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The ordered weighted average (OWA) is an aggregation operator that provides a parameterized
family of aggregation operators between the minimum and the maximum. This paper analyzes
the use of the OWA in the variance and the covariance. It presents several extensions by using
a unified framework between the weighted average and the OWA. Furthermore, it also develops
other generalizations with induced aggregation operators and by using quasi-arithmetic means.
Several measures of correlation by using the OWA are introduced including a new type of Pearson
coefficient. The paper ends with some numerical examples focused on the construction of interval
and fuzzy numbers with the variance and the covariance. © 2015 Wiley Periodicals, Inc.

1. INTRODUCTION

The variance and the covariance are basic concepts in statistics for measuring
the dispersion of data. The variance is used when dealing with one set of variables,
whereas the covariance is used with two sets. They are fundamentally related to the
notion of distance and, as such, it has been at the center of virtually all data analysis
applications.! Usually, the variance and the covariance are defined as an averaging
process of the individual dispersions. The most common tools for doing so are the
simple average and the weighted average (WA).

However, it is possible to introduce some additional information on the defini-
tion of weights by using more sophisticated tools. For example, the ordered weighted
average (OWA)>? can be used for that purpose. The OWA provides a parameterized
family of aggregation operators between the minimum and the maximum. Since its
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introduction, it has been studied and generalized by many authors. For example,
Yager and Filev* introduced the induced OWA (IOWA) operator by using complex
ordering processes assessed with order-inducing variables. Fodor et al.> presented
the quasi-arithmetic OWA (Quasi-OWA) operator that generalized a wide range of
aggregation operators including the OWA and the quadratic OWA operator. Merigd
and Gil-Lafuente® suggested a unified framework of the previous approaches named
induced generalized OWA operator. Some other authors’~ have studied several ex-
tensions under imprecise information that can be assessed with interval and fuzzy
numbers.

The aim of this paper is to analyze the use of the OWA operator in the
variance and in the covariance. The main advantage of doing so is that the variance
can be studied considering a wide range of scenarios from the minimum to the
maximum, that is, from the most optimistic to the most pessimistic scenario.
Currently, the main studies in this direction have been developed by Yager!®!!
with the use of the OWA and the IOWA operator in the variance and by Merig6'?
who focused on the use of the ordered weighted averaging—weighted average
(OWAWA) and the induced ordered weighted averaging—weighted average
(IOWAWA) operator. This work reviews these approaches and suggests some
additional ones by using the weighted OWA (WOWA),'? the hybrid average,'*
and the immediate weights.!>~!7 Furthermore, the use of generalized aggregation
operators is also introduced by using quasi-arithmetic means. Therefore, it is
possible to consider a wide range of particular cases including quadratic and cubic
aggregations.

Some additional results are also presented by using the Pearson coefficient (PC).
Moreover, several analyses for the construction of interval and fuzzy numbers with
the variance and covariance are also developed under the framework of the OWA
operator. A numerical example is also presented to understand the main advantages
of the new approach.

This paper is organized as follows. Section 2 reviews the OWA operator,
some of its extensions, and its implementation in the variance and the covariance.
Section 3 studies the use of the OWAWA operator and some related extensions in
the variance. Section 4 develops a similar analysis with the covariance and Section 5
studies some measures of correlation with the OWAWA operator. Section 6 presents
some numerical examples focused on the construction of interval numbers with the
variance and the covariance. Section 7 summarizes the main results and conclusions
of the paper.

2. PRELIMINARIES

This section presents a brief description of some basic aggregation operators,
the variance, the covariance, and the use of the OWA operator in the variance and
the covariance.
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2.1. Aggregation Operators
2.1.1. The Weighted Average

The WA is one of the most well-known aggregation operators. It has been used
in a wide range of applications including statistics, economics, and engineering. It
can be defined as follows.

DEFINITION 1. A WA operator of dimension n is a mapping WA: R" — R that has an
associated weighting vector V, with v;€ [0, 1] and Z;’Zl v; = 1, such that

WA (ar, ...,a) =) v =1, (1
i=1

where a; represents the argument variable.

The WA operator satisfies the common properties of aggregation operators. For
further reading on different extensions and generalizations (see, e.g.,Refs. 18-21).

An important issue when integrating the WA with the OWA operator is that
one of them has to adapt his initial ordering to the other one. Therefore, it is useful
to see how the WA would be formulated if it has to adapt his ordering to the OWA
operator.'? In this case, it can be defined as follows:

WA (a1, ....a,) =Y v;bj, )
j=1

where b; is the jth smallest argument ¢; and v; is the weight v; reordered according
to the reordering of the arguments a; in the form of b; such that v;€ [0, 1] and
v =1.

Obviously, Equations 1 and 2 provides the same aggregated result although the
reordering process of each method is different. This is a key feature for unifying the
OWA with the WA and will be explained in Section 2.1.3.

2.1.2.  The OWA Operator

The OWA operator? is an aggregation operator that provides a parameterized
family of aggregation operators between the minimum and the maximum. It can be
defined as follows.

DEFINITION 2. An OWA operator of dimension n is a mapping OWA: R"— R that has
an associated weighting vector W of dimension n with w; € [0, 1] and Z'}Zl w; =1,
such that

OWA (ai, ....a,) =Y w;bj, 3)
j=1

where b; is the jth smallest of the a;.
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Note that different properties could be studied including the distinction be-
tween descending and ascending orders, different measures for characterizing the
weighting vector and different families of OWA operators. For further reading, refer
to Refs. 3,7,22, and 2.

In most of the OWA literature, the arguments are reordered according to an
established weighting vector. However, it is also possible to reorder the weighting
vector according to the initial positions of the arguments a;,>* that is

OWA (ar, ....a,) =Y _aw;, 4)
i=1

where w; is the ith weight w; reordered according to the positions of the a;.

2.1.3. The OWAWA Operator

The OWAWA operator is an aggregation operator that integrates the OWA op-
erator and the WA in the same formulation and considering the degree of importance
that each concept has in the analysis. It can be defined as follows.

DEFINITION 3. An OWAWA operator of dimension n is a mapping OWAWA: R"—R
that has an associated weighting vector W of dimension n such that w;€ [0, 1] and
Z?:l w; = 1, according to the following formula:

OWAWA (ay, ...,a,) = Zﬁ;b/» )
j=1

where b; is the jth smallest of the a;, each argument a; has an associated weight v;
with Y ' v; = 1 and vi€ [0, 1], 9; = Bw; + (1 — B)v; with BE [0, 1] and v; is
the weight v; ordered according to bj, that is, according to the jth smallest of the a;.

As we can see, if B = 1, we get the OWA operator and if B = 0, the WA.
The OWAWA operator accomplishes similar properties than the usual aggregation
operators. Note that we can distinguish between descending and ascending orders,
extend it by using mixture operators, and so on.

Observe that Equation (5) has been presented adapting the ordering of the WA
to the OWA operator. However, it is also possible to formulate the OWAWA operator
integrating the ordering of the OWA operator to the WA as

OWAWA (ay, ...,a,) =Y D, (6)
i=1

where each argument a; has an associated weight v; with Y _, v; = 1 and v;E€ [0,
1], 0; = Bw; + (1 — B)v; with BE€ [0, 1] and w; is the weight w; ordered according
to the ordering of the arguments a;.
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2.1.4. The IOWAWA Operator

The IOWAWA operator is a model that unifies the IOWA operator and the WA in
the same formulation and considering a complex reordering process based on order-
inducing variables. Therefore, both concepts can be seen as a particular case of a
more general one. It can also be seen as a unification between decision-making prob-
lems under uncertainty (with IOWA operators) and under risk (with probabilities).
Note that the motivation for using this approach instead of the OWAWA operator is
especially useful when dealing with complex interpretations of the information. It
can be defined as follows.

DEFINITION 4. An IOWAWA operator of dimension n is a mapping IOWAWA: R" x
R"—R that has an associated weighting vector W of dimension n such that w;€
[0, 1] and Z;l':l w; = 1, according to the following formula:

IOWAWA ((u1, a1) , (uz, az) , . .., {un, ay)) = Z Djb;, @)
=1

where bj is the a; value of the IOWAWA pair (u;,a;) having the jth smallest u;, u; is the
order-inducing variable, and a; is the argument variable, each argument a; has an
associated weight (WA) v; with Y_;_, v; = Land v;€ [0, 1], 0; = Bw; + (1 — B)v;
with BE€ [0, 1] and v; is the weight (WA) v; ordered according to bj, that is, according
to the jth smallest u;.

Note that it is also possible to formulate the IOWAWA operator adapting the
reordering of the IOWA operator to the WA as it has been shown in Equation 6 for
the OWAWA operator. If 8 = 1, it becomes the IOWA operator* and if 8 = 0, the

WA (for further reading, see Merig6'?).

2.2. Variance and Covariance

2.2.1. The Variance and the Covariance

The variance and the covariance are two statistical measures of variability. The
variance measures how far the numbers lie from the mean. It has been applied in a
wide range of problems and it can be defined as:

n

Var(ai, ..., a,) =Y vila; — ), ®)

i=1

where g, is the argument variable, y is the average, and each argument (a; — j)?
has an associated weight (WA) v; with Z?zl v; = 1l and v;€ [0, 1].

Note that in this formulation it is implicitly assumed that the variance uses a
WA. However, it is also possible to consider it with arithmetic means, when v;= 1/,
for all 7, in the following way:

1 n
Var(a, ... @) =~ (@i — ©)
i=1
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Furthermore, the variance is often transformed into the standard deviation (SD)
to obtain a more representative measure of dispersion as

> vila; — w)’. (10)

i=1

The covariance is a measure of how much two variables change together. It can
be defined as follows:

n

COV((X], yl) s (x2’ YZ> 9 e ey (xn’ yn)) = Z Ui(-xi - M)(yl - U), (11)
i=1

where x; is the argument variable of the first set of elements X = {x;, ..., x,}, y; is
the argument variable of the second set of elements Y = {y;, ..., y,}, and p and v
are the average of the sets X and Y, respectively, each argument(x; — ©) (y,— v) has
an associated weight v; with >_*_, v; = 1 and v;€ [0, 1].

In the covariance, it is also possible to consider the situation where all the
weights are equal, that is, v;= 1/n, for all i. Note that the variance is a particular case
of the covariance when the two set of variables are equal Cov(X, X) = Var(X).

2.2.2.  Variance and Covariance with the OWA Operator

The OWA operator can also be used in the variance and covariance providing
two measures that provide a parameterized family of measures that range from the
minimum dispersion to the maximum one. The use of the OWA operator in the
variance was suggested by Yager'® and it can be defined as follows:

Var — OWA (ay, ....a,) = Y _w;Dj, (12)
j=1

where D; is the jth smallest of the (a; — w)?, a; is the argument variable, j is the
average (in this case, the OWA operator), w;€ [0, 1] and Z;=1 w; =1

The Var-OWA accomplishes similar properties than other OWA operators in-
cluding commutativity, idempotency, monotonicity, and the boundary condition.
Since it is a measure of variability, it also accomplishes similar properties than
the OWA distance® such as reflexivity and commutativity of a distance measure.
Moreover, it includes the classical variance as a particular case when w; = 1/n for
all i.

The Var-OWA can be extended by using induced aggregation operators!! to
deal with complex reordering processes as follows:

Var — IOWA ((u1, a1) , (2, @) , ..., (uy, @) = Y _w;Dj, (13)
j=1
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where D; is the (a; — w)? value of the IOWA pair (u;,a;) having the jth smallest u;,
u; is the order-inducing variable, a; is the argument variable, u is the average (in
this case, the OWA operator), w;€ [0, 1] and ijl w; =1

The Var-IOWA operator also accomplishes similar properties than other
IOWA operators*?® such as commutativity, the boundary condition, idempotency,
monotonicity, and reflexivity. Note that in the case of ties between order-inducing
variables, the aggregation needs an adjustment. Yager and Filev* suggested re-
placing the arguments of the tied order-inducing variables by their average. Thus,
in the case of ties in the Var-IOWA, the arguments (a; — w)* with tied induc-
ing variables can be replaced by the average, that is, [(@; — u)> + (ax — w)*1/2.
Note that the Var-IOWA includes the classical variance with the WA when the re-
ordering of the order-inducing variables is equal to the ordering of the arguments
a;.

The covariance can also be formulated using a similar methodology as shown
for the variance. Note that the use of the OWA operator in the covariance was
suggested by Merig6'? as a particular case of the OWAWA operator. It is formulated
as follows:

n
Cov— OWA(X.Y) =Y w;K;, (14)
j=1
where K is the jth smallest of the (x; — u)(y; — v), x; is the argument variable of the
first set of elements X = {xi, ..., x,,}, y; is the argument variable of the second set
of elements Y = {yy, ..., y,}, and n and v are the average (or the OWA operator)

of the sets X and ¥, respectively, w;€ [0, 1] and Z?:l w; =1
Furthermore, it is also possible to extend this approach by using induced
aggregation operators'? as follows:

Cov —IOWA (U, X,Y) =Y w;K;, (15)
j=1

where K is the (x; — w)(y; — v) value of the IOWA ftriplet (u;, x;, ;), having the jth
smallest u;, and u; is the order-inducing variable of the set of elements U = {uj,
ey Wiy oo, Un )

Note that both the Cov-OWA and Cov-IOWA accomplish similar properties
than the usual OWA and IOWA operator.

3. OWAWA OPERATORS IN THE VARIANCE
3.1. The Var-OWAWA Operator

Recently, Merig6'>? has suggested a new aggregation approach that integrates
the OWA operator with the WA, considering the degree of importance that each
concept has in the specific problem considered. He called it the OWAWA operator.
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He also briefly showed that it is possible to use the OWAWA in the variance as
follows:

Var — OWAWA (ai, ....a,) = Y 9;D;, (16)
j=1

where D; is the jth smallest of the (a; — w)?, a; is the argument variable, u is the
average (in this case, the OWAWA operator), w;€ [0, 1] and Z'}Zl w; =1, each
argument(a; — w)* has an associated weight (WA) v; with Z?zl v; = 1 and v;€
[0,1],0; = Bw; + (1 — B)v; with BE€ [0, 1] and v; is the weight (WA) v; ordered
according to Dj, that is, according to the jth smallest of the (a; — w)?.

Note that the Var-OWAWA operator can also be formulated separating the part
that affects the OWA operator and the part concerning the WA as:

Var — OWAWA (ay, ...,a,) =8 Zw]'Dj + (1 - ,B)Z vila; — p)*. (A7)
i=1

j=1

Observe that this formulation can be summarized with the following expression:

Var — OWAWA = 8 x Var — OWA + (1 — B) x Var — WA. (18)

Moreover, it is also possible to adapt the reordering of the OWA operator to
the WA as:

Var — OWAWA (ay, ..., a,) =Y Dila; — p)’, (19)

i=1

where 0; = Bw; + (1 — B)v; with B€ [0, 1] and w; is the weight w; ordered accord-
ing to the ordering of the arguments a; and j is the ordering of the jth smallest (a; —
W)

Obviously, once we have the variance, it is straightforward to obtain the SD
with the OWAWA operator by using

(20)

The Var-OWAWA operator accomplishes similar properties as the OWAWA
operator including the boundary and semiboundary condition, monotonicity, and
idempotency. It is worth noting that if 8 = 1, it becomes the Var-OWA operator and
if B = 0, the classical variance with the WA. The more of 8 located to the top, the
more importance we give to the OWA aggregation and vice versa.
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An important issue when analyzing the Var-OWAWA operator is the use of
measures for characterizing the weighting vector. In the OWA literature, >’ there
are several measures for doing so including the or-ness measure, the entropy of
dispersion, the balance operator, and the divergence. The or-ness measure for an
OWAWA operator can be formulated as follows:

. n s 1 n s 1
a(V) =B w, (ij) +1=-pHY (h) 1)
j=1 j=1

It is straightforward to calculate the and-ness measure by using the dual:
andness(V) = 1 — a(V). Note that « € [0, 1].

There are different methods for defining the entropy of dispersion.
this study, the combined entropy is defined as follows:

2,27,30,31 In

RV)=— (B> wihnw)+1=p8Y v, |. (22)

j=1 i=1

Note that if 8 = 1, this measure becomes the Yager? entropy of dispersion and
if 8 = 0, the Shannon’! entropy.
The balance operator can be formulated as follows:

. “ 1-2j ! 1—2j
Ba(V) =4y (%) w+(1=pY ("J;Tj)v,. 23)
j=l1 j=1

And the divergence of V is given as

n . 2
Div(V) = 8 [ D w, (% - a(W)>
j=1

n

9 2
+(1-p) Zv,-(H—a(V)) . (24)

j=1

Another interesting feature of the Var-OWAWA is that it includes a wide range
of particular cases by selecting a different manifestation in the weighting vector.
Among others, the following cases are included as particular cases.

Moreover, note that in the literature there are other methods for integrating
the OWA operator and the WA in the same formulation. The main approaches are
the WOWA, the hybrid average, and the immediate weights'® that are based on the
immediate probabilities.!>~!7 Thus, these approaches could also be considered when
constructing new types of variance measures. By using the WOWA operator, the
variance can be expressed as follows.
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Let P and W be two weighting vectors of dimension n [P = (p1, p2, - - -, Pu)l,
[W = (wi, wa, ..., wy)], such that p;€ [0, 1] and Y ", p; = 1, and w;E€ [0, 1]
and Z;Zl w; = 1. In this case, a mapping Var-WOWA: R" — R is a Var-WOWA
operator of dimension # if:

Var — WOWA (ai. ....a,) = Y @; Do, (25)

i=1
where {o(1), ..., o(n)} is a permutation of {1, ..., n} such that Dy;_1) = Dy
foralli =2, ..., n(i.e., Dy is the ith largest in the collection D, ..., D, and

D; = (a; — 1)), and the weight w; is defined as:

o =w" | Y poiy | —w | D] peii | - (26)

J<i j<i

with w* a monotonically increasing function that interpolates the points (i/n,
> j<i w;) together with the point (0, 0). Note that it is necessary for w* to be a
straight line when the points are interpolated in this way.

By using the hybrid average, it becomes the hybrid averaging variance (Var-
HA) and it can be formulated as follows. A Var-HA operator of dimension # is a
mapping Var-HA: R"— R that has an associated weighting vector W of dimension
n with w;€ [0, 1]and }7_, w; = 1, such that

n
Var — HA (a1, a», ..., a,) = ijDA,-, 27)
j=1
where D; is the jth largest of the d;(d; = nw;(a; — ,u)z, i=12,....,n),w=(w, w,

..., wy) is the weighting vector of the a;, withw; € [0, 1] and the sum of the weights
is 1.

Finally, the immediate WA may form the immediate variance (Var-IWA) in
the following way. A Var-IWA operator of dimension n is a mapping Var-IWA:
R"— R that has an associated weighting vector W of dimension n with w;€ [0, 1]
and 3%_; w; = 1, such that

Var — IWA (a1, a3, ... a,) = Y _ ;D (28)
j=1

where D is the jth largest of the (a; — w)?, each g; has associated a weight v;, v; is
the Weight Vi 0rder§d according to b;, and ¥; = (w;v;/ Z';.:] wj.vj).

It is worth noting that there are other methods for dealing with OWA operators
and WAs in the same formulation that could be considered in this analysis.>**
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3.2. Induced and Generalized Aggregation Operators in the Variance

The IOWAWA operator can also be implemented in the variance. Thus, a more
general formulation is developed that may consider complex reordering processes.
This is important because many times the highest or lowest result do not need to go
first or last in the aggregation.

The variance of a population (discrete case) using the IOWAWA operator can
be expressed with the following formulation:

Var — IOWAWA ((u1, a1) , (i, @2) ..., {upy @) = 9;Dj,  (29)
j=1

where D; is the (a; — w)? value of the IOWAWA pair (u;, a;) having the jth smallest
u;, u; is the order-inducing variable, g; is the ith argument variable of the set X, and
w is the IOWAWA operator.

Obviously, it is straightforward to obtain the SD with the IOWAWA operator
by using the following expression:

(30)

In the case of ties between order-inducing variables in the reordering process
of the arguments (a; — u)?, it is recommended the use of the average.* Note that we
can also develop similar families of Var-IOWAWA operators to those explained for
the Var-OWAWA operator.

More generally, it is possible to extend them by using quasi-arithmetic means.
The main advantage of this approach is that it can represent a wide range of aggre-
gation operators based on the variance.

Var — Quasi — OWAWA (ay, ....a,) = B¢~ | Y w;g(D))
j=1
+(1 = B)h™! (Z vih((a; — u)z)) : (31)
i=1

where g and £ are strictly continuous monotonic functions. In Table I, some of the
main particular cases of the Var-Quasi-OWAWA operators are presented.
Conventions for geometric-Var-OWAWA do not consider those arguments with
(a; — w)*> = 0. Furthermore, observe that many other extensions could be devel-
oped by using induced aggregation operators*®>* and many other approaches.*34-3
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Table I. Families of Var-OWA operators

Weights Particular case

wj= 1/n and v; = 1/n, for all i, j Simple variance

wi =1 and w; =0 forall j# 1 Minimum weighted variance

wy, = 1 and w;= 0 for all j=n Maximum weighted variance

wj= 1/n, for all j Arithmetic weighted variance

v; = 1/n, for all i Arithmetic Var-OWA

wi = 1 and w; = 0 for all j+k Step-Var-OWA weighted variance

wi = l—a,w, =a and w; =0 forall j+ 1, n Hurwicz weighted variance

wj = 1/m for k<j<k + m— 1 and w; = 0 for j>k Window-Var-OWA weighted variance
+ m,jk

If n is odd, we assign w, + 12 = 1 and w; =0 Median-Var-OWA weighted variance
for all others

If n is even we assign, for example, w,,» = Median-Var-OWA weighted variance
W) +1 = 0.5 and w; = 0 for all others

w1 = wy, = 0, and for all others w; = 1/(n — 2) Olympic-Var-OWA weighted variance

By using the IOWAWA operator, it is formed the Var-Quasi-IOWAWA operator
as

Var — Quasi — [OWAWA = g x Var — Quasi — [OWA
+(1 — B) x Var — Quasi — WA. 32)

4. OWAWA OPERATORS IN THE COVARIANCE

The OWAWA operator can also be implemented in the covariance.'? Thus, it
is possible to consider a covariance that takes into account the importance of the
variables and the attitudinal character of the decision maker. It can be represented
by using the OWAWA operator as follows:

Cov — OWAWA (X, Y) = > ;K (33)
j=1

where K is the jth smallest of the (x; — )(y; — v), x; is the argument variable of the
first set of elements X = {x;, ..., x,}, and y; the argument variable of the second
set of elements ¥ = {yy, ..., y,}, u and v are the OWAWA operator of the sets X
and Y, respectively, w;€ [0, 1] and Z’;zl w; = 1, each argument(x; — u)(yi— v) has
an associated weight v; with Z?:l vi=1 and v;€ [0, 1], §; = Bw; + (1 — B;
with g€ [0, 1] and v; is the weight v; ordered according to K;, that is, according to
the jth smallest of the (x; — w)(y; — v).
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Table II. Families of Var-Quasi-OWAWA operators

Function Particular case

g=H" and h = ((a; — n)*)° Generalized Var-OWAWA operator

g=Hand h=(a; — w)? Var-OWAWA operator

g=H?and h = ((a; — 11)*)? Quadratic Var-OWAWA

g— Hand h — ((a; — w)*)° Geometric Var-OWAWA

g=H 'andh=((q; — )»~"  Harmonic Var-OWAWA

g=Hand h = ((a; — p)*)° Cubic Var-OWAWA

g=Hand h= ((a; — n)*)?* Var-OWA weighted quadratic variance

g=H?and h = (a; — p)* Ordered weighted quadratic averaging variance weighted variance
g=Hand h= ((a; — n)*?> Var-OWA weighted cubic variance

g=H?*and h = ((a; — p)*)° Ordered weighted quadratic averaging variance weighted cubic variance

The Cov-OWAWA operator can also be extended by using induced aggregation
operators. In this case, it is formed the Cov-IOWAWA operator, which is defined as
follows:

Cov— IOWAWA (U, X, ¥)= > ;K (34)
j=1

where K is the (x; — w)(y; — v) value of the IOWAWA triplet (u;, x;, y;) having the
Jjth smallest u; and u; is the order-inducing variable of the set of elements U = {u;,
ey Uiy oo, Un )

More generally, it is possible to extend this approach by using quasi-arithmetic
means. The main advantage of this approach is that we can represent a wide range
of aggregation operators based on the covariance.

Cov — Quasi — OWAWA (X, Y) = B x Cov — Quasi — OWA
4+(1 — B) x Cov — Quasi — WA, (35)

where g and £ are strictly continuous monotonic functions. Observe that a similar
analysis as it has been done for the Var-Quasi-OWAWA operator in Table II could
also be developed for the Cov-Quasi-OWAWA operator obtaining a wide range of
particular cases including geometric, quadratic, and harmonic aggregations.

5. MEASURES OF CORRELATION WITH OWAWA OPERATORS

A wide range of measures of correlation that use the variance and the covariance
could be extended with the new approach developed in this paper. Among others, it
is worth noting the PC. The PC with the OWAWA (PC — OWAWA) is formulated as
follows:

Cov — OWAWA(X, Y)
PC — OWAWA = . (36)
+/Var — OWAWA (X) x Var — OWAWA(Y)
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The PC — OWAWA is 1 if it presents an increasing linear relationship, —1 in a
decreasing linear relationship, and O if the variables X and Y are independent.

Next, we could study the IOWAWA covariance matrix and a lot of other aspects.
For example, the PC with the IOWAWA (PC — IOWAWA) can be formulated in the
following way:

Cov — IOWAWA(X, Y)
PC — IOWAWA = NG 1))
/Var — IOWAWA (X) x Var — IOWAWA(Y)

The PC — IOWAWA is 1 in the case of an increasing linear relationship and
—1 in a decreasing linear relationship. If the variables X and Y are independent, the
PC — IOWAWA is 0.

Note that if 8 = 1, they become the PC-OWA and the PC-IOWA and if
B = 0, the classical PC with the WA. The higher 8, the more importance is given
to the OWA and IOWA aggregation and vice versa. More specifically, for the OWA
operator the PC can be expressed as follows:

Cov — OWA(X, Y)
PC — OWA = . (38)
A/ Var — OWA(X) x Var — OWA(Y)

And for the IOWA operator:

Cov — IOWA(X, Y
PC — IOWA = ov X 1) . (39)
A/ Var — IOWA(X) x Var — IOWA(Y)

Finally, let us present a similar extension by using the Var-Quasi-OWAWA
and the Cov-Quasi-OWAWA operator. In this case, we get the PC with the Quasi-
OWAWA operator (PC-Quasi-OWAWA):

Cov — Quasi — OWAWA(X, ¥)

PC — Quasi — OWAWA = - - .
+/Var — Quasi — OWAWA(X) x Var — Quasi — OWAWA(Y)

(40)

This formulation provides a general representation that includes a wide range
of particular cases including arithmetic, quadratic, and harmonic aggregations.

6. CONSTRUCTION OF INTERVAL AND FUZZY NUMBERS IN THE
VARIANCE AND THE COVARIANCE

By using the OWA and the OWAWA operator, the aggregation process can
provide a parameterized family of aggregation operators between the minimum and
the maximum variance. Thus, it is possible to consider all the possible individual
dispersions and select the one that it is in closest accordance with our interests and
beliefs. As it was shown by Merigd,?” with the OWA operator we can create many
intervals including triplets, quadruplets, and quintuplets. Following this method-
ology, with the Var-OWA we can also create many interval numbers as shown in

Table II1.
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Table III. Interval numbers formed with the Var-OWA operator

Interval number Formulation

Var-OWA

Triplet [Min, Var-OWA, Max]

Quadruplet [Min, Var-OWA, Var-OWA", Max]|

Quintuplet [Min, Var-OWA, Var-OWA, Var-OWA”, Max]
Var-IOWA

Triplet [Min, Var-IOWA, Max]

Quadruplet [Min, Var-IOWA, Var-IOWA", Max]

Quintuplet [Min, Var-IOWA, Var-IOWA, Var-IOWA ", Max]

Table IV. Fuzzy numbers built with the Var-OWA operator

Fuzzy number Formulation

Var-OWA

Triangular FN [Min + (Var-OWA — Min) x «, Max — (Max — Var-OWA) x «]
Trapezoidal FN [Min + (Var-OWA+« — Min) x &, Max — (Max — Var-OWA™) x «]
Var-IOWA

Triangular FN [Min + (Var-IOWA — Min) x o, Max — (Max — Var-IOWA) x «]
Trapezoidal FN [Min + (Var-IOWA+ — Min) x «, Max — (Max — Var-IOWA") x «]

Note that with the Var-IOWA operator the assumption is that the information
moves between the minimum and the maximum but the attitudinal character is more
complex and cannot be measured with a simple numerical order.

The interval numbers can be studied in a deeper way using the knowledge of
a fuzzy number where it is also considered the possibility that the internal values
between the minimum and the maximum will occur.?” For example, by using the
a-cut representation in [0, 1], we get the expressions shown in Table I'V.

This framework can also be extended to the Var-OWAWA operator to consider
the importance of the variables in the analysis together with the attitudinal character.
Note that in this case we also find semibounds when the OWA operator is minimum
and maximum but the WA is considered. It is worth noting that in this case subjective
interval numbers (SIN) are formed. They can be constructed as shown in Table
V. Note that Table V also includes some representative fuzzy numbers that in this
formulation becomes subjective fuzzy numbers. Moreover, observe that a distinction
is made between quintuplets formed with the OWA (quintuplets) and quintuplets
formed with the WA (quintuplets™®).

In a similar way, it is also possible to construct a wide range of interval and
fuzzy numbers by using the covariance with the OWA and the OWAWA operator as
shown in Table VI.

Next, let us look into some numerical examples when dealing with OWA and
OWAWA operators in the variance and in the covariance. Assume the following data
shown in Table VII regarding an investment problem with five alternatives A = {A,
Ay, A3, A4, A5} and five states of nature S = {5, S», S3, S4, S5}. Note that for the
OWA operator the weighting vector is W = (0.1, 0.2, 0.2, 0.2, 0.3) and for the WA
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Table V. Interval and fuzzy numbers formed with the Var-OWAWA operator

Construction Formulation

Var-OWAWA

Triplet [Min, Var-OWAWA, Max]

Quadruplet [Min, Var-OWAWA, Var-OWAWA", Max]

Quintuplet [Min, Var-OWAWA , Var-OWAWA, Var-OWAWA™, Max]

Quintuplet*® [Min, Min-Var-WA, Var-OWAWA, Max-Var-WA, Max|

Triangular FN [Min + (Var-OWAWA — Min) x «, Max — (Max — Var-OWAWA) x «]
Trapezoidal FN [Min + (Var-OWAWA: — Min) x o, Max — (Max — Var-OWAWA™) x «]
Var-IOWAWA

Triplet [Min, Var-IOWAWA, Max]

Quadruplet [Min, Var-IOWAWA , Var-IOWAWA ", Max]

Quintuplet [Min, Var-IOWAWA«, Var-IOWAWA, Var-IOWAWA ", Max]
Quintuplet* [Min, Min-Var-WA, Var-IOWAWA, Max-Var-WA, Max]

Triangular FN [Min + (Var-IOWAWA — Min) x «, Max — (Max — Var-IOWAWA) x «]
Trapezoidal FN [Min + (Var-IOWAWA: — Min) x o, Max — (Max — Var-IOWAWA") x «]

we assume a simple average where all the states of nature have the same importance
1/5. In this example, the OWA operator has a degree of importance of 40%.

With this information, we can calculate the variance with the OWA and the
OWAWA operator and build some triplets and triangular fuzzy numbers (TFN). The
results are shown in Table VIIL. Observe that we use the average w to calculate the
individual dispersions in the variance and the covariance.

Next, we can also analyze these data by comparing the different investments
through the covariance. The results are shown in Table IX.

As we can see, this analysis permits us to consider the relation between the
different investments to see if they are similar or not. The example has been adapted
so all the alternatives provide the same average. However, each investment has
a different dispersion concerning the variance. In general terms, A3 seems to be
the alternative with the highest dispersion, whereas As seems to be the investment
with the lowest one. The covariance permits to show the dispersion between the
alternatives.

Finally, to provide a more complete picture of the information found in the
calculation of the Var-OWA and Var-OWAWA, let us analyze their triplets shown in
Table VIII by using a box plot system.*®3° Thus, the information can be classified
from the minimum to the maximum and also considering the position of the central
values. Note that in the literature there are many different methodologies when
building a box plot such as the use of a violin plot.*’ The results are shown in
Figure 1.

As we can see, the minimum and the maximum appear both in the triplets
and in the box plot. The differences appear in the central values where the box
plot shows the median and the first and third quarter, whereas the triplet uses the
Var-OWA and the Var-OWAWA. The main advantage of both methodologies is that
they do not loose information in the analysis so it is possible to consider all the
potential scenarios that may occur in the uncertain future and select the one in
closest accordance with our interests.
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Table VI. Interval and fuzzy numbers formed with the covariance

Construction Formulation

Cov-OWA

Triplet [Min, Cov-OWA, Max]

Quadruplet [Min, Cov-OWA+, Cov-OWA", Max]|

Quintuplet [Min, Cov-OWA:, Cov-OWA, Cov-OWA”, Max]

Triangular FN [Min + (Cov-OWA — Min) x «, Max — (Max — Cov-OWA) X «]

Trapezoidal FN [Min + (Cov-OWA+ — Min) x a, Max — (Max — Cov-OWA™) x «]

Cov-IOWA

Triplet [Min, Cov-IOWA, Max]

Quadruplet [Min, Cov-IOWA«, Cov-IOWA”, Max]

Quintuplet [Min, Cov-IOWA+, Cov-IOWA, Cov-IOWA”, Max]

Triangular FN [Min + (Cov-IOWA — Min) x «, Max — (Max — Cov-IOWA) x «]

Trapezoidal FN [Min + (Cov-IOWA: — Min) x o, Max — (Max — Cov-IOWA™) x «]

Cov-OWAWA

Triplet [Min, Cov-OWAWA, Max]

Quadruplet [Min, Cov-OWAWA «, Cov-OWAWA™, Max]

Quintuplet [Min, Cov-OWAWA, Cov-OWAWA, Cov-OWAWA", Max]

Quintuplet*® [Min, Min-Cov-WA, Cov-OWAWA, Max-Cov-WA, Max]

Triangular FN [Min + (Cov-OWAWA — Min) x «, Max — (Max — Cov-OWAWA) x «]

Trapezoidal FN [Min + (Cov-OWAWA+ — Min) x o, Max — (Max — Cov-OWAWA™) x «]

Cov-IOWAWA

Triplet [Min, Cov-IOWAWA, Max]

Quadruplet [Min, Cov-IOWAWA, Cov-IOWAWA", Max]|

Quintuplet [Min, Cov-IOWAWA, Cov-IOWAWA, Cov-IOWAWA™, Max]

Quintuplet* [Min, Min-Cov-WA, Cov-IOWAWA, Max-Cov-WA, Max]

Triangular FN [Min + (Cov-IOWAWA — Min) x o, Max — (Max — Cov-IOWAWA) x «]

Trapezoidal FN [Min + (Cov-IOWAWA — Min) x &, Max — (Max — Cov-IOWAWA™) x «]

Table VII. Initial information
S S S3 Sy Ss nw OWA OWAWA

Aj 30 60 80 10 20 40 33 37.2

Ar 50 80 20 40 10 40 33 37.2

A3 20 0 20 110 70 40 33 37.2

Ay 80 30 20 60 10 40 33 37.2

As 50 30 30 20 50 40 33 37.2

Table VIII. Different aggregated results with the variance
Triplet-Var- Triplet-Var- TFN-Var-
Var OWA TFN-Var-OWA OWAWA OWAWA

A; 680 (100, 530, 1600) (100 + 430«, (100, 620, 1600) (100 4 520«,
1600 — 1070«) 1600 — 980«)

Ay 600 (0, 400, 1600) (400, 1600 —1200c) (0, 520, 1600) (520, 1600 —1080c)

Az 1640 (400, 1190, 4900) (400 + 790«, (400, 1460, 4900) (400 + 1060«,
4900 - 3710c) 4900 — 3440a)

Ay 680 (100, 530, 1600) (100 4 430«, (100, 620, 1600) (100 + 520«,
1600 — 1070c) 1600 — 980«)

As 160 (100, 130, 400) (100 + 30, (100, 148, 400) (100 + 48,

400 —270w) 400 -252«)
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Table IX. Aggregated results with the covariance

Triplet-Cov- TFN-Cov- Triplet-Cov- TFN-Cov-
Cov OWA OWA OWAWA OWAWA
Cov(A1,Az) 460 (0, 380, 800) (380, 800 —420c) (0, 428, 800) (428a, 800
—372a)
Cov(A1,A3) 900 (200, 710, 2100) (200 + 510c, (200, 824, 2100) (200 + 624,
2100 — 1390c) 2100 - 1276c)
Cov(Ay,A4) 520 (200, 460, 800) (200 + 260c, (200, 496, 800) (200 + 296,
800 — 340c) 800 — 304a)
Cov(Ay,As) 300 (100, 250, 600) (100 + 150e, (100, 280, 600) (100 + 180,
600 — 350c) 600 — 320c)
Cov(A3,A3) 620 (0, 460, 1600) (460cr, 1600 — 1140cr) (0, 556, 1600) (556c, 1600
-1044a)
Cov(Ay,Ag) 420 (0, 330, 900) (330, 900 —570cx) (0, 384, 900) (384, 900
—516a)
Cov(A3,As) 200 (0, 160, 400) (160cr, 400 —240a) (0, 184, 400) (184a, 400
—216a)
Cov(A3,Ag) 780 (400, 680, 1400) (400 + 280c, (400, 740, 1400) (400 + 340c,
1400 — 720c) 1400 — 660cr)
Cov(A3,As5) 500 (200, 380, 1400) (200 + 180« (200, 452, 1400) (200 + 252a,
1400 — 1020c) 1400 — 948«)
Cov(A4,A5) 280 (100, 250, 400) (100 + 150er, (100, 268, 400) (100 + 168«,
400 — 150) 400 - 132«)

7. CONCLUSIONS

This paper has presented an overview regarding the use of the OWA operator
in the variance and the covariance and some fundamental extensions. The main
advantage of this approach is that it provides a parameterized family of aggregation
operators between the minimum and the maximum. Thus, in uncertain environments
it is possible to reconsider the traditional variance under a wide range of scenarios
that may occur from the most pessimistic to the most optimistic one. Moreover,
it has been demonstrated that the classical variance is included as a particular
case. Several extensions and generalizations have been introduced by using the
OWAWA, the WOWA, the hybrid average, and immediate weights. Furthermore,
some extensions with induced aggregation operators and quasi-arithmetic means
have been presented.

Additional extensions have also been presented by using the OWAWA and the
IOWAWA operators in the PC. The main advantage of this approach is the possibility
of analyzing the data considering the importance of the variables and the attitudinal
character of the decision maker. Some numerical examples have been developed
to understand numerically this approach. Special attention has been given to the
construction of interval and fuzzy numbers with the Var-OWAWA and the Cov-
OWAWA operator. Moreover, a related approach by using a box plot analysis has
also been considered.

In future research, further extensions and generalizations will be considered
in the analysis by using additional statistical tools and aggregation operators.**>
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Figure 1. Box plots of the individual square deviation of the alternatives.

Moreover, several applications will be studied in a wide range of fields including
economics and engineering.
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