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a b s t r a c t

The Wide Partition Conjecture (WPC) was introduced by Chow and Taylor as an attempt
to prove inductively Rota’s Basis Conjecture, and in the simplest case tries to characterize
partitions whose Young diagram admits a ‘‘Latin’’ filling. Chow et al. (2003) showed how
the WPC is related to problems such as edge-list coloring and multi-commodity flow. As
far as we know, the conjecture remains widely open.

We show that the WPC can be formulated using the k-atom problem in Discrete
Tomography, introduced in Gardner et al. (2000). In this approach, theWPC states that the
sequences arising from partitions admit disjoint realizations if and only if any combination
of them can be realized independently. This realizability condition can be checked in
polynomial time, although is not sufficient in general Chen and Shastri (1989), Guiñez et al.
(2011). In fact, the problem is NP-hard for any fixed k > 2 Dürr et al. (2012). A stronger
condition, called the saturation condition, was introduced in Guiñez et al. (2011) to solve
instances where the realizability condition fails. We prove that in our case, the saturation
condition is implied by the realizability condition. Moreover, we show that the saturation
condition can be obtained as the Lagrangian dual of the linear programming relaxation of
a natural integer programming formulation of the k-atom problem.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

A partition is a sequence of integers λ = (λ1, . . . , λℓ) ordered as λ1 > · · · > λℓ > 0. It can be described through the
Young tableau Yλ, which is a collection of cells arranged in left justified rows, with λi cells in row i. We say that a partition
λ is Latin if the cells of Yλ can be labeled such that row i contains the integers 1, . . . , λi and such that no two squares in the
same row or column have the same value. See Fig. 1 for an example.

The conjugate of λ is the partition λ∗ with λ∗

j = |{i : λi > j}|. Here Yλ∗ is obtained from Yλ by interchanging rows and
columns. A subpartition µ of λ, denoted µ ⊆ λ, is a partition obtained by deleting some parts of λ. Equivalently, Yµ is
obtained from Yλ by deleting some rows and making the remaining rows adjacent.

We say that λ = (λ1, . . . , λℓ) dominates µ = (µ1, . . . , µk), written λ < µ, if
j

i=1 λi >
j

i=1 µi for each j = 1, . . . , ℓ,
and

ℓ
i=1 λi =

k
i=1 µi. A partition λ is wide if µ < µ∗ for each µ ⊆ λ.

As noticed in [3], every Latin partition is wide. The Wide Partition Conjecture states that this necessary condition is also
sufficient.

Conjecture 1 (WPC, See [3]). λ is Latin if and only if it is wide.
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Fig. 1. The tableau Y(5,3,3,2) is Latin.

The WPC was introduced by Chow and Taylor and originally motivated as an attempt to prove Rota’s basis conjecture
[14,3]. Chow et al. [3] showed how the WPC is related to some problems such as edge-list coloring, multi-commodity
network flows and the Greene–Kleitman theorem. They also mentioned some connections with the invariant theory,
although they did not make it explicit.

Let us denote [n] = {1, . . . , n} for convenience. The row projection of a subset M of the grid [m] × [n] is the vector
r ∈ Zm

+
such that ri = |{j : (i, j) ∈ M for some j}|. The column projection s ∈ Zn

+
is defined analogously. Given a pair

b = (r, s) ∈ Zm
+

⊕Zn
+
, any subsetM having r and s as row and column projection is a realization of b. If b admits a realization

then we say that b is realizable. Notice that using the analogy between them× n grid and the complete bipartite graph Km,n,
realizations of b correspond to b-factors of Km,n (see Section 3).

The k-atom problem consists in, given sequences bi = (r i, si), i = 1, . . . , k, finding pairwise disjoint realizations
M1, . . . ,Mk of b1, . . . , bk, respectively. If such realizations exist then we say that (M1, . . . ,Mk) is a (b1, . . . , bk)-packing.
This problem is motivated by the reconstruction problem of a polyatomic structure organized on a grid, where bi are the
projections of the atoms of type i. Gardner et al. [10] introduced it as a generalization of the binary matrix reconstruction
problem under given row and columns sums, first studied by Ryser [16]. Many problems in discrete tomography can be
modeled using the k-atomproblem [4,5,11,1,8], whichmakes it a central problem in the area; see [12,13] for the foundations
and recent advances in discrete tomography. Moreover, the k-atom problem can be seen as a k-commodity flow problem
over a bipartite directed network and also as a problem of finding a 3-way consistency table of size m × n × (k + 1) with
specified line sums (or 2-margins as they are known in the statistical context); see [6,7] for definitions and complexity
results and [17] for a summary of necessary conditions for the existence of such tables.

A necessary condition for the existence of a (b1, . . . , bk)-packing is that bJ = (r J , sJ) is individually realizable for each
J ⊆ [k], where r J =


j∈J r

j and sJ =


j∈J s
j. We refer to this as the realizability condition. This condition can be checked

in polynomial time using Ryser’s algorithm [16,11]. Although this condition ensures the existence of k-packings for some
special instances, it does not suffice in general, even for k = 2 [2]. In fact, the k-atom problem is NP-hard for any fixed
k > 2 [8].

In [11], a stronger necessary condition was introduced and proved to be sufficient for a family of instances of the
2-atom problem. For A ⊆ [m] × [n] and a given sequence b = (r, s), let minb(A) = min{|M ∩ A| : M is a realization of b}.
Guiñez et al. [11] showed how to calculate minb(A) in polynomial time for any set A using the minimum-weight max-flow
algorithm. Observe that if (M1, . . . ,Mk) is a (b1, . . . , bk)-packing then

k
i=1 minbi(A) 6

k
i=1 |M i

∩ A| 6 |A|. Then we say
that (b1, . . . , bk) satisfy the saturation condition if bi is realizable for each i ∈ [k], and for every set A ⊆ [m] × [n]

min
b1

(A) + · · · + min
bk

(A) 6 |A|. (1)

Notice that the saturation condition requires to check a number of inequalities which is exponential in the size of the grid.
It is still unknown if we can check it for a fixed number k of sequences in polynomial time.

As first contribution, we present an equivalent formulation of the WPC using the k-atom problem, which might import
new tools and ideas to solve it. This formulation is presented in Section 2, where we define an instance bλ

= (b1, . . . , bℓ) for
each partition λ such that there exists a bλ-packing of a given grid if and only if λ is Latin. We also show that the wideness
of λ is equivalent to the realizability condition of bλ. In Section 3 we show that the saturation condition is strictly stronger
than the realizability condition for the general k-atom problem. The main result of this section is however that for instances
arising from partitions, these two conditions are equivalent. Finally, in Section 4 we discuss how the saturation condition
can be obtained as a combinatorial analog of the dual of the relaxation of a Linear Program formulation (P) of the k-atom
problem. The following scheme outlines our main contributions.
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Fig. 2. The figure on the right shows the (b1, . . . , b4)-packing of the 5×5 grid obtained from the Latin assignment of the Young tableau Yλ in Fig. 1 (on the
left). For each k ∈ {1, . . . , 4}, the row and column projections rk and sk are listed on the left and above the grid, respectively. Also, the cells labeled with

represent the realization Mk of bk = (rk, sk) as defined in the proof of Theorem 1. Observe that (i, j) ∈ Mk (i.e. the cell (i, j) in the packing is labeled
with ) if and only if the cell (k, i) in Yλ has label j.

Fig. 3. An example of a 3 × 3 instance (b1, b2) that satisfies the realizability condition but does not admit disjoint realizations. For k = 1, 2, there is only
one realization of the sequence bk , which is represented in the grid by the cells labeled with . Also note that b1 + b2 is realized by the set of cells labeled
with ⊕. Thus, (b1, b2) satisfies the realizability condition. However, observe that the top left cell is used in the unique realizations of both b1 and b2 . That
is, there is no (b1, b2)-packing.

2. WPC and the k-atom problem

Let λ = (λ1, . . . , λℓ) be a partition and let n = λ1. For t ∈ [ℓ], let bt = (r t , st), where r t = st = (

λt  
1, . . . , 1,

0, . . . , 0). We denote bλ
= (b1, . . . , bℓ). The following result shows that a partition λ is Latin if and only if there exists

pairwise disjoint realizations of the sequences b1, . . . , bℓ. The idea of the proof is to map the k-th row in a Latin assignment
of Yλ to a realizationMk of bk in the n × n grid.

Theorem 1. λ is Latin if and only if there is a bλ-packing in [n] × [n].

Proof. Let f be a Latin assignment in Yλ. For each k = 1, . . . , ℓ, let Mk
= {(i, j) ∈ [n] × [n] : f (k, i) = j}. In other words,

for each i = 1, . . . , λk, (i, f (k, i)) ∈ Mk. Since the assignments in row k of Yλ are precisely the integers in [λk], there is no
column i such that f (k, i) > λk. This shows thatMk is a realization of bk.

Let us prove that these realizations are pairwise disjoint. Assume that (i, j) ∈ Mk
∩ Mk′ . Then f (k, i) = j = f (k′, i). But

the assignments in column i of Yλ are all distinct, and then k = k′. It follows thatM1, . . . ,Mℓ are pairwise disjoint and then
(M1, . . . ,Mℓ) is a bλ-packing.

The converse can be proved using a similar idea, since all the arguments above are in fact equivalences (see Fig. 2 for an
example of the construction). �

For anyµ ⊆ λ, let Jµ be the indices of the parts ofµ. Observe that r Jµi = sJµi = |{j : µj > i}| = µ∗

i and then r Jµ = sJµ = µ∗.
Then by the Gale–Ryser condition, bJµ is realizable if and only if µ = (µ∗)∗ < µ∗ [9,16]. That is,

Theorem 2. λ is wide if and only if bλ satisfies the realizability condition.

Written in these terms, the WPC states that the sequences arising from partitions admit a packing provided they satisfy
the realizability condition. As we mention in the introduction, the realizability condition does not suffice in general. An
example by Chen and Shastri [2] is illustrated in Fig. 3.

However, we remark that the instance bλ
= (b1, . . . , bℓ) arising from partition λ holds two special properties:

(i) it is binary: for each c ∈ [ℓ], the row and column projections rc, sc are 0, 1-vectors. That is, the realizations of
bc = (rc, sc), if there exist, are sub-matrices of a n × n permutation matrix;
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(ii) it is non-increasing in rows and columns: both rc and sc are non-increasing, simultaneously for each c ∈ [ℓ].

Observe that there exists a realization of the sequence bc in the n × n grid if and only if the number of ones in the
row projection is the same than in the column projection. If this is the case for each b1, . . . , bk, then properties (i) and
(ii) characterize the instances of the k-atom problem arising from partitions. Moreover, we observe that the instance bλ is
symmetric, that is, rci = sci for each i ∈ [n] and c ∈ [ℓ]. Theorem 3.1 in [8] can be easily modified to show that the k-atom
problem restricted to symmetric instances is NP-hard for each k > 2. Considering this, and assuming that the WPC is true,
an interesting question is to determine if any of these properties suffices for the k-atom problem to become tractable.

3. The saturation condition

We first prove that the saturation condition is stronger than the realizability condition. The proof is just an extension
of Theorem 7 in [11] that uses a well-known characterization of bipartite b-factors by Ore [15]. Any bipartite graph G with
color classes of size m and n can be embedded in an m × n grid by assigning to each edge a grid cell. Thus, we can think of
G as a set EG ⊆ [m] × [n]. For sets I ⊆ [m], J ⊆ [n] and F ⊆ EG, we denote F(I, J) = |F ∩ (I × J)|. Observe that, given a
sequence b = (r, s) with r ∈ Zm

+
and s ∈ Zn

+
, F ⊆ EG is a realization of b on the m × n grid if |F({i}, [n])| = ri for each

i ∈ [m], and |F([m], {j})| = sj for each j ∈ [n]. If we think b as a function on the vertices of G, then F ⊆ EG corresponds to a
b-factor of G. Using the grid notation, Ore’s characterization says there exists a realization of b included in EG (i.e. G admits
a b-factor) if and only if

m
i=1 ri =

n
j=1 sj and


i∈I ri 6


j∈[n]\J sj + |EG(I, J)|, for each I ⊆ [m] and J ⊆ [n].

Lemma 1. If b1, . . . , bk satisfy the saturation condition on the m × n grid, then bL is realizable for each L ⊆ [k].

Proof. First, observe that
m

i=1 r
L
i =

n
j=1 s

L
j is straightforward since for each l ∈ L,

m
i=1 r

l
i =

n
j=1 s

l
j by the realizability

of bl. Also notice that for every I ⊆ [m] and J ⊆ [n], each realization Fl of bl is a bl-factor of the bipartite graph H such that
EH = Fl. Then by Ore’s characterization, it satisfies the inequality


i∈I r

l
i 6


j∈[n]\J s

l
j +|Fl(I, J)|. In particular, if we take the

realization Fl that minimizes the intersection with I × J , we conclude that


i∈I r
l
i 6


j∈[n]\J s

l
j + minbl(I × J). Then

i∈I

rLi =


l∈L


i∈I

r li

6

l∈L


j∈[n]\J

slj +

l∈L

min
bl

(I × J)

6

j∈[n]\J

sLj + |I × J|,

where the last inequality follows from the saturation inequality (1) applied to set A = I × J . If we denote by G the bipartite
graph such that EG = [m] × [n], then EG(I, J) = I × J . Since this holds for each I ⊆ [m] and J ⊆ [n], Ore’s characterization
shows that bL is realizable in them × n grid. �

Observe that in the example in Fig. 3, the saturation inequality is not satisfied for the set A = {(1, 1)} (the top left cell).
Since (b1, b2) satisfies the realizability condition, we conclude that the saturation is a strictly stronger condition, even for
k = 2.

The saturation condition was introduced in a weaker version in [11], where it is proved to be sufficient for a class of
instances of the 2-atom problem. Unfortunately, from the proof of NP-hardness in [8], one can construct examples showing
that it is not sufficient. We prove that for the special instances arising from partitions they are equivalent. The proof goes
in several steps. First, we prove that the saturation inequality is satisfied for some sets of the cells of the grid we refer to as
rectangles. Then we use this to prove it for the union of rectangles, which we call as tableau sets. Finally, we show how to
derive the saturation inequality for each set of cells from the result for tableau sets.

3.1. The saturation inequality for rectangles

We first prove that the saturation inequality (1) is satisfied for every set A = [p] × [q], where 1 6 p, q 6 n. We refer to
any of these sets as a rectangle. Without any loss of generality, we can assume that p 6 q.

For each x = 1, . . . , n, let b(x) = (r, s) with r = s = (

x  
1, . . . , 1, 0, . . . , 0). Observe that the realizations of b(x) are

permutation matrices of [x] × [x].

Lemma 2. The valueminb(x)(A) is given by the function

f (x) =


x, if x 6 p
p, if p < x 6 q
p + q − x, if q < x 6 p + q
0, otherwise,
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Fig. 4. On the left we have depicted the graphic of the function f introduced in Lemma 2. We recall that f (x) = minb(x)(A) for the rectangle A = [p] × [q].
The figure on the right shows the realization M = Mu ∪ Md of b(x) that, as proved in Lemma 2, minimizes the intersection with rectangle A, where the
parameters are n = 9, p = 2, q = 5 and x = 6.

Fig. 5. Graphical interpretation of Lemma 3 for λ = (9, 9, 8, 7, 7, 5, 4, 3, 2), p = 3 and q = 5. The rows of the Young tableau Yλ are subdivided with
respect to their length and according to the intervals used in the definition of function f in Lemma 2. The value of each f (λi) is indicated on the left of the
tableau and corresponds to the number of cells in row i on the left of the dark line. Then

ℓ
i=1 f (λi) is equal to the number of cells in the shaded region.

Observe that this quantity corresponds to the number of cells in the first p columns minus the number of cells between column q + 1 and p + q.

with the minimum value attained by the realization M = Mu ∪ Md of b(x), where Mu = {(i, f (x) + 1 − i) : 1 6 i 6 f (x)} and
Md = {(i, f (x) + x + 1 − i) : f (x) < i 6 x}.

Proof. By the definition of f , f (x) 6 x. ThenM is well defined and for each 1 6 i 6 x, there is exactly one column j such that
(i, j) ∈ M . It is immediate that j 6 x for each i, and that all the j’s take different values. This shows that M is a realization
of b(x).

Let (i, j) ∈ Md. SinceMd ≠ ∅, we have f (x) < x. Therefore we can assume that x > p. If x 6 q, j = p + x + 1 − i > p + 1
and then (i, j) ∉ A. Otherwise, i + j = f (x) + x + 1 > p + q + 1 and then (i, j) ∉ A. We conclude thatMd ∩ A = ∅. Also, and
since f (x) 6 x,Mu ⊆ A. Then minb(x)(A) 6 |M ∩ A| = |Mu| = f (x).

Let M ′ be any realization of b(x). Observe that |M ′
∩ A| > f (x) trivially for x > p + q. First, assume that x 6 q and let

(i, j) ∈ M ′. Then (i, j) ∈ A if and only if i 6 min{x, p}. That is, |M ′
∩ A| = min{x, p} = f (x). Finally, consider q < x 6 p + q

and let M̃ be the set of cells inM ′
\ A in the first p rows. Clearly |M̃| 6 x− q. Then |M ′

∩ A| = p− |M̃| > p− (x− q) = f (x).
This proves that |M ′

∩ A| > f (x) and we conclude thatM attains minb(x)(A). �

A graphic of the function f is depicted on the left of Fig. 4. On the right, we have illustrated the realizationM = Mu ∪Md
of b(x) that minimizes the intersection with rectangle A. Observe that the intersection is exactly the set of cells inMu.

In Fig. 5 we have represented f (λi) = minb(λi)(A) = minbi(A) with respect to the length λi of row i in the Young tableau
Yλ. We observe that

ℓ
i=1 f (λi) corresponds to the shaded region in the tableau. From the figure it is not difficult to deduce

the following identity.

Lemma 3. Let f be the function defined in Lemma 2. For any partition λ,

ℓ
i=1

f (λi) =

p
j=1

λ∗

j −

p+q
j=q+1

λ∗

j .
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Proof. The following is a well-known equality satisfied by the conjugate
a

j=1

λ∗

j =

ℓ
i=1

min{a, λi}

for any integer a > 1. By applying this equality for values a = p, q and p + q, we obtain that
p

j=1

λ∗

j −

p+q
j=q+1

λ∗

j =

p
j=1

λ∗

j −

p+q
j=1

λ∗

j +

q
j=1

λ∗

j

=

ℓ
i=1

min{p, λi} −

ℓ
i=1

min{p + q, λi} +

ℓ
i=1

min{q, λi}

=

ℓ
i=1

(min{p, λi} − min{p + q, λi} + min{q, λi}).

Then the result follows easily by observing that f (x) = min{p, x} + min{q, x} − min{p + q, x} for each x > 0. �

Notice that
p

j=1

λ∗

j +

p+q
j=p+1

λ∗

j =

p+q
j=1

λ∗

j =

q
j=1

λ∗

j +

p+q
j=q+1

λ∗

j ,

and then
ℓ

i=1

f (λi) =

q
j=1

λ∗

j −

p+q
j=p+1

λ∗

j .

That is, the roles of p and q are exchangeable in Lemma 3, as expected. In particular, minb(x)([p] × [q]) = minb(x)([q] × [p]),
for each value x.

Lemma 4. If λ is a wide partition, then
p

j=1 λ∗

j −
p+q

j=q+1 λ∗

j 6 pq for each p and q.

Proof. Let µ be the partition obtained from λ by deleting its first t = λ∗
p+q parts. Let ℓ′

= ℓ − t be the length of µ and
n′

= µ1 = λt+1. It is clear from the definitions of t and µ that µ∗

j = λ∗

j − t for each 1 6 j 6 n′. In particular,

p
j=1

λ∗

j = pt +

p
j=1

µ∗

j and
p+q

j=q+1

λ∗

j = pt +

n′
j=q+1

µ∗

j . (2)

Observe that

p
j=1

µ∗

j =

ℓ′
i=1

min{p, µi} 6 pq +

ℓ′
i=q+1

µi. (3)

From (2) and (3), it remains to show that
ℓ′

i=q+1 µi 6
n′

j=q+1 µ∗

j . But since
ℓ′

i=1 µi =
n′

j=1 µ∗

j and µ < µ∗,

ℓ′
i=q+1

µi −

n′
j=q+1

µ∗

j =

q
j=1

µ∗

j −

q
i=1

µi 6 0. �

Lemma 5. Let bλ
= (b1, . . . , bℓ) be as defined in Section 2. If λ is wide then

ℓ
i=1 minbi(A) 6 |A|, for each rectangle A.

Proof. Let A = [p] × [q] be a rectangle. By Lemmas 2–4, we have that for any wide partition λ

ℓ
i=1

min
bi

(A) =

ℓ
i=1

f (λi) =

p
j=1

λ∗

j −

p+q
j=q+1

λ∗

j 6 pq = |A|. �

3.2. The saturation inequality for tableau sets

We say that A ⊆ [n] × [n] is a tableau set if it can be represented as the union of rectangles Aj = [pj] × [qj], j = 1, . . . , t ,
for some t . Let us assume that the rectangles are numbered such that p1 6 p2 6 · · · 6 pt . Note that we can actually assume
that p1 < p2 < · · · < pt and q1 > q2 > · · · > qt ; otherwise, there exist a pair of rectangles such that one is contained
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Fig. 6. The value of minb(·)(A) for tableau set A = A1 ∪ A2 ∪ A3 , where A1, A2 and A3 are rectangles of dimensions p1 × q1 = 2 × 19, p2 × q2 = 3 × 15
and p3 × q3 = 6 × 8, respectively. On the left, the graphic of f (x) = minb(x)(A). By Lemma 6, f (x) = max{f1(x), f2(x), f3(x)}, where fi(x) = minb(x)(Ai). On
the right, A is represented by a shaded region in the [n] × [n] grid, where n = 20. We have also drawn a realization of b(x̃) that attains the minimum of f
at x̃ = 10. Observe that this realization is exactly the one that minimizes f3 at x̃, since f (x̃) = f3(x̃).

in the other, so we can omit the smaller one in the definition. Let b(x) be defined as in Section 3.1, f (x) = minb(x)(A) and
fj(x) = minb(x)(Aj), for each j = 1, . . . , t . We recall that the value fj(x) is given by the function in Lemma 2 with parameters
pj and qj. We denote byM j

= M j
u ∪ M j

d the realization of b(x) defined in that lemma that attains the value fj(x).

Lemma 6. For each x, f (x) = max{f1(x), . . . , ft(x)}. Moreover, if j ∈ argmax fj(x) for a fixed integer x, then M j is such that
f (x) = |M j

∩ A|.

Proof. Let j ∈ argmax fj(x). We clearly have that fj(x) 6 f (x), since Aj ⊆ A. We claim that M j is such that |M j
∩ A| 6 fj(x).

Observe that this suffices because f (x) 6 |M j
∩ A|. We claim that for each j′ = 1, . . . , t,M j

d ∩ Aj′ = ∅. By contradiction,
assume that (i, fj(x) + x + 1 − i) ∈ Aj′ for some i > fj(x). Since Aj′ is a rectangle and fj′(x) 6 fj(x), we have that
(i, fj′(x) + x + 1 − i) ∈ Aj′ . This contradicts the fact that M j′

d ∩ Aj′ = ∅. Because A = A1 ∪ · · · ∪ At , we deduce that
M j

d ∩ A = ∅. Then |M j
∩ A| = |M j

u ∩ A| 6 |M j
u| = fj(x). �

Fig. 6 shows a tableau set A obtained as the union of rectangles A1, A2 and A3. By the previous lemma, if we denote
f (x) = minb(x)(A) and fi(x) = minb(x)(Ai), for i = 1, 2, 3, then f (x) = max{f1(x), f2(x), f3(x)}.

From Lemma 6, and since the function and realization for rectangle [pj]×[qj] coincide with those for rectangle [qj]×[pj],
we can assume that pj 6 qj for each j ∈ [t]. Observe that by assuming this, the size of A cannot increase. So if the saturation
inequality holds under this assumption, it certainly does in all the cases.

In order to prove the saturation inequality for tableau set A = A1 ∪ · · · ∪ At we proceed by induction on the number t of
rectangles that form A. By Lemma 5, it holds for t = 1. So let us assume the saturation inequality holds for any tableau set
formed by atmost t−1 rectangles and let us prove for tableau set A. We recall that f (x) = minb(x)(A) and fi(x) = minb(x)(Ai),
for each i = 1, . . . , t . By Lemma 6, f (x) = max{f1(x), . . . , ft(x)}, for each x.

We now consider two cases. First, assume that for every x, ft−1(x) 6 ft(x). Let A′
= A1 ∪ · · · ∪ At−2 ∪ At and

f ′(x) = minb(x)(A′). By Lemma 6, we have that f ′(x) = max{f1(x), . . . , ft−2(x), ft(x)}, for every x. Then f ′
= f and we

have
ℓ

i=1

min
bi

(A) =

ℓ
i=1

f (λi) =

ℓ
i=1

f ′(λi) 6 |A′
| 6 |A|,

where the first inequality follows by the induction hypothesis.
By Lemma 2 and because pt−1 6 pt , the previous case occurs if and only if pt−1+qt−1 6 pt +qt . Thus, we can assume that

pt−1 + qt−1 > pt + qt . Let A′
= A1 ∪ · · · ∪ At−1 and Ã = [pt − pt−1] × [qt ]. We denote f ′

= minb(·)(A′) and f̃ = minb(·)(Ã).

Claim 1. For every x, f (x) 6 f ′(x) + f̃ (x).

Proof. Let x be such that f (x) > f ′(x). Observe that f (x) = ft(x); this is immediate since f ′(x) = max{f1(x), . . . , ft−1(x)} by
Lemma 6. By Lemma 2 applied to rectangles At−1 and At , ft(x) = ft−1(x) for x 6 pt−1 and ft(x) 6 ft−1(x) for x > pt +qt −pt−1.
Thus, we can assume that pt−1 < x < pt + qt − pt−1. If x 6 pt then f (x) = x 6 pt−1 + min{x, pt − pt−1} = ft−1(x) + f̃ (x) 6

f ′(x)+ f̃ (x). Otherwise, f (x) = min{pt , pt +qt − x} = pt−1 +min{pt −pt−1, pt −pt−1 +qt − x} = pt−1 + f̃ (x). By a previous
assumption, pt +qt −pt−1 < qt−1. Then x < qt−1 and so ft−1(x) = pt−1.We conclude that f (x) 6 ft−1(x)+ f̃ (x) 6 f ′(x)+ f̃ (x),
which ends the proof of the claim. �
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Fig. 7. Q is obtained from P by a left-compression from column j1 to column j0 . Observe that only three cells are shifted (in dark gray), the ones in row i
such that (i, j1) ∈ P and (i, j0) ∉ P .

Lemma 7. Let bλ
= (b1, . . . , bℓ) be as defined in Section 2. If λ is wide then

ℓ
i=1 minbi(A) 6 |A|, for each tableau set A.

Proof. By a previous observation, we only need to prove the inductive step when pt + qt < pt−1 + qt−1. But in this case
Claim 1 applies. In particular, we have that f (λi) 6 f ′(λi) + f̃ (λi) for every i = 1, . . . , ℓ. Then

ℓ
i=1

min
bi

(A) 6

ℓ
i=1

min
bi

(A′) +

ℓ
i=1

min
bi

(Ã).

By the induction hypothesis, we have that
ℓ

i=1 minbi(A
′) 6 |A′

|, and by Lemma 5,
ℓ

i=1 minbi(Ã) 6 |Ã| since Ã is a
rectangle. Then the result follows after observing that |Ã| = (pt − pt−1)qt = |A \ A′

|. �

3.3. Reduction to tableau sets

So far, we have proved that the saturation inequality holds for any tableau set. In this section we show that these sets are
the worst case, in the sense that the left-hand side of (1) is maximal for tableau sets in a certain partial order on the grid.

Let P,Q ⊆ [m] × [n]. We say that Q is obtained from P by a left-compression if there exist columns j0 < j1 such that:

(i) for each row i such that (i, j0) ∉ P and (i, j1) ∈ P, (i, j0) ∈ Q and (i, j1) ∉ Q , and
(ii) for any other row i, (i, j) ∈ P if and only if (i, j) ∈ Q .

Fig. 7 shows an example of a set Q obtained from a set P by a left-compression. We say that Q is obtained from P by an
up-compression if PT is obtained from Q T by a left-compression. Let b = (r, s) be realizable in [m] × [n].

Lemma 8. Assume that s is non-increasing. If Q is obtained from P by a left-compression, thenminb(P) 6 minb(Q ).

Proof. Let j0 < j1 be the columns used in the left-compression from P to Q . Let us consider the set I = {i : (i, j1) ∈ P \ Q },
that is, the indexes of the rows that are modified. We remark that (i, j0) ∈ Q \ P for each i ∈ I . Let F be a realization of b.
For k = 0, 1, let Rk = {i : (i, jk) ∈ F , (i, j1−k) ∉ F} and Ik = I ∩ Rk. Observe that F ∩ Q and F ∩ P only differ in the rows in
I0 ∪ I1. In fact,

|F ∩ Q | − |F ∩ P| = |I0| − |I1|. (4)

We claim that there exists a realization F ′ of b such that

|F ′
∩ P| 6 |F ∩ P| − |I1| + |I0|. (5)

The proof is constructive. Since sj0 > sj1 , |R0| > |R1|. In particular, |R0| > |I1| and then we can choose S ⊆ R0 such that
|S| = |I1|. We define

F ′
= F ∪ {(i, j0), (i′, j1) : i ∈ I1, i′ ∈ S} \ {(i′, j0), (i, j1) : i ∈ I1, i′ ∈ S}.

It is not difficult to check that F ′ is a realization of b. Moreover, observe that |F ′
∩ P| 6 |F ∩ P| − |I1| + |I ∩ S|. But I ∩ S

⊆ I ∩ R0 = I0, which proves the inequality (5).
From (4) and (5), minb(P) 6 |F ′

∩ P| 6 |F ∩ Q |. Then the lemma follows by taking a realization F such that
minb(Q ) = |F ∩ Q |. �

Clearly the same result holds when r is non-increasing and Q is obtained from P by an up-compression.

Lemma 9. Each A ⊆ [m] × [n] can be transformed into a tableau set Ã ⊆ [m] × [n] by a sequence of left- and up-compressions.
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Proof. Let us first show that A can be transformed into a set A′ that is left-justified, that is, such that there are no cells
(i, j0) ∉ A′ and (i, j1) ∈ A′ with j0 < j1, through a sequence of left-compressions.

For each A′
⊆ [m] × [n], we denote σi(A′) the number of cells (i, j0) ∉ A′ such that there exists (i, j1) ∈ A with j0 < j1.

We also denote σ(A′) =
n

i=1 σi(A′). Observe that if A is left-justified then σ(A) = 0. Otherwise consider the smallest i such
that σi(A) > 0 and let j0 be the smallest integer for which (i, j0) ∉ A and there exists (i, j1) ∈ Awith j0 < j1. We choose j1 as
the largest integer greater than j0 having this property. We now perform a left-compression using columns j0 and j1. Let us
call A′ the set we obtain. We claim that σ(A′) < σ(A). Let I be the set of rows that were modified by the left-compression.
Clearly σi′(A′) = σi′(A) for each i′ ∉ I . Also, σi′(A′) 6 σi′(A) for each i′ ∈ I and by the choice of j1, we have that σi(A′) < σi(A).
We conclude that σ(A′) < σ(A). By repeating this process we will end up with a left-justified set A′ obtained from A by a
sequence of left-compressions.

Using an analogous method, we can use up-compressions to push cells up to obtain the desired tableau set Ã. �

Theorem 3. If λ is wide, then bλ satisfies the saturation condition.

Proof. Let A ⊆ [m] × [n] and let Ã be a tableau set obtained from A by a sequence of left- and up-compressions. Since for
each bt = (r t , st), t = 1, . . . , ℓ, both r t and st are non-increasing, by Lemma 8 we have that minbi(A) 6 minbi(Ã). Then
using Lemma 7, and the fact that left- and up-compressions preserve the cardinality of sets, we conclude that

ℓ
i=1

min
bi

(A) 6

ℓ
i=1

min
bi

(Ã) 6 |Ã| = |A|. �

4. Final comments and open problems

In thisworkwe have related theWide Partition Conjecture to the k-atomproblem in discrete tomography. In these terms,
theWPC is equivalent to the existence of solutions for the instances of the k-atom problem arising from partitions provided
they satisfy the necessary condition of realizability. This condition is sufficient only in very restricted cases, and it has been
appliedmainly for k = 2 [11]. Then, if the conjecture is true, we obtain awhole family of instances for which the realizability
condition suffices.

Our main result shows the equivalence of the realizability and saturation conditions for the instances arising from
partitions. This implies that the saturation condition can be checked in polynomial time for these instances, which is still
open in general even for k = 2. Also, it is known that each instance of the 2-atom problem where at least one of the
sequences is binary is realizable provided it satisfies the realizability condition [2]. On the other hand, the 2-atom problem
remains NP-hard for symmetric instances as we mentioned in Section 2. Thus, an interesting open question is to determine
the computational complexity of the problem restricted to non-increasing instances.

We finish this section showing an approach to the k-atom problem using a linear programming (LP) formulation. As we
will see below, the saturation condition appears naturally whenwe interpret combinatorially the Lagrangian dual of this LP.
For each t = 1, . . . , k, let us consider sequences bt = (r t , st), where r t ∈ Zm

+
and st ∈ Zn

+
, and let Pt be the convex-hull of

characteristic vectors of all realizations of bt in the [m] × [n] grid. We also consider P = P1 × · · · × Pk and f : P → R a
linear function. Let us denote q = mn and consider the following optimization problem

max f (x)

s.t. x1i + · · · + xki 6 1, i = 1, 2, . . . , q
x ∈ P .

(P)

Observe that (b1, . . . , bk)-packings are the integral feasible solutions of (P). We define the Lagrangian function for each
π ∈ Rq as

L(x, π) = f (x) +

q
i=1

πi(1 − x1i − · · · − xki ),

and the Lagrangian dual function as h(π) = maxx∈P L(x, π).
By weak duality, we know that if x∗ is an optimal solution for (P), then h(π) > f (x∗) for each π > 0. That is, for each non

negative Lagrangian multipliers, the value of the dual function provides an upper bound on the optimal objective value of
(P). To obtain the best upper bound we consider the dual problem

min
π>0

h(π). (D)

Since we are only interested in the feasibility of (P), we can take f ≡ 0. Because h(0) = 0, the optimum of (D) is non-
positive. In fact, it is zero if and only if (P) is feasible. Observe that

h(π) = max
x∈P

q
i=1

πi(1 − x1i − · · · − xki ) =

q
i=1

πi −

k
j=1

min
xj∈P j

q
i=1

πix
j
i.
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Because Pj is integral for each j, if we take A ⊆ [m] × [n] and π ∈ {0, 1}q such that XA = π , then minbj(A) = minx∈P jq
i=1 πixi. Then (b1, . . . , bk) satisfies the saturation condition if and only if h(π) > 0 for every π ∈ {0, 1}q. That is, (D) can

be thought as a weighted version of the saturation condition.
By a continuity argument, in order to check the infeasibility of (P), that is, to findπ > 0 such that h(π) < 0,we can assume

thatπ ∈ Zq
+. However, it is an openquestion to determine ifwe can restrict our attention only to vectorsπ ∈ {0, 1}q. Observe

that if this is true, it would imply that the saturation condition could be checked in polynomial time through the previous
linear feasibility problem. Otherwise, it would be interesting to find larger families of instances for which the restriction to
binary vectors is sufficient.

We remark that from the NP-hardness proof for the 2-atom problem in [8], we can construct instances that are feasible
for (P), but that are not integral. Because of this, any proof of integrality for the instances arising from partitions must rely
on some of their special properties that they satisfy.
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