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Resumen 
PLANIFICACIÓN ÓPTIMA DE GENERACIÓN ELÉCTRICA CONSIDERANDO 

POLÍTICAS DE ENERGÍAS RENOVABLES 

 

Los sistemas de electricidad en el mundo se enfrentan a retos de proporciones sin precedentes. En 

respuesta a la crisis del cambio climático, los gobiernos de algunos países desarrollados ya están 

comprometidos con invertir en tecnologías de generación renovable. En este contexto, se 

argumenta que tal compromiso con las energías renovables podría causar un aumento en el costo 

de generación. Sin embargo, este argumento no toma en cuenta los beneficios adicionales 

asociados a las energías renovables en términos de otras medidas de rendimiento económico, por 

ejemplo, el riesgo. En este trabajo se propone extender un modelo de optimización (basado en la 

investigación anterior de Bernales, Moreno, Rudnick e Inzunza, 2014) que determina portafolios 

de tecnologías de generación, incluyendo las renovables, minimizando el costo medio de 

inversión y operación, pero al mismo tiempo, limitando la exposición al riesgo asociado a los 

precios volátiles del combustible y escenarios hidrológicos de incertidumbre. 

 

El modelo es implementado para el Sistema Interconectado Central de Chile (SIC). A partir del 

análisis aplicado al caso chileno, se evidenció que la generación renovable puede cubrir los 

riesgos asociados a las variaciones de precios de combustibles y condiciones climáticas. Cuando 

el objetivo es la minimización de riesgo, se alcanza un 31,8% de generación renovable de manera 

económicamente óptima, sin la necesidad de aplicar una ley que imponga el cumplimiento de la 

meta de generación renovable de un 20% para el año 2025. Este resultado es importante porque 

indica que una alta penetración de tecnologías renovables puede ser justificada económicamente 

desde la perspectiva de reducción de riesgo. En caso opuesto, cuando el objetivo es 

exclusivamente la minimización de costos (i.e. planificador neutro al riesgo), la cuota de 

generación renovable respecto a la electricidad total producida es menor, alcanzando un 18.9%. 

 

Para incentivar el desarrollo de fuentes renovables también se puede aplicar un impuesto a las 

emisiones de CO2. Por esta razón se incluyó en los costos de operación una penalización a las 

emisiones y se realizó un análisis de sensibilidad con diferentes niveles de impuestos para 

analizar el efecto sobre la composición de los portafolios óptimos. Se demostró que un impuesto 

de US$10 por cada tonelada de CO2 emitida sería suficiente para inducir un 20% de generación 

renovable para todos los portafolios, independiente del nivel de riesgo (y bajo los supuestos de 

costos de este trabajo). 

 

Los portafolios obtenidos al aplicar un impuesto al CO2 difieren de los obtenidos al imponer un 

20% de generación renovable como cota mínima (i.e. implementado como una restricción en el 

problema de optimización). Por ejemplo, en relación a la tecnología de concentración solar, su 

instalación se facilita al penalizar las emisiones de CO2. Finalmente, se concluye que bajo una 

planificación óptima no hay una fuente renovable ideal, ya que se complementan entre ellas 

formando un portafolio óptimo. La distribución óptima depende de los costos de generación, 

cobertura de riesgos y si las metas en base a políticas energéticas se alcanzan por leyes 

gubernamentales o mediante incentivos económicos, tales como los impuestos al carbono. 
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Summary 
OPTIMAL ELECTRICITY GENERATION PLANNING UNDER RENEWABLE 

POLICY TARGETS 

 

Electricity systems worldwide face challenges of unprecedented proportions. In response to the 

global climate change crisis, governments of a number of developed countries are already 

committed to the support of renewable sources of energy. In this context, it is argued that such 

commitment to renewables could cause a cost increase in generation. However, this argument 

does not take in account further benefits associated with renewables in terms of other economic 

performance measures, for example, risk. In this work we propose to extend an optimization 

model (based on a previous research; Bernales, Moreno, Rudnick and Inzunza, 2014) that 

determines portfolios of generation technologies, including renewables, by minimizing the mean 

cost of investment and operation while constraining risk exposure through traditional risk 

management measures.  

 

We implement the model for the Chilean Central Interconnected System (CIS) to present a 

potential analyses that can be generated by using our new approach. We find evidence that 

renewable generation is a valuable hedging tool against risks associated with volatile fuel prices 

and uncertain hydrological scenarios. We can reach 'economically optimal' generation planning 

with 31.8% of non-conventional renewable technologies, without any law to reach the Chilean 

renewable policy target of 20% by 2025, if the objective function is associated with risk decline. 

This is an important result, because high levels of renewables can be economically justified from 

the perspective of  system risk reduction. In counterpart, when the main objective is exclusively  

the minimization of costs of generation (i.e. risk-neutral planning), the percentage of the total 

electricity production attributable to non-conventional renewables is less, reaching a 18.9% and 

falling short of the Chilean renewable policy target by 2025.  

 

Since renewable policy targets can be reached by applying economic incentives such as a carbon 

tax, we include a carbon tax in the operational costs of fossil-fuels. We perform a sensitivity 

analysis with different levels of carbon tax to study the effects on the composition of portfolios. 

We show that a level of carbon tax of US$10 per ton of CO2 could induce 20% of non-

conventional renewable generation for all planning portfolios, independent of the level of risk 

(under the cost assumptions used in the model). 

 

Interestingly, the portfolios obtained with a carbon tax are different to the ones obtained by 

imposing a 20% lower-bound level of non-conventional renewable generation (i.e. included as a 

constraint in the optimization model). For example, we show that concentrating solar power 

(CSP) is installed with a carbon tax, which does not happen if the tax is not imposed. 

  

We conclude that there is not an optimal single-renewable technology in optimal planning. 

Optimal allocations depend on generation costs, renewable hedge features (regarding fossil-fuel 

price volatility, hydrological uncertainty and changes in demand), and whether policy targets are 

reached by strong governmental laws or by economic incentives such as carbon taxes. 
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1. Introduction 

Energy production is critical for the evolution and progress of modern economies. Insufficient 

electricity generation can (directly and/or indirectly) affect countries in terms of industrial 

production, consumption, telecommunication, exchanges of goods, financial systems, health 

services and security structures, to name but a few examples. In fact,  inadequate planning for 

electricity generation may limit economic growth and human development. However, many 

forms of electricity production ‒in particular, electricity generation based on fossil-fuels‒ can 

also contribute to serious environmental problems such as climate change, rising sea levels, 

pollution and acid rain. Thus, a number of countries are already committed to the support of 

renewables and other low carbon-emission generation technologies. For instance, the Renewables 

2014 Global Status Report, from REN 21, shows that by early 2014, at least 144 countries had 

renewable policy targets and 138 countries had renewable energy support policies in place.
1
 

However, renewable energy production  is not without its detractors; for example ExxonMobil 

(in its 2012 Outlook for Energy to 2040) said, “advances in technology will be necessary to make 

[renewable] fuels more practical and economic … geothermal and solar will remain relatively 

expensive”. As such,  there is currently a debate about renewable electricity production, with its 

detractors saying 'renewable energy is too expensive', and its supporters in favor of 

'environmental benefits'. Nevertheless, this is still not the complete picture of the problem. On the 

one hand, the use of different technologies for electricity generation can also be analyzed from a 

portfolio perspective, in which costs are not only taken into account, but also risks (see, e.g., 

Awerbuch, 2006; Jansen et al., 2006; and Delarue et al., 2011). Hence, renewable generation may 

generate benefits in terms of diversification, which may reduce potential risks regarding future 

fluctuations in fossil-fuel prices and other sources of uncertainty. On the other hand, it is 

important to consider the security of electricity supply, since the system must be capable of 

absorbing changes from the intermittent electricity production of renewable technologies (see, 

e.g., De Jonghe et al. 2010; and Pérez-Arriaga and Battle, 2012; and Inzunza et al. 2014). 

 

The objective and contribution of this thesis is to extend an optimization model (Inzunza et al., 

2014) for optimal electricity generation planning, under renewable policy targets. The model is 

based on a portfolio analysis approach that incorporates different types of electricity generation 

technologies, which takes into account costs, risks and security supply. The model is solved by a 

two-stage stochastic linear programming setup, whereby we determine the optimum portfolio of 

generation technologies in a future power system. We optimize the vector of generation 

capacities in a first stage, and the operation of the proposed generation infrastructure in a second 

stage, which are coordinated by a Benders-based method. To quantify the level of risk of the 

generation portfolio, we use the Conditional Value-at-Risk (CVaR) for two main reasons: firstly 

it is a coherent measure of risk (see Artzner, 1999), and secondly, optimization problems with 

CVaR can be reduced to linear programming problems (see Rockafellar and Uryasev, 2002). We 

also consider operational issues related to maintaining system security levels through scheduling 

various types of reserves from generation and demand. The model can balance the optimal 

allocation planning of electricity generation, since the optimization is performed under a large 

number of stochastic scenarios given by unexpected fossil-fuel prices and/or hydrological 

conditions. Moreover, our two-stage stochastic programming approach can tackle problems of 

                                                 
1
 REN21 is an international non-profit association made up of members of international organizations (e.g., 

European commission, UNIDO and the World Bank) and governments (e.g., United Kingdom, Norway and Brazil). 
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large dimensions (country level electricity planning, and considering a supply hour by hour in a 

representative day of the year) given the use of the Benders' method. 

 

Currently, policy makers are starting to give more importance to potential environmental damage 

caused by electricity generation based on fossil-fuels. Thus, as mentioned above, several 

governments have imposed policy targets for generation of electricity from renewable sources. 

For instance, Europe’s target  is 20% of the total final energy generated from renewables. 

Renewable policy targets can be reached through different mechanisms such as regulations and 

standards by law (which impose strict minimum levels of renewable electricity generation), or by 

creating economic incentives ‒e.g. carbon tax, subsidies, and carbon tradable permissions for 

emission‒ to induce change in the technologies for electricity production (see, e.g., Stern, 2008; 

Harstad, 2012a,b; Marron and Toder, 2014). Despite the importance of the design of optimal 

mechanism to reach a specific renewable policy target (see, e.g., McLure, 2014; and Murray et al. 

2014; and Acemoglu, 2014; and Golosov, 2014), we focus on a different (but still important) 

objective. We want to understand the optimal allocations of technologies, given that there is a 

policy target of 𝑋% of renewable generation in a country. We would like to answer the following 

questions: What is the optimal distribution of renewable electricity generation in a country that 

has a policy target? What are the optimal allocations of traditional fossil-fuel generation to 

maintain the security of electricity supply? What are the levels of costs and risk exposure for 

different generation portfolios? These questions are fundamental to  optimal planning for future 

'clean' electricity production, and thus to sustaining the development of countries. However, 

surprisingly, there has been  limited effort in the economic literature in relation to the analysis of 

an optimal distribution of technologies for electricity production under renewable policy targets. 

The goal of our study is to fill this gap. 

 

We implement the model in a country level electricity generation system. The objective is to 

provide an example of potential planning analyses that can be generated by using our approach in 

different regions. We use the Chilean Central Interconnected System (CIS) to generate optimal 

generation planning for the year 2025. The Chilean government has a policy target by 2025 of 

20% of electric generation with non-conventional renewable technologies (which encompasses 

all renewable technologies, except large hydro reservoirs and run-of-river with installed capacity 

larger than 40 megawatts)
2
. The Chilean Ministry of Energy reported that the energy generated in 

the Central Interconnected System (CIS) in 2014 reached 4,493 GWh, of which just 8.6% came 

from non-conventional renewable generation. 

 

The implementation of our model in the Chilean generation system is useful in understanding the 

dynamics between the different generation technologies. We find evidence that renewable 

generation is a valuable hedging tool against risks associated with volatile fuel prices and 

uncertain hydrological scenarios. We can reach   'economically optimal' generation planning with 

31.8% of non-conventional renewable technologies, without any law to reach the Chilean 

renewable policy target of 20% by 2025, if the objective function is associated with risk decline. 

This is an important result, because high levels of renewables can be economically justified from 

the perspective of  system risk reduction. 

 

Nevertheless, the allocation of renewable technologies is not homogeneous for the 2025 Chilean 

generation planning. The distribution of renewable technologies depends on generation costs, but 

                                                 
2
 Chilean Non-Conventional Renewable Energy Law (Law 20.257). 
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also on renewable hedge features in relation to potential fossil-fuel price volatility, uncertain 

hydrological scenarios and changes in demand. This implementation exercise is useful in 

understanding that there is not an optimal, single technology to be used in efficient planning but a 

portfolio of them. For instance, we show that on a typical Chilean day, on average the highest 

demand requirement is around 1:00pm, which is exactly the time when photovoltaic generation 

has the maximum availability for electricity production; hence renewable technologies can  also 

be used to provide energy during peak demand conditions and thus potentially displace the need 

for further generation capacity. In addition, we show that hydro reservoir plants are reduced as 

we consider portfolios with low levels of risk due to the risk induced in uncertain hydrological 

scenarios. As the portfolios have lower risk, less hydro-electric capacity is installed and coal can 

become more attractive to some extent. Coal generation is attractive for maintaining the security 

supply due to intermittent non-conventional renewable generation. However, the increase in the 

level of coal electricity production reaches  a maximum, since coal generation is also risky in 

terms of fossil-fuel price volatility. Thus, technologies based on wind are triggered to reduce the 

levels of risk due to the increase in levels of coal (due to fossil-fuel price volatility), and to 

protect the system against uncertain hydrological scenarios (especially when portfolios of low 

risk are annualized). 

 

Following this, we perform an exercise in which we do not impose any constraint in relation to 

the Chilean renewable policy target of 20%. In this exercise, where the main objective is 

exclusively  the minimization of costs of generation, the percentage of the total electricity 

production attributable to non-conventional renewables is circa18.9%, falling short of the Chilean 

renewable policy target by 2025. Thus policy target laws or economic incentives are required to 

reach the 2025 goal when  cost reduction is the priority, rather than  risk diminution. We show 

that when the policy target is imposed, in general it is biomass generation that is the preferred 

technology to reach the renewable goal, because it is economically cheaper than the other 

renewables and it is more stable ‒i.e. biomass can  also be used to maintain the security supply. 

 

In the model, we include variables for optimal electricity planning associated with investment 

and operational costs, but also variables related to risk exposure and security supply due to 

several reasons. Historically, electricity generation planning has been designed through 

optimization models that minimize costs (see, e.g., Neuhoff et al. 2008; Steffen and Weber, 2013; 

and Eide et al., 2014). Pure costs analysis only reflects the first moment of a stochastic process; 

which does not consider the possibility of changes in the system variables (e.g., costs volatility 

and the possibility of diverse hydrological scenarios). Therefore,  adequate electricity generation 

planning should also consider potential risk exposure ‒the second moment of the distribution. In 

fact, if we break down  electricity production into  the different technologies used for generation, 

each technology can be seen as  part of a large portfolio with different assets. Hence, the use of 

multiple technologies, renewables and fossil-fuels with diverse characteristics and different 

underlying stochastic processes for their costs and generation capacity, can induce benefits of 

diversification and thus  reduce levels of risk exposure.
3
  

 

In  optimal planning for electricity generation, it is also important to take into account operational 

aspects in relation to the security supply of energy. For instance, Huang and Wu (2008), Gotham 

et al. (2009), and Vithayasrichareon and MacGill (2014) develop a cost-risk portfolio analysis for 

                                                 
3
 Portfolio analysis in the energy sector was introduced by Bar-Lev and Katz (1976) and recently by Awerbuch and 

Berger (2003), Awerbuch (2006), Jansen et al. (2006), Delarue et al. (2011) and Inzunza et al. (2014). 



 

 

4 

 

electricity generation planning, in which they incorporate operational constraints. In these 

studies, the objective is to include in the generation design the potential different levels of 

renewable generation across periods. Delarue et al. (2011) include additional operational 

constraints to allow an efficient absorption of the generation system in  cases of intermittent 

renewable outputs. In fact, currently, there is significant concern about the security of supply 

given the growth of renewable generation. In this context, De Jonghe et al. (2010), Pérez-Arriaga 

and Battle (2012) and Inzunza et al. (2014) suggest that additional flexibility measures have to be 

considered, such as higher volumes of generation reserves. Those contributions are incorporated 

in the model and presented in the Appendix 1 section. 

 

Finally, we present an example of policy exercise that policy makers might implement by using 

our approach. Since renewable policy targets can be reached by applying economic incentives 

such as a carbon tax, we include a carbon tax in the operational costs of fossil-fuels. We perform 

a sensitivity analysis with different levels of carbon tax to study the effects on the composition of 

portfolios. In this part we want to answer: What is optimal allocation for the different 

technologies when a carbon tax is imposed? What is the level of carbon tax that would induce 

20% of renewable generation in the following 10 years? How different are generation portfolios 

with and without a carbon tax in reaching a renewable policy target? 

 

In our implementation to the Chilean generation system, the non-conventional renewable policy 

target of 20% by 2025 is not reached, if we do not impose a policy target constraint and  pure cost 

reduction is the main objective of the planning. Thus, we perform an exercise in which we do not 

enforce a policy target of a minimum level in renewable generation, but we induce economic 

incentives in terms of different levels of carbon tax. We show that a level of carbon tax of US$10 

per ton of CO2 can induce 20% of non-conventional renewable generation for all planning 

portfolios (independent of the level of risk). A more expensive tax only increases operating costs, 

without any contribution to developing renewable energy capacity. Interestingly, the portfolios 

obtained with a carbon tax are different to the ones obtained by imposing a 20% lower-bound 

level of non-conventional renewable generation. For example, we show that concentrating solar 

power (CSP) is triggered with a carbon tax, which does not happen if this tax is not imposed. 

This is due to the fact that when there is a large carbon tax, fossil-fuel energies have to be 

replaced with other renewable technologies, which are relatively stable, in order to maintain the 

supply security of the system. We also perform a policy exercise to evaluate the effect of an 

unexpected carbon tax (e.g., due to a change in renewable policy in subsequent governments in a 

country concerned about global warming) which is imposed after planning and building the 

plants for the different technology allocations. We show that the portfolios more affected are the 

ones with a high level of coal generation, since coal technology has the highest CO2 emission 

factor.  

 

The scenario for the coming years in electricity generation presents major challenges. The world 

energy outlook 2014 report from the international energy agency (IAE), forecast an increase of 

almost 80% in electricity demand over the period 2012-2040. We think that this challenge is also 

an opportunity in the electricity sector to expand the matrix with clean energy. However,  optimal 

planning of the technology-type distribution of  renewable generation is fundamental. The rest of 

the thesis is organized as follows. Section 2 presents the model to determine optimum portfolios 

of electricity generation. Section 3 describes the input data such as simulated scenarios, costs 

associated with each technology and carbon costs. Section 4 presents the main results. 

Concluding remarks appear in section 5. 
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2. Model 

In this thesis the goal is to extend a cost-risk optimization model based on a previous research 

(Bernales, Moreno, Rudnick and Inzunza; 2014) which is focused on technical matters related to 

security of supply. Their main contribution is to add realism to the model in terms of the 

provision of various generation and demand based frequency control services (to manage the 

supply-demand balance on a real-time basis) such as: the use of demand side services (customers 

responding to a signal to change the amount of energy they consume from the power system at a 

particular time); inclusion of the preservation of system inertia levels (the amount of kinetic 

energy stored in all spinning turbines and rotors in the system) and spinning and standing 

reserves (i.e., an optimal reserves allocation of diverse technologies to give stability to the 

system). The model implementation (scenarios of uncertainty) and solution methodology 

(Benders decomposition algorithm) used in this thesis remain the same as in the previously cited 

research. 

 

This section contains the modifications and contributions made to the model developed by 

Inzunza et al., 2014. Subsection 2.1 shows the importance of adding more renewable 

technologies to be considered in portfolio. Subsection 2.2 describes the cost related to carbon 

emissions which was added to the objective function of the optimization problem and subsection 

2.3 presents a new constraint that impose a non-conventional renewable policy target. The 

equations of the model that were not modified are available in Appendix 1. 

 

2.1 Inclusion of renewable technologies 

The model developed by Andrés Inzunza and his associates determines optimal portfolios of 

generation technologies by minimizing the mean cost of investment and operation while 

constraining risk exposure through traditional risk management measures. In that research the 

portfolio is composed by 7 generation technologies, with wind and solar photovoltaic 

technologies as the only non conventional renewables
4
.  

 

The portfolio theory tells us that diversification is an effective way to reduce risk. Hence, if we 

incorporate to the model additional renewable generation, it may generate benefits in terms of 

diversification, which may protect the entire portfolio from future fluctuations in fossil-fuel 

prices and other sources of uncertainty. In this study, we consider that the portfolio can be 

diversified further with the inclusion of more non conventional renewable technologies such as 

biomass, geothermal, small hydro and concentrated solar power
5
.  

 

Extending the scope of the model will also add realism to the results because the future 

development of electricity in Chile does not consider wind and solar technologies as the only 

                                                 
4
 Non-conventional renewable technologies for the Chilean regulation consider all renewable technologies excluding 

large hydro reservoirs and run-of-river with installed capacity larger than 40 megawatts. Large hydropower plants 

(hydro-reservoirs and run-of-river) are considered as conventional renewable energy sources. This type of energy is 

the most used in Chile, with a participation of approximately 40% in the current energy matrix. 
5
 Concentrated Solar Power (CSP) uses tracking mirrors to reflect and concentrate sunlight onto a central point 

(receiver) to generate heat which is absorbed by a fluid (e.g., molten salt). The fluid can be stored in a thermal tank 

for later use. When electricity is required, water is piped into a steam generator where it encounters the high 

temperature fluid. The steam is used to drive a  steam turbine connected to an electrical power generator. 
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renewables (as it was done in Inzunza et al., 2014). Furthermore, the composition of the portfolio 

is now consistent with the projection of the future energy matrix made by the Chilean Ministry of 

Energy (see "Escenarios Energéticos- Chile 2030"). 

 

2.2 Carbon emission cost 

Currently, policy makers are giving more importance to potential environmental damages caused 

by electricity generation based on fossil fuels. Thus, several countries are promoting clean energy 

policies to encourage renewable energy. In this thesis we want to contribute with an example of 

policy exercise that policy makers might implement by using our approach, but, in order to create 

this example, it is necessary to add additional variables to the optimization problem. 

 

Investment in renewable technologies may be justified by taking account of environmental costs 

(e.g., emission costs that penalize production from fossil-fuel generation). Since renewable policy 

targets can be reached by applying economic incentives such as a carbon tax, a carbon tax is 

included among  the operational costs of fossil-fuels. This modification of the model allowed us 

to analyze the effect of different levels of a carbon tax (0, 10, 20, 30 and 40 U.S dollars per tones 

of 𝐶𝑂2𝑒 emmited)
 6

 in the optimal composition of portfolios. 

 

In the next paragraphs we will introduce the optimization model. This will lead to a better 

understanding of how the carbon emission cost was added to the objective function of the 

problem: 

 

Consider a future electricity generation system for the year 𝑌𝑌, which incorporates multiple 

technologies to produce electricity. A generation technology 𝑖 ∈ {1,2, … , 𝐼} can potentially 

generate electricity in each hour 𝑗 ∈ {1,2, … , 24} of a representative day of the year 𝑌𝑌, 

depending on the features of the technology (i.e., solar generation can only be obtained when 

there is sunlight). Suppose that there are set of potential future scenarios 𝑠 ∈ {1,2, … , 𝑆} that will 

describe the average day considered in this analysis. A scenario 𝑠 is characterized by a group of 

random variables ‒i.e., economic and climate conditions‒ where 𝑝𝑠 reflects its probability of 

occurrence. 

 

The installed capacity of generation in megawatts [MW] for the technology 𝑖 is denoted by 𝑐𝑖 ; 
while 𝑔𝑖,𝑗 ,𝑠 is the generation in megawatts per hour [MWh] for the technology 𝑖, the hour 𝑗 and in 

the state 𝑠 (both are decision variables). The cost of the system, 𝐶𝑠, facing the scenario 𝑠 is given 

by four components: the annualized investment costs, the operation and maintenance costs, the 

carbon tax and potential additional costs due to demand shifting. Cost due to demand shifting 

reflect additional resources required by a change in the demand between two consecutive hours 

(e.g., it is not possible to generate immediately more energy with wind generation when this 

technology is in full capacity; hence some energy has to be injected to the system for example 

                                                 
6
 It is important to emphasize that each energy source can be converted with different types of technology, which 

have different levels of performance, efficiency, and discharge more/less polluting emissions. Therefore, they should 

be treated with different emission factors. In this work we do not differentiate between technologies that convert the 

same energy source. The generation technologies were carefully chosen according to their usage in Chile and 

development potential over the next decade.  
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through fossil fuel generation reserves or battery storage). Hence, the cost for the generation 

system is:  

 

𝐶𝑠 =  𝐼𝑁𝑉𝑖 ⋅ 𝑐𝑖
𝑖 ∈ 𝐼

+   (𝑉𝑂𝑀𝑖,𝑠 + 𝐶𝑇𝑖) ⋅ 𝑔𝑖,𝑗 ,𝑠

𝑗  ∈ 𝐽𝑖 ∈ 𝐼

+  𝐷𝑗 ,𝑠
− ⋅ 𝑑𝑐− +

𝑗  ∈ 𝐽

 𝐷𝑗 ,𝑠
+ ⋅ 𝑑𝑐+

𝑗  ∈ 𝐽

 
 (1) 

 

where 𝐼𝑁𝑉𝑖  is the annuitized investment cost defined per each technology, which includes yearly 

fixed maintenance costs, 𝑉𝑂𝑀𝑖,𝑠 represents operation and maintenance costs per each technology 

and scenario, and 𝐶𝑇𝑖  is the cost related to carbon emissions per each technology. The cost of 

demand decrease (increase) due to demand shifting is 𝑑𝑐− (𝑑𝑐+), in which the amount of demand 

change is 𝐷𝑗 ,𝑠
−   (𝐷𝑗 ,𝑠

+ ).   

 

Regarding the carbon tax variable, 𝐶𝑇𝑖 , Table 1 presents the carbon dioxide equivalent emission 

factors that are assumed (measured as tones of 𝐶𝑂2𝑒 divided by generation in GWh).
7
 These 

factors are multiplied by the corresponding potential carbon tax [$/𝑇𝐶𝑂2𝑒] to get a proper 'tax-

cost' measure which can then be added to the VOM costs [$/MWh] in the model in equation (1). 

 

 
Table 1. Carbon dioxide equivalent emission factors.  

The table reports the carbon dioxide equivalent emission factors. “Carbon dioxide equivalent” is a term 

for describing different greenhouse gases in a common unit. For any quantity and type of greenhouse gas, 

CO2e signifies the amount of CO2 which would have the equivalent global warming impact. Emission 

factors are related to the technology used to generate electricity from each energy source indicated in the 

table. These technologies were carefully chosen according to their usage in Chile and development 

potential over the next decade. The factors shown in the Table are multiplied by the corresponding 

potential carbon tax [$/TCO2e], resulting in  extra operating costs which are added to the Variable 

Operation and Maintenance Costs. Data was taken from  research named "Energy Scenarios Chile 2030". 

 

In the model, we also include a cost of lost load, 𝑣𝑜𝑙𝑙, which is the social cost of non-supply 

electricity for a given demand, which is charged in each hour 𝑗 and for a given scenario 𝑠,  in 

which the demand is not fully covered. Thus the total cost of the system is: 

 

𝐶𝑠
𝑇𝑜𝑡𝑎𝑙 = 𝐶𝑠 + 𝑣𝑜𝑙𝑙 ⋅  𝐿𝐿𝑗 ,𝑠

𝑗  ∈ 𝐽

, (2) 

                                                 
7
 “Carbon dioxide equivalent” or “𝐶𝑂2𝑒” is a term for describing different greenhouse gases in a common unit.  For 

any quantity and type of greenhouse gas, 𝐶𝑂2𝑒 signifies the amount of 𝐶𝑂2  which would have the equivalent global 

warming impact (Brander, 2012). 

Energy Source Technology
CO2e Emission factors

[TCO2e/GWh]

Coal Pulverized Combustion 949

Oil Diesel fuel 779

LNG Combined Cycle Gas Turbine 436

Solar PV Photovoltaic 48

Geothermal Hydrothermal (steam turbine) 28

Biomass Integrated gasification combined cycle 24

Solar CSP Concentrated Solar Power 20

Wind Onshore wind turbine 11

Hydro Conventional (dams) 7

Run-of-river Run of the river 4

Small hydro Hydroelectric power < 40MW 4
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where 𝐿𝐿𝑗 ,𝑠 is the lost load.  

 

The risk exposure of the system is calculated using the conditional value-at-risk, 𝐶𝑉𝑎𝑅, in which 

bad events (i.e., high costs) could occur with a probability 𝛼. The optimal allocation of electricity 

generation from a cost-risk perspective is performed by the minimization of costs given a level of 

risk 𝐶𝑉𝑎𝑅∗ as: 

min
𝑐𝑖 ,𝑔𝑖,𝑗 ,𝑠 ,𝑅𝑖,𝑗 ,𝑠

𝐺𝑅
 𝑝𝑠 ⋅ 𝐶𝑠

𝑇𝑜𝑡𝑎𝑙

𝑠 ∈ 𝑆

 
(3) 

   s.t.  

1

1 − 𝛼
 𝐶𝑠

𝑇𝑜𝑡𝑎𝑙 𝑝𝑠𝑑𝑠

𝐶𝑠
𝑇𝑜𝑡𝑎𝑙 ≥𝑉𝑎𝑅𝛼

= 𝐶𝑉𝑎𝑅∗ 

(4) 

 

where 𝑅𝑖,𝑗 ,𝑠
𝐺𝑅   are reserves to keep the security of electricity supply. 

 

However, the constraint in equation (4) is not linear, which makes large dimension optimization 

problems difficult to track. Nevertheless, Rockafellar and Uryasev (2002) and Krokhmal et al. 

(2002) show that a CVaR constraint can be also written as a linear programming problem by 

adding a set of linear constraints. Thus, we can re-write equations (3)-(4) as: 

 

min
𝑐𝑖 ,𝑔𝑖,𝑗 ,𝑠 ,𝑧

 𝑝𝑠 ⋅ 𝐶𝑠
𝑇𝑜𝑡𝑎𝑙

𝑠 ∈ 𝑆

 
(5) 

  s.t.  

𝑧 +
1

1 − 𝛼
 𝑑𝑠 ⋅ 𝑝𝑠
𝑠 ∈ 𝑆

≤ 𝐶𝑉          

 

(6) 

 

𝐶𝑠
𝑇𝑜𝑡𝑎𝑙 − 𝑧 ≤ 𝑑𝑠         ∀ 𝑠 ∈ {1,2,… , 𝑆}   (7) 

   

where 𝑧 is an auxiliary variable that now is part of the optimization problem; while 𝑑𝑠 is other 

auxiliary variable that reflects right deviation of the cost with respect to 𝑧. The risk tolerance 

level in the CVaR is given by 𝐶𝑉, which represents the α-CVaR's upper bound of generation 

portfolio costs. 

 

2.3 Non-conventional renewable policy target 

Another contribution of this work is to analyze the optimal allocations of technologies, given that 

there is a policy target of 𝑋% of renewable generation in a country. In the case of Chile, the 

government has imposed a policy target
8
 by 2025 of 20% of electric generation with non-

conventional renewable technologies (which encompasses all renewable technologies, except 

large hydro reservoirs and run-of-river with installed capacity larger than 40 megawatts). To 

represent this requirement in the model, a new constraint should be added to the problem so as to 

ensure that on average there is enough renewable capacity installed to supply at least X% of total 

electricity generation. 

 

                                                 
8
 Chilean Non-Conventional Renewable Energy Law (Law 20.257). 
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Let impose Equation (8), where X is a renewable policy target, D is the total demand for energy 

in the targeted horizon, while the 𝐼𝑁𝐶𝑅  is a subset of the electricity generation technologies 

(𝐼𝑁𝐶𝑅 ⊆ 𝐼) called 'renewables'. 

 

 

𝑋 ≤ 100 ∙    𝑔𝑖,𝑗 ,𝑠

𝑗  ∈𝐽𝑖 ∈ 𝐼𝑁𝐶𝑅

  / 𝐷    

∀𝑠 ∈ 𝑆 (8) 

 

Equation (8) ensures that the percentage of renewable generation meets the goal of the renewable 

policy target.  
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3. Model Implementation 

We implement the model for the Chilean Central Interconnected System (CIS) to provide an 

example of potential analyses that can be generated by using our new approach in other regions. 

The objective of this implementation is to generate an optimal planning for  electricity generation 

under renewable policy targets. As mentioned above, the Chilean government has a target of 20% 

by 2025 of electricity generation through non-conventional renewable technologies. However, 

despite Chile’s favorable geographical and environmental conditions and potential to install more 

renewable energy plants, the Chilean Ministry of Energy reported in 2014 that only 8.6% of the 

electricity came from non-conventional renewable technologies. 

 

Currently, in Chilean CIS there is already an installed capacity of fossil-fuel (coal, oil and 

liquefied natural gas), conventional renewable (large hydro reservoirs and run-of-river) and non-

conventional renewable (wind, solar photovoltaic, and biomass) technologies. Nevertheless there 

are initiatives to build plants with new non-conventional renewable technologies such as 

geothermal, small hydro, and concentrated solar power (CSP). 

 

The model is solved for the 2015 Chilean Central Interconnected System planning by a two-stage 

stochastic linear programming setup, in which we determine the optimum portfolio of generation 

technologies of a future power system. We optimize the vector of generation capacities in a first 

stage, and the operation of the proposed generation infrastructure in a second stage, both of which 

are coordinated by a Benders-based method. The Benders’ Decomposition-based algorithm used 

for solving the large-scale model is described in Appendix 3. 

3.1 Fossil-fuel technologies 

Coal, oil and liquefied natural gas (LNG) are fossil-fuels. They were formed over millions of 

years by the action of heat from the Earth's core and pressure from rock and soil on the remains 

of dead plants and animals (i.e. fossils). Hence, fossil-fuels are non renewable. The most common 

method of generating electricity with fossil-fuels is by steam-electric power. Water is boiled by 

burning fossil-fuels and the steam is piped directly into a turbine, which generates rotary motion 

and drives an electrical generator. In hot gas power (gas turbine), turbines are moved directly by 

gases produced by the combustion of natural gas or oil. The additional heat generated from a gas 

turbine can be used to raise steam, in a combined cycle plant that improves overall efficiency.  

 

Fossil-fuel generation has benefits and drawbacks. On the one hand, they are in general (at 

present) cheaper than other non-conventional renewable options. In addition, they are very 

effective as reserves (headroom) to regulate  generation in  case of potential contingencies; thus 

they are fundamental to maintaining  security of supply. On the other hand, fossil-fuel generation 

also contributes to serious environmental problems such as climate change, rising sea levels, 

pollution and acid rain; and they have a financial risk associated to  exposure to the volatility of 

their prices.  

3.2 Renewable technologies 

Renewable technologies for electricity generation are the ones that come from resources that are 

naturally renewed in a human timescale, unlike fossil-fuels that need millions of years to be 

replenished. Renewable technologies can generate electricity through three main methods: kinetic 
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energy transformation (with steam), kinetic energy transformation (without steam) and without 

kinetic energy. For example, concentrating solar power, biomass and geothermal generate 

electricity by the use of steam, which induces a rotary motion that is transformed to electricity in 

a turbine, in a similar way to fossil-fuel generation. Wind generation and hydropower plants (by 

the use of reservoirs and run-of-river ) also transform kinetic energy to electricity through the use 

of turbines, but  kinetic energy is driven by  wind, and falling (or flowing) water. In terms of 

electricity generation without the transformation of kinetic energy to electric power, there is solar 

photovoltaic generation in which panels with solar cells convert the energy of light directly into 

electricity.  

 

Renewable generation also has advantages and disadvantages. In terms of advantages, renewable 

technologies present important environmental benefits given  their reduced carbon emissions. In 

addition, renewable generation can be used as a diversification tool for sources of uncertainty 

regarding  other technologies. For instance, Awerbuch (2006) shows how electricity-generating 

mixes can be beneficial in terms of diversification from additional renewable electricity 

production, since some generation systems are highly exposed to fossil-fuel price volatility.  

 

Moreover, renewable technologies can be used to hedge changes in demand (i.e. contribution to 

peak demand periods). For example, Figure 1 presents the average profile of the maximum 

availability of solar photovoltaic generation (left hand side), and the average electricity demand 

(right hand side) per hour in a representative day in 2025 for the Chilean generation system 

(demand profile was taken from the 2012 average hourly demand and scaled to meet the 

projections made by the regulator for the objective year). Figure 1 shows that the highest demand 

requirement is around 1:00pm, which is exactly the time when photovoltaic generation has 

maximum availability for electricity production. Therefore, diversification benefits can be 

generated from fossil-fuel prices but also from the interaction between different generation 

profiles and demands.  

 

 
Figure 1. Solar PV generation average profile and demand of electricity per hour in a day. 

The left hand side of the figure shows the average profile of the maximum availability of solar 

photovoltaic generation per hour in a day. This profile was obtained from data provided by the Chilean 

Ministry of Energy and University of Chile. The right hand side of the figure shows the average electricity 

demand per hour in a representative day in 2025 for the Chilean generation system. The demand profile 

used was taken from the 2012 average hourly demand (reported by the National Commission of Energy 

which is Associated Chilean Ministry of Energy) and scaled to meet the projections made by the regulator 

for the objective year (2025). 
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3.3 Scenarios of uncertainty 

As it was done in the small scale study of Inzunza et al., 2014, we generate 1000 full year-

scenarios to reflect potential conditions of a representative day in the year 2025, which represent 

24,000 hours of potential generation conditions that we consider for optimal electricity generation 

planning. We built diverse hydrological scenarios for the Chilean generation system, which 

reflect the historical situation observed over the last 50 years. These 50 hydrological series were 

extracted from the National Commission of Energy which is associated to the Chilean Ministry of 

Energy. The data consists of a series of monthly averages of  water inflows for each run-of-river 

generator, and weekly averages for each generator with a reservoir, between 1960 to March 2010. 

 

Run-of-river inflow data was normalized and averaged using the inflow-to-power rate of each 

unit and its nominal capacity. In this way, a representative weekly capacity factor profile was 

generated for each of the 50 series. These profiles were modulated using 2012’s run-of-river 

generation in order to obtain 50 hourly capacity factor profiles. Throughout this procedure, the 

hour-to-hour variability of this resource was also included in the model. Reservoir generation 

inflow profiles on the other hand, were summed up in order to obtain the weekly total water 

inflow to the system’s basins. Weekly averages of total inflow were assumed to be constant 

throughout the hours of each week.
 9

 

 

We classify the 50 years of historical hydrological conditions in 10 groups, which represent 

potential hydrological scenarios. The groups are built according to annual averages of inflows. 

Table 2 shows summary statistics of the ten scenarios in terms of probabilities of occurrence, 

average capacity factor of run-of-river profiles, and the average capacity factor equivalent to the 

amount of water inflow in the reservoir profiles. 

 

 
 
Table 2. Hydrological scenarios. 

The table presents summary statistics of ten hydrological scenarios for the Chilean generation system. 

These scenarios have different probabilities of occurrence and are characterized by hourly capacity factor 

profiles, generated from historical data observed over a period of 50 years, from 1960 to 2010. The 

"Capacity factor" refers to the ratio of the actual output of a power plant over a period of time, to its 

potential output if it had operated at full nameplate capacity over the same period of time. The electricity 

generation planning is modeled for a representative day of a year on an hour by hour basis, thus 24 

capacity factors are averaged for each hydrological scenario and reported in the table. Two hydro 

resources are considered in the model: reservoir and run of river. Capacity factors vary greatly depending 

on the hydrological condition, thus a dry (wet) year is associated to low (high) capacity factors. The 

hydrological series used to build the scenarios are extracted from the National Commission of Energy 

which is part of the Chilean Ministry of Energy. 

 

We also generate fossil-fuel price scenarios through Monte Carlo simulations using the Cholesky 

decomposition of the correlation matrix, in order to capture the dynamics of price correlations. 

We take historical international fossil-fuel prices on an annual basis between 1984 and 2014 to 

                                                 
9
 Water inflow series are extracted from National Commission of Energy, and due to the extension of this data, they 

are available from the authors upon request. 

# of Scenario 1 2 3 4 5 6 7 8 9 10
Probability [p.u.] 0,06 0,06 0,13 0,17 0,13 0,11 0,17 0,08 0,04 0,06
Reservoir average capacity factor 16% 24% 30% 34% 41% 46% 52% 57% 63% 71%
Run-of-river average capacity factor 42% 49% 51% 47% 51% 53% 55% 58% 54% 59%
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obtain the variance-covariance matrix of price returns. Fossil-fuel prices were obtained from the 

Energy Information Administration which is part of the U.S. Department of Energy. These prices 

were converted to 2014 US dollars using the CPI of the United State. We use international fossil-

fuel prices rather than Chilean values, since the price of commodities in electricity generation are 

traded internationally. Thus, we assume that prices follow a geometric Brownian motion 

 

𝑃𝑡+Δ𝑡
𝑖 = 𝑃𝑖 𝑡 ⋅ 𝑒

(𝜇 𝑖−
1

2
⋅𝜎𝑖

2)⋅Δ𝑡+𝜎𝑖 ⋅𝑧𝑡+Δ𝑡
𝑖 ∙ Δ𝑡

 
(10) 

 

where we generate correlated random sequences for each fossil-fuel price by the Cholesky 

decomposition of the correlation matrix. If the Cholesky decomposition of the correlation matrix 

is Υ, then the random values for [ 𝑧𝑡+Δ𝑡
1   𝑧𝑡+Δ𝑡

2 … 𝑧𝑡+Δ𝑡
𝐼 ]

T 
are equal to Υ ∙[𝜀1  𝜀2 … 𝜀𝐼]T

, where 𝜀𝑖  
are random numbers that distribute 𝑁(0,1). Table 3 presents summary statistics of fossil-fuel 

prices and returns.  

 

 
 

Table 3. Statistical data of fuel price returns time series.  

The table contains statistical data used to elaborate 100 Monte-Carlo fossil-fuel scenarios. It is assumed 

that prices follows a geometric Brownian motion, thus statistical parameters of fuel price returns time 

series such as mean returns, standard deviation, expected price; and correlation coefficients are needed to 

build the price scenarios for Coal, Liquefied natural gas and Oil (fossil-fuels considered in the model). 

The correlated random sequences for each fossil-fuel prices are generated by Cholesky decomposition of 

the correlation matrix. Time series of historical international fossil-fuel prices are obtained from the 

Energy Information Administration of the US. The period covered is from 1984 to 2014. 

 

The amount of potential energy that can be produced in Chile is on average constant per year for 

wind, solar and geothermal generation, which is not the case for hydrological scenarios (e.g., we 

could have dry years). Similarly, the expected level of annual demand does not have a high 

variability. Therefore, we focus on uncertainty for hydro and fossil fuel prices that can significant 

change from one year to another. Additionally, we consider a small case study on hour by hour 

basis where generation and demand profiles present certain level of variability. Thus, we 

analyzed those profiles and chose carefully a representative day of the year in order to work with 

a sample that may not affect the generation planning. 

 

Figure 2 shows the wind profile and demand profile per hour in the first week of 2012. We can 

see in Figure 2 that hour by hour profiles can provide an important source of variability, which 

can interact with both hydrological scenarios and fossil-fuel price uncertainty. The profiles in 

2012 for wind, solar, geothermal and electricity demand were obtained from data provided by the 

Coal LNG Oil

Mean Returns 2% 2% 6%

Standard Deviation Returns 12% 14% 21%

Expected Price (2025) [$/MWh] 43 107 204

Coal 1 - -

LNG 0,4 1 -

Oil 0,2 0,7 1

Correlation Coefficients
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Chilean Ministry of Energy and University of Chile. In the case of the demand profiles, their 

values are scaled up in order to meet 2025 projections undertaken by the Chilean Ministry of 

Energy.
10

  

 

 
Figure 2. Wind profile and Demand profile per hour in the first week of 2012.  

The left hand side of the figure shows the profile of the maximum availability of wind generation per hour 

in the first week of 2012 (24*7=168 hours). This profile was obtained from data provided by the Chilean 

Ministry of Energy and University of Chile. The right hand side of the figure shows the electricity demand 

per hour also in the first week of 2012 reported by the National Commission of Energy, but their values 

are scaled up in order to meet 2025 projections undertaken by the Chilean Ministry of Energy. 

 

3.4 Costs and current installed capacities for different generation technologies.  

The costs associated to the different technologies were taken from projections presented in the 

report called "Escenarios Energéticos- Chile 2030" which was developed by a group of Chilean 

institutions associated with the electricity generation sector, in which academics participate, 

where the Chilean Ministry of Energy and the Chilean Ministry of Environmental Affairs are part 

of the advisory committee of this report. Current installed capacities were taken from an 

Electricity Bulletin dated December 2014 from the Chilean Association of Electricity Generators.  

Maximum capacities (higher bounds) that could be installed by 2025 were carefully chosen for 

each technology depending on the availability of energy sources, and the number of projects 

approved or being studied by the Chilean Ministry of Energy that could be ready for operations 

before 2025.
11

 Table 4 presents the parameters assumed in this study in terms of costs, current 

installed capacities, and maximum capacities. Additional parameters used in the model 

implementation are reported in Appendix 4. 

 

                                                 
10

 In the case of fossil-fuel generation (coal, oil and liquefied natural gas) and biomass, we do not consider any 

profile since these  technologies are used as required since they only consume the respective combustible. 
11

 Biomass technology used in this study is biogas which is used in an integrated gasification combined cycle with a 

load factor of 85%.  
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a 
Does not include fuel costs. 

 

Table 4. Generation Input Data.  

The table presents the annuitized investment cost, variable maintenance cost, lifespan, current installed 

capacity and maximum capacity (higher bound) for each generation technology considered in the model. 

Annuitized investment cost are calculated using a 10% discount rate over a time period equal to the 

lifespan. Costs parameters and lifespan shown in this table are taken from  research named "Energy 

Scenarios Chile 2030". The cost parameters are adjusted to the Chilean reality, thus they may differ with 

international values. Current installed capacities are taken from an Electricity Bulletin emitted by the 

Chilean Association of Electric Generators and are updated to December 2014. Higher bounds are 

carefully chosen for each technology depending on energy sources’ availability and the number of projects 

that could be ready for operation before 2025. 
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4. Results 

4.1 Renewable energy planning with policy targets 

In this subsection, we present the results of our model implementation in relation to the effects of 

renewable policy target constraints. We consider 𝑋 = 20 in equation (8) to reach the Chilean 

policy goal. However, in the Chilean case 'renewables' represent a subset of non-conventional 

renewables as explained before. Hence, in the implementation for the Chilean generation 

planning by 2025, the policy target constraint in equation (8) only considers generation from non-

conventional renewables. 

 

We present the results of different optimal portfolios which have diverse levels of risk in terms of 

the 𝐶𝑉𝑎𝑅. Table 5 reports the planning investment decisions (installed capacity) and the 

corresponding distribution of technologies for six different portfolios (named by letters from A to 

F). Risk increases from left to right. The last rows show the percentage accounted for by non-

conventional renewable energy sources in terms of installed capacity and expected average 

generation. Figure 3 shows the cost-risk efficient frontier of all portfolios in Table 5.   

 

 
  

Table 5. Portfolios that meet the Renewable energy policy target.  

The table reports the output result of the Chilean electricity generation planning by 2025, under a policy 

target of 20% of non conventional renewables and without carbon tax. The table shows the optimal 

allocation (installed capacity in megawatts) of six different portfolios, named by letters from A to F, 

constrained by different levels of risk in terms of the CVaR (measured in millions of US dollars). Risk 

increases from left to right and it is associated with the fossil-fuel price volatility and uncertain 

hydrological scenarios. In total, 1000 full year-scenarios are generated to reflect potential conditions of an 

average day in year 2025. The table also reports the corresponding share of total installed capacity for 

every technology inside a portfolio. Expected cost of the portfolios corresponds to the sum of annuitized 

investment cost and operating cost related to the annual maintenance of the system (measured in millions 

of US dollars).  Percentage of renewable energy installed and renewable generation indicated for each 

portfolio in the last rows of the table do not consider hydro and run of river technologies since in Chile 

they are considered as conventional sources of renewable energy. The table is associated with Figure 3. 

Expected Cost [MM $]

CVaR [MM $]

MW % MW % MW % MW % MW % MW %

Coal 4996 18,7% 4975 21,3% 4968 21,4% 4601 19,6% 4142 17,0% 3872 15,6%

Oil 2303 8,6% 2303 9,9% 2303 9,9% 2303 9,8% 2303 9,5% 2303 9,3%

Hydro 4053 15,2% 4053 17,4% 4253 18,3% 4932 21,0% 6221 25,6% 7000 28,2%

Wind 4000 15,0% 634 2,7% 634 2,7% 634 2,7% 634 2,6% 634 2,6%

Solar PV 2600 9,7% 2600 11,1% 2600 11,2% 2600 11,1% 2600 10,7% 2600 10,5%

LNG 2777 10,4% 2777 11,9% 2777 12,0% 2777 11,8% 2777 11,4% 2777 11,2%

Run-of-river 4000 15,0% 4000 17,1% 4000 17,3% 4000 17,0% 4000 16,4% 4000 16,1%

Biomass 1000 3,7% 1000 4,3% 648 2,8% 648 2,8% 648 2,7% 648 2,6%

Geothermal 200 0,7% 200 0,9% 200 0,9% 200 0,9% 200 0,8% 200 0,8%

Small hydro 800 3,0% 800 3,4% 800 3,5% 800 3,4% 800 3,3% 800 3,2%

Solar CSP 0 0,0% 0 0,0% 0 0,0% 0 0,0% 0 0,0% 0 0,0%

20,0%
% of Renewable 

Generation
31,8% 22,8% 20,0% 20,0% 20,0%

Installed Capacity

MIN CVAR MIN COST

% of Renewable Energy 
Installed

32,2% 22,4% 21,1% 20,8% 20,1% 19,7%

9042

6777 6512 6479 6460 6438 6425

8165 8320 8480 8640 8880

Opt. portf. with a policy target of 20% of non-conventional renewables and without carbon tax (0 USD/ton CO2)

A B C D E F
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Figure 3. Efficient frontier formed by portfolios with a policy target of 20% of non conventional 

renewables but without considering carbon tax.  

The figure reports the efficient frontier composed by portfolios of Table 5. While Minimizing Costs, the 

model was constrained by different CVaR limits to draw the Pareto boundary between minimum expected 

cost and minimum risk solutions. The axis values are displayed in millions of US dollars. 

 

Table 5 shows that the policy target constraint in equation (8) is active for portfolios C-F, since 

the percentage of non-conventional renewable generation reaches exactly  20%. However, the 

distribution of the different technologies is not homogeneous, since portfolios C-F also have 

different levels of risk exposure. This analysis is useful in understanding that there is not an 

optimal, single predictable technology when costs, risks and security supply are simultaneously 

added to the planning framework under renewable policy targets. 

 

It is important to notice that the values of the installed capacity of renewable energy differ from 

the values of expected renewable generation (In Table 5 and in the following analyses, for some 

portfolios the former is higher than the later and vice versa); although the answer behind these 

differences is intuitive. In the model, we assumed initial capacities for all technologies, according 

to the current energy matrix in Chile. However, this assumption does not ensure that the model 

will decide to generate with that installed capacity. The most extreme case is the oil electricity 

generation (with 2303 MW of installed capacity). The model does not trigger additional capacity 

for this technology; furthermore, this technology is set nearly to zero for generation in every hour 

of the represented day, because it is not economically convenient ‒i.e. oil has the highest 

operating costs of all technologies. In addition, some renewable technologies cannot generate 

electricity since they depend on weather conditions or time-periods during the day (e.g., solar 

photovoltaic generation can produce energy in the hours of the day with sunlight). Both effects 

can produce differences between the installed capacity and expected generation of non-

conventional renewable generation in the different portfolios. These considerations can also 

induce differences within  installed capacities. For example, since  oil electricity generation does 

not expand from its current installed capacity, it always has 2303 MW of installed capacity, 

however the percentage of installed capacity is different across portfolios (portfolio E and 

portfolio F have a level of 9.5% and 9.3%, respectively).  

6400

6450

6500

6550

6600

6650

6700

6750

6800

8100 8200 8300 8400 8500 8600 8700 8800 8900 9000 9100

E
x

p
e

ct
e

d
 C

o
st

 [
M

M
 U

S
D

]

CVAR [MM USD]

Opt. portf. with a policy target of 20% of non-conventional renewables 
and without carbon tax (0 USD/ton CO2)



 

 

18 

 

To explain the above idea clearly, let us take a portfolio with two different technologies, each one 

with 1 MW of installed capacity, meaning a fifty-fifty share. If the demand is 2 MWh, then each 

technology will generate 1 MWh to satisfy the demand and they will have the same share of 

installed capacity and generation (both 50%). Now, if the demand is only 1 MWh, then it is not 

clear which technology will be preferred to generate. If one technology is much convenient than 

the other, then it will generate exactly 1 MWh to satisfy the demand by its own. In this case the 

share of installed capacity remains 50%-50%, but the share of generation will be 100% for one 

technology and 0% for the other. This example illustrates the difference between % of installed 

capacity and generation in portfolios. 

 

Table 5 presents evidence that as the level of risk is reduced, the use of renewables increases. In 

fact, the policy target constraint in equation (8) is not active in the portfolio with the lowest level 

of risk (portfolio A). In portfolio A it is 'economically optimal' to have large levels of capacity 

installed (32.2%) and generation (31.8%) of non-conventional renewables, which can be reached 

'without' any policy target. This is a key point, because in a situation in which risk reductions of 

the generation system are more important than cost cuts, a significant level of non-conventional 

renewable technology can be economically justified under a portfolio analysis. The higher 

penetration of renewables reduce the CVaR value by US$877 millions from portfolio F to 

portfolio A, but the increase in renewable generation results in a more expensive portfolio in 

terms of expected cost (portfolio A is US$351 millions more expensive than portfolio F). 

 

Table 5 reports that hydro reservoir generation is reduced as portfolios with lower risks are 

considered. Although hydro-electric plants are the most economic investment option and 

therefore preferred in the minimum cost solution, it drives risk exposure due to uncertainty in 

hydro production. In fact, in a dry year hydro-electric plants can produce only at 20% of their 

maximum load factor, while in a humid year production increases up to 60% of maximum load 

factor. Since lack of hydro production that can occur in dry years,  the high penetration of hydro 

can significantly increase the cost of operation (including cost of unsupplied demand). 

 

Interestingly, Table 5 reports that as hydro power capacity shrinks, coal capacity grows. As the 

portfolios have lower risk, less hydro-electrical capacity is installed and coal generation become 

more attractive, since it is used to maintain a reasonable security supply due to intermittent 

renewable generation. The percentage of coal installed is higher in portfolio A (18.7%) than in 

Portfolio F (15.6%).  

 

Table 5 shows that some technologies barely expand from their current installed capacity (Oil, 

LNG and Solar CSP), while other technologies reach the upper bound (geothermal, small hydro, 

run-of-river and solar PV). In the case of Oil, LNG and Solar CSP, they are not activated in terms 

of new allocation, since they are not economically convenient; these technologies are highly 

expensive. In the case of geothermal, small hydro, run-of-river and solar PV, they are 

technologies that appear as attractive options independently of the portfolio’s risk level. They are 

always fully used since they reduce exposure to fuel price volatility. Furthermore, geothermal, 

small hydro and run-of-river technologies have high capacity factors (over 50%) and relatively 

stable profiles in terms of hour by hour changes during the year. The installed capacity of solar 

PV is also justified by the high correlation between solar and demand profiles, as shown in Figure 

1.  
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4.2 Renewable energy planning without policy targets 

In this subsection, we show the same portfolio analysis as in Table 5, but now we do not impose 

any policy target constraint in the model ‒ i.e. we assume that 𝑋 = 0 in equation (8). This new 

exercise is presented in Table 6. If we compare Table 5 and Table 6, we can notice that portfolios 

A and B are the same, in that they already meet the target of renewable generation, and there is 

no need to change their composition (in portfolios A and B the constraint in equation (8) is not 

active in Table 5), since they reach the policy target thanks to risk reduction considerations. 

However, when 𝐶𝑉𝑎𝑅 is not constrained sufficiently, we can see in Table 6 that portfolios C to F 

are short of non-conventional renewable generation regarding the target of 20% imposed by the 

Chilean government.  

 

 
 
Table 6. Expected costs, CVaR and installed capacity.  

The table presents the same report as in Table 5 but without a policy target. The table reports the optimal 

allocation (installed capacity in megawatts) for the Chilean electricity generation system by the 

representative day of year 2025. Six different portfolios, named by letters from A to F, constrained by 

different levels of risk in terms of the CVaR (measured in millions of US dollars) are shown in the Table. 

Risk increases from left to right and it is associated with the fossil-fuel price volatility and uncertain 

hydrological scenarios. In total, 1000 full year-scenarios are generated to reflect potential conditions of 

year 2025. The table also reports the corresponding share of total installed capacity for every technology 

inside a portfolio. Expected cost of the portfolios corresponds to the sum of annuitized investment cost 

and operating cost related to the annual maintenance of the system (measured in millions of US dollars).  

Percentage of renewable energy installed and renewable generation indicated for each portfolio in the last 

rows of the table do not consider hydro and run of river technologies since in Chile they are considered as 

conventional sources of renewable energy. 

 

Table 6 shows that when the policy target is imposed (Table 5), biomass generation is the 

preferred technology for reaching the renewable Chilean goal by 2025. In portfolios C to F there 

is an increase in the installed capacity of biomass, from 504 MW (in Table 6) to 648 MW (in 

Table 5). Biomass is the preferred technology as it is more economically optimal than the others. 

Biomass has a high level for the maximum generation availability in relation to other non-

conventional renewables (Biomass: 0.85, Wind: 0.28 and Solar CSP: 0.51), and relatively low 

investment costs (less than Solar CSP). Once the renewable policy target is accomplished (in 

Expected Cost [MM $]

CVaR [MM $]

MW % MW % MW % MW % MW % MW %

Coal 4996 18,7% 4975 21,3% 5124 22,3% 4752 20,3% 4280 17,6% 3972 16,0%

Oil 2303 8,6% 2303 9,9% 2303 10,0% 2303 9,8% 2303 9,5% 2303 9,3%

Hydro 4053 15,2% 4053 17,4% 4053 17,6% 4865 20,8% 6223 25,6% 7000 28,2%

Wind 4000 15,0% 634 2,7% 634 2,8% 634 2,7% 634 2,6% 634 2,6%

Solar PV 2600 9,7% 2600 11,1% 2600 11,3% 2600 11,1% 2600 10,7% 2600 10,5%

LNG 2777 10,4% 2777 11,9% 2777 12,1% 2777 11,8% 2777 11,4% 2777 11,2%

Run-of-river 4000 15,0% 4000 17,1% 4000 17,4% 4000 17,1% 4000 16,4% 4000 16,1%

Biomass 1000 3,7% 1000 4,3% 504 2,2% 504 2,2% 504 2,1% 504 2,0%

Geothermal 200 0,7% 200 0,9% 200 0,9% 200 0,9% 200 0,8% 200 0,8%

Small hydro 800 3,0% 800 3,4% 800 3,5% 800 3,4% 800 3,3% 800 3,2%

Solar CSP 0 0,0% 0 0,0% 0 0,0% 0 0,0% 0 0,0% 0 0,0%

Opt. portf. without a policy target and without carbon tax (0 USD/ton CO2)

A B C D E F

9062

6777 6512 6478 6457 6435 6421

8165 8320 8480 8640 8880

Installed Capacity

MIN CVAR MIN COST

% of Renewable 
Energy Installed

32,2% 22,4% 20,6% 20,2% 19,5% 19,1%

18,9%
% of Renewable 

Generation
31,8% 22,8% 18,9% 18,9% 18,9%
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portfolios C to F in Table 5) by the use of biomass technology, additional biomass generation is 

triggered only in portfolios with low levels of risk exposure (portfolios A and B). This can be 

noted by comparing portfolio C with B. In portfolio C, biomass installed capacity is just enough 

to meet the renewable generation target of 20% and then, in portfolio B, it expands and reaches 

the upper bound. 

 

Another difference between Table 5 and Table 6 is the change in allocation of hydro and coal. 

For portfolios C to F, the investing decision is driven by similar consideration, as explained in the 

previous section: as risk is constrained in portfolios, less hydro-electric capacity is installed and 

Coal capacity grows. However, the installed capacities are different due to the policy target 

constraint in Table 5. For instance, the minimum hydro-electric capacity is now reached in 

portfolio C in Table 6, instead of portfolio B in Table 5. This causes an interesting effect: once 

hydro-electric capacity is at its minimum, the increase in Coal capacity makes portfolio risk rise 

again due to its price volatility, thus, between portfolios C to B we can see an unexpected 

reduction in Coal capacity, while Biomass is fully installed to hedge against coal price 

uncertainties. 

4.3 Policy Analysis 

In subsection 2.2 we presented the inclusion of carbon emissions cost in the objective function. In 

the next exercise we show a sensitivity analysis in which different levels of carbon tax were 

applied. 

 

Figure 4 presents the efficient frontiers of the sensitivity analysis, and Table 7 shows the 

composition of the portfolios. In Table 7 and Figure 4 we do not impose any policy target 

constraint ‒i.e.  𝑋 = 0 in equation (8).  Thus, the levels of non-conventional renewables are 

exclusively driven by changes in the renewable policy regarding  different values of  a potential 

carbon tax. 

 
Figure 4. Sensitivity analysis of the efficient frontier with different levels of carbon costs. 

The figure reports the efficient frontiers composed by portfolios of Table 7. Each curve is determined by 

different levels of carbon emissions penalization (0, 10, 20, 30 and 40 U.S dollars per tones of CO2e 

6300

6800

7300

7800

8300

8100 8600 9100 9600 10100 10600

E
x

p
e

ct
e

d
 C

o
st

 [
M

M
 U

S
D

]

CVAR [MM USD]

Opt. portf. without carbon tax (0 USD/ton CO2)
Opt. portf. with carbon tax (10 USD/ton CO2)
Opt. portf. with carbon tax (20 USD/ton CO2)
Opt. portf. with carbon tax (30 USD/ton CO2)
Opt. portf. with carbon tax (40 USD/ton CO2)



 

 

21 

 

emitted). While Minimizing Costs, the model was constrained by different CVaR limits to draw the Pareto 

boundary between minimum expected cost and minimum risk solutions. The axis values are displayed in 

millions of US dollars. 

 
 

MW % MW % MW % MW % MW % MW %

Expected Cost [MM $]

CVaR [MM $]

Coal 4996 18,7% 4975 21,3% 5124 22,3% 4752 20,3% 4280 17,6% 3972 16,0%

Hydro 4053 15,2% 4053 17,4% 4053 17,6% 4865 20,8% 6223 25,6% 7000 28,2%

Wind 4000 15,0% 634 2,7% 634 2,8% 634 2,7% 634 2,6% 634 2,6%

Biomass 1000 3,7% 1000 4,3% 504 2,2% 504 2,2% 504 2,1% 504 2,0%

Solar CSP 0 0,0% 0 0,0% 0 0,0% 0 0,0% 0 0,0% 0 0,0%

Expected Cost [MM $]

CVaR [MM $]

Coal 5006 18,7% 4029 15,4% 3147 11,3% 2743 10,0% 3302 13,4% 2904 12,0%

Hydro 4053 15,2% 5587 21,3% 7000 25,2% 7000 25,5% 7000 28,4% 7000 28,9%

Wind 4000 15,0% 2890 11,0% 4000 14,4% 4000 14,6% 634 2,6% 634 2,6%

Biomass 1000 3,7% 1000 3,8% 1000 3,6% 1000 3,6% 1000 4,1% 1000 4,1%

Solar CSP 0 0,0% 0 0,0% 0 0,0% 0 0,0% 0 0,0% 0 0,0%

Expected Cost [MM $]

CVaR [MM $]

Coal 5067 18,9% 3974 13,9% 3402 12,1% 3024 10,9% 2700 9,9% 2394 8,8%

Hydro 4053 15,1% 6850 24,0% 7000 24,9% 7000 25,3% 7000 25,6% 7000 25,9%

Wind 4000 14,9% 4000 14,0% 4000 14,2% 4000 14,4% 4000 14,6% 4000 14,8%

Biomass 1000 3,7% 1000 3,5% 1000 3,6% 1000 3,6% 1000 3,7% 1000 3,7%

Solar CSP 0 0,0% 0 0,0% 5 0,0% 5 0,0% 0 0,0% 0 0,0%

Expected Cost [MM $]

CVaR [MM $]

Coal 4805 18,0% 4377 15,9% 3550 12,6% 2997 10,8% 2559 9,4% 2394 8,8%

Hydro 4053 15,2% 5403 19,6% 7000 24,8% 7000 25,3% 7000 25,7% 7000 25,9%

Wind 4000 15,0% 4000 14,5% 4000 14,2% 4000 14,5% 4000 14,7% 4000 14,8%

Biomass 1000 3,7% 1000 3,6% 1000 3,5% 1000 3,6% 1000 3,7% 1000 3,7%

Solar CSP 200 0,7% 116 0,4% 7 0,0% 0 0,0% 0 0,0% 0 0,0%

Expected Cost [MM $]

CVaR [MM $]

Coal 4869 18,2% 4215 14,5% 3286 11,7% 2762 10,1% 2523 9,3% 2394 8,8%

Hydro 4053 15,1% 7000 24,1% 7000 25,0% 7000 25,5% 7000 25,7% 7000 25,8%

Wind 4000 14,9% 4000 13,7% 4000 14,3% 4000 14,6% 4000 14,7% 4000 14,8%

Biomass 1000 3,7% 1000 3,4% 1000 3,6% 1000 3,6% 1000 3,7% 1000 3,7%

Solar CSP 200 0,7% 200 0,7% 8 0,0% 0 0,0% 7 0,0% 7 0,0%

31,8%

7011

Opt. portf. without policy targets contraints but with carbon tax (30 USD/ton CO2)

% of Renewable 
Generation

31,8% 28,9% 31,8%

31,4%

31,6%

21,3%

Installed Capacity

9255 9300 9500 9700 9900 9983

7619 7428 7146 7068 7018

31,8% 22,8%

32,1%

21,6%

22,8%

30,2% 30,6% 31,1% 31,4%

9224

% of Renewable Energy 
Installed

% of Renewable Energy 
Installed

% of Renewable Energy 
Installed

Installed Capacity

8894 9060 9221 9380 9540 9705

7369 7059 6956 6910 6874 6857

Opt. portf. without policy targets contraints but with carbon tax (20 USD/ton CO2)

9550 9793

% of Renewable 
Generation

32,2% 28,6% 30,9%

Opt. portf. without policy targets contraints but with carbon tax (40 USD/ton CO2)

30,2% 30,8% 31,3% 31,6% 31,8%

31,8%32,9% 31,6%

32,8%

Installed Capacity

9615 9703 9901 10100 10200 10259

19,1%

Installed Capacity

7077 6835 6755 6713 6687 6685

Opt. portf. without policy targets contraints but with carbon tax (10 USD/ton CO2)

31,8% 22,8% 18,9%

Opt. portf. without policy targets contraints but with different carbon taxes

A B C D E F

8165 8320 8480 8640 8880 9062

6777 6512 6478 6457

% of Renewable 
Generation

32,8% 32,7% 31,9% 31,8% 31,8% 31,8%

% of Renewable 
Generation

31,8% 31,8% 31,8% 31,8% 31,8% 31,8%

% of Renewable 
Generation

32,7% 32,3% 31,8% 31,8%

7890 7460 7267 7195 7170

31,8% 31,8%

% of Renewable Energy 
Installed

% of Renewable Energy 
Installed

30,5%

6435 6421

MIN CVAR MIN COST

Opt. portf. without policy targets contraints and without carbon tax (0 USD/ton CO2)

18,9% 18,9% 18,9%

32,2%

8527 8766 9014

7162

31,1%

Installed Capacity

22,4% 20,6% 20,2% 19,5%
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Table 7. Optimal portfolios with different levels of carbon costs.  

The table presents the same report as in Table 5 and Table 6 but for different carbon taxes without policy 

targets. The carbon tax is based on the emission factors presented in Table 1 and it is added to Variable 

Operation and Maintenance Costs. This table contains a sensitivity analysis for different levels of carbon 

emissions penalization (0, 10, 20, 30 and 40 U.S dollars per tones of CO2e emitted). Some technologies 

are hidden from the table because they did not present change in installed capacity from one portfolio to 

another. The table reports the optimal allocation (installed capacity in megawatts) for the Chilean 

electricity generation system by the year 2025. The table is associated with Figure 4. 

 

As explained previously, some technologies do not change in the different portfolios because 

either they do not expand from their current installed capacity or they reach the upper bound (Oil, 

LNG, Geothermal, Small hydro, Run-of-river and Solar PV). This also happens in the following 

analyses in this study. Therefore, henceforth, we will focus the analysis on technologies that vary 

from one portfolio to another: Coal, Hydro, Wind, Biomass and Solar CSP. 

 

As can be seen in the previous subsection (Table 6), in cases where a  carbon tax was not 

considered, biomass and wind reach their maximum installed capacity only when risk is 

sufficiently constrained. Here, in Table 7, we notice that a carbon tax value of US$10/TCO2 is 

enough to encourage biomass to expand to the upper bound independently of the portfolio’s risk 

level. The same is true for wind, when a carbon tax value of US$20/TCO2 is considered.  

 

In the other cases in Table 7, when the carbon tax value is increased up to US$30/TCO2 and 

US$40/TCO2, the composition of the portfolio does not present major changes because wind and 

biomass technologies have already reached the upper bound of installed capacity. It is worth  

mentioning that solar CSP is triggered in the minimum risk portfolio (where 200MW of capacity 

is installed). To  some extent, hydro is also fully installed with the exception of minimum risk 

portfolios. The role of coal technology is to fill the shortfall in generation and to contribute to 

security of supply. With a tax of US$40/TCO2, solar CSP is not only triggered and fully installed 

in portfolio A (the minimum risk portfolio), but also in portfolio B, which is a less risk 

constrained portfolio. These results present evidence of the effect of carbon tax on encouraging 

renewable energy development as an alternative to accomplish 20% of renewable generation. A 

penalty of US$10/TCO2 is enough to reach the policy target, achieving 22.8% of renewable 

generation when just a pure cost reduction is considered (portfolio F). If we combine the effect of 

carbon tax and risk reduction, the maximum participation of renewables is justified with a 

US$40/TCO2 tax, which results in 32.8% of renewable generation. 

 

Increasing the levels of carbon tax will naturally increase the expected costs of portfolios (in part, 

because the carbon tax is a cost component of the variable generation cost). We notice that, for 

every US$10 extra in carbon emissions penalization, the expected cost increases on average by 

3%. This percentage varies in  from 1.6%  to 5.2%, equivalent to US$ 121 - US$ 369. 

 

Finally, we perform a policy exercise to evaluate how important it is to take into account a carbon 

tax in optimal generation planning (which is reported in Table 8 and Figure 5), compared with a 

case where the planner neglects the tax and the operator optimizes the use of infrastructure 

penalizing carbon emissions. In this context, we evaluate the effect of a sudden carbon tax (e.g., 

due to a change in renewable policy in subsequent governments in a country that is concerned  

about global warming), which may be imposed after planning and building the plants for the 

different technology allocations. 
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Table 8. Expected cost and CVaR of Optimal portfolios.  

The Table reports the expected costs and risks (in terms of CVaR) of six portfolios (I to VI) related to 

three different generation planning conditions: without carbon tax, with a carbon tax of 10 USD/ton, and 

when no carbon tax is considered but a carbon tax of 10 USD/ton is 'unexpectedly' imposed after building 

the generation plants. When no carbon tax is considered, portfolios V and VI do not have a feasible point 

associated with the corresponding level of CVaR (see Figure 5). Expected cost of the portfolios 

corresponds to the sum of annuitized investment cost and operating cost related to the annual maintenance 

of the system. All values in the table are in millions of US dollars. The table is associated with Figure 5. 

 

 
Figure 5. Efficient frontier with and without carbon costs. 

The figure shows the efficient frontiers formed by portfolios that take into account a carbon penalization 

of 0 and 10 U.S dollars per tones of CO2e emitted. The dotted curve is formed by portfolios which have 

the same composition as in light-grey curve (without carbon tax) but an ex post carbon tax of 

US$10/TCO2e is considered. No policy target constraint was imposed in this exercise. The shape of the 

dotted curve is related to Carbon installed capacity, the technology with the highest CO2 emission factor. 

The Figure shows the CVaR levels associated with portfolios I to VI of Table 8. The axis values are 

displayed in millions of US dollars. 

 

CVaR

Expected Cost

Expected Cost

Expected Cost

93698673 8751 8938 9062 9223

Opt. portf. without carbon tax (0 USD/ton CO2) 

but taken into account ex-post carbon cost (10 USD/ton CO2)

6923 6879 6867 6816 6766 6723

Opt. portf. without carbon tax (0 USD/ton CO2)

Opt. portf. with carbon tax (10 USD/ton CO2)

6883

6454 6447 6431 6421 - -

6837 6767 6739 6713 6693

Opt. portf. with and without considering a carbon tax 
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In Table 8 and Figure 5, we do not impose any policy target constraint, hence 𝑋 = 0 in equation 

(8), since we want to isolate the effect of an 'unexpected' carbon tax in the analysis. Table 8 and 

Figure 5 report the costs and risks of three cases: i) when a carbon tax of 0 USD/ton CO2 is 

considered in the generation planning, i.e. there is no carbon tax in the system and the results are 

equivalent to Table 6; ii) when a carbon tax of 10 USD/ton CO2 is considered in the planning of 

portfolios, which is equivalent to Table 7; and iii) when a carbon tax of 0 USD/ton CO2 is 

considered in  optimal generation, but a carbon tax of 10 USD/ton is 'unexpectedly' imposed after 

designing the planning and after building the new generation plants. Thus, in the third case, the 

carbon tax is not considered in the optimization problem of the generation planning, but this tax 

is considered in the ex-post real costs. We choose a carbon tax of US$10/TCO2 because this 

penalty would encourage renewable generation to overcome the policy target of 20% by 2025.  

 

The plot presented in Figure 5 shows that the curve corresponding to cases of unexpected 

changes in the renewable policy (dotted curve) does not follow a typical efficient frontier shape 

as in Figures 3 and 4. This can be explained by the fact that the dotted curve was not built 

through optimizations reflected in equations (6)-(9). The curve shape of the unexpected changes 

in the renewable policy is related to the installed capacity of Coal. The technology allocation of 

the dotted curve and the light-grey curve are the same, and equal to the allocation of Table 6. As 

shown in Table 6, the coal capacity reaches its maximum in portfolio C, which is equivalent to 

portfolio III of the dotted curve. In this context, the coal technology has the highest CO2 emission 

factor, meaning that there is an unexpected increase in the operating costs of the system caused 

by the new carbon tax. Thus, Table 8 (last two rows) reports that portfolio III presents the highest 

gap in terms of expected cost between the grey and dotted curve (a difference in amount of US$ 

100 MM). 

 

For extreme portfolios (I and II or V and VI) we can notice in Figure 5 that the gap between 

curves is shrinking. This can be explained by two reasons (see Table 6): for portfolios with 

limited CVaR level (I and II), renewable technologies capacity is installed which lowered the 

share of Coal in the composition of portfolios. This means that the effect of an unexpected 

increase in the operating costs of the system caused by the new carbon tax is diminished with the 

presence of technologies with low CO2 emission factors. On the other hand, when the 

minimization of cost is considered (portfolios V and VI) something similar happens. The share of 

Coal is also reduced in the composition of portfolios, but now it is explained by the installed 

capacity of Hydro (a cheap technology that also has low CO2 emission factor). 
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5. Conclusion 

In this study, we introduce a novel model for optimal electricity generation planning under 

renewable policy targets. The model is based on a portfolio approach that takes into account 

costs, risks and the security of electricity supply. We show that as the objective is more to do 

with risk reduction than minimizing costs, there is a high renewable capacity installed because it 

reduces exposure to fuel price volatility, uncertain hydrological scenarios and hourly demand 

changes.  

 

We conclude that the portfolios obtained with a carbon tax are different to the ones obtained by 

imposing a 20% lower-bound level of non-conventional renewable generation (i.e. included as a 

constraint in the optimization model). For example, we show that concentrating solar power 

(CSP) is installed with a carbon tax, which does not happen if the tax is not imposed. 

Furthermore, we show that there is not an optimal single-renewable technology to be used under 

policy targets in an efficient electricity generation planning, but a portfolio of them. Optimal 

allocations of 'clean-sustainable' forms of electricity generation depend on generation costs, and 

on their hedge features to different sources of uncertainty. Optimal allocations also depend on 

whether policy targets are reached by strong governmental laws or by economic incentives such 

as carbon taxes. Moreover, we show that a level of carbon tax of US$10 per ton of CO2 can 

induce a level of 20% of generation with non-conventional renewable technologies for all 

planning portfolios, independent of the level of risk (under the cost assumptions used in the 

model). A more expensive tax would only increase operating costs without any clear contribution 

to developing renewable energy production. 

 

The model is simple and intuitive and can be implemented in different countries since it is solved 

in a two-stage stochastic programming setup, which is coordinated by a Benders-based method. 

Hence, our model can manage large dimension problems for national level electricity generation 

planning. However, if we want to extend the scope of the analysis by adding more variables and 

scenarios, it is important to consider that there is a trade-off between extension of the model and 

computational resources (the algorithm has to converge in reasonable times). The efficiency of 

the solution methodology is the key factor for solving large optimization problems and shortening 

simulation times. A suggestion for further work is to reduce the running time of the model, either 

through an improvement of the algorithm or through the implementation of cloud computing 

resources for solving such large-scale optimization problems. This enable researchers to run more 

cases to analyze more scenarios quickly and to perform further sensitivity analysis. Other 

suggestion is to give flexibility to the model by adding two or more stages of decision making. 

The results presented in this work showed an optimal portfolio for the year 2025, but there is no 

insight regarding when to take the investment decision. A multistage model that recognize the 

option value of the decision under uncertainty would be valuable for planners. For instance, a 

more flexible model could be useful to analyze future policy changes that may affect the optimal 

generation planning. 

 

Finally, we want to expose some interesting issues that remain to be addressed. For example, 

determining optimal subsidy or tax requirements to reach a specific renewable energy target. It 

would be useful to justify, based on an optimization model, the subsidy or tax amount that 

countries may apply in the energy sector. A complementary methodology for quantifying 

economic incentives could simplify the task and add foundation to the decision taken by planners. 
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Additionally, the changing energy mix will create new challenges to maintaining a secure and 

stable Transmission System. The inclusion of costs associated with electricity transmission could 

also be a proposition for further work. Professor David Newbery (see Newbery, 2011) suggests 

that the subsidy (feed-in tariff) for wind farms needs to be highly location-specific. This means 

that a renewable generation plant that is located far from the grid may receive more benefits than 

those power plants that can easily be connected to transmission lines. Thus, adding transmission 

costs to the model gives it more robustness and adds realism to the analysis. These 

recommendations have been left for future research.  
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7. Appendix 

Appendix 1. Model 

This appendix continues with the model presented in Section 2. It contains the equations 

developed by Bernales, Moreno, Rudnick and Inzunza; 2014, that were not modified. They make 

the model more realistic in terms of the following: provision of various generation frequency 

controls (to manage the flow of alternating current power from multiple generators through the 

network); the use of demand side services (customers responding to a signal to change the 

amount of energy they consume from the power system at a particular time); inclusion of the 

preservation of system inertia levels (the amount of kinetic energy stored in all spinning turbines 

and rotors in the system) and spinning and standing reserves (i.e., an optimal reserves allocation 

of diverse technologies to give stability to the system).  

 

Demand dispatch constraints 

Let 𝐷𝑗  denote the demand per hour [MWh], and as mentioned before 𝐷𝑗 ,𝑠
+  (𝐷𝑗 ,𝑠

− ) is the demand 

increase (decrease) in the hour 𝑗 under scenario 𝑠 due to shifts in demand. The model ensures that 

generation and load are balanced in every hour of the representative day of year 𝑌𝑌, including a 

load that can be curtailed or lost under extreme scenarios (e.g., due to dry inflows and changes in 

demand); thus we impose that: 

 𝑔𝑖,𝑗 ,𝑠

𝑖 ∈ 𝐼

= 𝐷𝑗 + 𝐷𝑗 ,𝑠
+ − 𝐷𝑗 ,𝑠

− − 𝐿𝐿𝑗 ,𝑠 .  (11) 

We limit the amount of flexible demand in every period to be lower than (or equal to) a 

percentage of the demand, which is represented by: 

𝐷𝑗 ,𝑠
− ≤ ds

−
⋅ D𝑗  

and 

 (12) 

𝐷𝑗 ,𝑠
+ ≤ ds

+
⋅ D𝑗 ,  (13) 

where ds
−

and ds
+

 reflect the maximum fraction of demand in any hour that can be decreased and 

increased, respectively.  The model ensures that changes in load due to flexible demand are 

balanced within a time window, e.g. 24 hours, which is given by: 

 𝐷𝑗 ,𝑠
+

𝑗  ∈ 𝐽𝑘
𝐷

−  𝐷𝑗 ,𝑠
−

𝑗  ∈ 𝐽𝑘
𝐷

= 0,  (14) 

where 𝐾 represents a set of days in a year, and 𝐽𝑘
𝐷  is a set of hours in a particular day (subset of 

𝐽).  
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Constraints for renewable generation 

The model constrains their production and reserve provision according to normalized hourly 

profiles. Suppose that the 𝑖 generation technology is through wind, and this technology is 

constrained by:  

𝑔𝑖,𝑗 ,𝑠 ≤ 𝑊𝑃𝑖,𝑗 ,𝑠 ⋅ 𝑐𝑖 ,  (15) 

while in the case of generation through solar photovoltaic technology there is an upper bound 

constraint given by: 

𝑔𝑖,𝑗 ,𝑠 ≤ 𝑆𝑃𝑖,𝑗 ,𝑠 ⋅ 𝑐𝑖 ,  (16) 

where 𝑊𝑃𝑖,𝑗 ,𝑠 and 𝑆𝑃𝑖,𝑗 ,𝑠 are the maximum generation output factor ‒a value between zero and 

one‒ for wind and solar photovoltaic, respectively, computed for every hour of the year.  Similar 

upper bound constraints can be applied to other non-conventional renewable technologies such as 

biomass, geothermal, concentrated solar power or small hydro. Regarding run-of-river 

generation, we impose that: 

𝑅𝑖,𝑗 ,𝑠
𝑆 + 𝑔𝑖,𝑗 ,𝑠 ≤ 𝑅𝑅𝑃𝑖,𝑗 ,𝑠 ⋅ 𝑐𝑖   (17) 

and for hydro-reservoir generation:  

𝑅𝑖,𝑗 ,𝑠
𝑆 + 𝑅𝑖,𝑗 ,𝑠

𝑃 + 𝑔𝑖,𝑗 ,𝑠 ≤ 𝐻𝑅𝑃𝑖,𝑗 ,𝑠 ⋅ 𝑐𝑖   (18) 

in which 𝑅𝑅𝑃𝑖,𝑗 ,𝑠 (𝐻𝑅𝑃𝑖,𝑗 ,𝑠) is the maximum generation availability for run-of-river (hydro-

reservoir) technology, while 𝑅𝑖,𝑗 ,𝑠
𝑆  and 𝑅𝑖,𝑗 ,𝑠

𝑃  are decision variables which represent the capacities’ 

headroom in terms of spinning-kinetic reserves and mechanical reserves, respectively; this 

capacities’ headroom is used exclusively to regulate contingencies for primary frequency 

response (both expressed in megawatts).
12

 

 

Moreover, in a hydro reservoir used for the technology 𝑖 in hour 𝑗 under scenario 𝑠, let 𝑣𝑖,𝑗 ,𝑠 

denote the volume of stored water in reservoir; 𝑖𝑛𝑓𝑖,𝑗 ,𝑠 the water inflow per hour; and 𝑠𝑝𝑖,𝑗 ,𝑠  the 

water lost through spillage. Then the hydro reservoir should respect:  

𝑣𝑖,𝑗 ,𝑠 = 𝑣𝑖,𝑗−1,𝑠 + 𝑖𝑛𝑓𝑖,𝑗 ,𝑠 −
𝑔𝑖,𝑗 ,𝑠

𝜂𝑖
− 𝑠𝑝𝑖,𝑗 ,𝑠 − 𝑣𝑖,𝑗 ,𝑠 ⋅ 𝜆𝑖  

 (19) 

where 𝜂𝑖  is the efficiency of the hydro-technology 𝑖 given the generation 𝑔𝑖,𝑗 ,𝑠, and 𝜆𝑖  is a factor 

used to consider losses of stored water due to evaporation and/or seepage in the reservoir. In 

addition, if we know that there is an upper bound of stored water in a reservoir used for the 

technology  𝑖, 𝑣 𝑖 , then: 

𝑣𝑖,𝑗 ,𝑠 ≤ 𝑣 𝑖   (20) 

 

 

                                                 
12

 In the case of fossil fuels, the upper bound constraints are 𝑅𝑖,𝑗 ,𝑠
𝑆 + 𝑅𝑖,𝑗 ,𝑠

𝑃 + 𝑔𝑖 ,𝑗 ,𝑠 ≤ 𝐹𝐹𝑃𝑖 ,𝑗 ,𝑠 ⋅ 𝑐𝑖  where 𝐹𝐹𝑃𝑖 ,𝑗 ,𝑠 is also 

the maximum generation availability for the fossil-fuel technology 𝑖 in hour 𝑗 under scenario 𝑠. 
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Operational Constraints 

As a first step for the security supply constraints, we have to impose restrictions to ramp rates 

‒i.e. the rate that a technology generation changes its output-generation, which is expressed in 

megawatts per hour. For instance, neither  turbines from a large hydro-generation plant nor a coal 

based generation plant can instantaneously change their level of electricity production, because 

there is kinetic inertia in both turbines and rotors. To properly constrain ramp rates, we need to 

determine the number of online units of the technology 𝑖, 𝑛𝑖,𝑗 ,𝑠, in hour 𝑗 under scenario 𝑠 that are 

synchronized to the power system (e.g., the online units of windmills for wind generation). Let’s 

assume that 𝑃𝑖 (𝑃𝑖) is the maximum (minimum) power output of each unit of technology 𝑖: 

𝑛𝑖,𝑗 ,𝑠 ⋅ 𝑃𝑖 ≤ 𝑔𝑖,𝑗 ,𝑠 ≤ 𝑛𝑖,𝑗 ,𝑠 ⋅ 𝑃𝑖   (21) 

𝑛𝑖,𝑗 ,𝑠 ⋅ 𝑃𝑖 ≤ 𝑐𝑖 .  (22) 

To account for the limited ramping capabilities (i.e. 'how' quickly a technology i can modify its 

electricity production), we impose a limit to the difference in output between two consecutive 

hours. Suppose that 𝜌𝑖  is the ramp rate limit (in megawatts per hour) for the technology 𝑖, then we 

can impose that:  

𝑔𝑖,𝑗 ,𝑠 − 𝑔𝑖,𝑗−1,𝑠 ≤ 𝑚𝑖𝑛⁡{𝑛𝑖,𝑗 ,𝑠 , 𝑛𝑖,𝑗−1,𝑠} ⋅ 𝜌𝑖 + (𝑛𝑖,𝑗 ,𝑠 − 𝑛𝑖,𝑗−1,𝑠) ⋅ 𝑃𝑖   (23) 

𝑔𝑖,𝑗−1,𝑠 − 𝑔𝑖,𝑗 ,𝑠 ≤ 𝑚𝑖𝑛⁡{𝑛𝑖,𝑗 ,𝑠 , 𝑛𝑖,𝑗−1,𝑠} ⋅ 𝜌𝑖 + (𝑛𝑖,𝑗−1,𝑠 − 𝑛𝑖,𝑗 ,𝑠) ⋅ 𝑃𝑖 .  (24) 

These constraints state that in the ramping-up (ramping-down) case, this difference cannot be 

higher than the ramping capability of the units that are connected during both hours, plus the 

output of units connected (disconnected) to meet the desired final generation level. It is assumed 

that units are both connected and disconnected at their minimum output.
13

 

 

Security of supply constraints 

In the model, we need to have some headroom to regulate potential contingencies (changes in 

frequency), which is very relevant when we are using renewable generation (see, e.g., Chávez et 

al., 2014; and Inzunza et al. 2014). Thus, we include dynamics for primary frequency response in 

contingency scenarios in the model, in order to ensure the security of supply in the operation  

portfolios. Primary frequency response will be defined to be adequate if system frequency does 

not drop below a given limit after any single generation contingency. 

 

In the model, the system has a feedback controller, called 'governor' that senses  changes in 

system frequency. The goal of the 'governor' is to activate some reserves (capacity headroom), 

which we call 'governor reserves', that are used in the dispatch during scarcity events such as 

primary frequency response. The governor reserves, in megawatts, reflect the capacity that is 

exclusive for governors to control system frequency after sudden, large disturbances. Suppose 

that there is a set of governor reserves for primary frequency response {𝑅1,𝑗 ,𝑠
𝐺𝑅 , 𝑅2,𝑗 ,𝑠

𝐺𝑅 , … , 𝑅𝑖,𝑗 ,𝑠
𝐺𝑅 }, 

which uses different technologies in hour 𝑗 under scenario 𝑠.
14,15 

Let’s assume that there is a large 

                                                 
13

 It is also assumed that units connected at certain hours remain at their minimum output level until the next dispatch 

period, which is a conservative assumption.   
14

 Spinning-kinetic and mechanical reserves, 𝑅𝑖,𝑗 ,𝑠
𝑆  and 𝑅𝑖,𝑗 ,𝑠

𝑃  as explained in equations (16)-(17), are subsets of the 

governor reserves. 
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change in system generation, 𝛥𝑃, measured in megawatts; thus we impose the following 

constraint for the security supply: 

𝛥𝑃 ≤ 𝑅𝑖,𝑗 ,𝑠
𝐺𝑅

𝑖 ∈ 𝐼

.  (25) 

 

The constraint reflected in equation (25) is a necessary, but not sufficient condition, since we 

have to include two key points in the system constraints: a) the relation between changes in the 

system frequency and the reaction speed of reserves to produce electricity in terms of emergency 

ramp rates; and b) how to include constraints for each technology to take into account the 

different ramp rates that technologies have as part of their intrinsic characteristics.
 
 

 

Before analyzing additional constraints for security supply, it is important to mention that we can 

also analyze a contingency event from the demand side of services (in which customers may 

change the amount of energy they consume from the system after being provided with a signal). 

Hence, instead of analyzing a contingency event  𝛥𝑃,  we can  analyze 𝛥𝑃∗ = 𝛥𝑃 − 𝐷𝑅𝑗 ,𝑠
𝑃 , where 

𝐷𝑅𝑗 ,𝑠
𝑃  is the amount of curtailed demand in hour 𝑗 under scenario 𝑠, from a demand side 

perspective which can be also used as a tool for the primary frequency control. 

 

Suppose that the governor reserves 𝑅𝑖,𝑗 ,𝑠
𝐺𝑅  (for the technology 𝑖, in hour 𝑗 under scenario 𝑠) has an 

emergency ramp rate limit 𝜌𝑖
′  (in megawatts per seconds), the number of online units of this 

reserve  is  𝑛𝑖,𝑗 ,𝑠
𝐺𝑅  and the governor has a dead band 𝑓𝑑𝑏  (which is the interval of no action when a 

change in frequency is small).
16, 17

 Let’s assume that there is a large change in system generation, 

𝛥𝑃, in which the pre-contingency frequency is 𝑓0, and we do not want the frequency to drop 

below the level 𝑓𝑀𝐼𝑁 . Chávez et al. (2014) show that the 'minimum' governor response emergency 

ramp rate of the reserves,    (𝑛𝑖,𝑗 ,𝑠
𝐺𝑅 ∙ 𝜌𝑖

′ )𝑖 , in order to avoid levels below 𝑓𝑀𝐼𝑁 , has to respect: 

𝑓0 𝛥𝑃 
2

4 𝑓0 − 𝑓𝑀𝐼𝑁 − 𝑓𝑑𝑏    𝐻𝑖𝑖 ⋅ 𝑛𝑖,𝑗 ,𝑠 ⋅ 𝑃𝑖 −𝐻𝑓 ⋅ 𝛥𝑃 
≤ 𝑛𝑖,𝑗 ,𝑠

𝐺𝑅 ∙ 𝜌𝑖
′

𝑖 ∈𝐼

 
 (26) 

 

where 𝐻𝑖  is the inertia constant  (measured in hours) for all units connected with technology 𝑖,   

𝑃𝑖  is the maximum power output of each unit of technology 𝑖, and 𝐻𝑓  is the inertia constant of the 

missing unit that induces the contingency 𝛥𝑃. Therefore,  𝐻𝑖𝑖 ⋅ 𝑛𝑖,𝑗 ,𝑠 ⋅ 𝑃𝑖 − 𝐻𝑓 ⋅ 𝛥𝑃 is equal to 

the post contingency system kinetic energy. 

 

The model also constrains each technology for security supply, in order to take into account 

different ramp rates. The time, 𝑡𝑀𝐼𝑁,𝑑𝑏 , in which the system can  recover after a contingency 𝛥𝑃 

with the 'minimum' governor reserve response emergency ramp rate,    (𝑛𝑖,𝑗 ,𝑠
𝐺𝑅 ∙ 𝜌𝑖

′ )𝑖 , can be 

expressed as: 𝑡𝑀𝐼𝑁,𝑑𝑏
𝐺𝑅 =  𝛥𝑃/ (𝑛𝑖,𝑗 ,𝑠

𝐺𝑅 ∙ 𝜌𝑖
′ )𝑖 . In addition, the time, 𝑡𝑀𝐼𝑁,𝑑𝑏

𝐺𝑅 , that a governor reserve 

with the technology 𝑖, can reach its maximum electricity generation is given by: 𝑡𝑀𝐼𝑁,𝑑𝑏
𝑖 =

                                                                                                                                                              
15

 It is important to notice that governor reserves usually are referred to reserves with fossil-fuel technologies; 

however we want to keep the generality of the model, thus any technology can contribute to the generation reserves. 
16

 Thus, in the first instants after a contingency, since there is a dead band, the system frequency is controlled by the 

inertial response of the own system.  
17

 Emergency ramp rates are,𝜌𝑖
′ , which have under a contingency a quick reaction speed to maintain the control 

system frequency. 
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𝑅𝑖,𝑗 ,𝑠
𝐺𝑅 /(𝑛𝑖,𝑗 ,𝑠

𝐺𝑅 ∙ 𝜌𝑖). Consequently, we can impose a rule stating that all technologies have to respect 

that 𝑡𝑀𝐼𝑁,𝑑𝑏
𝑖 ≤ 𝑡𝑀𝐼𝑁,𝑑𝑏

𝐺𝑅 , hence we can write that: 

𝑅𝑖,𝑗 ,𝑠
𝐺𝑅

𝑛𝑖,𝑗 ,𝑠
𝐺𝑅 ∙ 𝜌𝑖

≤
𝛥𝑃

 𝑛𝑖,𝑗 ,𝑠
𝐺𝑅 ∙ 𝜌𝑖

′

𝑖 

 
 (27) 

 

Additionally, reserves must be linked to the headroom of all technologies; so we limit the amount 

of reserves that can be provided by each generator as: 

 

𝑅𝑖,𝑗 ,𝑠
𝐺𝑅 ≤ 𝑛𝑖,𝑗 ,𝑠

𝐺𝑅 ∙ 𝑃𝑖 − 𝑔𝑖,𝑗 ,𝑠  (28) 

 

Some of the constraints shown above still make the optimization problem non-linear and complex 

to solve, even after including the linearization of the 𝐶𝑉𝑎𝑅. The non-linear and convex equations 

are linearized by using tangent planes, and for the non-convex equations we define two 

alternative convex linear programming models that serve as upper and lower bounds to the 

optimal solution. In Appendix 2 we describe these simplifications.  

 

Appendix 2. Assumptions and simplifications 

Simplification in operation constraints 

Constraints (23) and (24) have a common term, 𝑚𝑖𝑛⁡{𝑛𝑖,𝑗 ,𝑠 , 𝑛𝑖,𝑗−1,𝑠}, that uses the minimize 

function to choose the minimum value between the number of online units of technology i under 

scenario s in hour j compared to hour j-1. This term can be represented in a linear form by using 

an auxiliary variable, 𝑛𝑖,𝑗 ,𝑠
𝑚𝑖𝑛 , and two additional constraints as shown in equations (29) and (30): 

𝑛𝑖,𝑗 ,𝑠
𝑚𝑖𝑛 ≤ 𝑛𝑖,𝑗−1,𝑠  (29) 

 

𝑛𝑖,𝑗 ,𝑠
𝑚𝑖𝑛 ≤ 𝑛𝑖,𝑗 ,𝑠.  (30) 

These equations impose an upper bound to 𝑛𝑖,𝑗 ,𝑠
𝑚𝑖𝑛  and can replace the minimize function 

𝑚𝑖𝑛⁡{𝑛𝑖,𝑗 ,𝑠 , 𝑛𝑖,𝑗−1,𝑠}, thus equations (23) and (24) can be re-written as: 

𝑔𝑖,𝑗 ,𝑠 − 𝑔𝑖,𝑗−1,𝑠 ≤ 𝑛𝑖,𝑗 ,𝑠
𝑚𝑖𝑛 ⋅ ρ

𝑖
+ (𝑛𝑖,𝑗 ,𝑠 − 𝑛𝑖,𝑗−1,𝑠) ⋅ 𝑃𝑖   (31) 

 

𝑔𝑖,𝑗−1,𝑠 − 𝑔𝑖,𝑗 ,𝑠 ≤ 𝑛𝑖,𝑗 ,𝑠
𝑚𝑖𝑛 ⋅ ρ

𝑖
+ (𝑛𝑖,𝑗−1,𝑠 − 𝑛𝑖,𝑗 ,𝑠) ⋅ 𝑃𝑖 .  (32) 

Hence equations (29)-(32) rather than (23)-(24) are used in the model.  

 

Simplification in security of supply constraints 
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Equation (26) is non-linear but convex and thus can be linearized by using tangent planes. To do 

so, technologies are grouped into two categories according to their emergency ramp rates in order 

to reduce the number of planes and computational resources used. These two groups are denoted 

by 𝐼𝐺𝑆  and 𝐼𝐺𝐹 , which are sets classified as slow/fast response units for having low/high ramp 

rate. Additionally, a third group is defined, 𝐼𝑁𝐺 , which corresponds to technologies that do not 

participate in primary frequency response (PFR), but are connected through synchronous 

machines to the system and thus add inertia to it. Units’ contribution to inertia (H) and their 

maximum power output (𝑃 ) are assumed to be equal among all units.  

 

The numbers of units of the three groups are calculated using equations (33)-(35): 

 

𝑛𝑆𝐿,𝑗 ,𝑠 =  𝑛𝑖,𝑗 ,𝑠

𝑖∈𝐼𝐺𝑆

 
 (33) 

 

𝑛𝐹𝑇,𝑗 ,𝑠 =  𝑛𝑖,𝑗 ,𝑠

𝑖∈𝐼𝐺𝐹

 
 (34) 

 

𝑛𝑁𝐺,𝑗 ,𝑠 =  𝑛𝑖,𝑗 ,𝑠

𝑖∈𝐼𝑁𝐺

 
 (35) 

 

where SL, FT and NG are respectively slow response, fast response and non governor 

(synchronous units that are online and do not participate in primary frequency control).  

 

Hence we re-define the region given by equation (26) as that associated with equations (33)-(36).  

 
𝑓0 𝛥𝑃 

2

4 𝑓0 − 𝑓𝑀𝐼𝑁 − 𝑓𝑑𝑏  ((𝑛𝑁𝐺,𝑗 ,𝑠 + 𝑛𝐹𝑇,𝑗 ,𝑠 + 𝑛𝑆𝐿,𝑗 ,𝑠) ⋅ 𝐻 ⋅ 𝑃 − 𝐻𝑓 ⋅ 𝛥𝑃)
≤  𝑛𝑆𝐿,𝑗 ,𝑠 + 𝑛𝐹𝑇,𝑗 ,𝑠 ∙ 𝜌𝑖

′ . 
 (36) 

 

The linear form of restriction (36) is obtained through tangent planes linearization as shown in 

Figure 6.  

 

 
 

Figure 6. Linearization of equation (36) through tangent planes. 
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Equation (36) is convex, so it may be linearized by using tangent planes. In order to reduce the number of 

planes and computational resources when solving, technologies participating in primary frequency 

response (PFR) are grouped according to their emergency ramping rate: Fast and slow ramping 

technologies. Technologies within the same group are assumed to have the same emergency ramping 

parameter. A third group is distinguished, which are technologies that do not participate in PFR but are 

connected through synchronous machines to the system and add inertia to it. For this purpose, inertia 

parameters of units and their maximum power output are assumed equal to all units. Without any loss of 

generality, i.e. technologies that do not participate in PFR, 𝒏𝑵𝑮,𝒋,𝒔 , was chosen as the dependent variable 

during the linearization, so planes are presented as lower bounds of this variable. 

 

Another non-linear constraint is equation (27). This restriction is non-convex, so it has to be 

treated differently. In this case, upper and lower bounds of the optimal solution are computed. 

The lower bound is obtained by removing equation (27) from the formulation, leading to a 

portfolio solution with a lower expected cost of investment and operation but which may violate 

equation (27) and thus not be technically feasible due to the fact that primary reserves are not 

allocated correctly within the installed technologies.  

 

The upper bound of the optimal solutions is computed by solving a particular case of the model, 

in which only one technology may participate in PFR. This simplifies equations because when 

only one technology saves primary reserve, constraints (25) and (27) end up being a simple linear 

equality. This is reasonable, because if only one technology participates in primary frequency 

response, all reserve must be stored in that technology. In this way, we may produce several 

upper bound solutions by defining various levels of participation from different generation 

technologies in PFR. Hence, a number of technically feasible suboptimal solutions can be 

obtained, ultimately selecting that with the lowest gap with respect to the lower bound solution. 

We found for all case studies analyzed in this work that the selected technically feasible solutions 

present less than 0.8% gap. For this reason, all the simulations done in this work, consider 

reservoirs for hydro power as the only technology committed to Primary Frequency Response. 

 

Simplification in Operating reserve constraints 

 

The operating reserves security criterion for this study consists of holding reserve for contingency 

purposes and to protect the system from unpredicted changes in the availability of solar and wind 

resources. Other renewable energy sources such as Biomass and Geothermal are not included in 

this analysis because their availability can be predicted accurately (both availability profiles have 

zero standard deviation). 

 

As defined in Silva (2010), we use a realistic criterion for the representation of operating reserve 

policies, where reserve amounts required (Req) are considered for two purposes; the first is to 

restore primary frequency control reserves after they have been deployed, 𝛥𝑃, and the second is 

to deal with unpredicted changes in variable renewable generation. Thus, the operating reserve 

requirement must be a function of the contingency magnitude, the non-conventional renewable 

generation and its installed capacity: 𝑅𝑒𝑞 = 𝑓 ΔP, {𝑔𝑖,𝑗 ,𝑠}𝑖∈𝐼𝑅 , {𝑐𝑖}𝑖∈𝐼𝑅  

 

According to Silva (2010), when uncertainty of renewables forecasts is considered for reserve 

and these forecast errors are assumed to be non-correlated, normally distributed, with zero mean 

and a certain standard deviation, the reserve requirement may be quantified as shown in equation 

(37), which requires saving 3 times the total standard deviation of the forecast errors. 
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𝑅𝑒𝑞 = 𝛥𝑃 + 3 ⋅  𝜎𝑊𝐼𝑁𝐷
2 + 𝜎𝑆𝑂𝐿𝐴𝑅

2 . 
(37) 

 

Standard deviations of wind and solar forecast errors –σWIND and σSOLAR  respectively– have to be 

computed using a certain forecast policy. Wind availability has no clear relationship to hours of 

the day as solar radiation does, so, a persistent 4 hour ahead forecast is employed to compute its 

forecast error standard deviation. This methodology produces one parameter that represents the 

uncertainty for all hours of the year. Solar radiation, on the other hand, is forecast using a day-

ahead criterion. Four typical days of radiation are computed (one for each season) and the 

standard deviation error is calculated for the 24 hours of the day and for every season. The 

highest of the 4 values computed for every hour is taken as the conservative estimate. 

 

𝑅𝑒𝑞 = ∆𝑃 + 3 ⋅  𝑐𝑊𝐼𝑁𝐷
2 ⋅ 𝜎𝑊𝐼𝑁𝐷

2 + 𝑐𝑆𝑂𝐿𝐴𝑅
2 ⋅ 𝜎𝑆𝑂𝐿𝐴𝑅,𝑗

2  
(38) 

 

In equation (38), installed capacities are included because forecasts are made in terms of the 

capacity factor. It can be argued that the above requirement might be too conservative. This is 

mainly because if, for example, no wind is forecasted for a certain hour, it would not be 

reasonable to keep reserve for wind purposes. Due to this fact, the following correction is made: 

 

𝑅𝑒𝑞 =  
∆𝑃 + 3 ⋅  𝑐𝑊𝐼𝑁𝐷

2 ⋅ 𝜎𝑊𝐼𝑁𝐷
2 + 𝑐𝑆𝑂𝐿𝐴𝑅

2 ⋅ 𝜎𝑆𝑂𝐿𝐴𝑅,𝑗
2     𝑊𝑃𝑖,𝑗 ≥ 3 ⋅ 𝜎𝑊𝑁𝐷

∆𝑃 + 𝑔𝑊𝐼𝑁𝐷,𝑗 ,𝑠 + 3 ⋅ 𝑐𝑆𝑂𝐿𝐴𝑅 ⋅ 𝜎𝑆𝑂𝐿𝐴𝑅,𝑗                    𝑊𝑃𝑖,𝑗 < 3 ⋅ 𝜎𝑊𝑁𝐷

  

(39) 

 

In this equation, for hours on which the wind capacity factor of the hourly profile used (which is 

taken as the forecast) is smaller than the total uncertainty (𝑊𝑃𝑖,𝑗 < 3 ⋅ σ𝑊𝑁𝐷 ), a deterministic 

criterion is employed, assuming that in the worst case scenario, all scheduled wind fails to occur. 

On hours where the wind forecast is sufficiently high, the probabilistic criterion is established. 

The same logic may be applied to  solar technology. Nonetheless, as an individual standard 

deviation is computed for every hour, the above correction is not needed for typical zero radiation 

hours (at night, for example).  

 

As equation (39) is non-linear, algebra factorization and a first order Taylor series expansion is 

used to get a linear approximation shown by equation (40). This linear function is always greater 

than the original equation (39), so it is a conservative approximation. 

 

𝑅𝑒𝑞 =  
𝛥𝑃 + 3 ⋅  

1

 2
⋅  𝑐𝑊𝑁𝐷 ⋅ 𝜎𝑊𝑁𝐷 + 𝑐𝑆𝑂𝐿 ⋅ 𝜎𝑆𝑂𝐿,𝑗  +  1 −

1

 2
 ⋅ 𝐴𝑉𝑗    𝑅𝑃𝑊𝑁𝐷 ,𝑗 ≥ 3 ⋅ 𝜎𝑊𝑁𝐷

𝛥𝑃 + 𝑔𝑊𝑁𝐷,𝑗 ,𝑠 + 3 ⋅ 𝑐𝑆𝑂𝐿 ⋅ 𝜎𝑆𝑂𝐿,𝑗                                                                𝑅𝑃𝑊𝑁𝐷,𝑗 < 3 ⋅ 𝜎𝑊𝑁𝐷

  

 (40) 

 

where 𝐴𝑉𝑗  represents  |𝑐𝑊𝑁𝐷 ⋅ σ𝑊𝑁𝐷 − 𝑐𝑆𝑂𝐿 ⋅ σ𝑆𝑂𝐿,𝑗 |. The absolute value function can be easily 

linearized by equations (41) and (42): 

 

𝐴𝑉𝑗 ≥ 𝑐𝑊𝑁𝐷 ⋅ 𝜎𝑊𝑁𝐷 − 𝑐𝑆𝑂𝐿 ⋅ 𝜎𝑆𝑂𝐿,𝑗   (41) 

𝐴𝑉𝑗 ≥ − 𝑐𝑊𝑁𝐷 ⋅ 𝜎𝑊𝑁𝐷 − 𝑐𝑆𝑂𝐿 ⋅ 𝜎𝑆𝑂𝐿,𝑗  .  (42) 
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Finally, to account for all reserves considered in the reserve amounts required, Req (spinning and 

standing reserves), constraint (43) is added to the model.  

𝑅𝑒𝑞 ≤ 𝑅𝑖,𝑗 ,𝑠
𝑆

𝑖∈𝐼

+ 𝐹𝑆 ⋅   𝑐𝑖
𝑖∈𝐼

− 𝑛𝑖,𝑗 ,𝑠 ⋅ 𝑃𝑖 + 𝐷𝑅𝑗 ,𝑠
𝑆 . 

 (43) 

 

Here, 𝑅𝑖,𝑗 ,𝑠
𝑆  is the capacity headroom in terms of spinning-kinetic reserves used to regulate 

contingencies as reserves for primary frequency respondes and the term 𝐹𝑆 represents the 

fraction of generation capacity that contributes to operating reserves. The equation (43) also 

includes a demand response parameter, 𝐷𝑅𝑗 ,𝑠
𝑆 , to study the effect of responsive loads used in the 

operating reserve time frame. 

 

Appendix 3. Solution Methodology 

In this section we explain the solution methodology based on Bender’s decomposition algorithm, 

a technique which is meant to reduce computational complexity of large-scale problems. Here we 

use a vectors and matrices notation
18

 to abbreviate the linear systems, which is related to the 

equations of the model presented in section 2. For a better understanding, we explain first the 

relation between the nomenclature used to explain the model, with the vectors and matrices 

notation used in this section: 

 𝒅 is a vector containing investment costs and 𝒚 is the set of first-stage decision variables 

(installed capacities): 𝐝T ∙ 𝐲   𝐼𝑁𝑉𝑖 ⋅ 𝑐𝑖𝑖 ∈ 𝐼 .  

 𝑄 𝒚, 𝒄𝒔, 𝑭𝒔  is a function of the decision variable 𝒚, operational costs 𝒄𝒔, and 𝑭𝒔 which is a 

matrix of all constraints related with the decision variable of installed capacities. Later 

𝑄 𝒚, 𝒄𝒔, 𝑭𝒔  will be defined as the second-stage problem. 

 𝐜𝐬    𝑉𝑂𝑀𝑖,𝑠 ⋅ 𝑔𝑖,𝑗 ,𝑠𝑗  ∈ 𝐽𝑖 ∈ 𝐼 +  𝐷𝑗 ,𝑠
− ⋅ 𝑑𝑐− +𝑗  ∈ 𝐽  𝐷𝑗 ,𝑠

+ ⋅ 𝑑𝑐+
𝑗  ∈ 𝐽 + 𝑣𝑜𝑙𝑙 ⋅  𝐿𝐿𝑗 ,𝑠𝑗  ∈ 𝐽  

 𝛿 represents the Value at Risk (VaR). 

 The function denoted by   ……… .  + represents the maximum between the expression in 

parenthesis and zero:  𝑒𝑥𝑝𝑟 + = 𝑚𝑎𝑥⁡(𝑒𝑥𝑝𝑟, 0) 

 

Bender's method coordinates a two-stage stochastic linear programming model to determine the 

optimum portfolio of generation technologies of a future power system. In the first stage, the 

investment decision takes place and therefore we minimize total investment and operation costs 

across a large number of future scenarios, subject to a given level of CVaR.  

 

The first-stage problem is given by:  

 𝑃1  𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧 = 𝒅𝑇 ∙ 𝒚 +  𝑝𝑠 ∙ 𝑄(𝒚, 𝒄𝒔, 𝑭𝒔)

𝑠∈𝑆

 
(44) 

                                                 
18

  Vectors are written as bold, lower-case letters and matrices as bold upper-case letters. 
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              s.t.: 

𝛿 +
1

1 − 𝛼
∙ 𝑝𝑠 ∙  𝒅

𝑇 ∙ 𝒚 + 𝑄(𝒚, 𝒄𝒔, 𝑭𝒔) − 𝛿 +

𝑠∈𝑆

≤ 𝐶𝑉𝑎𝑅        
(45) 

𝒚 ∈ 𝒀 (46) 

𝛿 ≥ 0 (47) 

where 𝒀 is a set of polyhedral constraints that ensure that 𝒚 corresponds to a feasible solution. 

Equation (45) represents an upper bound to the CVaR calculated in the left side of the equation. 

𝐶𝑉𝑎𝑅        is the maximum allowed portfolio’s CVaR. 

 

The second stage represents the operation of the capacity imposed by the first stage (dispatch 

decisions). The second-stage problem is given by: 

 𝑃2𝑠   𝑄 𝒚, 𝒄𝒔, 𝑭𝒔 = 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝒄𝒔
𝑻 ∙ 𝒙 (48) 

𝑠. 𝑡.: 

𝑭𝒔 ∙ 𝒚 + 𝑬 ∙ 𝒙 = 𝒉 (49) 

𝒙 ≥ 𝟎 (50) 

where 𝐱 corresponds to the generation (𝒙 𝑔𝑖,𝑗 ,𝑠), thus 𝑄 𝒚, 𝒄𝒔, 𝑭𝒔  is the minimization of the 

operational costs for every scenario s. Matrix 𝑬 contains all constraints related with the 

generation of each technology. Therefore, equation (49) is a matrix-vector expression which 

summarizes almost all the constraints explained in the model. 𝒉 is an auxiliary vector to fit the 

constraints expressed in matrices 𝑭𝒔 and 𝑬. 

 

The master problem (P1) is defined by a convex dominion and a convex objective function. This 

allows the linearization of non-linear terms through tangent planes, as it is done in the classic 

Benders’ decomposition problem. 

Moreover, function 𝑄 𝒚, 𝒄𝒔, 𝑭𝒔  has the same structure as the classic slave problem from 

Benders’ decomposition (Benders, 1962), so the same approximation (and cutting planes 

selection algorithm) can be used for solving this particular problem according to Papavasiliou et 

al. (2014). 

 

Taking this into account, the master problem can be re-written, including optimality cuts derived 

from Benders’ algorithm as follows: 

 

 𝑃1′  𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧𝐿 (51) 

𝑠. 𝑡.: 
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𝑧𝐿 ≥ 𝐝T ∙ 𝐲   (52) 

   

𝑧𝐿 ≥ 𝐝T ∙ 𝐲 +  𝑝𝑠 ∙ (Q 𝐲 𝒊, 𝐜𝐬, 𝐅𝐬 + (𝐲 𝒊 − 𝐲)T ∙ 𝐅𝑠
T ∙ 𝐮𝒊𝑠)

𝑠∈𝑆

 1 ≤ 𝑖 ≤ 𝑘   (53) 

 

𝑣𝑠 ≥ 𝐝T ∙ 𝐲 + Q 𝐲 𝒊, 𝐜𝐬, 𝐅𝐬 + (𝐲 𝒊 − 𝐲)T ∙ 𝐅𝑠
T ∙ 𝐮𝒊𝑠 − 𝛿 ∀𝑠 ∈ 𝑆, 1 ≤ 𝑖 ≤ 𝑘  (54) 

 

𝛿 +
1

1 − 𝛼
∙ 𝑝𝑠 ∙ 𝑣𝑠
𝑠∈𝑆

≤ 𝐶𝑉𝑎𝑅        
 (55) 

𝑣s ≥ 0  (56) 

𝒚 ∈ 𝒀  (57) 

𝛿 ≥ 0  (58) 

Auxiliary variables 𝑣𝑠 are used for obtaining the linear form of constraint (45) and u
i
s are the 

Lagrange multipliers of P2s associated with the coupling constraints (i.e. generation capacities), 

considering the i
th

 investment decision trial 𝒚 𝒊. Constraint (52) is added to avoid unboundedness 

by setting a lower limit. Using P1’ and P2s shown by equations (48)-(58), the following 

algorithm is proposed: 

Step 0: Set 𝑘 = 1. Initialize 𝑧 𝑙𝑜𝑤𝑒𝑟 = −∞, 𝑐 𝑙𝑜𝑤𝑒𝑟 = −∞ and  𝒚 1. Go to step 1. 

Step 1: Solve P1’. Set  𝒚 𝑘  equal to the optimal first-stage solution and set 𝑧 𝑙𝑜𝑤𝑒𝑟 = 𝑧 𝐿 and 

𝑐 𝑙𝑜𝑤𝑒𝑟 = 𝛿 + 1/(1 − 𝛼) ∙  𝑝𝑠 ∙ 𝑣 𝑠𝑠∈𝑆 . Go to step 2. 

Step 2: For all 𝑠 ∈ 𝑆, solve P2s using  𝒚 𝑘  as input. Set 𝒖𝑘𝑠 equal to the optimal multipliers of the 

coupling constraints in equation (49). Set 𝑧 𝑢𝑝𝑝𝑒𝑟 = 𝒅𝑇 ∙ 𝒚 𝑘 +  𝑝𝑠 ∙ 𝑄 𝒚 
𝑘 , 𝒄𝒔, 𝑭𝒔 𝑠∈𝑆  and 

𝑐 𝑢𝑝𝑝𝑒𝑟 = 𝐶𝑉𝑎𝑅𝛼(𝒄 𝒚 𝑘 , 𝒑).  

Where 𝐶𝑉𝑎𝑅𝛼(𝒙, 𝝆) is the function that computes the  1 − 𝛼  percentile conditional value at risk 

of the cost vector 𝒙 with the associated probabilities vector 𝝆. 𝒄 𝒚 𝑘  corresponds to the vector 

containing the total costs of every scenario computed when solving P2s slaves, given the first-

stage decision 𝒚 𝑘  and 𝒑 is the vector containing scenarios’ probabilities. Go to step 3. 

Step 3: If  𝑧 𝑢𝑝𝑝𝑒𝑟 − 𝑧 𝑙𝑜𝑤𝑒𝑟  ≤ 𝜀1  and  𝑐 𝑢𝑝𝑝𝑒𝑟 − 𝑐 𝑙𝑜𝑤𝑒𝑟  ≤ 𝜀2 then exit with 𝒚 𝑘  as the optimal 

solution. Otherwise, set 𝑘 = 𝑘 + 1 and go to step 1. 
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For the purpose of simplicity the addition of Benders’ feasibility cuts is not explained, although 

they might be necessary for obtaining the optimal solution. The addition of these cuts does not 

vary from the standard procedure done in Benders’ classical decomposition algorithm (Benders, 

1962). 

 

It is important to underscore that the exit criterion of the algorithm ensures that both expectation 

and CVAR functions are correctly approximated in the neighborhood of the optimal solution. We 

used an exit criterion of 1%. 

Appendix 4. Additional parameter values 

The values were selected according to regulation of the power sector in Chile and standard level 

in the electric power sector. A 399.67 $/MWh value of lost load is used, according to the short-

term failure cost reported by the Chilean regulator (National Commission of Energy). Maximum 

units’ outputs is assumed to be 400 MW with an hourly ramp rate (𝜌𝑖) of 40 MW/h for Coal, 240 

MW/h for Geothermal and Oil, 200 MW/h for LNG, Biomass and Solar CSP, and 360 MW/h for 

hydro-electric technologies. Emergency ramp rates (𝑝𝑖
′ ) are those used by Chaves et al. (2014) 

and equal to 38 MW/s for thermal plants and 8 MW/s for hydro-electric plants.
19

 In real power 

systems, primary frequency response service is provided by a subset of the conventional plants 

synchronized, which is represented in our model by defining two types of unit per technology: 

with and without capability to respond to frequency changes, in which the former presents a 

slightly higher investment cost that permits identification of the demand for the frequency 

response service. Also, operation is secured against the outage of a single unit (i.e. 400 MW), 

under which frequency is not allowed to violate a minimum value of 49.2 Hz from nominal value 

of 50 Hz (governors’ dead-band are assumed to be equal to ±25mHz and units’ inertia (H) is 

equal to 5 s).
 20,21

  We assume that costs associated with demand services are equal to 1 (2) $/MW 

if demand decreases (increases), reservoir seepage and evaporation losses are equal to 0.5% of 

stored water, and maximum capacity of the reservoir is very high and thus does not constrain 

hydro’s output. Portfolios will be determined by using a α-CVaR with an α of 95%. 

 

Symbol Description Value Unit 

𝑣𝑜𝑙𝑙 Value of lost load 399.67 $/MWh 

𝑃  Maximum power output of generic unit 400 MW 

𝑃𝑖  Minimum units output 
160 for thermal 

40 for hydro 
MW 

𝜌𝑖  Hourly ramp rate 

40 for Coal 

240 for Oil, Geothermal 

200 for LNG, Biomass, CSP 

360 Hydro 

MW/h 

𝜌𝑖
′  Emergency ramp rate 

38 for thermal plants 

8 for hydro plants 
MW/s 

𝑓0 Nominal system frequency 50 Hz 

𝑓𝑑𝑏  Governors frequency dead band ±25 mHz 

                                                 
19

 Emergency ramp rates are the ramp rates of the reserves used by the governor to maintain the security supply. 
20

 Chilean regulator states that under frequency load shedding must take place when system frequency reaches a 

threshold of 49.2 Hz. 
21

 Maximum allowed governors’ dead band in Chile. 
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𝑓𝑀𝐼𝑁  Minimum frequency allowed 49.2 Hz 

H Inertia constant of generic unit 5 s 

𝜆𝑖  
Factor of losses of stored water due to evaporation 

and/or seepage in the reservoir 
0.0051 p.u. 

𝑣 𝑖  Upper bound of stored water 10,321 MMm
3
 

ηi Average inflow-to-power rate 6,840 MWh/m
3 

ΔP Size of largest generation outage 400 MW 

𝑡𝑀𝐼𝑁,𝑑𝑏
𝑖  Deployment time of operating reserves 0.25 h 

𝐷𝑅𝑗 ,𝑠
𝑆  

Amount of curtailable demand for the operating 

reserve timeframe 
200 MW 

𝐷𝑅𝑗 ,𝑠
𝑃  

Amount of curtailable demand for the primary 

frequency control timeframe 
200 MW 

𝐹𝑆 
Fraction of fast start generation capacity that 

contributes to operating reserves 
1 p.u. 

𝑑𝑐− Cost of demand decrease 1 $/MW 

𝑑𝑐+ Cost of demand increase 2 $/MW 

𝑑𝑠
−

 Maximum fraction of demand that can be decreased 5% p.u. 

𝑑𝑠
+

 Maximum fraction of demand that can be increased 5% p.u. 

𝛼 
CVaR parameter that defines the (1- α)% highest 

cost scenarios 
95% p.u. 

𝜎𝑊𝑁𝐷  
Standard deviation of wind forecast errors in all 

hours 
12.8% p.u. 

𝜎𝑆𝑂𝐿,𝑗  Standard deviation of solar forecast errors in hour j 0% - 10.6% p.u. 

X Renewable policy target 20% p.u. 

 

Table 9. Parameters values.  

The table contains the parameters values assumed in the model. The table shows the nomenclature of the 

parameters (symbol), a brief description, the value considered as an input parameter and the corresponding 

unit of measurement. As the model is implemented for the Chilean Central Interconnected System (CIS), 

some values are reported by the Chilean regulator while others are taken from references. They respect 

standards level in the electric power sector. The acronym "p.u." refers to "per unit", expression of 

quantities as fractions of a defined base unit quantity. 


