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a  b  s  t  r  a  c  t

We  calculate  the electrical  resistivity  of a metallic  specimen,  under  the  combined  effects  of  electron
scattering  by  impurities,  grain  boundaries,  and  rough  surfaces  limiting  the  film,  using  a quantum  theory
based  upon  the  Kubo  formalism.  Grain boundaries  are  represented  by a one-dimensional  periodic  array
of Dirac  delta  functions  separated  by  a distance  “d”  giving  rise  to a Kronig–Penney  (KP)  potential.  We
use  the  Green’s  function  built  from  the  wave  functions  that  are solutions  of  this  KP  potential;  disorder  is
included by  incorporating  into  the theory  the  probability  that  an  electron  is  transmitted  through  several
successive  grain  boundaries.  We  apply  this  new  theory  to  analyze  the  resistivity  of  samples  S1,  S2,  S7
and  S8  measured  between  4  and  300  K  reported  in Appl.  Surf.  Science  273,  315  (2013).  Although  both  the
classical  and the  quantum  theories  predict  a resistivity  that  agrees  with  experimental  data  to  within  a
few  percent  or  better,  the phenomena  giving  rise  to the  increase  of resistivity  over  the  bulk  are  remark-
ably  different.  Classically,  each  grain  boundary  contributes  to the  electrical  resistance  by reflecting  a
certain  fraction  of  the  incoming  electrons.  In the quantum  description,  there  are  states  (in  the  allowed
KP  bands)  that  transmit  electrons  unhindered,  without  reflections,  while  the  electrons  in  the  forbidden
KP  bands  are localized.  A  distinctive  feature  of  the  quantum  theory  is  that  it provides  a  description  of
the  temperature  dependence  of  the  resistivity  where  the  contribution  to the  resistivity  originating  on
electron-grain  boundary  scattering  can  be identified  by  a  certain  unique  grain  boundary  reflectivity  R,
and the  resistivity  arising  from  electron-impurity  scattering  can  be  identified  by  a  certain  unique  �IMP

mean  free  path  attributable  to  impurity  scattering.  This  is  in contrast  to the  classical  theory  of  Mayadas
and  Shatzkes  (MS), that does  not  discriminate  properly  between  a resistivity  arising  from  electron-grain
boundary  scattering  and that arising  from  electron-impurity  scattering,  for  MS  theory  does  not  allow
parameters  (�IMP, R)  to be  uniquely  adjusted  to  describe  the  temperature  dependence  of  the  resistivity
data.  The  same  data  can  be described  using  different  sets  of (R, �IMP); the latter  parameter  can  be varied
by  two  orders  of  magnitude  in  the  case  of  small  grained  samples  d < �,  and  by  a factor  of  4 in  the  case  of
samples  made  out of large  grains  d >  � (where  � is the  bulk mean  free  path at 300  K).  For  samples  d >  �, the
increase  of resistivity  is attributed  not  to electrons  being  partially  reflected  by the  grain  boundaries,  but  to
a  decrease  in  the  number  of  states  at  the  Fermi  sphere  that are  allowed  bands  of the KP potential;  hence  the
reflectivity  required  by  the quantum  model  turns  out  to be an order  of magnitude  smaller  than  that  required

by  the classical  MS  theory.  For  samples  d <  �, the resistivity  increase  originates  mainly  from  Anderson  local-
ization  induced  by  electron  grain  boundary  scattering  from  disordered  successive  grains  characterized  by a
localization  length  of the  order of 110  nm  and  not from  electrons  being  partially  reflected  by grain  boundaries;
the  outcome  is  that the  reflectivity  required  by  the  quantum  theory  turns  out  to be about  4  times  smaller
than that required  by  the  classical  MS  theory.
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. Introduction

Progress in the manufacturing of integrated circuits has led
o a decrease of the linear dimensions of connecting lines, such
hat the width of interconnects is now comparable to or smaller
han the electron mean free path in the bulk at 300 K (39 nm in
u), and the wire width is rapidly approaching dimensions which
re about an order of magnitude larger than the electronic Fermi
ave length. At these short scales quantum effects are expected

o dominate charge transport. Hence, a quantum description of
he increase in resistivity arising from electron scattering by grain
oundaries and rough surfaces (over and above the resistivity of
he bulk) is necessary. In this paper we present such a quantum
heory.

Fuchs [1] and Sondheimer [2] (FS) published a description of
ize effects on thin metallic films based upon a solution of the
oltzmann Transport Equation (BTE). However, measurements of
he resistivity on thin films of increased purity revealed that as
he film thickness shrinks, the resistivity increases beyond the FS
redictions. Mayadas and Shatzkes (MS) attributed this additional

ncrease of resistivity to electron scattering by grain boundaries;
hey developed a theory that includes electron scattering by both
ough surfaces and by grain boundaries, that is also based upon a
olution of BTE [3].

When solving BTE, the effects of scattering by
honons/distributed impurities is accounted for by the time
f relaxation �, while rough surface scattering is accounted for
y choosing appropriate boundary conditions. Grain boundary
cattering is represented in MS  theory by a Boltzmann collision
ntegral including a transition probability calculated by first-order
erturbation theory, where the unperturbed electron states are
lane waves and the perturbation Hamiltonian is a series of delta
unction potentials equally spaced, oriented perpendicular to the
lectric field [3].

Experimental research published recently, and theoretical
esults published over decades raise fundamental questions
egarding the classical MS  formalism, in spite of its wide spread
se in microelectronics.

From the experimental side, the resistivity between 4 and
00 K has been reported, as well as the Hall effect measured
etween 4 and 50 K. These transport measurements were per-
ormed in specimens where grain size and surface roughness
ere no longer considered as adjustable parameters, but were
etermined instead via independent STM and TEM experiments
erformed on each sample [4–9], and grain size as well as film
hickness were varied independently. It turns out that when the
old films are made out of columnar grains (extending from the
ottom to the top of the film), and when d > t (where d is the
verage grain diameter and t the film thickness), the Hall mobil-
ty �H (4) at 4 K increases linearly with t. However, when d < t,

H (4) increases linearly with grain diameter d regardless of film
hickness [5]. Borrowing arguments from the theory of mobil-
ty of electrons in solids [10], this linear dependence of �H on

 or t allows the univocal identification of whether the dominant
lectron scattering mechanism at 4 K is electron-grain boundary
r electron-surface scattering, respectively. If resistivity data are
nalyzed following MS  theory, then in films where d ≈ 12 nm, the
ncrease in resistivity at 4 K (where electron-grain boundary scat-
ering is dominant) turns out to be about two orders of magnitude
Fig. 3 in Ref. [4]). It is quite doubtful that an increase in resistiv-
ty larger than one, of the order of a factor 100, could be correctly
escribed by a formalism based upon first order perturbation the-

ry.

Moreover, evidence pointing to the failure of semi classical
odels to describe the resistivity of nanometric polycrystalline

ungsten films has recently been published by Choi et al.; in
cience 329 (2015) 184–196 185

this work the authors state explicitly that “. . .first principle
methods based on Green’s functions approaches represent an
important way forward toward developing more predictive mod-
els” [11].

From the theoretical side, Monte Carlo simulations of the elec-
trical conduction in thin polycrystalline metallic films has recently
been published by Rickman and Barmack; the results suggest
that microstructure plays an important role (not included in the
classical phenomenological model of Mayadas and Shatzkes), lead-
ing to a conductivity that can be described in limiting cases in
terms of either a simplified trapping model or a hopping model
[12].

Another aspect that seems questionable in MS theory, is that
the solution of BTE in the presence of scattering in the bulk (B)
characterized by a relaxation time �, and grain boundary scat-
tering (GB), can be described by an effective relaxation time �*
given by Eq. (7b) from Ref. [3], analogous to Mathiessen’s rule,
which leads to Eq. (8) from Ref. [3], for the conductivity of a speci-
men  where both electron scattering processes are present. Hence,
the authors assume that the resistivity observed when both elec-
tron scattering processes (B) and (GB) are present, do not interfere
with each other. Although a quantum theory of electron-grain
boundary scattering has not emerged yet, several quantum the-
ories describing electron scattering in the bulk and electron-rough
surface scattering have been published. Theoretical calculations
recently published [13,14], as well as experimental evidence on
CoSi2 films, suggest that the correct quantum description of charge
transport leads to interference between electron scattering in the
bulk and electron-rough surface scattering when both electron
scattering mechanisms are present; such interference gives rise
to severe violations of Mathiessen’s rule in nanometric metallic
structures [15]. A similar interference between electron scatter-
ing in the bulk and electron-grain boundary scattering leading to
severe violations of Mathiessen‘s rule may  be expected from a
quantum description of charge transport; this will be addressed
to below.

Perhaps the most severe criticism to MS theory is that it does
not seem consistent with Bloch’s theorem. On the one hand, Bloch’s
solutions of the Schrödinger equation describing an electron in a
periodic potential V0(r) = V0(r + �) are known to exhibit the period-
icity � of the lattice potential V0(r), and hence extend throughout
the crystal. On the other hand, the MS  formalism includes the effect
of columnar grain boundaries by means of another periodic poten-
tial made up of a series of uniform, equally spaced delta functions.
MS  calculated the conductivity of this crystal containing a periodic
array of grain boundaries assuming that at each grain boundary,
a fraction 0 < R < 1 of the electrons (represented by plane waves)
colliding with each one of these grain boundaries is specularly
reflected. Hence electrons colliding with individual, periodically
distributed grain boundaries are assumed to be partially reflected
and all grains are assumed to be endowed with the same reflec-
tivity R; but yet, electrons colliding with individual, periodically
distributed ions making up the crystalline lattice do not undergo such
reflection.

The key to clear this confusion and to elucidate the physics
underlying the increase in resistivity (over the bulk) induced by
grain boundaries, resides in realizing that the allowed states of
the periodic potential representing equally spaced grains are also
extended throughout the crystal. These Bloch states extending
throughout the crystal (containing equally spaced grains) were
taken for granted in the original paper by Mayadas and Shatzkes,
for they state explicitly that “. . .in the limit s → 0, �G → �0, and thus

a periodic arrange of planes provides no resistance”  (over and above
the resistance of the bulk) [Ref. [3], p. 1384]. Hence the increase
in resistivity arises primarily because grain boundaries are not
equally spaced but are randomly distributed; consequently, electron
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ransmission through disordered grains should play a central role in
he theory. Since the work of Anderson and others [16–18], we  know
hat the solutions of the Schrödinger equation in a randomly vary-
ng potential in 1 − D are no longer extended but are localized. In
he words of Anderson, “. . .at sufficiently low densities. . .transport
oes not take place; the exact wave functions are localized in small
egions of space” [16]. Moreover, in Chapter 2 of Ref. [18] (p. 7),
houless states that “. . .In a weakly disordered one-dimensional
otential, all states are localized”. The effect of these localized states
n the resistance of metallic wires at very low temperatures, in
he words of Thouless, leads to “. . .the resistance should increase
xponentially with length instead of linearly” [17].

In the MS  model the role of disorder is minimal, for the
alculation of the probability of electron transmission through con-
ecutive (disordered) grain boundaries – the core of a proper theory
escribing the physics that gives rise to the increase of resistivity

nduced by electron-grain boundary scattering – is missing, it is
ntirely omitted from the theory. In the quantum model described
elow electron transmission through consecutive grains plays a key
ole.

In this paper we calculate the electrical resistivity of a metal-
ic specimen under the combined effects of electron scattering
y impurities, grain boundaries, phonons and a rough surface

imiting the film, using the standard method based upon the
ubo formalism. Grain boundaries are represented by a one-
imensional periodic array of Dirac delta functions giving rise to a
ronig–Penney (KP) potential; to compute the conductivity we use

he Green’s function built from the wave functions that are solu-
ions of this KP potential. However, a quantum description of the
esistivity of metallic specimens could be considered an interesting
nd challenging exercise of Mathematical Physics of little practical
se, unless the predictions of the model are compared with resis-
ivity data to assess its predictive power, and the predictions of the
lassical model are compared with the predictions of the quantum
heory. Hence, we apply this new theory (as well as the MS theory)
o analyze data on samples where the temperature dependence of
he resistivity between 4 and 300 K has been reported, as well as

 full, systematic characterization of surface roughness and grain
ize distribution has been measured independently and has been
ublished for each sample: We  analyze the data from samples S1,
2, S7 and S8 in Ref. [4].

The paper is organized as follows. In Section 2 we present the
utline of the classical result obtained by Mayadas and Shatzkes,
s well as the outline of the new quantum theory. For easy reading
e include in the Appendix a number of laborious mathematical
etails, and include in Section 2 only the essential building blocks
f the new theory. We stress at the outset that Anderson local-
zation is not one of the starting assumptions of this paper. Quite to
he contrary, we spent some time trying to develop a quantum
heory of electron-grain boundary scattering using the standard
ools of an introductory course on Quantum Mechanics. Rather
o our surprise, as discussed in detail in Appendix D, the results
orced us to admit that the numerical evaluation of the average
f the matrix describing electron transmission through N consec-
tive (disordered) grain boundaries, was consistent with Anderson

ocalization phenomena.
After Section 2 we do not include a Section describing sur-

ace characterization and experimental methodology, for this has
lready been published in Section 2 of Ref. [4]. Instead, in Sec-
ion 3 we outline some relevant conceptual aspects of the new
uantum theory that are at variance with the classical MS  the-
ry, and describe the results of the data analysis. In Section 4, we

iscuss the results of comparing the predictions of the classical
heory with the temperature dependence of the resistivity on Sam-
les S1, S2, S7 and S8 from Ref. [4], and with the predictions of
he new quantum theory. In Section 5, we summarize the main
cience 329 (2015) 184–196

conclusions of this work and the practical applications deriving
from it.

2. Theory

2.1. Classical theory: Mayadas and Shatzkes

For a thin film bounded by two different surfaces, the Mayadas
and Shatzkes theory yields �/�0 = f (�0(T), d, s, P, Q, R, t) [4]:

(
�0

�

)
= 3

2

∫ 1

−1

�∗(u, d, s)
�

u2 du − 3�0

4t

∫ 2�

0

∫ �/2

0

(
�∗(�, d, s)

�

)2

× cos2 (	) cos(
) sin3 (
)[1 − E(�)] [2 − P − Q + (P + Q − 2PQ )E(�)]

1 − PQE(ς)2
d
 d	 (1)

with u = cos(
), � = sin(
)cos(	), E(�) = exp
(

− t
vF �∗(�,d,s) cos(
)

)
and

1
�∗(ς, d, s)

= 1
�

+ �0

d

R

1 − R

1
�ς

1 − exp(−4(ςkF )
2s2)

1

× 1

1 − 2 exp(−2(ςkF )
2s2) cos(2ςkFd) + exp(−4(ςkF )

2s2)

where �(T) is the resistivity of the film, �0(T) is the resistivity of
the bulk (a fictitious crystalline sample of the same thickness t
but without grains, carrying the same concentration of impuri-
ties/point defects as the thin film, but limited by two  atomically
flat surfaces), � (T) is the average electronic collision time describ-
ing electron scattering in the bulk, �0(T) is the (unknown) electronic
mean free path in the bulk at temperature T, d and s are the average
grain diameter and standard deviation characterizing the Gaussian
distribution of grain sizes, respectively. P and Q are the reflectivity
of the two surfaces limiting the film, R is the reflectivity coefficient
characterizing each grain boundary and kF is the Fermi wave vector.

2.2. Quantum theory

We  outline below the fundamentals of the new quantum theory.

2.2.1. Kubo’s formalism
We  start with the electronic wave functions corresponding to

the solution of the Schrödinger equation in a periodic potential V(r)
representing the grain boundaries, given by

V(r) = V(x) =
∑N/2

n=−N/2

(
�

2S

2m

)
ı(x − nd)  (2)

In the limit when N tends to infinity, this is the Kronig–Penney
(KP) potential [19].

To compute the conductivity � we use the Kubo formalism [20].
In a somewhat simplified form, it leads to [21,22]

� = − 2q2
�

3

�m2˝

∫
d3�r
∫
d3�r′
[
Im
∂G(�r, �r′)
∂x

][
Im
∂G(�r′, �r)
∂x′

]
(3)

where q and m are the charge and effective mass of the carriers,  ̋ is
the volume of the sample and G(r, r′) is Green’s function appropri-
ate for the KP potential described by Eq. (2); Im(z) represents the
imaginary part of the complex number z. As discussed in Appendix
B, to account for dissipation deriving from electron scattering by

phonons/distributed impurities, an imaginary part is added to the
Fermi energy – or to the Fermi wave vector kF – as the quantum
analogue of the mean free path �, so we define k̃F = kF + (i/2�)
[23,24].
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.2.2. Green’s function for the Kronig–Penney potential
As shown in Appendix A, the Green’s function g(k, x, x′) for the

ronig–Penney potential is

(k; x, x′) = 	(−
, x)	(
, x′)
2ik sin(kd) sin 


if x < x′

(k; x, x′) = 	(−
, x′)	(
, x)
2ik sin(kd) sin 


if x > x′

here 	(x) =∑∞
m=−∞
m(x) exp(im
)u(x − md) with u(x) =

in[k(x − d)] + exp(i
)sin [kx] and 
m = 1 if md ≤ x ≤ (m + 1)d  and
ero otherwise, so instead of the plane waves used by MS  along
, we use 	(x) =

∑∞
m=−∞
m(x) exp(im
){sin[k(x − (m + 1)d)] −

xp(i
) sin[k(x − md)]}.
In order that 	(x) be an eigenfunction of the potential described

y Eq. (2), the relationship between k and the Kronig–Penney
arameter 
 is through the KP function fKP(S, d, u):

KP(S, d, u) = cos 
 = cos(u) + Sd

2
sin(u)
u

(4)

here u = k·d. In this relation k is a complex number, and so is 
. We
hoose sin(
) such that |cos(
) + i sin(
)|2 ≤ 1.

In the case of the bulk crystal plus the Kronig–Penney potential
2), the wave function � (x, y, z) satisfying the Schrödinger equation,

ay  be written as � (x, y, z) = 	(x) f(y, z), where f(y, z) should be plane
aves with k2 = k2

F − k2
⊥, r⊥ = yy + zz, k⊥ = kyy + kzz (where y and z

re unit vectors along y and z, respectively).
To compare the predictions of the present theory with the

lassical predictions, we need to relate the reflectivity R of one
rain introduced by MS,  with the strength of the delta function S
ppearing in Eqs. (2) and (4). We  follow Mayadas and Shatzkes and
ote that reflection coefficient R of a single barrier (�2S/2m)  ı(x − x0)

s related to S by R = S2/(S2 + 4kx
2). To obtain the same reflectivity R

or all grain boundaries (as required by MS  theory), we set kx = kF.

.2.3. Conductivity of a crystalline sample containing uniform,
qually spaced grains

As shown in Appendix B, the electrical conductivity of a crys-
alline sample containing uniform, equally spaced grains predicted
y theory is

 = q2

8�2�

∫ ∞

0

I(k)∣∣D(k)
∣∣2 TN(kx)k⊥ dk⊥ (5)

here D(k) = k sin(kd)  sin(
), with k =
√
k̃2
F − k2

⊥ (a complex quan-

ity due to the renormalization of kF) and kx =
√
k2
F − k2

⊥. Also:

(k) = IA(k) + IB(k) + IC (k) (5a)

ith

A(k) = sinh(2
I)

[
kR

2

kI
sinh(2kId) − kI

2

kR
sin(2kRd)

]

− sin(2
 )

[
kR

2

sin(2k d) + kI
2

sinh(2k d)

]
(5b)
R kI

R kR
I

B(k) = 1
d

[cos(2kRd) − cosh(2kId)]

[
kR

2 − kI
2

kR
2 + kI

2
sinh(2
I)

+ 2kRkI
kR

2 + kI
2

sin(2
R)

]
(5c)
cience 329 (2015) 184–196 187

IC (k) = 4Im

{
sin(
)

[
i
kR

2

kI
+ kI

2

kR

]
sin(kd)

}

+ 2
d
Im
[
k

k∗ sin(
) sin(2k  ∗ d) sin(kd)
]

(5d)

where the coefficient TN(kx) has been introduced to represent the
probability that an electron will be transmitted through N suc-
cessive grain boundaries perpendicular to x (TN = 1 if all grain
boundaries are equally spaced). Here kR and kI are the real and
imaginary parts of k; 
R and 
I are the real and imaginary parts of 
.
Eq. (5) is the quantum counterpart to the classical Eq. (1) with flat,
perfectly reflecting surfaces (P = Q = 1).

The KP function is used with real u = dkx to calculate the allowed
KP bands over the domain 0 ≤ kx ≤ kF and to project them onto k⊥
using k⊥ =

√
k2
F − k2

x , so that the integral of Eq. (5) is calculated
over real domains in k⊥ which correspond to the allowed KP bands
in kx.

2.2.4. Conductivity of a thin film bounded by two flat surfaces
As shown in Appendix C, the conductivity of a thin film bounded

by flat surfaces that extends from z = 0 to z = t but is infinite along x
and y, and contains the grains represented by Eq. (2), predicted by
the quantum theory, is given by

� = q2

8�2�t

∑
n

∫ ∞

0

I(kn)∣∣D(kn)
∣∣2 TN(kx)dky (6)

where kn =
√
k̃2
F − ky

2 − (n�/t)2. Again, TN(kx) represents the

probability that the electron will be transmitted through N suc-
cessive grain boundaries. I(kn) is given by Eq. (5a) and the values
of kx lie inside the KP bands of allowed states and are such that
kx

2 + ky
2 + (n�/t)2 = kF

2. This is the quantum counterpart to the clas-
sical Eq·  (1). Details of the derivation of these formulae are included
in Appendix C.

2.2.5. Effect of disorder
So far the effect of disorder has not yet been incorporated

into the theory. To include the effect of disorder, let xn = nd + �n

indicate the position of the n-th grain boundary, where d is the
average grain diameter and �n is a random variable such that
〈�n〉 = 0 and 〈�n

2〉 = s2 for 1 ≤ n ≤ N. Let Pn be the transfer matrix
relating the function 	n−1(x) representing an electron wave func-
tion for (n − 1)d  < x < nd,  and 	n(x) for nd < x < (n + 1)d. As shown in
Appendix D, using the methods of an introductory course on Quan-
tum Mechanics, we  conclude

Pn =

⎛
⎜⎝ 1 + i

S

2kx
i
S

2kx
exp(−2ikxxn)

−i S
2kx

exp(2ikxxn) 1 − i
S

2kx

⎞
⎟⎠ (7)

As explained in Appendix D, using a Gaussian distribution of the
random variable nd + �n, we  obtain for the statistical average of the
transfer matrix Pn:

Pn =

⎛
⎝ 1 + i

S

2kx
i
S

2kx
exp(−2ikxnd) exp(−2kx

2s2)

−i S
2kx

exp(2ikxnd) exp(−2kx
2s2) 1 − i

S

2kx

⎞
⎠

(7a)

Let M be the 2 × 2 transmission matrix describing a carrier that
N∏
traverses N barriers, M(N, k) =
n=1

Pn. As described in Appendix D,

the probability T that the carrier traverses these N successive barri-
ers is, approximately, TN(kx) ≈ 1/| 〈 M22(N, kx) 〉 |2. If N is considered
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allow parameters (� , R) to be uniquely adjusted to describe the
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s the total number of grain boundaries between the measuring
ontacts, then N ≥ 105 which would lead to T of order 10−25: A
etallic film (made out of disordered nanometric grains) would

ever conduct electricity, on account of Anderson localization. To
nclude the effect of disorder and yet arrive at a realistic estimation
f TN that is consistent with experimental results, we  consider N = 1
f � < d, and N = Int(�/d) if � > d, where Int(z) is the integer part of z
nd � is the temperature-dependent (unknown) electronic mean
ree path in the bulk. The method to compute TN(kx) using the mor-
hological data describing the grain size distribution measured on
ach sample is discussed in Appendix D.

.2.6. Contribution to the resistivity of a thin film arising from
lectron-rough surface scattering

To include the effect of rough surfaces limiting the film, we
onsider the gold-mica interface to be smooth (for the mica is atom-
cally flat in regions extending over several hundred nm as revealed
y an AFM), so we expect that the roughness that contributes
ainly to the resistivity is that of the exposed gold surface. Using

he Dyson equation to compute the Green’s function describing the
lectron gas confined by a rough surface and Kubo’s formalism to
ompute the conductivity, we calculated the self-energy of the elec-
ron gas. It is characterized by a distance Q given by [Eq. (5) from
ef. [25]]

n(k‖) = 
2ı2

2t
� exp

(
−


2

4

(
k‖2 + kF

2))∑
n

(
n�

t

)2

× exp

[(
n�

t

)2 
2

4

]
I0

(

2

2
k‖

√
kF

2 −
(
n�

t

)2
)

(8)

here k2
‖ = k2

x + k2
y = k2

F −
(
n�
t

)2
, I0 stands for the modified Bessel

unction of order zero, and the sum is performed over the filled
ub bands. To include dissipation arising from electron scattering
y the rough surface, we shifted the Fermi sphere (as discussed

n Appendix E) by the appropriate amount, adding the appropiate
maginary component to the wave vector along kz for each sub band.

. Results

We  illustrate in Fig. 1 the effect of including the KP potential
rising from periodic grain boundaries separated by a distance d,
rojecting the allowed KP bands onto the Fermi sphere.

In Fig. 2 we compare the ratio �/�0 predicted by the classical
nd the quantum theory for samples S1, S2, where � represents
he conductivity of the crystalline sample containing grain bound-
ries, and �0 is the bulk conductivity. It seems remarkable that the
lassical prediction approaches zero as � grows larger toward 1 �m,
hile the quantum prediction (with TN = 1) approaches unity from

elow. The reason is, classically, the electron is partially reflected
ach time it collides with a grain boundary; as � grows larger, the
umber of reflecting grain boundaries increases.

In the quantum description, the effect of turning on the KP
otential is simply to project onto the Fermi sphere the allowed
nd forbidden regions; there is no such thing as an electron par-
ially reflected or partially transmitted through a grain boundary.
s Fig. 1 illustrates, for a large bulk mean free path containing many
eriodically distributed grains, the decrease in conductivity – if any

 when turning on the KP potential, is simply a consequence of a
ecrease of the number of extended electron states that are con-
istent with the periodicity of the grain boundaries separated by

 distance d that lie on the Fermi sphere. This can be considered

he proof of the assertion offered by MS  – without proof – that “a
eriodic arrange of planes provides no resistance” (over and above the
esistivity of the bulk) (Ref. [3], p. 1384). Contrary to the classical MS
cience 329 (2015) 184–196

theory, the decrease in conductivity with increasing � within the
quantum theory occurs not because electrons are partially reflected
at each grain boundary, but either because of a decrease of the
number of extended electron states (that are consistent with the
periodicity of the grain boundaries) that lie on the Fermi sphere, or
because the carriers are transmitted with a probability T < 1 across
successive (disordered) grains, or both.

To further test the new theory, to assess its capacity to describe
resistivity data and to compare the predictions of both the classical
and of the quantum theory with resistivity data, it becomes nec-
essary to estimate the unknown parameters. The quantum theory
contains the unknown parameters � and R, the classical theory con-
tains the additional (unknown) parameters P and Q (the reflectivity
of the two surfaces limiting the film). We  analyze below the temper-
ature and thickness dependence of the resistivity of samples S1, S2,
S7 and S8, using the standard temperature dependent resistivity
data arising from electron-phonon scattering available for crys-
talline gold, following the method described in detail elsewhere to
estimate these unknown parameters [4,7]. The appropriate param-
eters used in the analysis are listed in Table 1; the results of the
resistivity data analysis are displayed in Fig. 3.

After setting P = 0 and Q = 1 in MS  theory, both the classical as
well as the quantum theory involve two  parameters, R and �IMP. To
compare quantitatively the description of the resistivity data fur-
nished by both theories, we use as a statistical parameter measuring
the goodness of the theoretical description, the Standard Statisti-

cal Error SSE =

√√√√ 1
N−2

N∑
i=1

[
(�exp(Ti)−�theo(Ti))

2

�exp(Ti)
2

]
, where �exp(Ti) and

�theo(Ti) stand for the resistivity measured (exp) and theoretically
predicted (theo), respectively, at each of the N = 20 different tem-
peratures 4 K ≤ Ti ≤ 300 K at which the resistivity was measured on
these samples (resistivity data taken from Ref. [4]). This constitutes
a stringent test, for changing temperature from 4 to 300 K changes
the bulk mean free path �0 continuously on each sample, so for each
specimen we  have 20 resistivity data points where the ratio �0/t and
�0/d varies substantially. We  used SSE to assess the goodness of the
theoretical description, varying by ±10% the parameters R and �IMP
listed in Table 1. We also explored whether or not a reflectivity R
could be found in the classical theory, if we used in the classical
MS formalism the value for �IMP listed in Table 1 that is appropri-
ate for the quantum description. The result of this comparative error
analysis is listed on Table 2. Both the classical as well as the quan-
tum theory provide a fair description of the resistivity data, for the
statistical error SSE is of the order of a few percent or better.

We start the comparison with the small grained sample S1. It
seems remarkable that the mean free path �IMP attributed to impu-
rity scattering in the classical theory can be varied by two orders
of magnitude (from 3000 to 36 nm in the case of S1), and yet a
reflectivity R can be found (0.410 and 0.314 for S1) that provide a
comparable description of the resistivity data. Because of the wide
spread use of MS  theory, this came as quite a surprise to us. MS  the-
ory is supposed to provide a faithful and univocal description of the
resistivity data of small grained samples, where the experiment indi-
cates that the resistivity is, indeed, dominated by grain boundary
scattering at 4 K, for the Hall mobility turns out to be proportional to
the grain diameter d regardless of film thickness (Ref. [5]). The results
displayed on Table 2 can be considered as evidence that the classi-
cal MS  model does not discriminate properly between a resistivity
arising from electron-grain boundary scattering and a resistivity
arising from electron-impurity scattering, for the theory does not
IMP
temperature dependence of the resistivity data on S1. Something
similar is observed when performing the error analysis comparing
the predictions of the classical MS  theory and the predictions of
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Fig. 1. Conducting states in a metallic specimen. (a) Colored Fermi sphere, representing the conducting states in the bulk crystalline metal. (b) Conducting states in a
crystalline metal, when an array of grain boundaries represented by Eq. (2) is added to the bulk. The illustration is for the case dkF = 12.1. (c) Conducting states in a thin metal
film,  when an array of grain boundaries represented by Eq. (2) is added to the film that is infinite along x and y, but limited by two  flat surfaces at z = 0 and z = t. The illustration
is  for the case dkF = 12.1 and t = 1 nm.

Fig. 2. Dependence of the ratio �/�0 on the bulk mean free path �. � is the conductivity of a crystalline metal including an array of grain boundaries represented by Eq.
( d line:
t 5) wit
P e lege

t
s

d
fi
b
i

T
M
n

t
r
r
R
m

2), �0 represents the conductivity of the bulk (in the absence of grains). Green soli
heory  [Eq. (5) with TN = 1]. Blue solid line: predictions of the quantum theory [Eq. (
redictions for sample S2. (For interpretation of the references to color in this figur

he quantum theory to the temperature dependent resistivity of
ample S2.

This is in contrast to the quantum theory, that provides a

escription of the resistivity data with a degree of goodness of the
t that is comparable to that obtained by applying the MS  theory,
ut a 10% variation in either �IMP or R in the quantum description

nduces quite a steep increase in the statistical error SSE on samples

able 1
orphological parameters for Samples S1, S2, S7 and S8 from Ref. [4], and parameters co

eeded  to describe the temperature dependence of the resistivity data.

Sample t (nm) d (nm) s (nm) Gaussian 

ı (nm) 
 (nm) 

S1 49 11.1 5.3 1.3 8.9 

S2  109 12.4 5.3 1.3 7.3 

S7  54 106 43 3.1 58.4 

S8  96 159 41 4.1 68.2 

: film thickness; d and s: mean diameter and standard deviation of a Gaussian distributio
oughness amplitude and lateral correlation length describing a Gaussian roughness pro
eflectivity, according to the MS  model [Eq. (1) with P = 0 and Q = 1]. Parameters t, d, s, ı
ightmost three columns �IMP: mean free path; R: grain boundary reflectivity; Lloc: Anders
odel.
 Predictions of MS  theory with P = Q = 1. Red solid line: predictions of the quantum
h TN < 1], employing parameters listed in Table 1. (a) Predictions for sample S1. (b)

nd, the reader is referred to the web version of the article.)

S1 and S2. Hence the quantum theory is, indeed, capable of dis-
criminanting between a resistivity arising from electron-impurity
scattering and a resistivity arising from electron-grain boundary

scattering in small grained samples. The error associated to the
classical description in small grained samples is comparable to
the error associated to the quantum description of the resistivity
data.

ntained in the classical theory of Mayadas and Shatzkes, and the quantum theory,

Classical MS Quantum

�IMP (nm) R �IMP (nm) R LLOC (nm)
P  = 0; Q = 1

3000 0.41 36 0.113 106
3000 0.43 41 0.101 109
3000 0.28 137 0.0116 19 400
3000 0.22 295 0.0192 12 700

n of grains (describing the histogram of over 500 grains per sample); ı and 
: rms
file; �IMP: mean free path (attributable to impurity scattering); R: grain boundary
, 
, R and �IMP (the latter two appropriate for MS  model) are taken from Ref. [4].
on localization length, needed to describe the resistivity according to the quantum
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Fig. 3. Temperature dependence of the resistivity for samples S1, S2, S7 and S8 from Ref. [4]. (a) Crosses: experimental data, sample S1. Dashed black line: �0 (resistivity of
the  bulk), arising from electron-phonon + electron-impurity scattering, parameters listed in Table 1. Red solid line: �0 + KP (Kronig–Penney) potential representing uniformly
distributed grain boundaries computed from Eq. (5) with TN = 1. Orange solid line: �0 + KP + D (disorder) computed from Eq. (5) with TN < 1. Blue solid line: resistivity of the
thin  film (TF) �0 + KP + D + TF, computed from Eq. (6) with TN < 1. Black solid line: resistivity of the thin film + rough surface (RS) �0 + KP + D + TF + RS, the effect of the rough
surface  is computed from Eqs. (6) and (8) as explained in Appendix E. (a1) Crosses: experimental data, sample S1. Dashed black line: �0 (resistivity of the bulk). Orange solid
line:  �0 + MS,  computed from Eq. (1) with R listed in Table 1, P = Q = 1. Black solid line: resistivity of the thin film + rough surface (RS) �0 + MS + RS, computed from Eq. (1) with
R ) Resi
( bols 

r  the a

n
t
g
t
(
(

 < 1 listed in Table 1, P = 0, Q = 1. (b) Resistivity of sample S2, symbols as in (a). (b1
a).  (c1) Resistivity of sample S7, symbols as in (a1). (d) Resistivity of sample S8, sym
eferences to color in this figure legend, the reader is referred to the web version of

In the case of large (columnar) grained sample S7 – colum-
ar grains are the basis upon which the MS  theory was  built, for
he grains represented by the Hamiltonian in Eq. (2) are columnar

rains – a similar situation arises. The mean free path attributed
o impurity scattering can be varied by a factor of 4 or larger
from 3000 to 700 nm), and yet a reflectivity R can be found
0.280 and 0.222) that provide a comparable description of the
stivity of sample S2, symbols as in (a1). (c) Resistivity of sample S7, symbols as in
as in (a). (d1) Resistivity of sample S8, symbols as in (a1). (For interpretation of the
rticle.)

resistivity data. Again, this is in contrast to the quantum the-
ory, where a 10% variation in either �IMP or R in the quantum
description induces a significant increase in the statistical error

SSE. A similar situation arises when the error analysis is performed
comparing the resistivity predicted by the classical and quan-
tum theory to the temperature dependent resistivity of sample
S8.
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Table  2
Comparison of the ability of the classical theory of Mayadas and Shatzkes (MS) and
the  quantum theory, to describe the temperature dependence of the resistivity data
measured at N = 20 different temperatures 4 K ≤ Ti ≤ 300 K on samples S1 and S7
(resistivity data from Ref. [4]). Both the classical MS  theory and the quantum theory
contain as parameters, the grain boundary reflectivity R and the mean free path �IMP

attributed to impurities/point defects. SSE stands for the standard statistical error

SSE  =

√√√√ 1
N−2

N∑
i=1

[
(�exp(Ti )−�theo(Ti ))

2

�exp(Ti )
2

]
.

Sample Classical MS  Quantum

�IMP (nm) R �IMP (nm) R SSE
P = 0; Q = 1

S1 3000 0.410 0.0162
S1  3300 0.410 0.0194
S1  2700 0.410 0.0187
S7  3000 0.370 0.156
S1  3000 0.450 0.140
S1  36 0.314 0.0180
S1  360 0.405 0.0105
S1  36 0.113 0.0138
S1  32.4 0.113 0.0241
S1  39.6 0.113 0.0384
S1  36 0.125 0.0707
S1  36 0.100 0.0859
S7  3000 0.280 0.0424
S7  3300 0.280 0.0433
S7  2700 0.280 0.0415
S7  3000 0.310 0.0533
S7  3000 0.250 0.0760
S7  137 0.00001 0.149
S7  700 0.222 0.0491
S7  136.9 0.0116 0.0136
S7  150.6 0.0116 0.0540
S7  123.2 0.0116 0.0653
S7  136.9 0.0128 0.0172

e
a
d

4

p
c
i
m
r
a
b
K
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o

S7  136.9 0.0105 0.0148

In the case of large (columnar) grained samples S7 and S8, the
rror associated to the quantum description of the resistivity is
bout three times smaller than the error associated to the classical
escription.

. Discussion

It seems remarkable that both the MS  and the quantum theory
rovide a fair description of the resistivity data to within a few per-
ent and yet, the phenomena involved underlying the resistivity
ncrease according to the MS  theory and according to the quantum

odel are markedly different. According to the classical model, the
esistivity is governed by the reflectivity R of a single grain bound-
ry; according to the quantum theory, the resistivity is controlled
y the collective properties of an assembly of grain boundaries (by the
P bands and by the transmission probability TN).

For large (columnar) grained samples where d > �(300)
�(300) = 38 nm for Au], the classical theory requires a reflectivity of
bout R = 0.22–0.28 to explain the data, quite large for a first order
erturbation theory. This is in contrast to the quantum description,
here the increase in resistivity over the bulk is relatively mod-

st, and is attributed not to partial reflection of the electrons from
rain boundaries, but to a decrease in the number of states at the
ermi sphere that are allowed bands of the KP potential; consequently,
he reflectivity required turns out to be an order of magnitude smaller.

In the opposite case of small grained samples such that

 < �(300), a huge R > 0.3 is required by MS  theory (meaning that
ver 30% of the electrons are reflected upon colliding with the very
rst grain boundary, calculated using first order perturbation the-
ry!). This is in contrast to the quantum theory, where the increase
cience 329 (2015) 184–196 191

in resistivity arising from turning on the KP potential is relatively
modest; most of the increase in resistivity over the bulk arises not
from partial reflection of the electrons from grain boundaries, but
is due instead to Anderson localization induced by electron scatter-
ing from successive disordered grain boundaries characterized by a
localization length of the order of 110 nm.  The reflectivity required
by the quantum theory turns out to be about 4 times smaller than
that required by the classical MS  model.

The quantum description presented here exhibits yet another
new and interesting feature, a strong interference between electron
scattering in the bulk (B) and electron scattering by grain bound-
aries (GB) in a crystalline sample containing grains. In the limit
of a very pure crystalline sample with a very small concentration
of point defects, where the phonons are frozen out (lim � → ∞),
as stated by Thouless, the resistivity arising from electron-grain
boundary scattering alone �GB diverges as an increasing exponen-
tial of � with increasing bulk mean free path on account of Anderson
localization. Hence, the observed resistivity of the specimen �S is
such that �S /= �B + �GB, where �B is the resistivity of the bulk. Con-
sequently, we expect Mathiessen’s rule to be severely violated in
nanometric metallic specimens made out of small grains.

5. Summary

The two new elements involved in this, perhaps the simplest
quantum model – a KP potential plus 1-D electron motion and elec-
tron scattering from disordered grain boundaries along a mean free
path – provide a better description of the resistivity data than that
furnished by the classical theory, and elucidate the physics under-
lying the resistivity increase over the bulk, using concepts currently
accepted.

A distinctive feature of the predictions of the quantum theory
is that it provides a description of the temperature dependence of
the resistivity where the contribution to the resistivity originating
on electron-grain boundary scattering can be described by a certain
unique grain boundary reflectivity R, and the resistivity arising from
electron-impurity/point defect scattering can be described by a cer-
tain unique �IMP mean free path attributable to impurity scattering.
This is in contrast to the classical MS  theory, where the same tem-
perature dependent resistivity data can be described using different
sets of (R, �IMP).

The description of the increase in resistivity provided by the
quantum theory involves a change in outlook that has profound
consequences. In the classical picture each grain boundary con-
tributes to the electrical resistance by reflecting a certain fraction
of the incoming electrons. In the quantum conception, there are
states (in the allowed KP bands) that transmit electrons unhin-
dered, without reflections, while the electrons in the remaining
states (the forbidden KP bands) are localized. The result is that: (i)
In samples where the grain diameter is appreciably smaller than the
bulk mean free path at room temperature, the increase in resistivity
originates primarily from Anderson localization of electrons propagat-
ing through disordered grains;  (ii) Because of Anderson localization,
Mathiessen’s rule is expected to be severely violated in small grained
samples; (iii) The increase in resistivity observed in films made out
of columnar grains (where the grain diameter is larger than the
electron mean free path at room temperature), originates primar-
ily not from electrons reflected at individual grain boundaries, but
from a decrease in the number of states on the Fermi sphere that are
allowed KP bands.

The immediate practical application of the quantum theory

contained in this paper resides in that we  expect Anderson local-
ization to be the dominant mechanism controlling the resistivity of
metallic interconnects involved in the manufacturing of integrated
circuits planned by the electronic industry worldwide (ITRS) for
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he next decade. Therefore, controlling (and increasing) not only
he average grain diameter but also decreasing the degree of disor-
er characterizing the grain size distribution, may  have a significant

mpact in the resistivity of these nanometric interconnects.
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rom FONDECYT under contract 1141146. R. Munoz also acknowl-
dges funding from FONDECYT under contract Anillo ACT 1117.

ppendix A. Green’s function for the Kronig–Penney
otential

The Schrödinger equation we are interested in solving is

− �
2

2m
∇2 + V(�r)

)
 (x, y, z) = εF (x, y, z)

ith the help of the Green’s function G(r, r′) = G(r, r′; E = εF) satisfying

�
2

2m
∇2 + εF − V(�r)

)
G(�r, �r′) = ı(�r, �r′)

here the potential V(r) is given by Eq. (2).
We  separate variables, so � (x, y, z) = 	(
, x) f(y, z) using Bloch

tates, with

(
, x) =
∑∞

m=−∞

m(x) exp(im
)u(x − md)

ith u(x) = sin[k(x − d)] + exp(i
)sin[kx] and

m = 1 if md  ≤ x ≤ (m + 1)d  and zero otherwise, so that

(
, x) =
∑∞

m=−∞

m(x) exp(im
){sin[k(x − (m + 1)d]

− exp(i
) sin[k(x − md)]} (A.1)

n order that 	(
, x) satisfies the potential described by Eq. (2),
he parameters 
 and k must satisfy cos 
 = cos(kd)  + (S/2k)sin(kd),
hich is Eq. (4) with u = kd.

In the case of the bulk crystal plus the Kronig–Penney poten-
ial (2), f(y, z) should be plane waves with k2 = k2

F − k2
⊥, where

⊥ = kyy + kzz (where y and z are unit vector along y and z). We
ow proceed to calculate the Fourier Transform

(�r, �r′) = 2m
�2

∫
d2�k⊥
4�2

exp[i�k⊥(�r⊥ − �r′⊥)]g(k; x, x′) (A.2)

here r⊥ = yy + zz, and g(k;x, x′) is a one-dimensional Green’s func-
ion, satisfying[ ]

∂2
g(k; x, x′)
∂x2

+ k2 − S
∑
n

ı(x − nd) g(k; x, x′) = ı(x − x′) (A.3)

ith k =
√
kF

2 − k⊥2.
We compute g(k;x, x′) from the Dyson equation:

(k; x, x′) = g0(k; x, x′) +
∫ ∞

−∞
g0(k; x, x1)v(x1)g(k; x1, x′) dx1
cience 329 (2015) 184–196

where v(x) = S
∑N/2

n=−N/2ı(x − nd).

g(k; x, x′) = g0(k; x, x′) + S

∞∑
m=∞

g0(k; x, md)g(md, x′) (A.4)

where g0(k ; x, x′) = exp(ik|x − x′|)/(2ik) is Green’s function of a free
particle. By successively putting x = nd in Eq. (A.4), we obtain a sys-
tem of linear equations:

∞∑
m=−∞

Cn−mg(k; md, x′) = g0(k; nd, x′); n = 0, ±1, ±2, . . . (A.5)

where

Cn = ın,0 − S
exp(ikd|n|)

2ik
(A.6)

We solve this (circulant) equation by using Fourier transforms.
We denote the Fourier transform of a function fn – depending on
a discrete index n = 0, ±1, ±2,. . . ranging over an infinite interval –
by f̃ (
) and note that these are related by the Fourier theorem:

f̃ (
) =
∞∑

n=−∞
fn exp(in
); fn(
) = 1

2�

2�∫
0

f̃ (
) exp(−in
)d
 (A.7)

It is seen that f̃ (
 + 2�) = f̃  (
). Alternatively, Eq. (A.7) can be
stated as the pair of the well-known orthogonality and complete-
ness relations,

1
2�

∫ 2�

0

exp(in
)d
 = ın,0;
∞∑

n=−∞
exp(in
) = 2�ı(
) (A.8)

By Fourier transforming Cn, g0(k ; nd,  x′) and g(k ; nd,  x′), we find
that (A.5) is equivalent to the algebraic equation

C̃(k; 
)g̃(k; 
, x′) = g̃0(k; 
, x′) (A.9)

where

C̃(k; 
) =
∞∑

n=−∞
Cn(k) exp(in
) = 1 − S

2ik
− S

2ik

∞∑
n=1

{exp[in(kd + 
)]

+ exp[in(kd − 
)]} = cos kd + S sin kd − cos 


cos kd − cos 

(A.10)

The series converges as long as Im(k) > 0. In the same way,

g̃0(k; 
, x′) =
∞∑

n=−∞
g0(k; nd, x′) exp(in
)

= 1
2ik

∞∑
n=−∞

exp[ik|nd − x′| + in
] = 	(
, x′)
2k(cos kd − cos 
)

(A.11)

where 	(
; x) is given by Eq. (A.1). We note that this func-
tion obeys Bloch’s theorem. Furthermore, by using the fact that
d
m(x)/dx = − ı[x − (m + 1)d] + ı(x − md), we  can check that

∂2
	(
; x)
∂x2

+
[
k2 − S

∑
n

ı(x − nd)

]
	(
; x)

= 2k
[
cos kd + (S/2k) sin kd − cos 


] ∞∑
n=−∞

ı(x − nd)  exp(in
)
Clearly, only for those values of 
 such that the Kronig–Penney
condition (4) is satisfied, the wave is a solution of the homogeneous
Schrödinger equation. If we assume that 
 is a real angle belonging
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o the interval 0 ≤ 
 < 2�, this condition can not always be satis-
ed. These forbidden states describe gaps that separate bands of
llowed energies. Alternatively, if we allow for both k and 
 to be
omplex variables, we find that these forbidden states correspond
o values of 
 having a large positive imaginary part with the result
hat, by Eq. (A.1), the wave function is strongly attenuated when
ropagating along the x-axis. This is used to include the effects of
lectron scattering by other sources, by means of a renormalization
f kF that includes a complex part.

We  note further that, in case when 
 = ±kd, the wave function
escribes a free particle

(±kd; x) = − exp(±ikx) sin kd (A.12)

inally, we see that 	(−
, x) and 	(
, x) are independent functions.
They describe, respectively, particles propagating from right to left
nd from left to right.) Thus, the Wronskian of these two  functions
s

{	(−
, x), 	(
, x)} = 2ik sin(kd) sin 
 (A.13)

We can now determine the one-dimensional Green’s function
(k; nd,  x′). By Fourier theorem

(k, nd, x′) = 1
2�

∫ 2�

0

g̃(k; 
, x′)
C̃(k; 
)

exp(−in
) d
 = 1
4�k

∫ 2�

0

× 	(
; x′) exp(−in
)
cos kd + (S/2k) sin kd − cos 


d
 (A.14)

Finally, we find the desired Green’s function g(x, x′) by replacing
his expression into Eq. (A.4),

(k; x, x′) = g0(k; x, x′) + S

4�k

∞∑
n=−∞

∫ 2�

0

× g0(k; x, nd)  exp(−in
)	(
; x′)
cos kd + (S/2k) sin kd − cos 


d


Now, the sum over n can be performed by appealing to (A.11).
he result is

(k; x, x′) = g0(k; x, x′) + S

8�k2

∫ 2�

0

× 	(−
; x)	(
; x′)
(cos kd − cos 
)

[
cos kd + (S/2k) sin kd − cos 


]d

(A.15)

e  note the integrand has simple poles at these values of 
 that
atisfy the Kronig–Penney condition (4) besides the two extra poles
t 
 = ±kd. It is seen that, as a consequence of (A.9), the residues over
hese extra poles just result in −g0(k; x,x′). The residue over the pole
iven by the value of 
 that satisfies cos kd + (S/2k) sin kd − cos
 = 0
for fixed k) is the expression given by Eq. (4).

Consequently,

(k; x, x′) = 	(−
, x)	(
, x′)
if x < x′ (A16a)
2ik sin(kd) sin 


(k; x, x′) = 	(−
, x′)	(
, x)
2ik sin(kd) sin 


if x > x′ (A16b)
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Appendix B. Conductivity of a crystalline sample
containing uniform, equally spaced grains

We use the Kubo formula (3) for calculating the electrical con-
ductivity

� = − 2q2
�

3

�m2˝

∫
d3�r
∫
d3�r′
[
Im
∂G(�r, �r′)
∂x

] [
Im
∂G(�r′, �r)
∂x′

]
(3)

By inserting into (3) Green’s function for the infinite domain

G0(�r, �r′) = − 2m
4��2

exp(ik̃F |�r−�r′ |)
|�r−�r′ | where k̃F is a complex quantity, one

obtains, for the conductivity of a bulk sample,

�0 = q2[�e(k̃F )]
2

6�2�[Im(k̃F )]

where �e(z) represents the real part of the complex number z. This
coincides with the well-known Sommerfeld’s prescription [26]

�0 = q2k2
F �

3�2
�

if we identify the real part of the complex wave vector k̃F with
the value kF of the Fermi wave vector and its imaginary part with
Imk̃F = 1/(2�). The Kubo formula (3) simplifies considerably if
written in terms of g. The result is

� = − 4q2

�2�L

∫ L/2

−L/2

dx

∫ L/2

−L/2

dx′
∫ ∞

0

k⊥

[
Im
∂g(k; x, x′)

∂x

]

×
[
Im
∂g(k; x, x′)
∂x′

]
dk⊥ (B.1)

By using the identity ImA  I mB  = (1/2) � e(AB * − AB)  we  see that
Eq. (B.1) can be written as

� = − 2q2

�2�
�e

∫ ∞

0

k⊥|I1 − I2| dk⊥ (B.2)

where

I1 = 1
L

∫ L/2

−L/2

dx

∫ L/2

−L/2

dx′
[
∂g(k; x, x′)

∂x

] [
∂g ∗ (k; x′, x)

∂x′

]
(B.3)

I2 = 1
L

∫ L/2

−L/2

dx

∫ L/2

−L/2

dx′
[
∂g(k; x, x′)

∂x

] [
∂g(k; x′, x)
∂x′

]
(B.4)

By using the particular structure of Green’s function (A.16), it is
seen that

I2 = 1
D2L

∫ L/2

−L/2

dx

[
f (
; x)

∫ x

−L/2

f (−
; x′) dx′

+f (−
; x)

∫ L/2

x

f (
; x′) dx′

]
(B.5)

where D = 2iksin(kd)sin(
) and

f (
; x) = 	(
; x)
∂	(
; x)
∂x

= 1
2
∂|	(
; x)|2
∂x

= 1
2
F ′(
; x) (B.6)

Therefore,

I2 = 1
4D2L

∫ L/2

−L/2

[F ′(
; x)F(−
; x) − F ′(−
; x)F(
; x)] dx + B (B.7)
where

B = − 1
4D2L

{[F(
; L/2) − F(
; −L/2)]F(−
; −L/2)

− [[F(−
; L/2) − F(−
; −L/2)]F(
; L/2)]}  (B.7a)
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nd the terms outside the integrals are of order N−1 and can be
eglected. Thus, the integral simplifies to

2 = 1
2DL

∫ L/2

−L/2

	(
; x)	(−
; x) dx (B.8)

A similar analysis may  be applied to the integral I1. We  use the
dentity

(
; x)
∂	 ∗ (
; x)
∂x

= 1
2
∂
∂x

|	(
; x)|2 + 1
2
W{	(
; x), 	 ∗ (
; x)} (B.9)

here W{f  (x), g(x)} = f (x) dg(x)
dx − g(x) df (x)

dx is the Wronskian of f and
 and note that, since

{	(
; x), 	 ∗ (
; x)} = 2iIm

[
	(
; x)

∂	 ∗ (
; x)
∂x

]
(B.10)

he term containing the Wronskian is purely imaginary. Inserting
his decomposition into the expression for I1 we find that, after
ropping terms that are imaginary and thus do not contribute to
he conductivity,

eI2 = I1 + 1
4|D|2 I(k) (B.11)

here the integral I(k) is given by

(k) = 1
L

∫ L/2

−L/2

dx

[
X(
; x)

∫ x

−L/2

X(−
; x′)dx′

+X(−
; x)

∫ L/2

x

X(
; x′)dx′

]
(B.12)

nd we define

(
; x) = W{	(
; x), 	 ∗ (
; x)} (B.13)

We note that the Wronskian depends on x in this case since,
ue to dissipation,  (
; x) and  ∗(
; x) do not satisfy the same
chrödinger equation.

Now, it is advantageous to introduce explicitly a primitive Z(
;
) of X(
; x) such that

(
; x) = ∂Z(
; x)
∂x

(B.14)

ince, if we neglect again terms of the order N−1, the integral can
e simply written as

(k) = 1
L

∫ L/2

−L/2

W{Z(−
; x), Z(
; x)} dx (B.15)

It follows from Eq. (A.1) that W {Z(− 
 ; x), Z(
 ; x)} is a periodic
unction of x with period d. Thus,

(k) = 1
d

∫ d

0

W{z(−
; x), z(
; x)}dx (B.16)

here z(
; x) is given by

(
; x) = i

2

{
kR
kI

cosh[2kI(x − d)] + kI
kR

cos[2kR(x − d)]
}

+ D + E

(B.17)

 = i

2
exp(−2
I)

[
kR
kI

cosh(2kIx) + kI
kR

cos(2kRx)
]

 = −i�e
{

exp(i
)
[
kR
kI

cos(2ikIx + k ∗ d) + kI
kR

cos(2kRx − k ∗ d)
]}
cience 329 (2015) 184–196

and where kR and kI are the real and imaginary parts of the wave
vector k.

The Wronskian W {z(− 
 ; x), z(
 ; x)} can now be calculated and
the integral over x performed by hand. The result is formula (5).

Appendix C. Thin films bounded by smooth surfaces

In this section we consider the effects of grain boundaries in
the electrical conductivity of a thin film of thickness t. In order to
disentangle these effects from those arising from surface roughness
or other surface defects, we consider first only the case of perfectly
smooth boundaries. Let us suppose that the sample extends from
z = 0 to z = t and is of infinite extent in the x- and y-directions. As
in Mayadas and Shatzkes, grain boundaries are represented by a
regular array of barriers oriented perpendicularly to the x-axis with
the potential described by Eq. (2). The Green’s function for this case
is

G(�r, �r′) = 2m
�2

∞∑
n=1

∫ ∞

−∞

dky
2�

exp[iky(y − y′)]	n(z)	n(z′)g(kn; x, x′)

(C.1)

where

	n(z) =
√

2
t

sin
(
n�

t
z
)

(C.2)

and

kn =
√
k̃2
F − k2

y −
(
n�

t

)2
(C.3)

As a consequence of the separability of this problem, the Green’s
function g(kn; x, x′) is still given by Eq. (A.16).

Proceeding as before, we  find that in this case the electrical
conductivity is given by

� = q2

8�2�t

∑
n

∫ ∞

0

I(kn)
|D(kn)|2 dky

Again, here I(k) is given by Eq. (5a) and the values of ky and n are
restricted so that kx lies inside the KP bands of allowed states and
are such that k2

x + k2
y + (n�/t)2 = k2

F .
We extend the treatment to a wire bounded by smooth sur-

faces, of rectangular cross-section of dimensions Dy, Dz such that
0 ≤ y ≤ Dy, 0 ≤ z ≤ Dz and very long in the x-direction. The effect of
grain boundaries is, again, accounted for by means of the model
of Mayadas and Shatzkes. It is seen that the appropriate Green’s
function is

G(�r, �r′) = 2m
�2

∞∑
n=1

∞∑
m=1

Yn(y)Yn(y′)Zm(z)Zm(z′)g(km,n; x, x′) (C.4)

where

Yn(y) =
√

2
Dy

sin

(
n�

Dy
y

)
; Zm(z) =

√
2
Dz

sin
(
m�

Dz
z
)

(C.5)

and g(km,n; x, x′) is given by Eq. (A.16). Here km,n =√
k̃2
F −
(
n�
Dy

)2
−
(
m�
Dz

)2
.

The electrical conductivity is given by

� = q2

4��DyDz

∑
n,m

I(km,n)
|D(km,n)|2 (C.6)
As before, I(k) is given by Eq. (5a) and the sum is performed only
over those values of n and m so that kx lies inside the KP bands of
allowed states and are such that k2

x + (n�/Dy)
2 + (m�/Dz)

2 = k2
F .
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ppendix D. Transfer matrix Pn and transmission
oefficient TN (kx)

In order to fill in the gap left in the work by Mayadas and
hatzkes, we use standard Quantum Mechanics to calculate the
ransfer matrix Pn across the boundary located at xn = nd,  n ≥ 1,
here there is a grain boundary, the potential of which is repre-

ented by (�2S/2m)ı(x − nd)  contained in the Hamiltonian [(Eq. (2)].
e represent these Bloch states by

	n−1(x) = An−1 exp(+ikx) + Bn−1 exp(−ikx) valid for (n − 1)d ≤ x ≤ nd
and by 	n(x) = An exp(+ikx) + Bn exp(−ikx) valid for nd ≤ x ≤ (n + 1)d

here An−1, Bn−1, An and Bn are complex coefficients. We  impose
he following boundary conditions which are standard for this kind
f problems in an introductory course on quantum mechanics:

(i) 	n−1(x = xn) = 	n(x = xn)

ii) − �2

2m

{(
d	n(x)
dx

)
x=xn

−
(
d	n−1(x)
dx

)
x=xn

}
+ �

2

2mS	n(x = xn) = 0.

These boundary conditions lead to the following relations
etween the coefficients A, B:

(i′) An−1 exp(+ikxn) + Bn−1 exp(−ikxn) = An exp(+ikxn) + Bn exp(−ikxn

ii′) An−1[1 + i(S/k)] exp(+ikxn) + Bn−1[i(S/k)−1] exp(−ikxn) = An exp(+

Solving for An, Bn in terms of An−1, Bn−1, we  obtain the transfer

atrix Pn described by Eq. (7), defined by

(
An
Bn

)
= Pn

(
An−1
Bn−1

)
.

ote that det (Pn) = 1.
As explained in Section 2.2.5, to describe the effect of disorder,

et xn = nd + �n indicate the position of the n-th grain boundary,
here d is the average grain diameter and �n is a random variable

uch that 〈�n〉 = 0 and 〈�n
2〉 = s2, 〈�n �m〉 = ım,n 〈�n

2〉 = s2 ım,n for
 ≤ m,  n ≤ N. We  assume that �n is a random variable described by

 Gaussian probability density f(�n) with mean cero and standard

eviation s2, f (�n) = 1√
2�s2

exp
(

−�n
2

2s2

)
. We  use the simplifying

ssumption that �n, �m, the fluctuations in the position of the
rain boundary located at xn = nd for grains located at different sites

 /= m are uncorrelated, and are characterized by the same mean
�n〉 = 0 and the same standard deviation 〈�n

2〉 = s2. Under these
ssumptions, we can write the transfer matrix M relating AN, BN to
1, B1, as M = PN × PN−1 × . . . × P1, therefore the statistical average of

he 2 × 2 matrix M is

〈
N∏
n=1

Pn

〉
. Using the statistical independence

f the random variables �n, �m, we write

〈
N∏
n=1

Pn

〉
=

N∏
n=1

〈
Pn
〉

.

Hence, the only element of the 2 × 2 matrix Pn that involves
he random variable �n and involves an average over an ensem-
le of all possible realizations of the grain size distribution, is
S

2kx
exp(−2ikxxn), whose statistical average is

i
S

2kx
exp(−2ikxxn)

〉

= i
S

2kx

∫ ∞

−∞
f (�n) exp [−2ikx(nd + �n)]d�n

= i
S

2kx
exp(−2ikxnd)  exp(−2kx

2s2)

hich is the result quoted in Eq. (7a).
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) − Bn exp(−ikxn).

To compute the transmission coefficient TN, we write

AN = M11A1 + M12B1

BN = M21A1 + M22B1

and set BN = 0 for the N-th grain boundary (N > 1), therefore
AN = (M11M22 − M12M21)/M22 = 1/M22.

Finally, the transmission coefficient is, rigorously,
TN(kx) =〈1/|M22(N, kx)|2 〉. Here we used as a simple estimation
TN(kx)≈ 1/|  〈M22(N, kx)〉 |2.

Within this line of reasoning Anderson localization plays no
role whatsoever. We  stumbled on localization induced by electron
scattering by successive disordered grain boundaries, after the eval-
uation of the transfer matrix Pn using the standard rules of Quantum
Mechanics described above, and as a result of numerically evaluat-
ing TN(kx) ≈ 1/|M22(N, kx)|2 via matrix multiplication of N matrices
for each of the four samples analyzed in this work, involving N = 1,
2, 3,. . . up to 50 matrices given by Eq. (7a). These results forced us
to accept localization, and to look for similar phenomena in other
branches of physics. This way we arrived (at the end of this work)
to Anderson localization.

Within the theory presented here, the conductivity of the spec-
imen is proportional to the probability of transmission TN(kx,
R, �) of an electron traversing N successive grain boundaries.
From the argument by Thouless [17] and the work of several
researchers working on Anderson localization [16,18], it is expected
that the probability of transmission TN(kx, R, �) of an electron
traversing N successive grain boundaries, will behave as TN(kx, R,
�) ∼ exp[−�/Lloc(kx, R)], where Lloc(kx, R) is the so-called Anderson
localization length.

After accepting the fact that such numerical evaluation of TN(kx,
R, �) led to Anderson’s localization, we verified that ln(TN) is, indeed,
proportional to −�. However, a technical difficulty arises, because of
the stepwise variation of TN(kx, R, �) that necessarily occurs when a
grain is added (or substracted) from the electron trajectory because
of an increasing (or decreasing) temperature dependent bulk mean
free path �(T). To circumvent this difficulty and to retrieve the
underlying physics, we numerically computed TN over a grid of val-
ues of (kx, R) involving (100 ×9) data points for each sample, using
for t, d and s the values measured on each sample listed in Table 1,
and adjusted a smooth analytic function of (kx, R) to the resulting
TN numerical data, seeking agreement to 7 significant figures in
the neighborhood of kx ≈ 0.9kF and R ≈ 0.1, which is the region that
contributes the most to the conductivity of the samples.

Appendix E. Contribution to the resistivity arising from
electron-rough surface scattering

We use the self energy given by Eq. (8) to compute the contri-
bution to the resistivity of a thin film arising from electron-rough
surface scattering. Within the formalism used in Refs. [23,25], the
wave functions describing the electron gas that extends indefinitely
along x and y, but is confined by two rough surfaces at z = 0 and z = t,
is

ϕ−(z) = exp(−ikzz) − A0 exp(ikzz)
ϕ+(z) = exp(+ikzz) − At exp(2ikzt − ikzz)
(E.1)

where ϕ−(z) represents the wave function propagating along −z,
ϕ+(z) represents the wave function propagating along +z, while A0
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nd At represent the amplitude of the wave functions reflected
y the rough surfaces located at z = 0 and z = t, respectively. In
he case of these gold films, A0 = 1, since AFM reveals that the

ica surface is flat in regions of the order of a few hundred
m.  Within the quantum formalism of Refs. [23,25], At is given
y

t = 1 − kzQn(k‖)
1 + kzQn(k‖)

(E.2)

here Qn(k‖) is given by Eq. (8). Let At = exp(2iıt). Then, the one-
imensional Green’s function is

(kz; z, z′) = sin(kzz) sin[kz(z′ − t) − ıt]
kz sin(kzt + ıt)

if z < z′ (E.3a)

(kz; z, z′) = sin(kzz′) sin[kz(z − t) − ıt]
kz sin(kzt + ıt)

if z > z′. (E.3b)

The energy level of the electron gas is given by the wave vectors
z,n associated with the poles of this Green’s function. These poles
nd the corresponding wave vectors kz,n are obtained by solving Eq.
E.2),

z,nt = n� − 1
2i

ln
1 − kz,nQn(k‖,n)
1 + kz,nQn(k‖,n)

(E.4)

f ıt = 0, then the Green’s function describing the flat surface has
oles at kz,n(ıt = 0) = n�/t, where 1 ≤ n ≤ Int(tkF/�), which describe
he sub bands of the electron gas confined between two  parallel flat
urfaces.

To determine the complex poles kz,n satisfying (E.4) for the
ough surface of samples S1, S2, S7 and S8, we computed Qn

ccording to Eq. (8) using the parameters (ı, 
) listed in Table 1
or each sample, and used as a first approximation to compute√

n, the value k‖,n = kF

2 − (n�/t)2. The transcendental equa-
ion (E.4) was solved numerically for the complex kz,n using a
ewton–Rapson method until a precision of 10 digits was  obtained

or each sub band 1 ≤ n ≤ Int(tkF/�).

[
[
[

cience 329 (2015) 184–196

To include dissipation arising from electron scattering by the
rough surface, the values of kz,n determined numerically were used
to shift the Fermi sphere adding an imaginary part to the wave
vector kz; the complex numerical solution of Eq. (E.4) was employed

to compute the corrected values of kn =
√
k̃2
F − k2

z,n − k2
y for each

sub band before performing the integration on Eq. (6).
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