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The early endosomal protein Rab5 is highly expressed in tumor samples, although a causal relationship
between Rab5 expression and cell transformation has not been established. Here, we report the func-
tional effects of targeting endogenous Rab5 with specific ShRNA sequences in different tumor cell lines.
Rab5 down-regulation in B16-F10 cells decreased tumor formation by subcutaneous injection into C57/
BL6 mice. Accordingly, Rab5 targeting in B16-F10 and A549, but not MDA-MB-231 cells was followed by
decreased cell proliferation, increased apoptosis and decreased anchorage-independent growth. These
findings suggest that Rab5 expression is required to maintain characteristics associated with cell

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Cancer progression is characterized by the acquisition of several
traits, including sustained proliferation, resistance to cell death,
evading anti-growth factors, replicative immortality, angiogenesis
and metastasis [1]. Several of these traits have been shown to be
influenced by deregulated organelle and endosome trafficking [2],
although the molecular players implicated in these phenomena
remain to be fully characterized. Rab GTPases are critical regulators
of endosome trafficking with functions ranging from endosome
and vesicle formation through tethering, targeting, fusion and
transport [3]. In recent years, several Rab proteins have been shown
to be altered in cancer, supporting the view that deregulation of
components required for intracellular trafficking may be important
in cancer progression (reviewed in Refs. [4,5]). In this respect, the
early endocytic protein Rab5 is particularly relevant, because it
binds a wide range of molecules and effectors, and additional
functions have been documented for this GTPase. For instance,
Rab5 is required for mitosis progression, by controlling
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chromosome alignment, kinetochore assembly and nuclear
envelop disassembly [6,7]; moreover, Rab5 is known to promote
cell migration and invasion in cancer cells [8—10]. Intriguingly,
Rab5 levels are upregulated in lung adenocarcinoma [11], breast
cancer [12], hepatocellular carcinoma [13], ovarian cancer [14],
thyroid adenoma [15] and cervical carcinoma [9]. Importantly,
increased expression of Rab5 is associated with elevated incidence
of metastasis [12,16]. Despite this evidence, the precise role of Rab5
in determining characteristics associated with malignant trans-
formation and cancer progression remain poorly understood. In
this report, we show that Rab5 is important for the maintenance of
characteristics associated with malignant transformation in
different cancer cell lines, as shown using both in vitro and in vivo
assays.

2. Materials and methods
2.1. Materials

Monoclonal anti-Rab5 (sc46692) was from Santa Cruz Biotech-
nology (Santa Cruz, CA). Goat anti-rabbit and goat anti-mouse an-
tibodies coupled to horseradish peroxidase (HRP) and anti-actin
antibody (number A5316) were from Bio-Rad Laboratories (Her-
cules, CA). Tissue culture medium, antibiotics and fetal bovine
serum (FBS) were from GIBCO Life Technologies (Grand Island, NY)
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and HyClone Laboratories (Logan, UT). The EZ-ECL chemilumines-
cent substrate was from Pierce Chemical (Rockford, IL). Rab5 len-
tiviral short hairpin RNAs (shRNA) were from Open Biosystems
(Huntsville, AL).

2.2. Cell culture

MDA-MB-231 human breast cancer cells, A549 lung carcinoma
cells and B16-F10 murine melanoma cells were cultured in DMEM-
F12, DMEM-high glucose and RPMI medium, respectively, supple-
mented with 10% FBS and antibiotics. Rab5 targeting was per-
formed as previously described, by using shRNA constructs
targeting Rab5A [8,10]. To this end, shRNA sequence #B5, #F8 and
#F10 (Open Biosystems) were used to target endogenous Rab5A in
A549, B16-F10 and MDA-MB-231 cells, respectively. Control cells
were infected with a lentivirus encoding a non-specific shRNA
sequence (plasmid 1864; Adgene, Cambridge, MA). Stable cell lines
were selected and maintained in puromycin-containing culture
medium, as previously reported [10].

2.3. Western blotting

Cells were washed twice with ice-cold PBS and lysed in 0.2 mM
HEPES (pH 7.4) buffer containing 0.1% SDS, phosphatase inhibitors
(1 mM NasVOy), as well as protease inhibitors. Total protein ex-
tracts (50 pg/lane, unless indicated) were separated by SDS-PAGE
and transferred onto nitrocellulose membrane. Blots were
blocked with 5% milk in 0.1% Tween-TBS and then probed with
primary antibodies. Bound primary antibodies were detected with
HRP-conjugated secondary antibodies and the EZ-ECL system.

2.4. Apoptosis measurement

Cell death by apoptosis was measured by flow cytometry,
following propidium iodide (PI) staining, as previously described
[26]. Cells were cultured for 24 h in medium supplemented with
0%, 2% and 10% serum, then harvested and resuspended in PBS.
Samples were acquired by FACS (BD FACSCanto) and the extent of
apoptosis was determined by plotting PI fluorescence versus the
forward scatter parameter, using the WinMDI 2.8 software. Meth-
anol and TNFa-treated cells were used as controls for normodiploid
and hypodiploid (apoptotic) cells, as previously described [26].

2.5. Proliferation assay

Cells were seeded on 96-well plates at a density of 1 x 10% cells
per well. Cells were incubated for 24, 48 and 72 h, and optical
density (0.D.) was assessed with the MTS® kit, by measuring the
absorbance at 490 nm, according to the manufacturer's instructions
(Promega, Madison, WI, US).

2.6. Anchorage independent growth

Cells (1.5 x 10%) were re-suspended in 500 pl culture medium
(DMEM-F12, DMEM-HG, RPM]I, depending on the cell type) con-
taining 10% FBS and 0.3% low-melting point agarose (Invitrogen,
Carlsbad, CA, US). This layer was poured on top of a 500 pl
solidified-bottom layer containing 0.8% low-melting point agar in a
24-well plate, allowed to solidify at room temperature and then
returned to 37 °C. Samples were photographed at different time
points and the number of colonies was determined in 5 random
fields per well. Three wells per experiment were analyzed. Data
were averaged from three independent experiments. Colony for-
mation was defined as the number of colonies per total of cells in
the visual field analyzed.

2.7. Tumor growth assay

Tumorigenicity assays were performed as previously reported
by us [27]. Briefly, B16-F10 cells (3 x 10%) in 100 pl physiological
saline (0.9% NaCl) were injected sub-cutaneously into the flanks of
C57/BL6 mice. Appearance of tumors was monitored by palpitation.
The largest perpendicular diameters of the resulting tumors were
periodically measured, and tumor volumes were calculated ac-
cording to the following formula: width? x length x 7/6 (Current
Protocols in Immunology, 2000). Animals were sacrificed when
tumors reached the bioethically permitted limit of 2500 mm?>.
Animal survival is defined as the period post-injection of tumor
cells until animals were sacrificed. The experimental protocols
employed were approved by the institutional bioethics committee
(CBA 0271 CMUCH).

2.8. Statistical analysis

Data were analyzed with unpaired Student's t-tests, by using the
GraphPad Prism 5 software (San Diego, CA, US). Three independent
experiments were analyzed, and p < 0.05 was considered
significant.

3. Results

3.1. Down-regulation of endogenous Rab5 in tumor cell lines
decreases cell proliferation and promotes cell death

We previously showed that Rab5 is required to sustain migra-
tion and invasion of A549 lung cancer and MDA-MB-231 breast
cancer cells [10], as well as B16-F10 mouse melanoma cells [8].
Intriguingly, Rab5 has been shown to be increased in several tumor
samples, when compared to non-tumor tissue [9,11—15], although
the functional relevance of this increase is unknown. Therefore, we
sought to target the endogenous protein in different tumor cell
lines using a shRNA-based approach. Rab5 was efficiently down-
regulated in A549 and MDA-MB-231 cells, as well as B16-F10
cells using species specific ShRNA sequences (Fig. 1A). Intriguingly,
down-regulation of Rab5 substantially decreased cell proliferation
of A549 and to a lesser extent B16-F10 cells, whereas a negligible
decrease in proliferation was observed for MDA-MB-231 cells
(Fig. 1B). Additionally, the extent of cell death was evaluated in
tumor cells treated with shRNA-targeting endogenous Rab5. As
anticipated, Rab5 down-regulation was followed by increased
apoptosis levels in A549 and B16-F10 cells, but not in MDA-MB-231
cells (Fig. 1C). No differences were observed for other forms of cell
death, such as necrosis (data not shown). Since both cell prolifer-
ation and apoptosis are key events de-regulated in cancer cells,
these observations prompted us to investigate the requirement of
Rab5 in maintenance of further characteristics of cell trans-
formation, including anchorage-independent growth and tumor
formation.

3.2. Expression of Rab5 is associated with anchorage independent
growth and tumorigenicity

The ability of tumor cells with low endogenous Rab5 levels to
grow in an achorage independent manner was evaluated in soft
agar assays. Indeed, A549, B16-F10 and MDA-MB-231 cells readily
formed colonies in soft agar and treatment with a control shRNA
did not affect this pattern (data not shown). However, shRNA-
mediated targeting of Rab5 decreased the ability of A549 and
B16-F10, but not MDA-MB-231 cells, to form colonies in soft agar
(Fig. 2). Importantly, decreased anchorage-independent growth in
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Fig. 1. Rab5 down-regulation by shRNA decreased cell proliferation and increased apoptosis. A549, B16-F10 and MDA-MB-231 cells were transduced with either control or Rab5-
specific ShRNA constructs (sequences #B5, #F8, #F10; Open Biosystems), as described in the Materials and methods. Stable puromycin-resistant cells were used for subsequent
analysis. (A) Whole cell lysates were prepared and proteins were analyzed by Western blotting for Rab5 and actin. Representative images are shown for non-treated cells (parental,
P) and cells treated with shRNA-control (Ctrl) or shRNA-Rab5 (Rab5). Residual Rab5 levels were quantified by scanning densitometry and normalized to actin (numerical data below
panel). Residual Rab5 levels in A549 (0.09 + 0.05), B16-F10 (0.44 + 0.06) and MDA-MB-231 (0.30 + 0.05) were calculated from three independent measurements (mean + s.e.m.). (B)
Cell proliferation was measured by the MTS® assay, as indicated in the Materials and methods. Cells were allowed to grow for 24, 48 and 72 h, and optical density (0.D.) at 490 nm
was recorded. Data represent the average from three independent experiments (mean + s.e.m.). *p < 0.05; **p = 0.06. (C) Cells were grown for 24 h in culture medium supple-
mented with 0, 2 and 10% fetal bovine serum (FBS), harvested and incubated with propidium iodide. Apoptosis was measured by flow cytometry, as previously reported [26] (for
details, see Materials and methods). Plotted data were calculated from three independent measurements (mean + s.e.m.). *p < 0.05.

shRNA-Rab5 cells was also noted at different periods of evaluation expression has been associated with poor patient prognosis [12]. In
in soft agar (data not shown). addition to its classical role in intracellular trafficking, Rab5 is

In order to validate these findings in vivo, we used an isogenic necessary for sustaining tumor cell migration and invasion, as
mouse model for tumor formation using B16-F10 cells. Here, B16- shown by both in vitro and in vivo approaches [8—10,12,16—18]

F10 cells were injected subcutaneously into C57BL/B6 mice and (reviewed in Ref. [19]). However, the precise role of Rab5 in fea-
the tumor-forming ability of cells treated with shRNA-Control and tures otherwise commonly associated with early stages of malig-
shRNA-Rab5 was evaluated. In agreement with data shown in nant transformation has not been addressed. In this study, we show
Figs. 1 and 2, down-regulation of endogenous Rab5 in B16-F10 cells that Rab5 expression is required for sustaining tumor cell viability
led to decreased tumor formation, as shown by comparing shRNA- and that Rab5 promotes anchorage-independent growth in A549
Rab5 versus shRNA-Control cells (Fig. 3A). Moreover, treatment lung carcinoma and B16-F10 melanoma cells. In addition, we found
with shRNA-Rab5, but not shRNA-Control substantially increased that Rab5 expression is required for efficient tumor formation
mouse survival (Fig. 3B). Taken together, these results suggest that in vivo, further indicating that Rab5 is necessary to sustain char-

the expression of Rab5 is required for different characteristics acteristics of malignant transformation. These data are in agree-
associated with cell transformation in lung carcinoma and mela- ment with earlier studies showing that expression of a GAP-
noma, but not breast cancer cells. deficient form of p85a — the regulatory subunit of PI3K — leads

to transformation of fibroblasts, as shown by anchorage indepen-
4. Discussion dence and tumorigenicity in vivo [20]. Given that p85a. is a GAP for

Rab4 and Rab5 [21], expression of a GAP-deficient p85¢ mutant

Evidence obtained during the last decade has shown that Rab5 leads to increased cell proliferation and signaling by growth factors
is up-regulated in different tumor samples [9,11—-15] and its [20,22]. However, these studies did not address the precise role of



P. Silva et al. / Biochemical and Biophysical Research Communications 464 (2015) 642—646 645
A A549 B B16-F10 C  MDA-MB-231
! e =! ks tg h
5 SEs : t .
< < B » <
=z =z 4 » =
z 5 st :
S o' 3
) m"ﬂ@’ Y o [} o
[T} 3 Ty} * Ty} -
Qo Q g o
© © o
& @ 2 &
< < 1 < -
ZE & o %) .
n:" & &
i s c c
wg .l 7] # 7]
g 1.251 g 1.25- g 2.00 ~
ns

~ 1.00 - ~ 1.00- ~
5 5 51901
T 0.757 o T 0.75- £
S S € 1.00
O 0.50 1 © 0.50- T el
> > >
5 0251 5 0.25] § 0.50;
3 3 3

0 R T 1 O' T 1 0 h T 1
shRNA Ctrl Rab5 shRNA Cirl Rab5 shRNA Cirl Rab5

Fig. 2. Targeting of Rab5 decreased anchorage-independent growth. A549, B16-F10 and MDA-MB-231 cells were transduced with either control or Rab5-specific ShRNA constructs
(sequences #B5, #F8, #F10; Open Biosystems), as described in the Materials and methods. Stable puromycin-resistant cells were used for subsequent analysis. (A) A549, (B) B16-F10
and (C) MDA-MB-231 cells (1.5 x 10% cells/well) were allowed to grow in soft agar for 10, 5 and 6 days, respectively, as described in the Materials and methods. Plates were
photographed and the number of colonies recorded in five random fields was determined. Colony forming efficiency was defined as the number of colonies per total number of cells
per field. Upper panels, representative images from three independent experiments. Lower graphs represent the average from three independent experiments (mean + s.e.m).

*p < 0.05; **<p < 0.01; ns = no significant.

either Rab4 or Rab5 in maintenance of cell transformation associ-
ated characteristics, and this is particularly relevant, because both
GTPases are targets of p85a. Here, we provide evidence indicating
that Rab5 is required to maintain tumor cell viability, anchorage-
independent growth and tumorigenicity in vivo. Whether this
phenomenon applies to Rab4 remains to be determined, although
recent evidence suggests that both Rab proteins may play similar
roles during cancer progression [12].

Rab5 absence reduced tumor cell viability and anchorage in-
dependent growth in A549 and B16-F10, but not in MDA-MB-231
cells. One may suspect that these discrepancies are due to the
cellular context. In this respect, early endocytic Rabs are known to
be functionally redundant to some extent in endosome trafficking
[23]. For instance, the early endosome protein Rab21 is required
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during cytokinesis and cell proliferation [24,25] and loss of Rab21
function was reported to promote malignant transformation [24].
Thus, Rab5 and Rab21 may converge functionally in MDA-MB-231
cells. This is particularly intriguing given the demonstrated
participation of Rab5 in other characteristics associated with tu-
mor progression, including cell migration and invasion not only in
the cell models described here (A549, MDA-MB-231, B16-F10), but
also other cancer cell lines, including HT-29 colon cancer and
neuroblastoma cells [8,10,16]. Understanding precisely the
mechanisms underlying these differences requires further
investigation.

In summary, our data identify Rab5, a central trafficking protein,
as an important factor in maintenance of specific cell traits asso-
ciated with the transformed state of some, but not all cancer cells.
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Fig. 3. Down-regulation of Rab5 in B16-F10 cells decreases tumorigenicity. (A) B16-F10 cells were transduced with either control or a Rab5-specific sShRNA construct (sequence #F8;
Open Biosystems). Stable puromycin-resistant cells (3 x 10°) were injected subcutaneously into the one flank of C57BL/6 mice, as described in the materials and methods. Tumor
volume was monitored between days 1 and 23. Results shown were averaged from data obtained with 5 mice (mean + s.e.m). *p < 0.05. (B) Animal survival is plotted as a function

of time (mean + s.e.m). *p < 0.05, compared to sh-Ctrl.
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