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We propose a model of a bus traveling through a sequence of traffic lights, which is required to

stop between the traffic signals to pick up passengers. A two dimensional model, of velocity and

traveled time at each traffic light, is constructed, which shows non-trivial and chaotic behaviors for

realistic city traffic parameters. We restrict the parameter values where these non-trivial and

chaotic behaviors occur, by following analytically and numerically the fixed points and period 2

orbits. We define conditions where chaos may arise by determining regions in parameter space

where the maximum Lyapunov exponent is positive. Chaos seems to occur as long as the ratio of

the braking and accelerating capacities are greater than about �3. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4926669]

Traffic research is almost as old as automotive vehicles

themselves; however, it is just lately that its full complex-

ity has been recognized. Many kinds of models, going

from cellular automata to systems of coupled differential

equations, attest for its non-triviality. In spite of such

efforts, it keeps providing interesting results. In this pa-

per, we present and analyze the consequences of a dis-

crete map describing the exact evolution of a bus under

ideal city conditions. The buses display chaotic behavior

very near (in parametric sense) of an optimal flow setting,

which makes it difficult to simultaneously optimize travel

time and maintain a predictable schedule. The chaotic

and nontrivial dynamics are due to the finite braking and

accelerating capacities of the buses. New results are

related to a more complete understanding of the bus

dynamics, derivation of the analytical expressions for the

bounds of the nontrivial and chaotic behaviors in the

bifurcation diagrams with respect to various parameters

of the system, many of which can be controlled by traffic

controllers. These bounds can be use to estimate the rele-

vance of the nontrivial and chaotic dynamics of the bus

trajectories. For example, we have found that chaos

occurs when the ratio of the braking and accelerating

capacities are greater than about �3.

I. INTRODUCTION

The dynamics of city traffic has become an active area

of research not only because of its social and economical

relevance,1 but also and because it displays many interesting

features2–11 such as complex dynamics and emergent

phenomena.12–14 This complex behavior has been studied

using many different approaches, going from statistical and

cellular automaton, to hydrodynamical and mean field

models.15–18 Some approaches have even included the topo-

logical complexity of the traffic networks.19 In spite of much

effort in trying to understand traffic networks, there remain

many interesting problems, such as emergent phenomena,20

chaotic behavior,2,11 stochastic like resonances,21 self-orga-

nization,22 etc.

One of the main components of city traffic involves

buses and their dynamics. For example, there are a number

of publications that study problems related to school buses

(see Refs. 23 and 24 and references therein), while others

analyze environmental issues associated with bus transporta-

tion systems.24,25 There are also a number of publications

that investigate on the position of bus-stops.26 For example,

Jia et al.27 and Ding et al.28 use a cellular automaton model

to study the impact of bus-stops on the dynamics of traffic

flow; while Tang et al.29 analyze the same problem using a

traffic flow model. Optimization models were also used by

Ibeas et al.30 The interaction of the bus with traffic lights is

discussed by Estrada et al.,31 where a simulation optimiza-

tion model is used to minimize the travel time of bus users in

an urban network. There are also a number of publications

that investigate the traffic light timing to optimize vehicle

flow. For example, Liao and Davis32 used Global Positioning

Systems (GPS) and automated vehicle location systems on

the buses in Minneapolis, to develop an adaptive signal pri-

ority strategy. Also a bus priority method for traffic light

control based on two modes of operation was proposed by

Koehler and Kraus.33 Some studies combine traffic light and

stop position using nonlinear map models, as was done by

Mei et al.34 (their interest lies in T junctions) and Hounsell

et al.,35 where the issue is how to tackle the challenge posed

by locational error associated with GPS, where a traffic

signal is located close to a bus stop in London.

Hence, the majority of the researches on buses have

dealt with the problem of how traffic flow is affected by

buses and vice versa (see Refs. 36–48, for examples).a)Electronic address: jorge.villalobos@unibague.edu.co
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Among these researchers, there seems to be an interest on

the impact of exclusive-lines on the dynamics of buses;49–51

however, most of the cited articles are concerned with the

evaluation of the single lines as viable strategies, and not on

characterizing the different dynamics that can occur.

In this respect, it is interesting to mention the work by

Nagatani,52 which demonstrates the existence of chaotic

behavior in the tour time of a shuttle bus moving through a

traffic signal for certain passenger loading parameter and

cycle time. The existence of this behavior in such a simple

model must be analyzed with care, as it might have profound

implications for some of these traffic flow optimization

procedures. Similarly, Villalobos et al.11 constructed a

model for a bus moving, in a segregated manner, through a

sequence of traffic lights, but having finite braking and accel-

erating capacities. The buses display nontrivial and chaotic

behaviors very near (in parametric sense) of an optimal flow

setting, which makes it difficult to simultaneously optimize

travel time and maintain a predictable schedule.

Since this result may have profound implications for

designing bus transport systems in cities; in this work, we

propose to expand the discussion on the Simple Bus model
presented in Ref. 11, and the discussion on the results

presented in Ref. 11, derive analytical relations and restric-

tions for the parameters of the system, and study in detail the

possible dynamics of the system. Particular emphasis will be

given to understanding the root of the non-trivial and chaotic

behaviors presented in this model, which we can demonstrate

it is ascribable to the finite braking and accelerating capabil-

ities of the buses. In the process, we will find the conditions

that these variables need to satisfy for the existence of these

non-trivial and chaotic behaviors.

We will see that these results are relevant for city

parameters, so that we would expect that it should be appli-

cable in city transport systems. Besides the intrinsic impor-

tance of characterizing the nontrivial behavior observed in

this model, this research is applicable to the mass transporta-

tion system in the cities of Curitiba (Brazil), Bogot�a
(Colombia)—this latter one dubbed Transmilenio—, and

other cities that have adopted public transportation systems

based on dedicated lines. These are city traffic systems in

which buses have exclusive rolling lanes (they do not inter-

act with cars or other vehicles). Also, at times other than

rush hours, they roll pretty much by themselves and interac-

tion between buses is low, both at stations (the places where

passengers get in or out of the bus) and near traffic lights.

The characteristics of these systems, their comparison with

other bus rapid transit systems, and its possible application

as a rapid bus transport system in the United States, are

discussed in Refs. 53–55.

This paper is organized as follows: in Section II, we

describe the Simple Bus model and obtain a 2D map that

gives us the state of the bus (in terms of time and speed) at

one light, given the state at the previous light. Also, we

explore the dynamics via numeric simulations where the

Lyapunov exponent of the system is computed and repre-

sented in parameter space. Section III gives an analytical

description of the dynamics, several values of the bifurcation

diagrams are found, along with expressions for the fixed

point and period-2 orbits. Finally, Section IV presents a

summary. There are two Appendixes, Appendix A goes

into detail regarding the construction of the model, and

Appendix B expands on the derivation of the analytical

results presented in Section III.

II. MODEL AND DYNAMICS DESCRIPTION

Our Simple Bus model mimics the dynamics of one vehi-

cle (a public transportation one) moving through a sequence

of traffic lights in one dimension. The interaction with the

traffic lights is modeled after what can be expected of an av-

erage driver. Let the separation between light n and nþ 1 be

Ln (we set Ln¼L, 8n in this manuscript). At time t, the nth

light is green if sinðxtþ /nÞ � 0, red otherwise. Here, xn

represents the traffic’s light frequency and /n its phase (we

set xn¼x, and /n ¼ 08n in this manuscript).

A bus in this sequence of traffic lights can have: (a) an

acceleration aþ until its velocity reaches the cruising speed

vmax, (b) a constant speed vmax with zero acceleration, or (c)

a negative fixed, acceleration –a– until it stops or starts accel-

erating again. Hence, we can write the bus’ equation of

motion as

dv

dt
¼

aþh vmax � vð Þ; accelerate

�a�h vð Þ; brake;

(
(1)

where h is the Heaviside step function.

The bus is forced to make a stop for a time c to pick and

leave passengers between lights, such that the stop is located

at a distance �‘ from the light behind the vehicle. The bus

then accelerates towards the next light.

We refer to Fig. 1 in order to describe the dynamics of

the bus between two consecutive traffic lights. In Fig. 1(a),

we show the speed (v) of the bus as a function of its position

(x), and in Fig. 1(b) its position (x) as a function of time (t).
Both figures have circled numbers that refer to intervals, or

regions, where the dynamics are governed by the same

FIG. 1. Schematics for the movement of the Bus Model between two traffic

lights: (a) Speed on the vertical axis and position on the horizontal, (b) posi-

tion on the vertical axis and time on the horizontal. We illustrate the case

where the light is red at the stop point xs2 and changes color before the vehi-

cle reaches a full stop. Labels are described in Secs. II, III, and Appendix A.
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dynamical equation. So, regions 1, 5, and 8 label the inter-

vals when the bus is accelerating; regions 2 and 6 are the

ones when it is traveling at constant speed; 3 and 7 identify

the moments when it is braking and, finally, region 4 marks

the time when the bus is standing still picking up passengers.

Note that the existence of regions 7 and 8 are determined by

the traffic’s light color at the decision point xs2 (with time

ts2). There are three possibilities since the interaction with

the traffic light is modeled after what can be expected of an

average driver

(1) If the light is green at xs2 with ts2, then the bus will con-

tinue traveling at constant speed vmax and will cross the

light. In this case, there is no need for region 1 between

light nþ 1 and nþ 2.

(2) If the light is red at xs2 with ts2, then the bus will start

braking in order to reach the traffic light with speed 0.

There are two possibilities in this scenario:

(a) The traffic light stays red, while the bus is braking.

In this case, the vehicle stops at the light and waits

for a green light to start accelerating, so that only

region 7 is needed.

(b) The traffic light changes to green, while the bus is

braking before reaching a complete stop. In this

case, the vehicle starts braking (region 7) and then

accelerates again as soon as the light turns green

(region 8). This is the scenario, we are illustrating

in Fig. 1.

According to Fig. 1, we have that the bus always brakes

at position �‘ (region 3) and, may brake at the traffic light if

the light is red (region 7). If the bus happens to cross the

traffic light with speed v < vmax it will accelerate until vmax

is reached (region 1). Since it is forced to stop at �‘ it will

always accelerate from this point in order to get to the

following traffic light (region 5). When not accelerating or

braking, a constant speed (vmax) is maintained (regions 2

and 6). For the bus to come to a complete stop at position �‘
it must start braking at xs1, so that regions 3, 4, and 5 always

take place.

In this manuscript, we do not contemplate the possibility

that the bus gets to these two decision points (xs1 and xs2)

with speed v < vmax. We chose to take the minimum distance

that is consistent with the braking capacity (�a�) of the bus,

namely, xs2 ¼ xn þ L� v2
max=ð2a�Þ. The same restriction

applies at the bus stop, namely, xs1 ¼ xn þ �‘ � v2
max=ð2a�Þ.

Let us write down some restrictions in order to keep the

model as simple as possible. First, we restrict the light not to

change more than once, while the bus is in regions 7 and 8 of

Fig. 1, so that

0 <
x
2p
�

min aþ; a�ð Þ
vmax

: (2)

Second, we expect the bus to be able to reach the cruising

speed vmax, and stop at the stopping site �‘ and at the next

traffic light, hence

v2
max

2a�
< �‘ < L� v2

max

2a�
: (3)

Third, to guarantee that all regions (1–8 in Fig. 1) can take

place, we must enforce

v2
max

2

1

a�
þ 1

aþ

� �
< �‘ < L� v2

max

2

1

a�
þ 1

aþ

� �
: (4)

For the purpose of illustration, we will fix �‘ ¼ L=2.

The 2D map

ðtnþ1; vnþ1Þ ¼ Mðtn; vnÞ;

which evolves the velocity and time at the n-th traffic light to

the same variables at the (nþ 1)-th traffic light is built ex-

plicitly in Appendix A. It is valid only if Eqs. (2)–(4) hold.

It is desirable to have a normalization scheme for these

variables, so that we normalize the time with the minimum

travel time defined by

tmin ¼ Tc þ
vmax

2aþa�
aþ þ a�ð Þ; (5)

where Tc ¼ L
vmax

. We also normalize both the speed and posi-

tion, so that u ¼ v=vmax; y ¼ x=L, and s ¼ t=tmin. We also

introduce the following normalized variables: ‘ ¼ �‘=L
ð0 < ‘ � 1Þ; Aþ ¼ aþL=v2

max ðAþ � 0Þ, A� ¼ a�L=v2
max

ðA� � 0Þ; C ¼ c=Tc ðC � 0Þ, and X ¼ xtmin

2p ðX > 0Þ.
In terms of the normalized variables, the restrictions

given by Eqs. (2) and (3), can be written as

0 < X � tmin

Tc
min Aþ;A�ð Þ (6)

and

1

2A�
< ‘ < 1� 1

2A�
: (7)

Now, the condition for all regions to exist, Eq. (4), is normal-

ized as

1

2

1

A�
þ 1

Aþ

� �
< ‘ < 1� 1

2

1

A�
þ 1

Aþ

� �
: (8)

Similarly, we can write

tmin

Tc
¼ 1þ 1

2A�
þ 1

2Aþ

� �
:

We will focus our efforts on understanding the effect that X
and C (the traffic light’s frequency and the time that the bus

stands still at the stop point) have on the dynamics. We

restrict ourselves to the case ‘¼ 1/2 without any loss of gen-

erality. As long as ‘ takes a value bounded by the inequality

in Eq. (8), it has no effect on the dynamics. Unless stated

otherwise, we will fix the acceleration values at aþ ¼ 1 m
s2

and a� ¼ 5 m
s2, with L¼ 400 m and vmax ¼ 60 km

h
, which are

realistic parameters for city traffic. With these values, we

have tmin ’ 34 s. These are reasonable values for cities like

Santiago o Bogota. In Figs. 2(a) and 2(b), we show bifurca-

tion diagrams for the speed u and time between traffic lights

Ds¼ (snþ1 – sn), respectively, as a function of X. For now,

we will take C¼ 0. All bifurcation diagrams are done by
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plotting the iterations 900 through 1000 of the map, with

initial condition (s0, u0)¼ (0, 0). Let us define several inter-

esting points in the bifurcation diagram. First, we observe

that for X¼X1¼ 1, the bus is in resonance with the traffic

light crossing it with vmax without stopping, except at ‘. Note

that making X � X1 puts the bus in a situation, where it has

to stop every p lights; while in the case that X � X1, the bus

may be forced to brake at every light. We will not discuss

the dynamics for X>X1 except to note that the time spent

between lights grows due to the fact that the bus spends

more time standing still waiting for the red light to change.

For X<X1, but close to the resonance, we note a period dou-

bling bifurcation to chaos as we reduce X. We define XU as

the frequency where we observe the first period-doubling

bifurcation. Eventually, the chaotic attractor collides with

the state (un, sn)¼ (0, 0) producing a crisis that was charac-

terized in Ref. 9, for a single car model. Similarly, we define

XL as the frequency where the lower branch of the period-2

hits the u¼ 0 threshold. At X¼X01, the dynamics reach a

point at which the bus has to stop completely at every other

traffic light. Note that XU (or X01) and XL, for which we will

find analytic expressions in Appendix B, provide a bound for

the existence of the nontrivial dynamics and the chaotic re-

gime. The range of parameter where this occurs is relevant

for city traffic. Furthermore, this range of X also contains the

Chaotic Region (CR). For X<XL, X01, we observe a point

where the bus has to stop at every light and wait for it to turn

green again. We call this the stop value X0.

We can show that the CR is indeed chaotic, by comput-

ing the numerical maximum Lyapunov exponent as was

done in Refs. 2 and 8, for a single car model. We evolve (u0,

s0)¼ (0, 0) for n iterations to make sure we had arrived to

the attractor, and then we follow the actual trajectory (unþm,

snþm) and a different perturbed trajectory ð�unþm;�snþmÞ
¼ ðunþm; snþmÞ þ ðdum; dsmÞ with ðdu0; ds0Þ ¼ ð0; 10�10Þ,
for 25 additional steps. We calculate the euclidean distance

dm vs m between both trajectories for 10 different initial

conditions, namely, trajectories starting at n¼ 500þ 25� r
(for r¼ 0,…, 9), and fit a Lyapunov exponent as lndm

¼ lnd0 þ k m. Of course, due to the non-smooth nature of the

map, we do not consider situations in which k ! 1. The

result of the calculation is shown in Fig. 2(c), which clearly

demonstrates that the dynamics is chaotic for the expected

range of X.

The bifurcation diagram with respect to X changes as

we vary C, not in its general shape, but in its position and

width relative to X. Indeed, at resonance the travel time

between traffic lights tminþ c, should be equal to the period

of the traffic light, so that

X1 ¼
tmin

tmin þ CTc
: (9)

Since the resonance occurs for x(tminþ c)¼ 2p, the bus will

resonate at a decreasing X¼X1. This is expected, since it

will take the bus a longer time to travel the distance between

the traffic lights. The situation at XU and XL is a little more

involved, so it will be derived in the Appendix. Meanwhile,

we note that at X0, the bus starts from rest and then comes to

a full stop at the traffic light exactly when the traffic light

turns green again, so that

X0 ¼
tmin

Tc

1

1þ 3

4

1

Aþ
þ 1

A�

� �
þ C

: (10)

Similarly, at X01, the bus starts from rest, goes through 1

traffic light with vmax, and then comes to a full stop at the

second traffic light exactly when the traffic light turns green

again. Therefore

X01 ¼
tmin

Tc

1

1þ 1

Aþ
þ 1

A�

� �
þ C

: (11)

We note that these frequencies decrease as C increases, as

can be appreciated in Fig. 3(a). We also show that the width

of the region where the nontrivial and chaotic dynamics

changes with C, as displayed in Fig. 3(b), where we plot

DXU,L¼XU�XL (dashed) and DX1,0¼X1�X0 (dotted) as

a function of C. Clearly, the width of the chaotic and nontri-

vial dynamics gets reduced as we increase the bus waiting

FIG. 2. Bifurcation diagrams for X as bifurcation parameter. Both (a) speed

at the nth light and (b) time between consecutive lights are shown (b). We

use C¼ 0. The vertical gray lines in (a) mark values for X that are used for

Figs. 4(a)–4(d). Figure (c) shows the Lyapunov exponent.
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time C. Hence the expected stop time at the bus stop has im-

portant consequences for the dynamics of the buses, which

clearly make the system more complex. Let us note that even

under the simplest possible conditions of a constant C, the

bus dynamics are quite unpredictable for parameters that are

relevant for city traffic. We can compare these results, by

numerically estimating the size of the CR, defined as the

range of values of X, for a given C, in which the Lyapunov

exponent is positive. The width in X of this region is shown

in Fig. 3(b) with the label Dk and plots it as solid line. This

is interesting since one may argue that reducing C (making

the stop time smaller) would reduce the average traveling

time; however, according to our model this may not always

be the case, as discussed below. This effect was first noticed

in Ref. 11. Furthermore, the width of the nontrivial and CR

change as we change C, for longer waiting times it gets

thinner.

In Fig. 4, we show the bifurcation diagram of u as we

vary C, for fixed X. As expected, the bifurcation diagram

changes as we vary X. We use the values X1, XU, X01, XL,

and X0 that correspond to the vertical lines in Fig. 2(a). As

can be seen in Fig. 4(a) at C¼ 0, the bus is synchronized

with the traffic light, so we label this situation C1. Increasing

C moves the bus to a situation, where it passes many lights

in green and then is forced stop for the duration of the red

light. The number of consecutive green lights decreases as

we increase C. For sufficiently large C (about 0.4), the bus

has to stop at every light. If we keep increasing C, we find

that the bus enters a region of non-trivial dynamics and

chaos. Decreasing X to XU is equivalent to moving C1 to the

right. We see that to the left of C1, we find a fixed point

attractor for u< 1 that eventually goes through a bifurcation

(at CU); this is shown in Fig. 4(b). If we further decrease X
to X01 and XL of Fig. 2(a), we see that we go through a

FIG. 3. (a) X1, XU, XL, and X0 as a function of C. The order of the curves

from top to bottom is the same as the legend. XkL and XkR corresponds to

the left and right boundaries of the chaotic region, which is shown at the

gray area. (b) Width, DXU,L¼XU�XL (dashed) and DX1,0¼X1�X0 (dot-

ted), of the region where the nontrivial dynamics occurs. The solid line

shows the numerical estimation of the width of the CR.

FIG. 4. Bifurcation diagrams u vs C for (a) X1¼ 1, (b) XU¼ 0.968354, (c)

X01¼ 0.871795, (d) XL¼ 0.859551, and (e) X0¼ 0.772727. These values of

X correspond to the vertical lines of Fig. 2.
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situation in which the behavior of the bus appears to be

chaotic; this is observed in Figs. 4(c) and 4(d), respectively.

Finally, for Fig. 4(e), we have chosen the value of X0 from

Fig. 2(a). We can see there is a whole region of non-trivial

dynamics and chaos, similar in appearance of chaos and non-

trivial dynamics in Fig. 2. In Appendix B, we have shown

how to derive equivalent definitions for C1, CU, CL, C01, and

C0. We note that as we increase X, the non-trivial and CR

moves to lower values of C. This is expected, since it will

take the bus a longer time to travel the distance between

traffic lights, so that the bus will resonate at a decreasing C1.

Again, this may produce counter-intuitive results. Hence

both the traffic light’s frequency and the waiting time can

move the system towards or away from regions, where chaos

and non trivial dynamics may arise.

We now explore the effect that X and C have on the

average traveling speed, which has already noted, may pro-

duce counter-intuitive results. First, we start from the initial

condition (0, 0) and evolve the system for 103 iterations to

be certain it is in the attractor. Then, we take N¼ 100

iterations of the map M(s, u) and calculate the normalized

average traveling speed, �u, as

�u ¼ N

sN
;

where sN is the time it takes to travel the N traffic lights. This

normalized average traveling speed is equal to one when the

bus is able to cross every traffic light in green, i.e., it is in

resonance at X1.

Figure 5 shows �u versus X for C¼ 0, 0.25, 0.50, and

0.75. Note that there are several resonant peaks (points

where the average speed is maximum) for each value of C,

hence reducing C (making the stop time smaller) does not

necessarily reduce the average traveling time. We find the

first resonant peak, for all values of C, lying over the line

�u ¼ X. This is due to the scaling effect near resonance that

these systems show.

As expected, as C grows, the maximum average normal-

ized speed may go down and the minimum may be affected

likewise. The maximum possible value for the normalized

average speed is (at resonance)

�umax ¼
tmin

tmin þ CTc
: (12)

The other effect that C has on the normalized average speed

is to shift the resonance value of X. This has been shown

numerically and we will discuss this effect more thoroughly

in Section III, where we analyze the analytical expression for

one of its resonant values. This is important mainly for two

reasons: first, it is rather obvious that it will be very hard to

control the stop time on a real bus system; second—as we

have illustrated—this dynamical system displays chaos near

the resonance value for X. Combining these two arguments

tell us that a small change in C may be able to steer the

system towards regions of chaotic and non trivial dynamics,

even if the traffic lights have been previously synchronized.

It is clear that, from a controller point of view, one

desires to keep the light frequency as close to, but below, X1

as possible, because it diminishes the time spent between

lights and fuel consumption (if the vehicle does not has to

brake and accelerate at the lights). However, it is hard to

predict in advance the waiting time C at each traffic light,

and since the chaotic and nontrivial behaviors are so close to

X1, a small variation in C can make the dynamics unpredict-

able increasing both the traveling time and the bus’ fuel

consumption, as was already reported for a single car in

Ref. 3. Therefore, for a varying loading passenger time C, it

becomes difficult to simultaneously optimize the travel time

and keep a well predicted schedule.

In Fig. 6, we show the results of calculating the maxi-

mum Lyapunov exponent of the system in the Aþ � A� dia-

gram, for C¼ 0. In this figure, we color a point (Aþ, A�) if

FIG. 5. Average normalized speed as a function of the light’s frequency for:

C¼ 0 (thick), C¼ 0.25 (dashed), C¼ 0.5 (dotted), C¼ 0.75 (thin). Peaks

indicate light’s frequencies for which the bus never has to break at a light,

i.e., situations where the bus is completely synchronized with the green light.

Horizontal lines given by Eq. (12).

FIG. 6. The Aþ � A� diagram for C¼ 0. A colored dot for a pair (Aþ, A�)

marks a situation in which there exists a value of X with a Lyapunov expo-

nent larger than 0.1, if the dot is white such value of X does not exists. The

restriction left boundary 1 ¼ A�1
þ þ A�1

� and a fitted lower boundary line

(for C¼ 0) are shown.
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we can find a value of XL�X�XU with a Lyapunov

exponent greater than or equal to 0.1; we color it white if we

cannot. We use the threshold value kc¼ 0.1 to make sure the

system is chaotic, due to the numerical evaluations. We have

fitted the lower boundary for the chaotic regime as

A� � 2:8Aþ þ 0:04;

so that including the restriction given by Eq. (8), chaos does

not appear unless A�> 4. Furthermore, from the picture, and

our fitted lower boundary, we can see that chaos is only pos-

sible if a� � 3aþ, and also that the width of the region of

positive Lyapunov exponents gets larger as A� grows.

In this section, we have shown several properties of our

Bus model, mainly that it has rich dynamics in the form of

non-trivial and chaotic behaviors, particularly for parameter

values that are close to the expected values for city traffic.

III. ANALYTICAL RESULTS

We will now discuss some consequences of the analyti-

cal expressions derived in Appendix B, which define particu-

lar situations in the bifurcation diagram. We have used the

following conventions as subscripts:

1 the bus resonate with the traffic lights crossing the lights

at full speed. We refer to these situations as resonant
values.

U the dynamics goes through its first period doubling bifur-

cation. We refer to these situations as upper values.

01 the point where we have an exact period 2 orbit with

u0¼ 0 and u1¼ 1. We refer to these situations as low
values.

L the point where the lower branch of the period 2 orbit

hits the u¼ 0 threshold. We refer to these situations as

lower values.

0 the bus is forced to stop completely at every traffic light.

We refer to these situations as stop values.

These expressions, which are derived for the bifurcation

diagrams with respect to Aþ, A�, X, and C, can be used to

bound the different dynamical regions. Similar expressions

were derived in Ref. 8 for a single car model. The procedure

used to derive these relations is outlined in Appendix B.

As an example, Figs. 7(a) and 7(b) show bifurcation dia-

grams for the speed with Aþ, A�, as bifurcation parameters,

respectively. We use the reference values, namely, Aþref

¼ 1� L=v2
max; A�ref ¼ 5� L=v2

max; C ¼ 0:5, ‘¼ 1/2, and

X¼ 0.71, corresponding to the chaotic region in the bifurca-

tion diagram for X, when not used as the bifurcation vari-

able. Let us note that the restriction Aþmin and A�min

imposed by Eq. (8) are represented by the vertical dashed

line in Figures 7(a) and 7(b), respectively. We note that these

bifurcations diagrams are consistent with the expectations

provided by Figure 6, in that the chaotic region is lost as we

increase Aþ with respect to A�, and that we can obtain chaos

as we increase A� relative to Aþ. This result may have

important implications for the existence of chaos, and the

viability of predictable bus routes in cities, specially in seg-

regated lines, as it occurs naturally in many cities such as

Santiago, Bogota, Curitiva, etc.

Chaotic and non trivial dynamics regions may exist

between the resonant and stop values for a given set of param-

eters. Looking at bifurcation diagrams, it is easy to see that

for chaotic and non trivial dynamics to be present, we need

(1) Aþ1<AþU<AþL, Aþ 01<Aþ0;

(2) A�1<A�U<A�L, A� 01<A�0;

(3) C0<CL, C01<CU<C1; and

(4) X0<XL, X01<XU<X1.

We now turn our attention to two special cases that will

give us more intuition regarding the conditions for the exis-

tence of non-trivial and chaotic behaviors in the model. First,

we look at what happens when we have Aþ¼A�¼A, i.e.,

we force the vehicle to accelerate and brake at the same rate.

In this case, we have

X1 ¼
1þ A

1þ Aþ AC
;

X0 ¼ XU ¼ XL ¼
1þ A

2þ Aþ AC
:

Similar expressions for C are

C1 ¼
1þ Að Þ X� 1ð Þ

AX
;

C0 ¼ CU ¼ CL ¼
1þ A� 2þ Að ÞX

AX
:

Hence, as we make the accelerating and braking capaci-

ties equal, the bifurcation point and the stop point become

FIG. 7. Bifurcation diagrams observing the condition from Eq. (8) with (a)

Aþ and (b) A�. We use Aþref ¼ 1� L=v2
max), A�ref¼ 5�L/vmax

2, C¼ 0.5,

‘¼ 1/2, and X¼ 0.71. The reference values Aþref and A�ref are shown as the

vertical dotted lines.
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the same; therefore, there is no period doubling and no road

to chaos. Furthermore, the system’s behavior becomes trivial

in the sense that the transition from a non-resonant situation

to a resonant one, i.e., the behavior experienced when chang-

ing X0 toward X1, is described by a continuous line, as can

be seen in Fig. 8(a). The same can be said when the control

parameter is C.

Let us now describe the dynamics when the braking

capacity tends towards infinity, namely, A� ! 1. Taking

this limit gives us

X1 ¼ XU ¼ 1;

X0 ¼ XL ¼
1þ 2Aþ
2þ 2Aþ

:

Similar expressions for C are

C1 ¼ CU ¼
1þ 2Aþð Þ X� 1ð Þ

2AþX
;

C0 ¼ CL ¼
1þ 2Aþ � 2 1þ Aþð ÞX

2AþX
:

It becomes clear that chaos and nontrivial dynamics cannot

occur in the limit A� ! 1. Let’s note that this is the limit

that is used in a large number of cellular automaton models,

in which the cars or buses are forced to have unrealistically

strong braking capabilities to avoid collisions in the simula-

tions (see, for example, Ref. 56). Hence, this restriction puts

a strong constraint on the possibility to have a relevant part

of the inherent complexity that bus systems, and city traffic,

in general, should have, even in its simplest conceptual real-

izations. Furthermore, above we found that chaos appear for

realistic accelerating and braking capacities of buses in

cities, hence we expect that chaotic behavior and nontrivial

dynamics are an inherent part of bus systems, and traffic in

cities in general. Therefore, it is fundamental to consider the

finite braking and accelerating of the buses if we pretend to

understand the complexities of these transportation systems.

IV. CONCLUSIONS

Throughout this paper, we have analyzed a simple

model of a bus that interacts with a sequence of traffic lights

and stops in between them by using a 2D map of speed and

time at the n-th light. The behavior of this Simple bus model
was described in detail. The map was constructed in such a

way that it gave us the speed and time at which the bus

would cross the following lights given an initial speed and

time. We discussed the overall behavior of the average speed

as a function of the traffic light frequency (x) and high-

lighted the scaling effect present.

One important conclusion is that this model displays

non-trivial and chaotic behaviors for realistic city traffic pa-

rameters, and we characterized the occurrence of this behav-

ior with the analytical results of Appendix B. These values

are also used to set boundaries; in particular, we bound the

chaotic region in the interval between the lower and upper

frequency values. Conditions for chaos to be present where

also analyzed. In particular, we found that for the non-trivial

and chaotic behaviors to be present, we must have different

braking and acceleration capacities (braking capacities must

be larger) and finite values for both. It is interesting to note

that our setting could be applicable to subway systems by

getting rid of the traffic light, which is in part responsible for

the chaotic behavior; therefore, the subway dynamics is

more stochastic in nature defined by the time require to load

and unload passengers. Here, we have considered the case of

a single bus going through a sequence of traffic lights. As we

allow the interaction with more buses, other interesting

effects may come to play, such as synchronization or sto-

chastic resonances,21 produced by the interaction of the dy-

namics of passenger loading and unloading, with the traffic

light sequence. Such problem will be addressed elsewhere.
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APPENDIX A: CONSTRUCTION OF A 2D MAP FOR THE
BUS MODEL: THE M(t,v) MAP

The map below completely determines the bus dynamics

between consecutive traffic lights, given a set of initial condi-

tions. We use the sequence of events described in Fig. 1, but

we do not assume the bus starts standing still at a red light.
FIG. 8. Bifurcation diagram for the case when (a) Aþ¼A�, and (b) A� !
1. We use C ¼ 0; ‘ ¼ 1=2; A ¼ Aþ ¼ 5v2

max=L, and A� ¼ 5v2
max=L.
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Region 1: The bus crosses the n-th traffic light at posi-

tion xn, time tn, with velocity vn. It accelerates with aþ until

reaching velocity vmax at position xc1 ¼ xn þ ðv2
max � v2

nÞ=
2aþ, at time tc1 ¼ tn þ ðvmax � vnÞ=aþ. Note that if

vn ¼ vmax, there is no need for this region.

Region 2: The bus moves at velocity vmax, until braking

in order to fully stop at x¼ xnþ l. Braking must occur at the

decision position xs1 ¼ xn þ l� v2
max=2a�. The bus reaches

the decision point at time ts1 ¼ tc1 þ ðxs1 � xc1Þ=vmax.

Region 3: The bus brakes with a�. It reaches the bus

stop at xnþ l with speed 0, at time tl ¼ ts1 þ vmax=a�.

Region 4: The bus loads and unloads passengers during

a time c.

Region 5: The bus accelerates with aþ. So it is like

Region 1, but it now always starts from rest. At the end of

the region, the bus is at position xc2 ¼ xn þ lþ v2
max=2aþ

with velocity vc2 ¼ vmax, at time tc2 ¼ tl þ cþ vmax=aþ.

Region 6: The bus moves at velocity vmax until it

reaches a second decision point, where it checks the status of

the upcoming traffic light. If red, it has to be able to fully

stop at x¼ xnþ L. As in Region 2, the decision point is

at xs2 ¼ xn þ Ln � v2
max=2a�, and it happens at time

ts2 ¼ tc2 þ ðxs2 � xc2Þ=vmax. At this point, the bus has veloc-

ity vs2 ¼ vmax.

Region 7: The behavior depends on the light’s status

(i.e., red or green) at the decision time ts2.

(A) If green, the bus does not brake. It reaches the next

traffic light, which is at position xnþ1¼ xnþL, with velocity

vnþ1 ¼ vmax at time tnþ1 ¼ ts2 þ ðv2
max=2a�Þ=vmax

¼ ts2 þ vmax=2a�.

(B) If red, the bus starts braking. In order to decide what

happens next, the time of the next green light must be calculated

tg ¼
2p
x

xts2 þ /n

2p

� �
þ 1

� �
� /n

x
;

where [] represents the integer part. This time must now be

compared with the time, it will take the bus to fully stop,

tt ¼ ts2 þ vmax=a�.

(a) If tt� tg, then the bus fully stops, and stays at the

traffic light at position xnþ1¼ xnþ Ln, with velocity vnþ1¼ 0,

until the next green light at tnþ1¼ tg.

(b) If tt> tg, then the light turns green, while the bus is

braking (see Region 8 in Fig. 1). This occurs at time tg, at

which the bus is at position xg ¼ xs2 þ vs2ðtg � ts2Þ
� 1

2
a�ðtg � ts2Þ2, with velocity vg¼ vs2� a� (tg� ts2). Now,

the bus starts accelerating again. Again there are two cases.

In order to decide, the position xc ¼ xs2 þ ðv2
max � v2

gÞ=2aþ
at which the bus reaches velocity vmax, must be compared

with the position of the next light, xnþL.

(i) If xc< xnþ L, the bus reaches maximum velocity

before reaching the light. Thus, it reaches the position xc

with velocity vmax at time tc ¼ tg þ ðvmax � vgÞ=aþ. Then, it

continues with velocity vmax until reaching the light at posi-

tion xnþ1¼ xnþ L with velocity vnþ1 ¼ vmax, at time

tnþ1 ¼ tc þ ðxn þ L� xcÞ=vmax.

(ii) If xc> xnþL, the bus reaches the next light at posi-

tion xnþ 1¼ xnþ L with non-maximum velocity vnþ1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

gþ 2aþðxnþL� xgÞ
q

, at time tnþ1¼ tgþ (vnþ1�vg)/aþ.

These are the possible cases for the bus dynamics for the

restrictions presented in the text. We have given the com-

plete details for the construction of the map M(t, v); such

that we can find (tnþ1, vnþ1)¼M(tn, vn) 8n� 1 given (t0, v0).

APPENDIX B: PROCEDURES TO FIND RESONANT,
STOP, AND CHAOS BOUNDING VALUES

We have already found critical values for X, namely

X1 ¼
tmin

tmin þ CTc
; (B1)

X0 ¼
tmin

Tc

1

1þ 3
4

1
Aþ
þ 1

A�

� �
þ C

; (B2)

X01 ¼
tmin

Tc

1

1þ 1
Aþ
þ 1

A�

� �
þ C

; (B3)

where

tmin

Tc
¼ 1þ 1

2A�
þ 1

2Aþ

� �
:

We will now derive the conditions for XU and XL. XU

is defined as the frequency in which we have the period

doubling bifurcation. We will use the position and timing

notation of Fig. 1. Hence, defining un as the normalized

velocity at the nth traffic light and ug,n as the normalized

velocity when the nth traffic light becomes green, we can

compute the distance restriction for the second half of the

distance between traffic lights before the nth traffic light,

namely

‘ ¼ 1

2Aþ

� �
n;5

þ 1

2
� 1

2Aþ
� 1

2Aþ

� �
n;6

þ 1� ug;n

2A�

� �
n;7

þ u1
n � ug;n

2A�

� �
n;8

:

Here, we have used ‘¼ 1/2. The first subscript of the brack-

ets corresponds to the region before the given traffic light,

and the second to the ranges of Fig. 1. These restrictions

give

unþ1 ¼

1 if ug;n ¼ 1

vg;n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Aþ

A�

r
if 0 < ug;n < 1

0 if ug;n ¼ 0:

8>>>><
>>>>:

(B4)

The first case (ug,n¼ 1) takes place when the bus finds that

the light is green at xs2,n; therefore, it does not brake. The

second case (0< ug,n< 1) takes place when the bus finds that

the light is red at xs2,n, but it changes to green (at xg,n) before

the bus reaches a full stop. The third case (ug,n¼ 0) takes

place when the bus finds that the light is red at xs2,n and it

changes to green after the bus has stopped at xnþ1.

In terms of the time, we have that the normalized period

T/Tc satisfies
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T

Tc
¼ un � ug;n�1

Aþ

� �
n�1;8

þ 1� un

Aþ

� �
n;1

þ 1

2
� 1

2A�
� 1� u2

n

2Aþ

" #
n;2

þ 1

A�

� �
n;3

þ C
tmin

Tc

� �
n;4

þ 1

Aþ

� �
n;5

þ 1

2
� 1

2Aþ
� 1

2A�

� �
n;6

þ 1� ug;n

Aþ

� �
n;7

: (B5)

We can evaluate this restriction for the nth and (nþ 1)-

th traffic light, using Eq. (B4), and ug,n�1¼ ug,nþ1, to obtain

ug,n� ug,nþ1. Then, using Eq. (B4), we can find the period-2

velocities at the traffic light un� unþ1, as a function of Aþ,

A�, and C. To Find XL, we follow the lower branch un until

it hits the v¼ 0 threshold. Similarly, to find XU we set

un¼ unþ1 in the period-2 orbit. The results are

XU ¼
tmin

Tc

2A�Aþ A� þ Aþð Þ
A� Wþ Uð Þ þ 2AþWþ 5A2

þ
; (B6)

XL ¼
tmin

Tc

A�Aþ A� þ Aþð Þ
A�Wþ AþUþ 3A2

þ
; (B7)

where W¼A� (Aþ(Cþ 1)þ 1) and U¼A� Aþ(Cþ 1).

It is interesting to note that these bounds in X are

actually definitions that relate all four variables, X, C, A�,

and Aþ; so that we can use the corresponding equation and

solve for any of the variables in terms of the other three. For

example, taking the expression for X1, given by Eq. (B1), we

can find

C1 ¼
Xc � 1ð Þ A� þ Aþ þ 2A�Aþð Þ

2A�AþXc
; (B8)

Aþ1 ¼
A� Xc � 1ð Þ

Xc � 1ð Þ 1þ 2A�ð Þ þ 2A�CXc
; (B9)

A�1 ¼
Aþ Xc � 1ð Þ

Xc � 1ð Þ 1þ 2Aþð Þ þ 2AþCXc
; (B10)

where Xc¼xTc. The other bounds for Aþ, A�, C can be

found directly from the respective Eqs. (B2), (B3), (B6), and

(B7).

Note that all previous expressions for resonant, stop,

upper, low, and lower values are independent of ‘. This is

expected since we are forcing the system to reach uc¼ 1

before interaction with the light is possible.
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