.009.

[8] M.J. Pozo, S. Davis, J. Peralta, Statistical distribution of thermal vacancies close
to the melting point, Physica B 457 (0) (2015) 310–313. http://dx.doi.org/10.
1016/j.physb.2014.10.023.

[9] M. Ciżnicki, M. Kierzynka, P. Kopta, K. Kurowski, P. Gepner, Benchmarking data
and compute intensive applications on modern CPU and GPU architectures,
Procedia Computer Science 9 (2012) 1900–1909. http://dx.doi.org/10.1016/j.
procs.2012.04.208.

[10] E. Danovaro, A. Clematis, A. Galizia, G. Ripepi, A. Quarati, D. D’Agostino,
Heterogeneous architectures for computational intensive applications: A cost-
effectiveness analysis, J. Comput. Appl. Math. 270 (2014) 63–77. http://dx.doi.
org/10.1016/j.cam.2014.02.022.

[11] J. Nickolls, I. Buck, M. Garland, K. Skadron, Scalable parallel programmingwith
CUDA, Queue 6 (2) (2008) 40. http://dx.doi.org/10.1145/1365490.1365500.

[12] M.W. Finnis, J.E. Sinclair, A simple empirical n-body potential for transi-
tion metals, Phil. Mag. A 50 (1) (1984) 45–55. http://dx.doi.org/10.1080/
01418618408244210.

[13] G. Ackland, A. Sutton, V. Vitek, Twenty five years of Finnis–Sinclair
potentials, Phil. Mag. 89 (34–36) (2009) 3111–3116. http://dx.doi.org/10.
1080/14786430903271005.

[14] S. Davis, C. Loyola, F. González, J. Peralta, Las Palmeras molecular dynamics:
A flexible and modular molecular dynamics code, Comput. Phys. Comm. 181
(12) (2010) 2126–2139. http://dx.doi.org/10.1016/j.cpc.2010.08.030.

[15] V. Krsjak, S. Wei, S. Antusch, Y. Dai, Mechanical properties of tungsten
in the transition temperature range, J. Nucl. Mater. 450 (1–3) (2014)
81–87. http://dx.doi.org/10.1016/j.jnucmat.2013.11.019. Special Theme Issue
on Spallation Materials Technology. Selected papers from the Eleventh
International Workshop on Spallation Materials Technology (IWSMT-11).

[16] B.W. Silverman, Density estimation for statistics and data analysis.
[17] V.W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A.D. Nguyen, N. Satish,

M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal, P. Dubey,
Debunking the 100x gpu vs. cpumyth: An evaluation of throughput computing
on cpu and gpu, SIGARCH Comput. Archit. News 38 (3) (2010) 451–460.
http://dx.doi.org/10.1145/1816038.1816021.

[18] C. Gregg, K. Hazelwood, Where is the data? why you cannot debate cpu vs.
gpuperformancewithout the answer, in: PerformanceAnalysis of Systems and
Software (ISPASS), 2011 IEEE International Symposium on, 2011, pp. 134–144.
http://dx.doi.org/10.1109/ISPASS.2011.5762730.

http://dx.doi.org/10.1038/nmat1203
http://dx.doi.org/10.1103/physrevb.56.3032
http://dx.doi.org/10.1103/physrevb.56.3032
http://dx.doi.org/10.1103/physrevb.56.3032
http://dx.doi.org/10.1103/physrevb.56.3032
http://dx.doi.org/10.1103/physrevb.56.3032
http://dx.doi.org/10.1103/physrevb.56.3032
http://dx.doi.org/10.1103/physrevb.56.3032
http://dx.doi.org/10.1103/physrevb.56.3032
http://dx.doi.org/10.1103/physrevb.56.3032
http://dx.doi.org/10.1063/1.4769267
http://dx.doi.org/10.1038/nmat1375
http://dx.doi.org/10.1021/jp052000x
http://dx.doi.org/10.1021/jp052000x
http://dx.doi.org/10.1021/jp052000x
http://dx.doi.org/10.1021/jp052000x
http://dx.doi.org/10.1021/jp052000x
http://dx.doi.org/10.1021/jp052000x
http://dx.doi.org/10.1021/jp052000x
http://dx.doi.org/10.1103/physrevb.77.134109
http://dx.doi.org/10.1103/physrevb.77.134109
http://dx.doi.org/10.1103/physrevb.77.134109
http://dx.doi.org/10.1103/physrevb.77.134109
http://dx.doi.org/10.1103/physrevb.77.134109
http://dx.doi.org/10.1103/physrevb.77.134109
http://dx.doi.org/10.1103/physrevb.77.134109
http://dx.doi.org/10.1103/physrevb.77.134109
http://dx.doi.org/10.1103/physrevb.77.134109
http://dx.doi.org/10.1016/j.cpc.2010.12.009
http://dx.doi.org/10.1016/j.cpc.2010.12.009
http://dx.doi.org/10.1016/j.cpc.2010.12.009
http://dx.doi.org/10.1016/j.cpc.2010.12.009
http://dx.doi.org/10.1016/j.cpc.2010.12.009
http://dx.doi.org/10.1016/j.cpc.2010.12.009
http://dx.doi.org/10.1016/j.cpc.2010.12.009
http://dx.doi.org/10.1016/j.cpc.2010.12.009
http://dx.doi.org/10.1016/j.cpc.2010.12.009
http://dx.doi.org/10.1016/j.cpc.2010.12.009
http://dx.doi.org/10.1016/j.cpc.2010.12.009
http://dx.doi.org/10.1016/j.physb.2014.10.023
http://dx.doi.org/10.1016/j.physb.2014.10.023
http://dx.doi.org/10.1016/j.physb.2014.10.023
http://dx.doi.org/10.1016/j.physb.2014.10.023
http://dx.doi.org/10.1016/j.physb.2014.10.023
http://dx.doi.org/10.1016/j.physb.2014.10.023
http://dx.doi.org/10.1016/j.physb.2014.10.023
http://dx.doi.org/10.1016/j.physb.2014.10.023
http://dx.doi.org/10.1016/j.physb.2014.10.023
http://dx.doi.org/10.1016/j.physb.2014.10.023
http://dx.doi.org/10.1016/j.physb.2014.10.023
http://dx.doi.org/10.1016/j.procs.2012.04.208
http://dx.doi.org/10.1016/j.procs.2012.04.208
http://dx.doi.org/10.1016/j.procs.2012.04.208
http://dx.doi.org/10.1016/j.procs.2012.04.208
http://dx.doi.org/10.1016/j.procs.2012.04.208
http://dx.doi.org/10.1016/j.procs.2012.04.208
http://dx.doi.org/10.1016/j.procs.2012.04.208
http://dx.doi.org/10.1016/j.procs.2012.04.208
http://dx.doi.org/10.1016/j.procs.2012.04.208
http://dx.doi.org/10.1016/j.procs.2012.04.208
http://dx.doi.org/10.1016/j.procs.2012.04.208
http://dx.doi.org/10.1016/j.cam.2014.02.022
http://dx.doi.org/10.1016/j.cam.2014.02.022
http://dx.doi.org/10.1016/j.cam.2014.02.022
http://dx.doi.org/10.1016/j.cam.2014.02.022
http://dx.doi.org/10.1016/j.cam.2014.02.022
http://dx.doi.org/10.1016/j.cam.2014.02.022
http://dx.doi.org/10.1016/j.cam.2014.02.022
http://dx.doi.org/10.1016/j.cam.2014.02.022
http://dx.doi.org/10.1016/j.cam.2014.02.022
http://dx.doi.org/10.1016/j.cam.2014.02.022
http://dx.doi.org/10.1016/j.cam.2014.02.022
http://dx.doi.org/10.1145/1365490.1365500
http://dx.doi.org/10.1080/01418618408244210
http://dx.doi.org/10.1080/01418618408244210
http://dx.doi.org/10.1080/01418618408244210
http://dx.doi.org/10.1080/01418618408244210
http://dx.doi.org/10.1080/01418618408244210
http://dx.doi.org/10.1080/01418618408244210
http://dx.doi.org/10.1080/01418618408244210
http://dx.doi.org/10.1080/14786430903271005
http://dx.doi.org/10.1080/14786430903271005
http://dx.doi.org/10.1080/14786430903271005
http://dx.doi.org/10.1080/14786430903271005
http://dx.doi.org/10.1080/14786430903271005
http://dx.doi.org/10.1080/14786430903271005
http://dx.doi.org/10.1080/14786430903271005
http://dx.doi.org/10.1016/j.cpc.2010.08.030
http://dx.doi.org/10.1016/j.jnucmat.2013.11.019
http://dx.doi.org/10.1145/1816038.1816021
http://dx.doi.org/10.1109/ISPASS.2011.5762730

	A GPU enhanced approach to identify atomic vacancies in solid materials
	Introduction
	The search and fill algorithm
	The parameters

	Computational procedure
	Results
	The R0 parameter
	Temperature effect in overlapping
	The algorithm accuracy
	Computational efficiency

	Conclusion
	Acknowledgments
	References

