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MAGNETOHYDRODYNAMIC EQUILIBRIA IN BAROTROPIC STARS

C. Armaza,1 A. Reisenegger,1 J. A. Valdivia,2 and P. Marchant1,3

RESUMEN

Aunque la materia barotrópica no constituye un modelo realista para estrellas magnéticas, seŕıa interesante
confirmar una conjetura reciente que establece que las estrellas magnéticas con ecuación de estado barotrópica,
seŕıan dinámicamente inestables (Reisenegger 2009). En este trabajo construimos un conjunto de equilibrios
barotrópicos, los cuales pueden ser finalmente testeados usando un criterio de estabilidad. Una descripción
general de las ecuaciones de MHD ideal que gobiernan estos equilibrios es revisada, permitiendo tanto una
componente poloidal, como una componente toroidal del campo magnético. Un nuevo código numérico en
diferencia finita es desarrollado para resolver la llamada ecuación de Grad-Shafranov que describe el equilibrio
de estas configuraciones, y algunas propiedades de los equilibrios obtenidos son brevemente discutidas.

ABSTRACT

Although barotropic matter does not constitute a realistic model for magnetic stars, it would be interesting
to confirm a recent conjecture that states that magnetized stars with a barotropic equation of state would be
dynamically unstable (Reisenegger 2009). In this work we construct a set of barotropic equilibria, which can
eventually be tested using a stability criterion. A general description of the ideal MHD equations governing
these equilibria is summarized, allowing for both poloidal and toroidal magnetic field components. A new
finite-difference numerical code is developed in order to solve the so-called Grad-Shafranov equation describing
the equilibrium of these configurations, and some properties of the equilibria obtained are briefly discussed.

Key Words: Stars: MHD — Stars: barotropic

1. BARO... WHAT?

Barotropic equations of state, where pressure
is a function solely of density, are often assumed
to describe the matter within magnetic stars in
ideal magnetohydrodynamic (MHD) equilibrium
(Yoshida & Eriguchi 2006; Haskell et al. 2008;
Lander & Jones 2009). Barotropy strongly restricts
the range of possible equilibrium configurations,
and does not strictly represent the realistic stably
stratified matter within these objects, which is
likely to be an essential ingredient in the stability
of magnetic fields in stars (Reisenegger 2009).
With this in mind, it is interesting to carry out
the pedagogical exercise of checking whether the
unrealistic barotropic equilibria are really stable or
not. This work is focused on obtaining a wide range
of these equilibria and study their main properties,
as a starting point to study their stability.
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2. MHD EQUILIBRIA: THE
GRAD-SHAFRANOV EQUATION

In the ideal MHD approximation, a magnetic star
may be considered as a perfectly conducting fluid in
dynamical equilibrium described by the Euler equa-
tion,

∇P + ρ∇Φ =
1

c
J×B, (1)

where the right-side is the Lorentz force per unit
volume. Considered objects have a very large fluid
pressure P (P ∼ GM2/R4, M being the mass and
R the radius), to magnetic pressure B2/8π ratio
(B being a characteristic magnetic field strength),
8πP/B2 ∼ 106 (Reisenegger 2009), which suggests
that magnetic forces may be balanced by a slight per-
turbation of an unmagnetized spherical background
equilibrium. This implies that, as an approximation,
we can consider the star as spherical with negligible
deformations due to the magnetic forces. In addi-
tion, if axial symmetry is assumed, and spherical co-
ordinates (r, θ, φ) are used to describe the model, all
scalar quantities are independent of the azimuthal
coordinate, and the magnetic field may be expressed
as the sum of a poloidal (meridional field lines) com-
ponent, and a toroidal (azimuthal field lines) com-
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Fig. 1. Meridional cut of a star bearing an axisymmetric
magnetic field. The bold curve is the surface of the star,
while the thinner curves are poloidal field lines. The
toroidal component of the magnetic field may lie only in
regions where the poloidal field lines close inside the star
(gray region).

ponent, each determined by a single scalar function,

B = Bpol +Btor = ∇α(r, θ)×∇φ+β(r, θ)∇φ, (2)

which turn out to be constant along their respective
field lines (Chandrasekhar & Prendergast 1956). Un-
der this symmetry, the azimuthal component of the
magnetic force per unit volume must vanish, which
implies a functional relation between these scalar
functions, β(r, θ) = β (α(r, θ)). In this way, both
α and β are constant along field lines and, if vacuum
is assumed outside the star, the toroidal field may
lie only in regions where the poloidal field lines close
within the star (Figure 1). On the other hand, if a
barotropic equation of state, P = P (ρ), is assumed,
the Lorentz force per unit mass must be the gradient
of some arbitrary function χ(r, θ), which turns out to
be a function of α as well, χ(r, θ) = χ (α(r, θ)). Using
all this formalism, a non-linear elliptic partial differ-
ential equation is found to be the master equation
governing the equilibrium of a barotropic MHD equi-
librium, the so-called Grad-Shafranov (GS) equa-
tion,

∂2α

∂r2
+

sin θ

r2
∂

∂θ

(
1

sin θ

∂α

∂θ

)
+ ββ′ + r2 sin2 θρχ′ = 0

(3)
(Grad & Rubin 1958; Shafranov 1966) where primes
stand for derivative with respect to the argument,
and both β = β(α) and χ = χ(α) are two arbi-
trary functions, whose form may be chosen depend-
ing on the particular magnetic configuration of in-
terest. Under the assumption of weak magnetic field
discussed in §1, the density ρ appearing in the GS

equation may be replaced by its non-magnetic back-
ground counterpart, ρ = ρ(r), such that we solve for
the magnetic functions for a given density profile,
instead of considering the more difficult problem of
solving self-consistently for the magnetic functions
and for the fluid quantities.

3. NUMERICAL SOLUTIONS

Outside the star, α corresponds to an infinite su-
perposition of multipoles, which is the general so-
lution of the GS equation with both β = 0 and
ρ = 0. We have implemented a finite-difference code
to solve numerically the GS equation inside the star,
for arbitrary choices of β(α) and χ(α). Solutions
are matched to the exterior expansion by demand-
ing continuity of α and its derivatives (related to
the magnetic field components), in order to avoid
surface currents. After testing our code, we ob-
tained barotropic equilibria for the particular case
χ(α) = α, ρ(r) = ρc(1− r2/R2) and

β(α) =

{
s(α− αs)

1.1 αs ≤ α
0 α < αs,

(4)

where s is a free parameter accounting for the rela-
tive strength between the poloidal and the toroidal
component. In the definition below, an exponent
larger than 1 was chosen in order to prevent a
discontinuous β′ at the layer between regions with
and without toroidal field; it is found that larger
exponents than 1.1 give a smaller toroidal field
strength. Also, αs ≡ α(R, π/2) stands for the value
of α along the largest poloidal field line closing
within the star, being R the stellar radius, so the
toroidal field lies in the region inside the curve
αs = α(r, θ) only. Figure 2 shows some numerical
results for the particular β(α) in Eq. (4). Black
lines correspond to poloidal field lines with 0.2αs,
0.4αs, 0.6αs, 0.8αs, 1.0αs, 1.08αs and 1.13αs,
respectively, whereas the color map accounts for the
strength of the toroidal field. In turn, Figures 3-4
show the strength of the magnetic field along the
axis and the equatorial line for these equilibria.

4. DISCUSSION

All the equilibria found consist of a mixed
poloidal-toroidal field with a dominant poloidal
component in the magnetic energy Emag. For the
cases studied so far, the energy stored in the toroidal
component Etor is only a few percent of the total
magnetic energy, even in cases where the maximum
strength of the toroidal field is comparable to that
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Fig. 2. Numerical equilibria found with our code. Left:
s = 10, with Etor/Emag ≈ 0.5%. Right: s = 35, with
Etor/Emag ≈ 3.2%.
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Fig. 3. Magnitude of the magnetic field for the equilibria
shown in Figure 2 with s = 10. The maximum toroidal
strength is about one order of magnitude smaller than
the poloidal one.

of the poloidal component: the larger the toroidal
field, the smaller the volume where it lies. This
small contribution to the energy has already been
reported in the literature, but assuming a purely
dipolar magnetic field outside the star (Lander
& Jones 2012). Our code, allowing an arbitrary
number of multipoles, seems to indicate that higher
multipoles do not contribute significantly to the
energy of these equilibria, at least not for small
to moderate values of s. It is desirable to study
this fact in more detail and confirm, for instance,
whether a global maximum for Etor/Emag exists,
already reported using general-relativistic MHD
(Ciolfi et al. 2009). Once we obtain a wide range of
relevant equilibria with consistent physical choices
of the arbitrary magnetic functions, their dynamical
stability may be analyzed using either a perturbative
analysis or numerically solving the time-evolution
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Fig. 4. Magnitude of the magnetic field for the equilibria
shown in Figure 2 with s = 35. Both the poloidal and
the toroidal maximum strength are of the same order of
magnitude.

of such configurations.
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