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Abstract The optimal setting of public transport pricing and supply levels has been

traditionally analysed with analytical models that combine the objectives of users, service

providers and decision makers in optimisation problems. In this paper, public transport fare

and headway are jointly optimised using an activity-based simulation framework. Unlike

traditional analytical models that find single optimal values for headway, fare and other

optimisation variables, we obtain a range of values for the optimal fare and headway, due

to the randomness in user behaviour that is inherent to an agent-based approach. Waiting

times and implications of an active bus capacity constraint are obtained on an agent-by-

agent basis. The maximisation of operator profit or social welfare result in different

combinations of the most likely optimal headway and fare. We show that the gap between

welfare and profit optimal solutions is smaller when users can adjust their departure time

according to their activities, timetabling and convenience of the public transport service.

Keywords Agent-based simulation � Randomness � Public transport supply � Optimal

pricing � Social welfare � Operator profit

Introduction

It is estimated that metropolitan areas will continue to contribute a large proportion of a

country’s economic power and will thus attract people from rural areas. By the year 2030,

more than 60 % of the world’s population is expected to be living in major cities.

Therefore, the relevance of public transport as a provider of accessibility to services and
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workplaces is expected to grow, especially considering its role in reducing congestion and

the land consumption of the transport sector in urban areas (Nelson et al. 2007). Most

municipalities, in both developed and developing countries, need policy advice on how to

invest scarce public resources the most efficient way.

This paper is concerned with the optimal setting of public transport pricing and supply

levels in urban settings. This challenge has usually been addressed with analytical models,

which have the advantage of deriving general principles that can be applied to different

situations. Mohring (1972) developed a microeconomic model for identifying the optimal

headway for a single bus route with parametric demand, finding that bus frequency (the

inverse of headway) should increase less than proportionally with demand. The same paper

introduced the idea of total cost minimisation (encompassing users and operator cost),

Mohring (1972)’s model has been improved by many researchers, accounting for several

extensions such as differences in peak/off-peak demand (Jansson 1980), crowding (Old-

field and Bly 1988; Kraus 1991; Jara-Dı́az and Gschwender 2003), bus congestion and the

choice of fare collection technologies (Tirachini and Hensher 2011) and the consideration

of simplified networks (Chang and Schonfeld 1991).

Elastic demand and mode choice (public vs. private transport) have also received

considerable attention in the literature. Several authors have developed models to obtain

first best and second best public transport fare and supply levels, including rules for

optimal frequency and capacity of the public transport mode (Dodgson and Topham 1987;

Borger and Wouters 1998; Arnott and Yan 2000; Pels and Verhoef 2007; Parry and Small

2009; Ahn 2009; Jansson 2010; Basso et al. 2011; Tirachini and Hensher 2012). These

models are suitable to understand the economic principles behind the setting of key

variables such as bus frequency, transport capacity and density of lines. However, due to

their simplified nature they are less appropriate to handle large-scale scenarios, the rep-

resentation of demand is very simple (usually, a number of passengers or trips/h), and

activity scheduling decisions (e.g., departure time choice) are generally not accounted for.

Consequently, the relationship between departure time choice by users and public transport

supply variables such as bus frequency and fare is not clearly understood. A couple of

exceptions are Kraus and Yoshida (2002) and Kraus (2003), who introduce departure time

choice for public transport users in analytical frameworks that borrow the highway bot-

tleneck model of Vickrey (1969) for the modelling of rail commuting, assuming that users

arrive at stations at the same time as trains do.

A common element of all analytical models (static and dynamic) of public transport

supply and fare setting is that unique values for fare, headway and other optimisation

variables are obtained, because these models do not account for randomness in users

decisions regarding day-to-day activity scheduling, which in turn affects modal and

departure time choices. Simulation models in which the arrival of passengers at bus stops is

random have been proposed (e.g., Fernández and Tyler 2005; Fernández 2010; Baskaran

and Krishnaiah 2012); these models are concerned with analysing the performance of the

bus service but are not meant to determine the effect of supply decisions on demand,

because the latter is insensitive to the quality of service and the possibility of switching

departure time is not considered. A change of bus headway and/or fare does have an impact

on the decisions of users, who may replan their whole plan for a day (including transport,

work and leisure activities) to adapt to the new scenario. For example, a general reduction

in bus fare may push a bus passenger to switch from a peak to an off-peak period if, due to

the fare reduction, buses get crowded on the peak and the user needs to wait a long time to

be able to board a bus.
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In this paper, we analyse optimal public transport service provision using the open-

source activity-based microsimulation model MATSim.1 An activity-based simulation

approach is well suited for a more realistic representation of both, demand (by allowing

users to adapt their activity schedules) and supply (by using the user-by-user dynamic

congestion approach embedded in the agent-based MATSim framework). At the same

time, the simulation is easy to use; without changing the framework, a scenario can be set

up and the simulation can be run. Complex behaviour emerges from simple rules that are

easy to understand. Furthermore, the approach is suitable to simulate several scenarios

assuming randomness in transport related decisions by users, with the objective of ana-

lysing the sensitivity of optimal levels of public transport fare and supply to such

randomness.

Unlike analytical models, the activity-based simulation approach allows for an

increased level of detail and complexity, and is still easy to use. The maximisation of social

welfare and operator profit are studied in a framework that integrates departure time choice

and modal choice. Bus headway and fare are jointly optimised using a parametric

approach. The cases in which users can and cannot adapt departure times to changes

introduced by the public transport provider are separately analysed. We consider that the

limited capacity of buses increases waiting time if a passenger cannot board a full bus; the

agent-based nature of our model allows us to identify the exact time in which each

passenger boards a bus. Dwell times increase with the number of passengers boarding and

alighting.

Randomness in user behaviour is inherent to the applied simulation approach. There-

fore, in this paper, the impact of randomness on the results is analysed. Running the

simulation with several initial random seeds leads to a range of possible values for the

optimal fare and headway when maximising social welfare, with a more likely optimal

solution given by the average welfare. This range or interval of potential welfare maxi-

mising fares and headways is in contrast of traditional analytical models that find single

optimal values for headway, fare and other optimisation variables, and require sensitivity

analysis to explore the stability of the solution. If this finding holds when the simulation is

run over a real world network, and depending on the characteristics of the social welfare

function around the optimum, the obtained interval can give decision makers the oppor-

tunity to decide on fares and headways within a specific range. Therefore, the potential of

this approach is that other possible objectives can be included, such as to maximise public

transport demand, or to reduce the subsidy to the operation of the public transport service.

The maximisation of operator profit and social welfare result in different combinations of

the optimal headway and fare (average over several random seeds), as previously found in

some microeconomic models (e.g., Chang and Schonfeld 1991; Pels and Verhoef 2007;

Ahn 2009). The novelty of our approach is that it shows how the gap between welfare and

profit maximising headways and fares is smaller when commuters can adjust their

departure time. Without departure time choice the alternative car mode is increasingly

congested which results in a lower price elasticity of public transport demand.

The remainder of this paper is structured as follows: ‘‘Methodology’’ section describes

the agent-based microsimulation framework, including an overview of public transport

modelling. In ‘‘Scenario: multi-modal corridor’’ section the test scenario is described along

with the modelling approach and all relevant assumptions. Results are presented and

discussed in ‘‘Results and discussion’’ section. Finally, ‘‘Conclusions’’ section summarises

the main findings and contributions of this paper and provides venues for further research.

1 Multi-Agent Transport Simulation, see www.matsim.org.
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Methodology

This section (i) gives a brief overview of the general simulation approach of MATSim and

(ii) shortly describes special characteristics of the public transport simulation. For in-depth

information of the simulation framework MATSim see Raney and Nagel (2006).

MATSim overview

In MATSim, each traveler of the real system is modelled as an individual agent. The

approach consists of an iterative loop that has the following steps:

1. Plans generation: All agents independently generate daily plans that encode among

other things their desired activities during a typical day as well as the transport mode

for every intervening trip.

2. Traffic flow simulation: All selected plans are simultaneously executed in the

simulation of the physical system. The traffic flow simulation is implemented as a

queue simulation, where each road segment (=link) is represented as a first-in first-out

queue with two restrictions (Gawron 1998; Cetin et al. 2003): first, each agent has to

remain for a certain time on the link, corresponding to the free speed travel time.

Second, a link storage capacity is defined which limits the number of vehicles on the

link; if it is filled up, no more agents can enter this link.

3. Evaluating plans: All executed plans are evaluated by a utility function which in this

paper encodes the perception of travel time and monetary costs for car and bus. For

bus, the utility function also accounts for waiting, access, and egress times.

4. Learning: Some agents obtain new plans for the next iteration by modifying copies of

existing plans. This modification is done by several strategy modules that correspond

to the available choice dimensions. In the present paper, agents can switch between the

modes car and bus. In the model with time choice, agents can additionally adapt their

departure times. The choice between different plans is performed with respect to a

multinomial logit model. As the number of plans is limited for every agent by memory

constraints, the plan with the worst performance is discarded when a new plan is added

to a person which already has the maximum number of plans permitted.

The repetition of the iteration cycle coupled with the agent database enables the agents to

improve their plans over many iterations. This is why it is also called learning mechanism.

The iteration cycle continues until the system has reached an approximate stochastic user

equilibrium. At this point, there is no quantitative measure of when the system has reached

that relaxed state; we just allow the cycle to continue until the outcome is stable.

The iterative loop described above requires a random seed that has to be provided as an

input variable. Random seeds are generated and used for drawing (pseudo-)random

numbers. Each iteration these numbers determine (a) if an agent is meant to obtain a new

plan, (b) which plan is supposed to be modified and executed, (c) how a strategy module

modifies a plan (e.g., which activity is to be rescheduled and how the departure time is

shifted) and (d) if no plan is modified which plan is individually selected and executed

(according to the multinomial logit model probabilities). That means randomness is of

great importance when choice sets are generated and when choosing among the options in

the choice set. As the entire generated randomness (the sequence of random drawings)

depends on the initial random seed, results can be reproduced. The stochastic error terms

are fixed and therefore different outcomes before and after introducing a policy measure
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(e.g., increasing the headway) can only be the result of the measure itself (Horni et al.

2011, 2012).

Public transport in MATSim

In MATSim, a transit schedule provides all planned public transport operations. Actual

vehicle departures may differ from the schedule as transit vehicles are simulated in the

traffic flow simulation and interact with boarding and alighting passengers. Depending on

the vehicle type each passenger can delay the transit vehicle. In this study, passengers are

boarding and alighting simultaneously at different doors. Thus, the total vehicle delay is

defined by the maximum of the total boarding delay and the total alighting delay. A vehicle

fully loaded cannot pick up any more passengers, in that case passengers will have to wait

for the next vehicle to arrive. Vehicles of one line can serve different tours. Consequently,

the delay of one vehicle can be transferred to the following tour. In the case of a delay, the

driver will try to follow the schedule by shortening dwell times (if no person wants to

alight or board) as well as slack times. MATSim’s public transport simulation also allows

for private cars and buses competing for the same limited road capacity. Each stop can be

configured to either block traffic or to allow overtaking whenever a bus stops. However, in

this study, we do not assume a mixed-traffic operation, thus, transit vehicles are not

affected by traffic congestion. For an in-depth description of MATSim’s public transport

dynamics refer to Neumann and Nagel (2010) and Rieser (2010).

Scenario: multi-modal corridor

Setup

Supply The interaction of supply and demand is modelled for a multi-modal corridor with a

total length of 20 km. From 4 a.m. until midnight, the corridor is served by a constant

number of identical buses that are operated by a single company. Transit stops are located

at a regular distance of 500 m along the corridor. Access and egress times result from a

walk speed of 4 km/h and the distances between transit stop and activity location. A free

speed of 30 km/h, a minimum dwell time of 10 s at each transit stop, and a slack time of

5 min when reaching a corridor endpoint amounts to a cycle time of 1 h 43 min. Actual

cycle times and headways can differ from the schedule when demand is high due to

vehicle–passenger interactions. Passengers are assumed to be able to alight and board at the

same time (see ‘‘Public transport in MATSim’’ section). Boarding time is set to 2 s/person

(obtained with a boarding system with contactless card fare payment, Wright and Hook

2007) and alighting times to 1.5 s/person. As described in ‘‘Public transport in MATSim’’

section, the transit driver will try to follow the schedule by shortening the fixed component

of dwell times (if no one wants to board or alight), as well as slack times. In this study, the

scheduled slack time at the terminus is sufficient high to compensate for the remaining

delay. Therefore, delays are not propagated from one tour to another.

We assume that the road has two lanes per direction, with buses running on a separate

bus lane, therefore they are not affected by traffic congestion. Car travel times are subject

to dynamic congestion. The flow capacity of a lane is 1,000 pcu/h (pcu: passenger car

unit), equivalent to assuming a saturation flow of 2,000 pcu/h and effective green time

ratio of 50 % in a signalised intersection.
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Demand Activity patterns for a total of 20,000 travelers are considered with a random

distribution of activity locations along the corridor. Two types of activity patterns are

considered, defined by trip purpose: ‘‘Home-Work-Home’’, which is assumed to represent

35 % of total trips, and ‘‘Home-Other-Home’’, which accounts for 65 % of trips. In this

study, these activity patterns are fixed, that is, the agents neither change their activity types

nor their order of activities. Regarding departure time adaptation, two possibilities are

modelled:

– No departure time adaptation (NDTA) agents have the initially given departure times

and a fixed activity schedule.

– Total departure time adaptation (TDTA) agents can adjust their departure times

according to activity specific constraints. Activity types ‘‘Work’’ and ‘‘Other’’ have

defined opening times, whereas ‘‘Home’’ can always be performed. As commuters and

non-commuters are assumed to have wide time spans of arrival, activity schedules are

flexible (see Table 1).

Different distributions are assumed for the departure time of work and non-work trips.

Initial departure times from activity ‘‘Home’’ to ‘‘Work’’ follow a normal distribution with

mean at 8 a.m. and a standard deviation of 1 h. Agents are assumed to head back home 8 h

after starting work. The activity type ‘‘Other’’ has a duration of 2 h and is uniformly

distributed from 8 a.m. to 8 p.m. This is a desired departure time distribution in the TDTA

case, in which users can change departure times to avoid congestion. Initial modal split for

all trips is 50 % car and 50 % bus. The overlay of peak and off-peak demand (both activity

patterns) is shown in Fig. 1.

The agents’ activity schedules described above are of synthetic nature. However, trip

purposes (commuters vs. non-commuters), activity durations and activity opening and

closing times are chosen to reflect trip distributions that can be found in reality (Fig. 1).

The motivation is to create a simple test scenario with enough complexity to study the

issue of public transport supply optimisation with an activity-based simulation approach.

Simulation approach

Users

Choice dimensions For the mental layer within MATSim which describes the behavioural

learning of agents, a simple utility based approach is used. When choosing between dif-

ferent options following a multinomial logit model, agents are allowed to adjust their

behaviour among the following choice dimensions:

– Mode choice allows to choose the mode of transport for a sub-tour within an agent’s

daily plan. Agents can switch from car to public transport or the other way around. In

this paper it is assumed that every agent has a car available.

Table 1 Activity attributes
Activities Typical duration (h) Opening time Closing time

Home 12 Undefined Undefined

Work 8 6 a.m. 8 p.m.

Other 2 8 a.m. 8 p.m.

1044 Transportation (2015) 42:1039–1061

123



– Time choice allows to adapt departure times in order to shift, extend or shorten activity

durations with respect to activity specific attributes described in the following

paragraph (TDTA case only).

Utility functions The total utility (deterministic part) that an executed plan gets is the sum

of individual contributions:

Vp ¼
Xn

i¼1

Vperf ;i þ Vtr;i

� �
; ð1Þ

where Vp is the total utility for a given plan, n is the number of activities, Vperf ;i is the

(positive) utility earned for performing activity i, and Vtr;i is the (usually negative) utility

earned for traveling to activity i. Activities are assumed to wrap around the 24-h-period,

that is, the first and the last activity are stitched together. In consequence, there are as many

trips between activities as there are activities. The functional form of the travel related

utility functions is as follows:

Vpt;i;j ¼ bv;pt � ti;v;pt þ bw;pt � ti;w;pt þ ba;pt � ti;a;pt þ be;pt � ti;e;pt þ bc � ci;pt;

Vcar;i;j ¼ b0 þ btr;car � ti;tr;car þ bc � ci;car;
ð2Þ

where V is the systematic part of utility for person j on her trip to activity i. It is computed

in ‘‘utils’’ and in the present paper mode dependent as indicated by the indices car and pt.

The travel time (ti;tr;car) and monetary distance costs (ci;car) are considered as attributes of a

car trip to activity i. For public transport trips in-vehicle time (ti;v;pt), waiting time (ti;w;pt),

access time (ti;a;pt), egress time (ti;e;pt) and monetary costs (ci;pt) are considered. A loga-

rithmic form is used for the positive utility earned by performing an activity (Charypar and

Nagel 2005; Kickhöfer et al. 2011):

Vperf ;i tperf ;i

� �
¼ bperf � t�;i � ln

tperf ;i

t0;i

� �
; ð3Þ

where tperf is the actual performed duration of the activity, t� is the ‘‘typical’’ duration of an
activity, and bperf is the marginal utility of an activity at its typical duration. bperf is the

same for all activities, since in equilibrium all activities at their typical duration need to

have the same marginal utility. t0;i is a scaling parameter that is related both to the

minimum duration and to the importance of an activity. As long as dropping activities from

the plan is not allowed, t0;i has essentially no effect. Activities only can be performed

Fig. 1 Initial departure time
distribution
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within certain time slots. Thus, agents that arrive early and wait for the activity location to

open are penalised by the opportunity costs of time �bperf :

Parameters Behavioural parameters for the utility function are based on an Australian

study by Tirachini et al. (2014). Estimated parameters2 and values of travel time savings

(VTTSs) are depicted in Table 2. The estimated value for be;pt yields a VTTS for egress of

$53.23 which is implausible high. Since egress times are—in the present scenario—con-

stant, be;pt is set to be equal to the access time parameter ba;pt: Splitting the time related

parameters into opportunity costs of time and an additional mode specific disutility of

traveling (Kickhöfer et al. 2011, 2013), leads to the parameters in Table 3 which match the

MATSim framework. While car users in reality have to find a parking lot and also need to

walk from the parking lot to the desired activity location, in the model they can directly

enter and leave their vehicles at the activity location and immediately start an activity. The

alternative specific constant b0 for car was calibrated for the synthetic corridor scenario.

An urban scenario is assumed in which a modal split of around 50:50 % between car and

Table 2 Parameters and VTTS
taken from Tirachini et al. (2014)

$, Australian Dollar (AUD),
AUD 1.00 = EUR 0.80
(December 2012)

b̂tr;car (utils/h) �0.96

b̂v;pt (utils/h) �1.14

b̂w;pt (utils/h) �1.056

b̂a;pt (utils/h) �0.96

b̂e;pt (utils/h) �3.3

b̂c (utils/$) �0.062

b̂perf (utils/h) na

VTTStr;car ($/h) 15:48

VTTSv;pt ($/h) 18:39

VTTSw;pt ($/h) 17:03

VTTSa;pt ($/h) 15:48

VTTSe;pt ($/h) 53:23

Table 3 Adjusted parameters
and VTTS used in the present
paper

btr;car (utils/h) 0

bv;pt (utils/h) �0.18

bw;pt (utils/h) �0.096

ba;pt (utils/h) 0

be;pt (utils/h) 0

bc (utils/$) �0.062

bperf (utils/h) þ0.96

VTTStr;car ($/h) 15:48

VTTSv;pt ($/h) 18:39

VTTSw;pt ($/h) 17:03

VTTSa;pt ($/h) 15:48

VTTSe;pt ($/h) 15:48

2 Estimated parameters are in this paper flagged by a hat.
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bus is obtained if the bus service is provided with 6 min 26 s headway and a fare of $1.50

(see later on in Fig. 3b). The outcome of the calibration process is an alternative specific

constant for car of b0 ¼ �0:15: ci;car is calculated for every trip by multiplying the distance

between the locations of activity i � 1 and i by a distance cost rate of 0.40 $/km. ci;pt is the

fare which is a flat fee that has to be paid every time an agent is boarding a bus (Table 4).

Operator’s profit and social welfare

Total operator cost (C) is calculated as Eq. (4):

C ¼ vkm � cvkm þ vh � cvhð Þ � O þ vNr � cvday: ð4Þ

In Eq. (4), C is divided into three categories: vehicle kilometers (vkm), vehicle hours (vh)

and an overhead (O) including operating costs which are not covered in the other cate-

gories. Capital costs for vehicles result from the number of vehicles (vNr) engaged per day

and equivalent daily capital costs (cvday). Unit costs per vkm (cvkm), unit costs per vh (cvh),

the overhead and capital costs are based on estimations by Australian Transport Council,

ATC (2006) for urban regions in Australia. Unit costs per vkm and capital costs depend on

the capacity (seats and standing room), a linear regression analysis yields cost functions

implying capital costs between 54 and 199 $/day and unit costs between 0.62 and 1.13 $/

vkm. The number of public transport trips per day (Tpt) multiplied by a constant fare (f)

leads to daily operator’s revenues. Hence, operator’s profit per day (Poperator) can be

described as follows:

Poperator ¼ Tpt � f � C: ð5Þ

User benefits are calculated as logsum term or expected maximum utility for all choice sets

of the users. Social welfare W is measured as the sum of operator profit and user benefits

per day:

W ¼ Poperator þ
XJ

j¼1

1

jbcj
ln
XP

p¼1

eVp

 !
; ð6Þ

where bc is the cost related parameter of the multinomial logit model or the negative

marginal utility of money, J is the number of agents in the population, P is the number of

plans or alternatives of individual j, and Vp is the systematic part of utility of alternative

(=plan) p.

Simulation procedure

A grid search is implemented for the optimisation of bus headway and fare. The iterative

loop described in ‘‘MATSim overview’’ section is now embedded into two external loops.

In one iteration of external loop 1, fare is kept constant while loop 2 varies the headway.

Table 4 Unit costs and cost
functions from ATC (2006)

cvkm ($/vkm) 0.006 � capacity þ 0.513

cvDay ($/vday) 1.6064 � capacity þ 22.622

cvh ($/vh) 33

O 1.21
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The result is that the constant fare is simulated with every headway of the search space.

Then fare is changed in external loop 1, and again simulated with every headway. Inde-

pendently of headway or fare, the same initial plans are used as input for the internal loop.

Here, agents execute their plans simultaneously in the physical environment, evaluate

plans according to the utility functions described in ‘‘Users’’ section, and modify these

plans depending on the available choice dimensions (Fig. 2). For the relaxation process

described in ‘‘MATSim overview’’ section a total of 300 internal iterations are run, the

maximum number of plans per agent is set to 6 and a plan is modified by each strategy

module (mode/time choice) with a probability of 10 %. After 250 internal iterations the

agents are assumed to have a plausible number of different plans in their choice set.

Therefore experimental replanning is switched off at this point. For the last 50 iterations

agents only chose among their existing plans with respect to a multinomial logit model.

The last internal iteration is used for welfare and operator profit calculations as well as for

further analyses.

Considering the inherent randomness of user decisions and to perform variability

analyses, the described simulation process is repeated for different random seeds (see

‘‘MATSim overview’’ section). The output parameters (e.g., mode shares, welfare, oper-

ator profit) of different random seed runs are then compared and averaged for each

combination of headway and fare.

Results and discussion

The influence of departure time choice

In this section we compare the influence of departure time choice on optimal supply

parameters. Buses are not affected by congestion on the road. However, the capacity of

buses is fixed to 60 passengers per bus, therefore, the bus mode has a binding capacity

Traffic Flow Simulation 

Evaluating Plans Learning 

Welfare & Operator Profit 
Calculation 

Headway Variation 

External Loop  2 

Internal Loop 

External Loop 1 

Fare Variation 

Fare 

Headway 

Fig. 2 Simulation procedure
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constraint. In the joint optimisation process headways are varied from 51 min 30 s to

1 min 27 s by increasing the number of buses. Fares are varied from $0 to $5.00 in steps of

$0.25. This grid search process is repeated for 10 different random seeds. Results are given

as averages over all simulation runs with different random seeds, unless otherwise indi-

cated. In the model without departure time adaptation (NDTA) the only possible user

reaction to a change in supply is mode choice. In the model with TDTA users can addi-

tionally react by shifting departure times.

Mode choice

Figure 3 depicts the trip share of bus for each combination of headway and fare.

In Fig. 3a, the bus modal share is about 50 % (line marked 0.5 in Fig. 3a) from a headway

of 8 min 35 s and a fare of $0 up to 1 min 27 s and $1.50. On the other hand, for the TDTA

model, the line marked 0.5 in Fig. 3b is shifted towards the top-left corner, with different

combinations of headway and fare: from 11 min 26 s and $0 up to 1 min 27 s and $2.00. In

other words, public transport is more attractive when users have flexibility to adjust their

departure times. However, for higher fares and larger headways resulting in lower trip shares

of bus (e.g., 5 %) the opposite effect occurs. The line marked 0.05 is shifted to the bottom-

right corner (towards lower fares and shorter headways), indicating that the bus mode is less

attractive in the TDTAmodel. The reason for the latter effect, occurring for a high number of

car users, is a more attractive car mode in the TDTAmodel compared to the NDTAmodel. In

the TDTA model, congested roads are avoided by shifting departure times, but without

departure time choice switching to bus is the onlyway to prevent frombeing slowed down in a

bottleneck. Therefore the bus mode seems to be more attractive in the NDTA model. This

effect is emphasised when calculating road congestion for the two models: For the NDTA

model, average relative car travel time delays3 range from 0.05 up to 28 %. In contrast, the

TDTA model only yields average car travel time delays between 0.006 and 2 %.
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(b) TDTA model

Fig. 3 Trip share of bus (average of all random seed runs)

3 Relative car travel time delays are measured as the ratio between car travel time delay (actual travel time
minus free-flow travel time) and total car travel time (average of all car trips and average of all random
seeds).
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Operator profit and social welfare

Figure 4 shows the operator profit. In the TDTA model the maximum is within the search

space, whereas in the NDTA model the operator profit increases further for larger head-

ways and higher fares that are not investigated (towards the top-left corner).

As expected, in the NDTA model operator profit is positively influenced by headway–

fare combinations where car congestion occurs. This is due to the fact that more users

accept higher fares and larger headways in order to avoid car congestion. As indicated by

the ‘‘0’’-line in Fig. 4a, break-even fare-headway combinations for the NDTA model range

from $4.00 and a headway of 51 min 30 s over $3.50 and 34 min 20 s to $5.00 and

14 min 42 s. Global profit maxima are found in the regions between $4.50 and $5.00 and

between a headway of 34 min 20 s and 25 min 45 s. The optimal combination of headway

and fare for the average profit of all random seeds is equal to the parameters identified for

most of the random seeds: $5.00 and a headway of 25 min 45 s yielding an average profit

of $1,198 (standard deviation, r ¼ $207). As Fig. 4b shows for the TDTA model, the bus

operator realises an average profit maximum of $7,088 (r ¼ $137) by offering a headway

of 5 min 25 s and charging $1.50/trip. At this point the operator profit maximum is found

for most of the random seeds. The break-even reaches elliptically from 20 min 36 s and

$1.25 over 8 min 35 s and $0.75, 3 min 26 s and $1.50 to 8 min 35 s and $2.00. Figure 4

can be used to study the effect of a budget constraint on maximum subsidy by restricting

the search of feasible fares and headways to those that comply with a given financial

constraint. The impact of budget constraints on the setting of public transport fares has

been studied by Tabuchi (1993), Ahn (2009), Jara-Dı́az and Gschwender (2009) and Basso

and Silva (2014), among others.

When comparing the models, two effects become apparent: for low road congestion the

operator benefits from users adapting their departure times. That is due to a higher number
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(a) NDTA model
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(b) TDTA model

Fig. 4 Operator profit in $1,000 (average of all random seed runs)
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of bus users for the same headway and fare. However, with heavy road congestion, the bus

operator benefits when users cannot adjust departure time, and therefore, are willing to

accept longer waiting times and a higher fare. In this case the demand is less elastic and the

additional revenues due to higher fares more than compensate for the few users that switch

to car. Hence, for the NDTA model, profit maximisation results in a more expensive bus

ticket.

Figure 5 shows the impact of varying headway and fare on the users. Overall, user

benefit is for the TDTA model on a higher level than for the NDTA model. As expected, in

both models the user benefit increases for shorter headways and lower fares, as the indi-

vidually obtained utility increases due to lower monetary costs and shorter travel times as

well as users switching from car to bus.

Figure 6 depicts the social welfare as the sum of user benefits and operator profit,

obtained for each parameter combination (average of all random seeds), Fig. 7 shows the

standard deviation for each headway and fare. In the TDTA model, the welfare level is

above that of the NDTA model. A maximum of $8,447,645 for the NDTA model is found

for a fare of $0.50 and a headway of 4 min 28 s (average of all random seeds, r ¼ $76). At
this point the global maximum is found in most of the runs. Shorter headways above the

welfare maximum reduce the operator profit to a larger extent than users benefit from

shorter waiting times. In the TDTA model, the same fare but a headway of 3 min 26 s is

found to be welfare maximising yielding a social welfare of $8,557,438 (average of all

random seeds, r ¼ $112). Again, in most of the runs this combination of headway and fare

is identified as a global maximum. In both models, the standard deviation obtained for the

average welfare in the global maximum is relatively small. Whereas, for larger headways

and higher fares, especially in the NDTA model, the standard deviation is larger. In both,

the NDTA and the TDTA model, the standard deviation increases for headway/fare

combinations with a high number of bus users that have to wait longer due to buses

working at maximum capacity (compare with Fig. 8). A more detailed analysis of ran-

domness is performed in ‘‘Simulation randomness’’ section.

Table 5 summarises the headway/fare combination for the welfare (W) and the operator

profit (Poperator) optimal solutions in the NDTA and the TDTA model. It also shows the
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(b) TDTA model

Fig. 5 User benefits in $1,000 (average of all random seed runs)
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mode shares obtained for each solution (average of all random seeds), including the

standard deviation r: Furthermore, a budget constraint on maximum subsidy is included,

e.g., the optimisation objective of maximum social welfare subject to the constraint that the

operator profit is greater or equal $0.0. That is, we assume a maximum subsidy of $0.0/day.

For this optimisation objective, the NDTA model leads to a headway which is in between

that of the profit and welfare maximum. In the TDTA model, both headway and fare are

situated in between the welfare and the profit optimal solution.4
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(a) NDTA model
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(b) TDTA model

Fig. 6 Social welfare in $1,000 (average of all random seed runs)
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Fig. 7 Standard deviation of average social welfare in $

4 If not otherwise specified, welfare optimal or welfare maximum refer to the unconstraint situation which
also allows for the operator to make losses.
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Comparing the NDTA and TDTA model, two effects are identified: on the one hand, in

Fig. 3, a 50 % mode share can be achieved with a larger headway and fare in the TDTA

model than in the NDTA model. That is, the ability to reschedule departure times com-

pensates for a larger headway and a higher fare. On the other hand, if we start in the NDTA

global optimum and allow departure time adaptation, the bus mode becomes relatively

more attractive (see Table 5). Capacity constraints lead to an increase in the number of

trips missing at least one bus (see Fig. 8b). Consequently, decreasing headway will

increase welfare. At a fare of $0.50 and a headway of 3 min 26 s, no more buses will be

missed. This is also the global welfare maximum (Fig. 6b).

Comparing the global welfare and profit maxima, it is evident that operator profit and

social welfare maximisation processes result in different combinations of optimal headway

and fare, as previously found in several microeconomic models (e.g., Chang and Schonfeld

1991; Pels and Verhoef 2007; Ahn 2009). The novelty of our approach is that it shows how

the gap between welfare and profit maximising headways and fares is smaller when users

can adjust their departure time. As described above, without departure time choice the

alternative car mode is increasingly congested which results in a lower price elasticity of

public transport demand. Furthermore, for headway–fare combinations around the welfare

maximum the number of bus users is higher in the TDTA model, meaning that with

departure time choice the bus service is more efficient. Thus, the operator and the users

benefit from departure time adaptation.

Constrained bus capacity and optimal pricing

Assuming a separated bus lane, buses are not delayed by road congestion. However, public

transport users are subject to three types of congestion effects: first, a bus is delayed due to

transfers: if more than five agents board or more than seven agents alight at a transit stop

the scheduled dwell time is exceeded. As a consequence other passengers are affected due

to longer in-vehicle times. Once a bus is fully loaded, it will not be further delayed.

Second, as in each external iteration the number of buses is fixed, an increase in dwell time

at stops due to a large number of passengers boarding and/or alighting also increases the
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Fig. 8 Number of trips missing at least one bus (average of all random seeds)
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actual bus headway, on top of the scheduled headway. Therefore, the average cost of

waiting times increases. Third, if buses are working at maximum capacity, users cannot

board and thus have to wait for a later bus, further increasing waiting time.

These effects explain why for some levels of supply, welfare maximising fares higher

than $0 are found. Increasing the fare from $0 up until the welfare maximum causes users

switching from bus to car. On the one hand, the benefit of bus users is decreased which is

compensated by an increased operator revenue of same amount (transfer payment). On the

other hand, social welfare is increased due to users switching from bus to car when they

produce less congestion or delay costs. In the NDTA model, car congestion is significantly

higher than in the TDTA model resulting in longer travel times within the car mode,

mainly for large headways and high fares. Therefore switching to car generates less utility

for travelers. Since both modes are working at maximum capacity the opportunities of

increasing the social welfare by pricing are reduced. For headways of 20 min 36 s or larger

a welfare optimal fare of $0 is found. Reducing car congestion by shortening bus headway

steeply raises social welfare (see Fig. 6a). Finally, for shorter headways the optimal fare is

above $0. Reduced travel times within the bus mode overcompensate for higher road

congestion due to users switching from bus to car.

In this study, bus bunching is not observed to be significant, e.g., buses do not stick to

each other or overtake each other. The main reasons for this are: first, buses are not allowed

to depart before the scheduled departure time (they can only be delayed). Second, for short

scheduled headways, the load factors are lower and buses are also delayed to a lower

extent. Whereas, for large headways, load factors are higher and buses are increasingly

delayed. However, this applies to all buses and the corridor is not long enough to result in

buses falling that much behind the schedule to cause bus bunching. Third, the demand is

equally distributed along the corridor. Forth, the share of the peak demand is relatively

small. For an analysis of bus bunching with MATSim, see Neumann and Nagel (2010).

Next, we analyse the effects of a binding bus capacity constraint. Assuming randomly

distributed activity locations along the corridor, waiting times due to full buses are longer

for passengers boarding at the middle of the corridor. Load factors at the beginning and end

of the corridor are lower, thus not yielding boarding denials. The number of missed bus

trips, depicted in Fig. 8, indicates if buses are working at maximum capacity (some users

have to wait for a later bus). In the NDTA model a high number of missed bus trips is

found for fares below $1.00 with headways between 9 min 21 s and 1 min 27 s. As

Fig. 8b shows for the TDTA model, fares below $2.00 combined with headways between

Table 5 Optimal solutions (average of all random seeds)

NDTA model TDTA model

MaxðWÞ Headway 4 min 28 s Headway 3 min 26 s

Fare $0.5 Fare $0.5

Bus share 72.48 % (r = 0.17 %) Bus share 93.73 % (r = 0.10 %)

MaxðPoperatorÞ Headway 25 min 45 s Headway 5 min 25 s

Fare $5.0 Fare $1.5

Bus share 3.38 % (r = 0.10 %) Bus share 55.55 % (r = 0.23 %)

MaxðWÞPoperator � 0 Headway 17 min 10 s Headway 4 min 28 s

Fare $5.0 Fare $1.0

Bus share 4.37 % (r = 0.11 %) Bus share 81.36 % (r = 0.27 %)
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17 min 10 s and 3 min 26 s make the bus mode so attractive that some users are even

willing to miss a bus. Short headways reduce the number of passengers per bus, and

therefore the number of trips with waiting times larger than one headway is reduced.

Increasing the fare for a public transport supply with fully loaded buses leads to less users

taking the bus and thereby decreases the number of missed bus trips. Finally, when buses

are not working at maximum capacity, either a fare of $0 is found to be welfare maxi-

mising or the welfare function is almost flat for fares between $0 and the optimum. A zero

optimal fare means that there is no marginal cost (on top of the average user cost) attached

to carrying an extra passenger, something that is not longer valid when the bus capacity

constraint is binding (see discussion in Tirachini and Hensher 2012).

Departure time choice and peak spreading

Since waiting times seem to have a major impact on the overall welfare level as well as

on the optimal combination of fare and headway, a more detailed analysis of differences

between the NDTA and TDTA models is conducted. This provides us with insights into

the effects of departure time adaptation to the schedule and peak spreading. In the

TDTA model, non-commuters as well as commuters can freely choose their arrival time

within a wide time span, therefore, departure times are adjusted to avoid peak periods.

Figure 9 depicts the final time distribution for a headway of 34 min 20 s and a fare of

$1.00 in the NDTA and the TDTA model. When enabling departure time choice, users

disperse around the commuter peaks for two reasons: to maximise their positive utility

gained from performing activities and to minimise travel related costs. For example,

users benefit from taking the bus at off-peak times. Defining short time windows for

arrival at work and an extra penalty for arriving late would have the effect that the

activity work has a stronger impact on travel decisions (mode and departure time

choice). For example, driving may become more attractive especially if the bus head-

way is long. Secondly, soft time restrictions in the TDTA model allow users to adapt

departure times in order to avoid peak congestion within the bus mode. By adapting

departure times, extra waiting times due to fully loaded buses are avoided. Furthermore,

long in-vehicle times caused by extended boarding and alighting of other passengers are

avoided by departing at off-peak times.

Fig. 9 Final departure time
distribution (headway 34 min
20 s, fare $1.00)
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Simulation randomness

In the previous section, optimal fares and headways are obtained by averaging operator

profit and social welfare over 10 random seeds of the simulation model. Figure 7 depicts

the standard deviation of the average welfare over all random seeds and all parameter

combinations of headway and fare. There are three effects on the standard deviation that

can be observed: first, as described in ‘‘Operator profit and social welfare’’ section, the

standard deviation is larger for headway/fare combinations where a large number of

passengers cannot board the first arriving bus due to capacity constraints (compare to

Fig. 8). This is true for the NDTA and the TDTA model. Second, in the NDTA model, the

standard deviation of social welfare is rather high for large headways and high fares. In

contrast, for the same parameter combinations, the TDTA model shows a rather small

increase in the standard deviation. Presumably, this is due to the fact that in the NDTA

model, road congestion is higher than in the TDTA model (see ‘‘Mode choice’’ section).

Third, combining the observations of the first two effects, the parameter combinations with

high standard deviation have in common that users more strongly compete for limited

resources, e.g., road capacity or transit vehicles. Randomness in user behavior apparently

affects welfare levels of other users rather strongly when resources are scarce. In some

situations, the random choice behavior might lead to an efficient use of capacities. In other

situations, it might lead to a less efficient use of capacities. This effect is then reflected in a

higher standard deviation of social welfare.

The procedure of averaging multiple runs is implemented because we found that dif-

ferent random seeds could result in different combinations of fare and headway that

maximise profit and welfare. To illustrate this point, Fig. 10 shows the welfare obtained

with three different seeds for a range of fares between $0.25 and $1.75, for a fixed fleet size

of three buses. Run 1 reaches a maximum at a fare of $1.00. With Run 2 an almost identical

welfare level is obtained for fares of $0.75, $1.00 and $1.25, whereas Run 3 reaches a

maximum at $0.75 but it also shows a local maximum at $1.25. However, when computing

the average (over 10 runs), it points to a single maximum at $0.75.

Randomness in user behaviour analysed by simulating different random seeds also plays

an important role when obtaining the global social welfare maximum, as both optimal fare

and headway are sensitive to the random seed chosen. Figure 11 depicts the number of runs

Fig. 10 Randomness in maximum social welfare
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for a total of 50 random seeds in which a particular headway–fare combination is found to

maximise welfare for the TDTA model. The total height of a bar indicates for how many

random seeds the respective fare is found to be welfare maximising. The colours in each

bar indicate for which headway this applies. In the grid search implemented, only two

headways are found to maximise welfare of individual seeds, either 3 min 40 s (28 buses)

or 4 min 07 s (25 buses). Therefore, we can suggest that the actual optimal headway is

likely to be in the range between 3 min 30 s and 4 min 30 s. Nevertheless, the range of

fares that maximises social welfare for each individual seed is wider, with a likely optimal

fare between $0.4 and $0.7. The most repeated optimal fare is $0.6 which was obtained

30 % of times (15 out of 50 seeds, 9 times with 28 buses and 6 times with 25 buses),

followed by $0.4 obtained 26 % of times, and $0.7 obtained 24 % of times. This is an

indication that the social welfare function is quite flat around the optimal fare, as shown in

Fig. 12, in which results from all 50 seeds are averaged. Figures 11 and 12 suggest that,

from a policy perspective, there is scope for other considerations to be taken when deciding

Fig. 11 Number of runs with
headways and fares in global
welfare maximum, a total of 50
random seed runs, TDTA model

Fig. 12 Social welfare, average
over 50 seeds, TDTA model
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the actual fare to be applied within the range $0.4–$0.7, as social welfare is practically

insensitive to any fare on that range (for example, a fare of $0.4 increases public transport

demand, a fare of $0.7 reduces the subsidy required to operate the public transport service).

Conclusions

In this paper, public transport fare and headway were jointly optimised using an activity-

based simulation framework with the objective of maximising operator profit and social

welfare (with and without the constraint of maximum subsidy). We simulated the inter-

action between users—who choose mode and departure time according to their activities,

timetabling and convenience of the public transport service—and a public transport service

provider. Apart from mode choice (travel alternatives are car and bus), we compared the

cases in which commuters and non-commuters can adjust departure time as a reaction to

changes in bus fare and headway, against the most commonly analysed case in which only

mode choice is available (i.e., activity scheduling is fixed). Because the activity patterns of

each agent was simulated, relevant implications of public transport supply levels such as

waiting times and implications of an active bus capacity constraint were analysed in detail

on an agent-by-agent basis. The model was applied to a single bimodal corridor using a

demand model and operator cost data from Australia.

The main results of this paper are summarised next. First, unlike traditional analytical

models that find single optimal values for decision variables such as bus headway and fare,

we obtained a range of values for the optimisation variables due to the randomness in user

behaviour that is inherent to our simulation framework. Second, as previously shown in the

microeconomic literature of public transport, the maximisation of operator profit and social

welfare result in different combinations of (the most likely) optimal headway and fare, and

our approach showed that the gap between welfare and profit optimal solutions is smaller

when users can adjust their departure time. This is because when users have a fixed activity

schedule and cannot adjust departure times, the alternative car mode is increasingly con-

gested, mainly in the peak period, which results in a less elastic public transport demand to

price and headway. In addition to that, for parameter ranges around the welfare maximum,

departure time choice yields a higher number of bus users. Thus, both, the operator and the

users, benefit from departure time adaptation.

Third, analysing the impact of departure time choice, two effects are observed: on the

one hand, the ability to reschedule departure times compensates for a larger headway and a

higher fare. Enabling departure time choice lets users adapt their departure times according

to the bus schedule and on a wider range in order to avoid congestion on the road and on

the bus mode (peak spreading), the latter is primarily observed when the bus capacity is

reached and waiting times increase due to missed buses. Due to this effect welfare max-

imising headway and fare are greater when users have the freedom to adjust departure time

relative to the case in which their schedules are fixed. On the other hand, the ability to

reschedule departure times yields a higher number of bus users and increases the number of

trips missing at least one bus. The latter effect shifts the welfare maximum towards a

shorter headway relative to the case in which schedules are fixed and bus demand is lower.

We provided an in-depth examination of waiting times and bus capacity constraints since

they have a major impact on the overall welfare level as well as on the optimal combi-

nation of fare and headway. For combinations of headway and fare where the bus mode is

attractive enough so that some travelers risk to miss a bus, we found the steepest slope of
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the welfare function. That is, the more travelers miss a bus, the higher the possible gains by

increasing the fare.

The approach presented in this paper can easily be applied to more sophisticated net-

works and real world scenarios. Hence, it is an easy-to-use approach that allows to

investigate how general the results are for other settings. Our large-scale agent-based

simulation model is suitable to analyse the complex interactions between users and

transport supply, including several alternatives on public transport service design and road

infrastructure for motorised and unmotorised traffic in general (e.g. Neumann et al. 2014

and Neumann 2014). Importantly, the planned extension to real-world scenarios should

account for the existence of several activity types, including more diverse work activity

types with mixes of commuters with fixed working times, short and wide time windows to

work. Different mixes of restrictions on activity durations and start/end times should

influence the optimal design of the public transport service (optimal frequency and fare in

peak and off-peak periods) and the resulting modal split. Other promising venues of further

research are the public transport network design (e.g. Neumann 2014) and the inclusion of

other sources of disutility, such as travel time variability and passenger crowding.
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