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Abstract—This paper proposes a novel matching estimator where neighbors
used and weights are endogenously determined by optimizing a covariate
balancing criterion. The estimator is based on finding, for each unit that
needs to be matched, sets of observations such that a convex combination
of them has the same covariate values as the unit needing matching or with
minimized distance between them. We implement the proposed estimator
with data from the National Supported Work Demonstration, finding out-
standing performance in terms of covariate balance. Monte Carlo evidence
shows that our estimator performs well in designs previously used in the
literature.

I. Introduction

MATCHING estimators have been widely used in the
impact evaluation literature during the past decades.

These methods essentially rest on the imputation of a poten-
tial outcome to an individual, built as a weighted average
of the observed outcomes of his or her closest neighbors
from the corresponding counterfactual set. Given that, the
individual treatment effect is usually defined as the differ-
ence between the imputed and actual outcome. One popular
estimator is the simple matching estimator (also known as
nearest neighbor matching estimator) studied by Abadie and
Imbens (2006), where the outcome to be imputed is defined as
the average of the outcomes from a certain number of clos-
est neighbors, with closeness defined by distance induced
by a norm. The choice of the number of neighbors is up to
the researcher, and the weights are simply the reciprocal of
this number. As Imbens and Wooldridge (2009) state, “Lit-
tle is known about the optimal number of matches, or about
data-dependent ways of choosing it.”

In this paper, we propose a matching estimator where
the number of units used in each match and the weight-
ing scheme are endogenously determined from the solution
of an optimization problem. The first task deals with find-
ing sets of observations such that a convex combination of
them has exactly the same covariate values as the unit to be
matched, when possible, or otherwise where their distance is
minimized. Since this problem may have more than one solu-
tion, the second task consists of implementing a refinement
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criterion that looks for the set with the closest covariate values
to the unit to be matched. These problems (involving the two
tasks described) can be written as one optimization problem
whose admissible points belong to the solution set of another
optimization problem. In the optimization literature this is
called a bilevel optimization problem (BLOP).1

To fix ideas, assume we are interested in finding a match
for individual i with a unique real-valued characteristic
Xi ∈ R and outcome variable Yi ∈ R. Also assume that
individuals in the counterfactual group are indexed by j =
1, . . . , n, n > 2, with characteristics (covariates) and out-
comes given by Xj ∈ R and Yj ∈ R, respectively. Without
loss of generality, let us assume that X1 < ... < Xk < Xi <

Xk+1 < . . . < Xn. The first task of this optimization problem
is to look for individuals in the counterfactual group such that
the convex combination of their characteristics is as close as
possible to Xi. This problem has many solutions. For instance,
combining Xk and Xk+1 will match Xi, but the combination
of X1, X2, and Xn will also get an exact match. Hence, the
second task is another optimization problem that identifies
the solution that minimizes the sum of distances between Xi

and the characteristics from individuals used from the coun-
terfactual group. In this example, the solution of the BLOP
is the weighting scheme given by

λk = Xk+1 − Xi

Xk+1 − Xk
, λk+1 = Xi − Xk

Xk+1 − Xk
,

λj = 0, j �= k, k + 1,

which exactly matches Xi.2 Hence, our approach uses only
units k and k + 1 to perform the match, and according to this
approach, the potential outcome to be imputed to individual
i is

Ŷi =
n∑

j=1

λj Yj = λk Yk + λk+1 Yk+1.

When X ∈ RK is a K-dimensional vector of characteristics
(K >1), solving the BLOP could be difficult due to the great
number of alternatives that any optimization algorithm has to
evaluate in order to achieve a global solution. To circumvent
this complexity, we present an equivalent formulation of the
BLOP as a linear programming problem, for which there is
a vast literature in optimization that allows us to solve the
BLOP efficiently.

Our estimator is related to recent methods that use covari-
ate balance as a metric for selecting either the propensity

1 For details see Colson, Marcotte, and Savard (2007).
2 It is straightforward to check that Xi = λkXk + λk+1Xk+1. Additionally,

as will be discussed later, the number of matches will be determined by a
refinement criterion that minimizes the sum of distances between Xi and
the characteristics from the units used from the counterfactual group.
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score model or tuning parameters. Diamond and Sekhon
(2013) propose a search algorithm to iteratively check and
improve covariate balance. This is done by using a general-
ized version of the Mahalanobis distance that places different
weights on the covariates used in the matching algorithm.
The algorithm then iteratively chooses the weighting matrix
that provides the best covariate balance according to a loss
function depending on measures of imbalance such as the
Kolmogorov-Smirnov test statistic. These weights are com-
mon for all the units to be matched, generating a distance
metric to perform the matching optimizing postmatching
covariate balance. Our approach differs from theirs since
it looks for different weights that minimize the distance
between the match (built with these weights) and the unit.
This optimization is done for each observation that needs
to be matched so the weights are different observation by
observation. Thus, the method we develop is an optimiza-
tion problem (not an iterative algorithm) that jointly finds
the weights and determines the number of neighbors used
for each observation. The choice of neighbors is determined
by the fact that units with zero weight are then not used in
the match. Meanwhile, Graham, Pinto, and Egel (2012) pro-
pose a modified inverse probability weighting estimator that
also maximizes covariate balance and has the property of
being doubly robust (see Robins, Rotnitzky, & Zhao, 1994,
1995). These weights are optimally estimated to balance the
covariates and inversely depend on estimates of the propen-
sity score. Finally, Imai, and Ratkovic (2014) propose an
inverse propensity score weighting estimator that simulta-
neously optimizes the covariate balance and the prediction
of treatment assignment. The last two approaches are inverse
probability weighting methods that require the estimation of
the propensity score. Our method, however, is a nonpara-
metric matching method in characteristics with an optimal
choice of weights that by construction improves the covariate
balance.

Our paper is also related to the literature that tries to deter-
mine the number of neighbors to use when doing matching or
tuning parameters. Although there is not a theoretical foun-
dation, many researchers use cross-validation to select the
number of neighbors. For instance, Frölich (2004) uses that
in his investigations of finite sample properties of matching
estimators. Also, Galdo, Smith, and Black (2008) discuss
how to select the bandwidth when doing matching follow-
ing a weighted cross-validation strategy. The BLOP strategy
solves the issue of the number of neighbors selection since
the optimal weights that are different from 0 define the units
from the counterfactual group that participate in the optimal
convex combination. Indeed, from Caratheodory’s theorem
(see Rockafellar, 1972), the number of units should be at most
the pretreatment characteristic vector dimension plus 1. This
is relevant since when the estimation is implemented employ-
ing the entire sample (as we propose), there is no need to fix
the number of neighbors to be used for estimation.

Regarding large sample properties, the BLOP matching
estimator is consistent and asymptotically normal, under

regularity conditions assumed in the literature (see Abadie
& Imbens, 2006).3 We also provide a consistent estimator of
its marginal variance.

To assess the performance of the BLOP estimator in
finite samples, we implement different empirical designs and
Monte Carlo exercises. We use data from the National Sup-
ported Work Demonstration (NSW) to see its performance
compared to its natural competitor: the nearest-neighbor
matching estimator. Then, using the data-generating pro-
cesses from Busso, DiNardo, and McCrary (2014), we
implement Monte Carlo experiments in order to assess its
performance in terms of absolute bias, variance, and covari-
ate balance. We find significant improvements in comparison
to other matching estimators employed in the literature,
especially when the propensity score is underspecified.

This paper is organized as follows. The BLOP matching
estimator is introduced in section II, while in section III, we
study its performance using data from the NSW to assess its
performance compared to a simple matching estimator and
perform the empirical Monte Carlo exercise. In section IV,
we study the finite sample performance of our estimator under
misspecification. Section V concludes.

II. The BLOP Matching Estimator

In this section we illustrate and formalize our proposed
matching estimator beginning with introducing some basic
notations concerning binary program evaluation and certain
mathematical concepts needed for properly setting up the
method.

A. Basic Concepts and Notation

Following Imbens and Wooldridge (2009), we denote by
K ∈ N the number of pretreatment characteristics or covari-
ates. For a unit i, Wi ∈ {0, 1} indicates whether the treatment
was received (Wi = 1) or not (Wi = 0), Xi ∈ RK is the vec-
tor of covariates, and Yi = Wi Yi(1) + (1 − Wi) Yi(0) ∈ R

is the observed outcome, with Yi(1) and Yi(0) the outcome
that this unit would have obtained because of treatment or its
absence, respectively.

The matching metric we use is given by the Euclidean norm
in RK , denoted by ‖ · ‖, which means that the nearest neigh-
bors to each unit are determined according to the Euclidean
distance between corresponding covariates.4

As far as mathematical concepts are concerned, a vector
sum λ1 X1 + . . . + λN XN is called a convex combination
of vectors X1, . . . , XN ∈ RK if the coefficients λj are all
nonnegative and λ1 + . . . + λN = 1. The set of these
weights is the simplex of dimension N , hereafter denoted
by ΔN = {(λ1, . . . , λN) ∈ RN+,

∑N
j=1 λj = 1}. The convex

hull of {X1, . . . , XN} is the set of all convex combinations

3 Large sample properties are developed in detail in the online appendix.
4 Our approach can be extended to consider any other norm or even a

balancing score (see Rosenbaum & Rubin, 1983) by properly configuring
the setting we will present.
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Figure 1.—Spatial Configuration of Covariates {X1, . . . , XN0 } and

Their Convex Hull

of these vectors, which throughout this paper is denoted as
co{X1, . . . , XN} = { ∑N

j=1 λjXj, (λ1, . . . , λN) ∈ ΔN
}
.

We recall that the projection of X ∈ RK onto
co{X1, . . . , XN} is, by definition, the nearest vector to X
belonging to that set. Denoting it by Proj(X), it follows that5

‖X − Proj(X)‖ = min
Z∈co{X1,...,XN } ‖X − Z‖

= min
(λ1,...,λN )∈ΔN

∥∥∥∥∥∥X −
N∑

j=1

λjXj

∥∥∥∥∥∥ . (1)

B. Motivating Example

Consider we are interested in evaluating the effect of a
binary treatment due to a social program on some outcome
variable. Let the dimension of the covariate vector be K = 2,
and take a treated unit i, with observed outcome Yi(1) =
Yi ∈ R, and covariates Xi = (1, a) ∈ R2, with 0 ≤ a ≤ 1. In
this program, there are N0 ≥ 3 control units indexed by j =
1, . . . , N0, each one having observed outcome Yj(0) = Yj ∈
R, and covariates X1 = (0, 0), X2 = (2, 0) and Xj = (1, 1 +
j/N0) for j = 3, . . . , N0. Figure 1 illustrates the configuration
of these covariates. There, the convex hull of {X1, . . . , XN0}
is the shaded triangle with vertices X1, X2, and XN0 .

For a given j ∈ {3, . . . , N0}, highlighted by dashed lines in
figure 1, we have that Xi belongs to the interior of the triangle
with vertices X1, X2, and Xj, which is equivalent to stating
that there is a vector of weights (λ1, . . . , λN0) ∈ ΔN0 such
that Xi = ∑N0

s=1 λsXs, with λs > 0 for s = 1, 2, j, and 0
otherwise. In fact, for a given j as before, it is easy to see the
nonnull components of this vector of weights are given by

5 The uniqueness of this point comes from the fact that co{X1, . . . , XN } is
a convex and compact set. See Rockafellar (1972) for details on properties
of convex sets.

λ1 = j + (1 − a) N0

2 ( j + N0)
, λ2 = j + (1 − a) N0

2 ( j + N0)
,

λj = a N0

j + N0
. (2)

Consequently, varying j from 3 to N0, we have at least
N0 − 2 convex combinations of X1, . . . , XN0 that match Xi

in an exact manner. Leading from this is the question of
which of these convex combinations should be chosen to
match Xi. To answer this question, we first note that any of
these convex combinations exactly match Xi, which makes
us consider a refinement criterion. Thus, based on a conti-
nuity assumption of the relationship between covariates and
outcome, the refined solution proposed is the convex combi-
nation that while performing a perfect match has the closest
covariates to Xi. From figure 1, this refined solution is defined
by the triangle whose vertices are X1, X2, and X3. Given that,
and using these covariates with weights from equation (2)
with j = 3, we have a perfect match, that is,

Xi =
(

3 + (1 − a) N0

2 (3 + N0)

)
X1 +

(
3 + (1 − a) N0

2 (3 + N0)

)
X2

+
(

a N0

3 + N0

)
X3.

At this stage, it is important to note that when the matching
is performed using the nearest-neighbor approach, a perfect
match is not guaranteed. For instance, when the parameter
a is equal to 1 and the number of neighbors chosen is equal
to 3, we have that the nearest neighbors to unit i are units
3, 4, and 5. It is easy to check that convex combinations of
these units’ covariate will not achieve a perfect match for
Xi. This occurs since the nearest-neighbor approach does not
incorporate an explicit covariate balancing criterion when
choosing the neighbors.

Our refined solution solves an optimization problem that
optimizes individual covariate balance. In this regard, the
objective function proposed is the weighted sum of these dis-
tances with weights used to perform the convex combination.
As seen in the next section, by using this objective func-
tion, the proposed optimization problem becomes a linear
program implying a straightforward numerical implementa-
tion. Formally, when evaluated in the convex combination
with covariates X1, X2, Xj and weights from relation (2), the
objective function value is

λ1 ‖Xi − X1‖ + λ2 ‖Xi − X2‖ + λj ‖Xi − Xj‖
= (

√
1 + a2 + a)

(
1 − a N0

j + N0

)
, (3)

which clearly attains a minimum value when j = 3. This
corresponds to the triangle with the closest covariates to Xi

that was referred to previously as the refined solution to our
problem. Consequently, among the convex combinations per-
forming the best possible balance of Xi, our refined solution
minimizes the measure of performance, equation (3). Thus,
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the weighting scheme is given by relation (2) evaluated at
j = 3, implying that the missing potential outcome to impute
to unit i according to this approach is

Ŷi(0) =
(

3 + (1 − a) N0

2 (3 + N0)

)
Y1 +

(
3 + (1 − a) N0

2 (3 + N0)

)
Y2

+
(

a N0

3 + N0

)
Y3,

where the estimated individual treatment effect for this unit
is given by Yi − Ŷi(0).

When the unit needing matching does not belong to the
counterfactual group’s convex hull of covariates, we propose
to find the convex combination that exactly balances the pro-
jection of its covariates onto that convex hull. Illustrated in
figure 1, this case occurs when X∗

i , instead of Xi, is the vector
of covariates of unit i. Denoting by Proj(X∗

i ) the projection
of X∗

i onto co{X1, . . . , XN0}, our solution uses covariates X2

and XN0 to perform that projection, with optimal weights pro-
portional to the distance from Proj(X∗

i ) to X2 and Proj(X∗
i )

to XN0 .

Remark 1. The weighting scheme described depends on
the covariates of the unit that needs to be matched and the
covariates of the units participating in the matching (i.e., hav-
ing strictly positive weights). That we optimize over the entire
sample of opposites for determining such optimal weights
does not imply we are necessarily using all of them when
matching Xi. Indeed, as a direct consequence of Carathe-
dory’s theorem (see Rockafellar, 1972), the number of units
used is usually fewer than or equal to the number of covari-
ates plus 1: K +1, usually far from the number of opposites in
the sample. Consequently, by using this approach, we would
avoid an exogenous number of neighbors, a crucial tuning
parameter for most matching methods currently available (see
Imbens & Wooldridge, 2009).

C. Formal Aspects of the Bilevel Matching Estimator

Following the notation introduced in section IIA, the sam-
ple of covariates, outcomes, and treatment assignment is
denoted by {(Xi, Yi, Wi)}N

i=1, with N ∈ N the sample size,
and N1 and N0 the number of treated and control units,
respectively. We note that for each unit i, the number of
units in its opposite treatment group is N1−Wi ∈ {N0, N1}.
By reordering, in what follows we assume that control units
are indexed 1, . . . , N0; thus, the treated ones are labeled by
N0 + 1, . . . , N0 + N1 ( = N).

For each unit to be matched, we show that the proposed
weighting scheme solves a linear optimization problem; thus,
the estimation can be efficiently implemented using opti-
mization routines available on the our web pages. To do so,
without loss of generality, we describe the approach for a
treated unit i ∈ {N0 + 1, . . . , N}. Now, since Proj(Xi) = Xi if
and only if Xi ∈ co{X1, . . . , XN0}, there is no reason to present
the method separately for the cases mentioned in section IIB,

that is, whether Xi belongs to the convex hull of opposite
units’ covariates. Hence, we present the method for matching
the projection that allows us to write the problem, as a linear
program, as shown next. Given that, we now note any weight-
ing scheme that serves to match Proj(Xi) ∈ co{X1, . . . , XN0}
solves the next optimization problem (see relation [1] in
section IIA):

Pi : min
(λ1,...,λN0 )∈ΔN0

∥∥∥∥∥∥Xi −
N0∑
j=1

λj Xj

∥∥∥∥∥∥ . (4)

From the example in section IIB, we have that the solution
set of problem (4), namely, argmin(Pi) ⊆ ΔN0 , may have
more than one element. For any of them, say, (λ1, . . . , λN0) ∈
argmin(Pi), the measure of performance, evaluated in the
convex combination that uses this vector of weights, is given
by

N0∑
j=1

λj ‖Xi − Xj‖.

Consequently, adapting the refinement criterion introduced
in section IIB to this setting, the weighting scheme we are
looking for solves the next optimization problem:

min
(λ1,...,λN0 )

N0∑
j=1

λj ‖Xi − Xj‖

s.t.
N0∑
j=1

λjXj = Proj(Xi), (5)

N0∑
j=1

λj = 1, λj ≥ 0, j = 1, . . . , N0.

Due to the set of admissible points of problem (5) are the
solutions of another optimization problem, namely, equa-
tion (4), it is called a bilevel optimization problem, BLOP
(see Colson et al., 2007).

The main difficulty in solving linear optimization problem
(5) is determining the projection of Xi onto the convex hull of
opposite units covariates, Proj(Xi), which can be solved effi-
ciently using methods currently available in the optimization
literature (see Botkin & Stoer, 2005).

When i is a control unit, the BLOP must be solved
using covariates XN0+1, . . . , XN ; thus, the optimal weighting
scheme belongs to ΔN1 . By properly configuring the BLOP
in terms of covariates, the solution of problem (5) for any unit
i ∈ {1, . . . , N} is denoted by

λ(i) =
(
λ1(i), . . . , λN1−Wi

(i)
)

∈ ΔN1−Wi
. (6)
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Given that, by setting

Ŷ b
i = Wi

N0∑
j=1

λj(i) Yj + (1 − Wi)

N1∑
j=1

λj(i) YN0+j,

the missing potential outcome we impute to unit i is

Ŷi(0) =
{

Yi if Wi = 0
Ŷ b

i if Wi = 1
,

Ŷi(1) =
{

Ŷ b
i if Wi = 0

Yi if Wi = 1.

Thus, our proposed matching estimator is defined as
follows:

Definition 1. The BLOP matching estimator for the aver-
age treatment effect and the average treatment effect on the
treated are, respectively,

τ̂b = 1

N

N∑
i=1

(
Ŷi(1) − Ŷi(0)

)
,

τ̂b
tre = 1

N1

N∑
i=1

Wi
(
Ŷi(1) − Ŷi(0)

)
. (7)

D. Variance and Large Sample Properties

We present marginal variance estimators for the aver-
age treatment effect and the average treatment effect on the
treated. Following Abadie and Imbens (2006), a variance
estimator of the conditional mean of τ̂b is given by

V̂
(
E(̂τb | {Xi, Wi}N

i=1)
) = 1

N2

N∑
i=1

( (
Ŷi(1) − Ŷi(0) − τ̂b

)2

−
(

1 + c[2]
i

)
σ̂2

i

)
, (8)

while the estimator for the expected value of the conditional
variance is

Ê
(
V

(̂
τb | {Xi, Wi}N

i=1

)) = 1

N2

N∑
i=1

(
1 + c[1]

i

)2
σ̂2

i , (9)

where c[α]
i , α = 1, 2, is the sum of weights, to the power of α,

associated to unit i when used as a counterfactual individual,6
and σ̂2

i is a BLOP matching estimator of the conditional vari-
ance σ2(Xi, Wi) = V(Y | X = Xi, W = Wi).7 Using equations

6 We recall that control units are indexed by 1, . . . , N0, while the treated
ones are labeled by N0 +1, . . . , N0 +N1. This implies that for a given integer
α, when i is a treated unit, c[α]

i = ∑N0

j=1

(
λi−N0 ( j)

)α
, and when i is a control

unit, c[α]
i = ∑N1

j=1 (λi(N0 + j))α. In each case, this comes directly from the
the solution of the optimization problem (5).

7 The BLOP matching estimator of the conditional variances requires solv-
ing problem (5) for each unit that needs to be matched, using covariates from
units in the same treatment group and leaving the ith unit out, instead of
using covariates from units in the the opposite treatment group. See the
online appendix for more details.

(8) and (9), we have a consistent estimator of the variance
of τ̂b,

V̂ (̂τb) = 1

N2

N∑
i=1

( (
Ŷi(1) − Ŷi(0) − τ̂b

)2

+
[(

1 + c[1]
i

)2 −
(

1 + c[2]
i

)]
σ̂2

i

)
,

and restricting this estimator to the subsample of treated
units, after some simple manipulation, we have the estimator
of the variance of τ̂b

tre:

V̂ (̂τb
tre) = 1

N2
1

N∑
i=1

(
Wi

(
Ŷi(1) − Ŷi(0) − τ̂b

tre

)2

+ (1 − Wi)

[(
c[1]

i

)2 − c[2]
i

]
σ̂2

i

)
.

Asymptotic properties are studied in the online appendix,
where we show, under suitable conditions, the consistency of
the variance estimator for τ̂b, the asymptotic normality of the
BLOP matching estimator for the average treatment effect,
and that the conditional bias of τ̂b is Op

(
N−1/K

)
. Some of the

proofs are straightforward extensions of those from Abadie
and Imbens (2006) for the simple matching estimator.

III. Empirical Application and Monte Carlo Evidence

In this section we implement the proposed estimator to data
from the National Supported Work (NSW) Demonstration
and evaluate its performance in an empirical Monte Carlo
design based on these data.

A. NSW Demonstration

In order to assess the performance of the BLOP match-
ing estimator, we provide estimates of the average treatment
effect on the treated (ATT) using two control groups: the con-
trol group from the experimental sample from Lalonde (1986)
and a control group from the Panel Study of Income Dynam-
ics (PSID) used by Dehejia and Wahba (1999), Smith and
Todd (2005), and Abadie and Imbens (2011), among others.

Table 1 presents some summary statistics of the data. As
can be seen from the experimental data, treated and control
units are well balanced in terms of sample means. Indeed,
we fail to reject the null hypothesis of the differences being
equal to 0 for the nine covariates considered. However, when
comparing the treated units from the experimental data with
those from the control group in the nonexperimental data
(PSID), we can see that the samples differ significantly in
terms of first moment for eight of the nine covariates. The
only case in which we fail to reject the null hypothesis of
means equality is for the Hispanic dummy variable. Thus,
using the nonexperimental data is an interesting scenario to
check the balancing properties of the proposed estimator.

In table 2 we present the ATT results for both control
groups. In addition, we compare our estimator with those
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Table 1.—Summary Statistics

Experimental Data Nonexperimental PSID P-Value

Treated (185) Control (260) Control (2490)
Treat/Control Treat/

Variable Mean (SD) Mean (SD) Mean (SD) Experiment Control PSID

Age 25.8 (7.2) 25.1 (7.1) 34.9 (10.4) 0.27 0.00
Education 10.3 (2.0) 10.1 (1.6) 12.1 (3.1) 0.15 0.00
Black 0.84 (0.36) 0.83 (0.38) 0.25 (0.43) 0.65 0.00
Hispanic 0.06 (0.24) 0.11 (0.31) 0.03 (0.18) 0.06 0.13
Married 0.19 (0.39) 0.15 (0.36) 0.87 (0.34) 0.33 0.00
Earnings ’74 2.10 (4.89) 2.11 (5.69) 19.4 (13.41) 0.98 0.00
Earnings ’75 1.53 (3.22) 1.27 (3.10) 19.1 (13.60) 0.39 0.00
Unemployed ’74 0.71 (0.46) 0.75 (0.43) 0.09 (0.30) 0.33 0.00
Unemployed ’75 0.60 (0.49) 0.68 (0.47) 0.10 (0.28) 0.07 0.00

Earnings are expressed in thousands of 1978 dollars. The last two columns show the p-values for the differences in means test between treated and controls from the two samples.

Table 2.—Estimates for the NSW Data

Neighbors

Optimal k = 1 k = 4 k = 16 k = 64 All

A: Experimental control group
BLOP 1,728.9 – – – – –

(764.1)
NN covariates – 1,223.2 1,994.6 1,753.3 2,204.9 1,794.3

(867.3) (763.9) (759.1) (754.2) (712.6)
NN p-score – 1,608.2 1,970.9 1,863.8 1,847.1 1,794.3

(824.1) (751.9) (731.8) (729.9) (712.6)
B: Nonexperimental control group (PSID)

BLOP 2,338.9 – – – – –
(868.3)

NN covariate – 2,073.5 1,618.7 469.2 −111.6 −15,204.8
(1,678.6) (1,544.1) (1,137.3) (865.0) (627.2)

NN p-score – 2,141.7 2,061.8 1,014.4 −182.1 −15,204.8
(1,555.6) (1,483.1) (1,378.2) (991.0) (627.2)

The estimator presented is for the ATT. BLOP refers to our proposed estimator, and NN refers to nearest-neighbor matching estimator. For the experimental sample, the optimal number of matches was 2.66 (ranging
from 1 to 8), and for the nonexperimental, it was 2.44 (ranging from 1 to 5). Standard errors follow the approach of Abadie and Imbens (2006).

from the nearest-neighbor matching estimator with differing
number of matches (from 1 to all). As can be observed, with
the experimental data (NSW control group), the estimate is
very close to the benchmark (US$1,794) and is comparable
to those obtained with nearest neighbor using 16 neighbors.
However, for the BLOP estimator, only an average of 2.66
neighbors per observation was needed (ranging from 1 to 8).8
With the BLOP matching estimator, we do not need to worry
about the choice of number of matches.

When analyzing the results for the PSID control group,
we can see that the nearest-neighbor estimator performs rela-
tively well with 1 and 4 neighbors but poorly when the number
of neighbors increases. The BLOP estimator gives a slightly
higher estimate than the nearest neighbor, and it does not
explode (in terms of bias) as the nearest neighbor since it
chooses optimally the number of neighbors. In this case, for
each unit to match, only 2.44 neighbors were needed on aver-
age. In figure 2 we present the histograms for the number of
units used for the experimental and the PSID sample. In the
upper panel we show the histogram for the experimental data.
As can be observed, it is highly left-skewed, with a median
value equal to 2. The lower panel shows the histogram for
the number of units used with the PSID control group. As

8 In each match, a neighbor j is considered “used” if λj > 0, which
translates to λj > 1e − 15 in the numeric implementation.

with the experimental data, the histogram is left-skewed but
less so. Additionally, the median value of the number of units
used in this case is equal to 2 as well.

As we mentioned before, the nonexperimental data from
the PSID are quite different from the experimental data con-
trol group. Thus, it is interesting to analyze the postmatching
balance of our estimator. To do so, we compare the sample
mean and Kolmogorov-Smirnov distances among the treated
units and their counterfactuals, constructed with the units
chosen for each match and the computed optimal weights.
Table 3 presents the results of the postmatching balance.
The BLOP estimator is able to balance the nine covari-
ates, for sample means (failing to reject the null of means
equality at 1%). For the continuous covariates we perform a
Kolmogorov-Smirnov test and compute the p-values imple-
menting bootstrapping with 500 repetitions. For three of
the four continuous covariates, we cannot reject the null of
equality of treated units distribution and their counterfactuals.

B. Empirical Monte Carlo

In this section we implement an empirical Monte Carlo
experiment to evaluate the performance of the BLOP match-
ing estimator for the ATT. We compare its performance in
terms of bias, variance, and postmatching covariate balance
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Figure 2.—Frequencies of the Number of Neighbors Used

for Each Unit Matched

to the nearest-neighbor matching estimator (on covariates
and propensity score) and the normalized inverse probability
weighting estimators (IPW).9

The empirical Monte Carlo design is taken from Busso
et al. (2014). They focus on the African American subsam-
ple in the experimental group (156 individuals); the control
group is taken from the PSID (624). The covariates con-
sidered are similar to those in section IIIA (age, education,
marital status, earnings in 1974 and 1975, and unemployment
in 1974 and 1975), plus a dummy for high school dropouts.
Also, interactions between the 1974 and 1975 unemployment
dummies and between 1974 and 1975 earnings are included.
Finally, earnings in 1974 and 1975 squared complete the full
set of covariates. Let Xi be the list of covariates (exclud-
ing squared terms and interactions) and Zi the full set of
covariates (including squared terms and interactions).

The data generation process (DGP) is explained in detail
in Busso et al. (2014) but we touch on it briefly. The main
framework is given by the following equations,

Yi(0) = m(Zi) + σε, (10)

T∗
i = α + βZi − Ui, (11)

where Zi is a function of the covariates (described previously)
and Ui follows a standard logistic distribution. Each sample

9 See Imbens (2004) for a discussion of this estimator.

Table 3.—Postmatching Balance: NSW Data with PSID Controls

Mean Mean t-Statistic KS
Treated Control p-value p-value

Variable (1) (2) (3) (4)

Age 25.82 27.06 0.092 0.004
Education 10.35 10.33 0.934 0.800
Black 0.84 0.84 1.000 –
Hispanic 0.06 0.06 1.000 –
Married 0.19 0.19 0.995 –
Earnings ’74 2,095.57 2,211.63 0.818 0.590
Earnings ’75 1,532.06 2,563.57 0.013 0.062
Unemployed ’74 0.71 0.71 0.968 –
Unemployed ’75 0.60 0.60 0.953 –

Postmatching balance is evaluated by comparing treated units and their counterfactuals built with units
from the control group and their optimal weights from the BLOP. Column 1 shows the sample mean of
covariates of treated units from the NSW experimental sample. Column 2 is the sample mean of covariates
of counterfactual values from the PSID sample using optimal weights. Column 3 shows the p-values of
the difference in means test between columns 1 and 2. Column 4 shows the p-values for the Kolmogorov-
Smirnov test for equality of distribution between treated units and their counterfactual values for the
nonbinary covariates.

is constructed such that covariates (Xi) are drawn from a pop-
ulation model (that uses first and second moments from the
original sample). Then Ui are drawn from a standard logistic
distribution and T∗ is generated using equation (11), where
we use, instead of α and β, the coefficients from a logistic
regression estimated on the original NSW sample. Hence,
a latent treatment variable T∗ is generated using equation
(11). Using a linear function for m(·) and sampling ε from
a standard normal distribution (independent of Xi), we use
equation (10) to generate Yi(0) = δ′

0Zi + ε0i. Instead of
δ0, we use the coefficients from a regression of Yi(0) on
Zi using control observations in the NSW sample. The root
mean squared error of the regression is assigned to σ2

0. Yi(1)

is constructed analogously, regressing Yi(1) on Zi using the
treated units from the NSW sample. Finally, we construct
Yi = TiYi(1) + (1 − Ti)Yi(0).

We draw 5,000 random samples of size N = 400. The
population treatment effect on the treated for this benchmark
case is $2,334. Since the benchmark case has poor or bad
overlap, Busso et al. (2014) also consider a case with good
overlap to evaluate the performance of different estimators
under the two cases.10

In table 4, we present the estimates of different matching
estimators to assess the BLOP’s performance in compari-
son to commonly used estimators such as nearest neighbor
in characteristics, nearest neighbor in propensity score, and
the normalized inverse probability weighting (IPW) estima-
tor (Hirano, Imbens, & Ridder 2003). In this exercise, the
propensity score is correctly specified so nearest-neighbor
matching estimators on the propensity score and IPW are well
specified. As can be seen, for the design with poor overlap
(panel A) the BLOP estimator (on characteristics) performs
well in terms of bias when compared to the nearest-neighbor
estimator in characteristics. As noted, when the number of
neighbors increases, the bias increases by a factor of 11 and
its variance decreases to a third, a remark on the importance

10 In this case, the parameters of the selection to treatment equation are
divided by 5, so the random component in the assignment to treatment (Ui)
is relatively more important, implying a better overlap of the data.
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Table 4.—Empirical Monte Carlo Results

BLOP BLOP
NN Covariates NN p-Score

Covariates p-Score k = 1 k = 4 k = 16 k = 1 k = 4 k = 16 IPW

A: Bad overlap
Absolute Bias × 1,000 97.89 28.84 116.11 353.11 1,369.62 25.15 213.79 1,194.95 147.70
Variance × n 3,379.62 5,139.79 3,442.77 1,908.3 1,014.64 5,341.96 3,090.08 1,686.45 3,610.69

B: Good overlap
Absolute Bias × 1,000 10.69 34.56 71.19 24.10 233.15 27.43 2.16 51.62 13.82
Variance × n 795.36 990.36 859.22 678.79 633.60 1,039.88 787.57 720.98 829.45

The data-generating process follows Busso et al. (2014) with n = 400. BLOP Covariates correspond to our estimator performing the matching on characteristics and BLOP p-score to our estimator doing the matching
on the estimated propensity score from a correctly specified model. NN Covariates corresponds to the k-nearest-neighbor matching estimator on characteristics and NN p-score to the k-nearest-neighbor matching
estimator on the propensity score. IPW corresponds to the normalized inverse probability weighting estimator. Bad overlap corresponds to the NSW DGP that mimics the overlap of the original NSW sample. Good
overlap, in panel B, corresponds to the NSW DGP in which the coefficients of the selection equation are divided by 5.

of the choice of the number of matches.11 One plausible expla-
nation for the dramatic increase in the bias is related to the
overlap being poor. Thus, increasing the number of neigh-
bors necessarily implies including units far away from the
units that need to be matched. When compared to the IPW,
the BLOP matching estimator in covariates performs slightly
better than the IPW in terms of bias and variance. We also
compute the BLOP estimator on the (correctly specified)
propensity score. As shown in table 4, the BLOP match-
ing estimator on the propensity score performs similar to the
IPW in terms of bias and variance. Nearest-neighbor match-
ing estimators on the propensity score perform well with few
neighbors (between 1 and 4), but when they increase to 16,
the performance is poor in terms of bias.

When analyzing the results with good overlap (see table 4,
panel B) the results are qualitatively similar to those with poor
overlap. The BLOP matching estimator in covariates and the
IPW performs similarly well in terms of bias and variance.
Nearest-neighbor matching estimator on covariates also per-
forms well with four neighbors in terms of bias that increases
by a factor of 10 with sixteen neighbors. Nearest-neighbor
matching on propensity score achieves its best performance
in term of bias with four neighbors, which increases by a fac-
tor of 24 with sixteen neighbors. Thus, the BLOP matching
estimator has excellent performance that solves an impor-
tant issue: it determines the number of neighbors used (by
finding the weights that optimize covariate balance), an open
question for nearest-neighbor estimators.

Next, we check the postmatching balance performance of
the estimators analyzed in table 4. In table 5 we show the
p-values of the difference in means test for all the covari-
ates between the means of treated individuals and means of
their counterfactual values in the control group, using the
weighting scheme of each matching estimator. The BLOP
matching estimator has the higher average p-value in both
designs (panels A and B). In general, matching estimators
on the (correctly specified) propensity score and IPW per-
form well. However, when overlap is poor, nearest-neighbor
matching estimator on covariates performs poorly relative to
the BLOP or IPW estimators when the number of neighbors
increases (both designs).

11 See Härdle (1990) for details about the trade-off bias-variance in
nearest-neighbor estimators.

Hence, the empirical Monte Carlo evidence suggests that
when the propensity score is correctly specified, matching on
propensity score with few neighbors (between 1 and 4) and
reweighting (IPW) performs well in terms of bias, variance,
and balance. The BLOP matching estimator also performs
well without needing to estimate the propensity score and
without the need of arbitrarily fixing the number of neigh-
bors. The next section analyzes the case of misspecification
in the selection equation and, hence, the propensity score
estimation.

IV. Finite Sample Properties and Misspecification

In this section we implement Monte Carlo simulations with
different designs taken from Busso et al. (2014) and evaluate
the BLOP’s performance comparing it to other matching esti-
mators in cases of correct and misspecification of the outcome
and selection equations.

Design 1 considers a linear model for both the outcome and
the selection equation. The number of observations is N =
200, and there are four covariates (X1, X2, X3, X4) normally
distributed with zero mean and a block diagonal matrix given
by Σ.12 This structure permits correlation between only X1

and X2 and only X3 and X4. The main framework follows
equations (10) and (11). As in the empirical Monte Carlo of
section III, Zi is a function of the covariates specified below
and Ui follows a standard logistic distribution. Hence, a latent
treatment variable T∗ is generated using equation (11). Using
a linear function for m(·) and sampling ε from a standard
normal distribution (independent of Xi) and setting σ = 1,
we use equation (10) to generate Yi(0). We assume a constant
treatment effect equal to 1 to generate Yi(1) = Ti + Yi(0)

where T = 1(T∗ > 0) where 1(·) is an indicator function
that is equal to 1 when the argument is true and 0 otherwise.

Design 2 considers a linear model with interactions for
both the outcome and the selection equation. Hence, Zi

includes the four linear terms (X1, X2, X3, X4) plus the six
interactions (X1X2, X1X3, and so on).

For both designs, we consider cases of correct and misspec-
ification for the propensity score. Table 6 shows the results of
this Monte Carlo exercise after 5,000 replications. Focusing

12 The lower right and upper left blocks of Σ are given by 1
3

(
1 −1

−1 2

)
.
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Table 5.—Postmatching Balance Empirical Monte Carlo

BLOP BLOP
NN Covariates NN p-Score

Variable Covariates p-Score k = 1 k = 4 k = 16 k = 1 k = 4 k = 16 IPW

A: Bad overlap
Age 0.22 0.32 0.11 0.04 0.00 0.30 0.28 0.20 0.24
Education 0.43 0.24 0.24 0.28 0.20 0.25 0.31 0.43 0.27
Dropout 0.82 0.23 0.51 0.24 0.40 0.23 0.30 0.42 0.25
Married 0.74 0.45 0.32 0.13 0.00 0.39 0.39 0.14 0.34
Unemployed ’74 0.47 0.49 0.07 0.01 0.00 0.42 0.45 0.18 0.31
Unemployed ’75 0.99 0.30 0.41 0.28 0.02 0.44 0.46 0.14 0.26
Earnings ’74 0.62 0.52 0.49 0.04 0.00 0.38 0.34 0.04 0.39
Earnings ’75 0.33 0.54 0.99 0.86 0.18 0.26 0.31 0.12 0.39
Average p-value 0.59 0.39 0.39 0.23 0.10 0.33 0.36 0.21 0.31
Min p-value 0.22 0.23 0.07 0.01 0.00 0.23 0.28 0.04 0.24

B: Good overlap
Age 0.78 0.54 0.44 0.49 0.43 0.48 0.56 0.57 0.57
Education 0.79 0.50 0.44 0.50 0.48 0.50 0.57 0.60 0.58
Dropout 0.95 0.49 0.64 0.48 0.33 0.48 0.57 0.58 0.57
Married 0.92 0.58 0.50 0.50 0.38 0.48 0.57 0.59 0.57
Unemployed ’74 0.89 0.63 0.42 0.40 0.16 0.51 0.60 0.63 0.55
Unemployed ’75 0.95 0.57 0.44 0.53 0.41 0.51 0.59 0.62 0.55
Earnings ’74 0.53 0.66 0.90 0.34 0.04 0.45 0.53 0.54 0.59
Earnings ’75 0.91 0.69 0.93 0.49 0.12 0.44 0.51 0.52 0.59
Average p-value 0.89 0.58 0.59 0.46 0.29 0.48 0.56 0.58 0.57
Min p-value 0.78 0.49 0.42 0.34 0.04 0.44 0.51 0.52 0.55

P-values of the difference in means test between means of treated individuals and means of their counterfactual values in the control group, using the weighting scheme of each matching estimators. BLOP Covariates
perform the matching on characteristics and BLOP p-score on the estimated propensity score from a correctly specified model. NN Covariates corresponds to the k-nearest-neighbor matching estimator on characteristics
and NN p-score to the one on the propensity score. IPW corresponds to the normalized inverse probability weighting estimator. Bad overlap corresponds to the NSW DGP that mimics the overlap of the original NSW
sample. Good overlap in panel B corresponds to the NSW DGP in which the coefficients of the selection equation are divided by 5.

on absolute bias and empirical variance of the estimators, we
see that the BLOP in characteristics performs well in terms
of absolute bias compared to the nearest-neighbor matching
estimator (NN) in design 1 (table 6, columns 1 to 3). The
BLOP estimator based on the correctly specified propensity
score (linear, column 1) is very competitive with nearest-
neighbor estimates on the propensity score and IPW. When
the propensity score is misspecified (interactions only, col-
umn 2), the performance of the BLOP on characteristics is
outstanding relative to the other estimators. When overspec-
ified (linear plus interactions, column 3), the comparison is
similar to the case in which the propensity score is correctly
specified.

In design 2 (table 6, columns 4 to 6), the true specifi-
cation of the propensity score (and m(Zi)) is a linear plus
interaction equation (column 6). When the propensity score
is underspecified (linear, column 4), the nearest-neighbor
matching estimator (on covariates) performs well with 1 and
4 neighbors. With 16 neighbors, nearest-neighbor matching
on covariates performs similar to the BLOP, but with 64
neighbors, its bias greatly increases. Estimates based on the
propensity score perform poorly in terms of bias with 1 and
4 neighbors but improve significantly with 64 neighbors.

The second case of underspecification is when the selec-
tion equation considers only interactions but no linear terms
(interactions, column 5 in table 6) and the results are similar
to the previous case. When the selection equation is correctly
specified (linear plus interactions, column 6 in table 6), esti-
mates based on the propensity score perform very well.
Specifically nearest neighbor on propensity score with 1
and 4 neighbors, IPW and the BLOP on the propensity
score are very close in absolute bias and variance. Thus,

under misspecification, the BLOP (on covariates) performs
very well in comparison to other estimators based on the
propensity score, especially when this is underspecified.

V. Conclusion

The main advantages of the BLOP matching estimator
are that it directly determines the weights and the matches
used while optimizing the postmatching covariate balance.
As stated in previous research, there is little known about the
optimal number of matches or about data-dependent ways of
finding it (Imbens & Wooldridge, 2009). Additionally, there
is no clear way to measure covariate balance (Diamond &
Sekhon, 2013). In this paper we contribute to the matching
literature by linking the choice of matches and weights to the
improvement of postmatching covariate balance.

The method we develop is not an algorithm that itera-
tively checks covariate balance until convergence. Instead,
it is an optimization problem that incorporates an individual
covariate balancing criterion in the objective function that
determines the weights used in each match. It can be written
as a linear program that allows us to use standard optimiza-
tion techniques to solve the problem quickly. We provide an
R package called blopmatching that implements the proposed
estimator.

The empirical analysis shows that the BLOP matching
estimator provides an outstanding postmatching balance and
performs well in terms of bias and variance when compared
to nearest-neighbor matching estimators (for both covariates
and propensity score) and the normalized inverse probabil-
ity weighting estimator. Major improvements are observed
when there is underspecification of the selection equation
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Table 6.—Monte Carlo Evidence, Misspecified Models

Design 1 Design 2

Linear + Linear +
Variable Linear Interactions Interactions Linear Interactions Interactions

(1) (2) (3) (4) (5) (6)

A: Absolute Bias × 1,000
BLOP covariates 110.6 110.6 110.6 86.9 86.9 86.9
BLOP p-score 6.1 595.6 11.9 101.8 175.5 1.7
NN covariates

k = 1 183.5 183.5 183.5 26.7 26.7 26.7
k = 4 274.7 274.7 274.7 45.4 45.4 45.4
k = 16 428.5 428.5 428.5 97.9 97.9 97.9
k = 64 560.7 560.7 560.7 138.0 138.0 138.0

NN p-score
k = 1 6.6 595.8 12.6 101.3 174.3 2.0
k = 4 26.6 592.6 31.5 101.3 169.5 6.6
k = 16 107.1 584.1 108.4 91.7 156.7 29.9
k = 64 389.4 571.6 395.6 34.2 122.9 83.1

IPW 3.4 595.3 10.0 108.7 177.9 3.3
B: Variance ×n

BLOP covariates 8.3 8.3 8.3 7.1 7.1 7.1
BLOP p-score 9.6 11.2 10.5 8.2 8.3 9.2
NN covariates

k = 1 7.9 7.9 7.9 7.1 7.1 7.1
k = 4 6.1 6.1 6.1 5.3 5.3 5.3
k = 16 6.0 6.0 6.0 5.1 5.1 5.1
k = 64 6.6 6.6 6.6 5.4 5.4 5.4

NN p-score
k = 1 10.2 12.1 11.2 8.9 9.1 9.9
k = 4 7.1 8.1 7.6 6.1 6.2 6.6
k = 16 5.9 7.2 6.4 5.3 5.6 5.5
k = 64 6.0 7.1 6.5 5.4 5.6 5.3

IPW 7.1 7.2 7.8 5.2 5.6 5.8

The data-generating process follows Busso et al. (2014) with n = 200 and 5,000 repetitions. Design 1 corresponds to a linear equation for the outcome equation and linear equation for the selection equation. Design
2 corresponds to a linear plus interaction equation for the outcome and selection equations. Thus, in design 1, column 1 corresponds to a correctly specified model for the propensity score, column 2 to a misspecified
model, and column 3 to an overspecified model for the propensity score. For design 2, columns 4 and 5 correspond to a missspecified model for the propensity score and column 6 to a correctly specified model for the
propensity score.

for estimating the propensity score. Hence, our method gives
researchers a new alternative matching estimator that pre-
vents the selection of an arbitrary number of neighbors or the
estimation of the propensity score.
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