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Abstract. In this paper we are interested on the existence of ground state
solutions for fractional field equations of the form{

(I − Δ)αu = f(x, u) in IRN ,
u > 0 in IRN , lim

|x|→∞
u(x) = 0,

where α ∈ (0, 1) and f is an appropriate super-linear sub-critical nonlin-
earity. We prove regularity, exponential decay and symmetry properties
for these solutions. We also prove the existence of infinitely many bound
states and, through a non-local Pohozaev identity, we prove nonexistence
results in the supercritical case.
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1. Introduction

We are interested in the study of the nonlinear scalar field equation with
fractional diffusion{

(I − Δ)αu = f(x, u) in IRN

u > 0 in IRN , lim
|x|→∞

u(x) = 0, (1.1)

where α ∈ (0, 1) and and f is an appropriate super-linear sub-critical nonlin-
earity.

Equation (1.1) arises in the study of standing waves for the Schrödinger–
Klein–Gordon equation

i
∂ψ

∂t
= (I − Δ)αψ − ψ − f(x, ψ) (1.2)

describing the the behaviour of bosons, spin-0 particles in relativistic fields,
see the work by Lieb and Thirring [14] and Lieb and Yau [15]. Actually
ψ(x, t) = exp(−it)u(x) satisfies (1.2) if and only is u satisfies (1.1). The mean
field dynamics of boson stars modelled by the pseudo-relativistic Hartree equa-
tions have been studied by Elgart and Schlein [6] and Frohlich et al. [9]. In the
context of fractional quantum mechanics, non-linear fractional Schrödinger
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equation has been proposed by Laskin [12,13] as a result of expanding the
Feynman path integral, from the Brownian-like to the Lévy-like quantum me-
chanical paths.

In a recent paper, Coti Zelati and Nolasco [4] considered Eq. (1.1) for
the particular case of α = 1

2 and for a power nonlinearity. They studied the
equation by an extension technique developed by Silvestre and Caffarelli [2]
that transforms the problem into a local one by adding one variable. They also
obtained regularity and exponential decay of the solution and their nonlinearity
admits a nonlocal term. See also Tan et al. [24] where some of these results
are also proved.

In this paper we consider Eq. (1.1) working directly with the nonlocal
operator in the appropriate Sobolev space. In doing so, we follow some ideas
used in [7] in the study of nonlinear Schrödinger equation with the fractional
laplacian, but there are some interesting novelties. On one hand for the study
of exponential decay we cannot use super and sub-solutions directly as in [7],
since we were not able to obtain these comparison functions easily. Instead
of that, we consider a method based on a weighted space and the Banach
fixed point theorem and comparison theorem. On the other hand, here we
obtain a non-local version of the Pohozaev identity from which we can prove
a non-existence theorem for positive solutions in the super-critical case.

In what follows we introduce our precise hypotheses on the nonlinearity
f . We assume:

(f0) f : IRN × IR → IR is continuous.
(f1) f(x, s) ≥ 0 if s ≥ 0 and f(x, s) = 0 if s ≤ 0, for all x ∈ IRN .
(f2) The function

s �→ f(x, s)
s

is increasing for s > 0 and all x ∈ IRN .

(f3) There exists p ∈
(
1, N+2α

N−2α

)
and C > 0 such that

f(x, s) ≤ C|s|p for all s ∈ IR, x ∈ IRN .

(f4) There exists θ > 2 such that, for all s > 0, x ∈ IRN ,

0 < θF (x, s) ≤ sf(x, s),

where F (x, s) =
∫ s

0
f(t) dt.

(f5) There are continuous functions f̄ and a, defined in IR and IRN respec-
tively, such that f̄ satisfies (f0)–(f4) and

0 ≤ f(x, s) − f̄(s) ≤ a(x)(|s| + |s|p) for all s ∈ IR, x ∈ IRN ,

lim
|x|→∞

a(x) = 0

and

|{x ∈ IRN : f(x, s) > f̄(s) ∀s > 0}| > 0,

where | · | stands for the Lebesgue measure.
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The operator (I − Δ)α is defined by its Fourier transform

F((I − Δ)αu)(ξ) = (1 + |ξ|2)αû(ξ).

Now we state our main theorems. In the first place we obtain ground
states for (1.1)

Theorem 1.1. Assuming α ∈ (0, 1) and that the nonlinearity f satisfies (f0)–
(f5) Eq. (1.1) possesses a non-negative weak solution u. Moreover, the function
u is continuous, positive and it satisfies

0 < u(x) ≤ Ce− |x|
2 , (1.3)

where C > 0 is an appropriate constant. In case f(u) = up the solution u is
radially symmetric.

The proof of the existence of a weak solution of (1.1) is undertaken vari-
ationally using the functional

I(u) =
1
2

∫
IRN

(1 + |ξ|2)α|û(ξ)|2 dξ −
∫

IRN

F (x, u(x)) dx, (1.4)

defined on the Sobolev space Hα(RN ). See Sect. 2 where we also define weak
solutions for (1.1) as the critical points of I. In proving the existence part of
Theorem 1.1 we use the mountain pass theorem in combination with a compar-
ison argument for avoiding non-convergent Palais–Smale sequences, as devised
by Rabinowitz [19]. In order to prove the decay estimate, after proving regu-
larity of the solution, we devise a fixed point scheme that somehow resemble
the spirit of the Slaggie–Wichmann method for the two-body eigenfunctions,
see the review of Hislop [11].

Regarding the hypotheses in Theorem 1.1, we are not claiming optimal-
ity at all. Since its statement includes various results, we could have broken
it into different theorems and for each one state more general hypothesis. In
particular, (f0) can be relaxed for existence assuming only measurability in
the x-variable, but continuity is necessary to prove the decay. Assumption (f1)
could also be relaxed using a usual trick of redefining f as being zero for neg-
ative arguments and then prove the solution is non-negative. Hypothesis (f3)
can be made more general, but then the regularity proof gets more involved,
see [7].

Our second theorem on the existence multiple solutions states as follows.

Theorem 1.2. If N ≥ 2 and 1 < p < N+2α
N−2α , the equation

(I − Δ)αu = |u|p−1u (1.5)

has infinitely many weak solutions in Hα(RN ) ∩ Cμ(RN ), for some μ > 0.

The proof of this theorem is based on Lusternik–Schnirelmann genus.
Our third the theorem states the non-existence of solution in the super-

critical case.
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Theorem 1.3. If p ≥ N+2α
N−2α , then the problem{

(I − Δ)αu = up in IRN

u ≥ 0 in IRN , lim
|x|→∞

u(x) = 0 (1.6)

has no non-trivial weak solution in L∞(IRN ) ∩ Lq(IRN ), with q ≥ 1.

Recently, a great attention has been focused on the study of problems
involving fractional elliptic operators, from a pure mathematical point of view
as well as from concrete applications, since these operators naturally arise
in many different contexts, such as obstacle problems, financial mathematics,
phase transitions, anomalous diffusions, crystal dislocations, soft thin films,
semipermeable membranes, flame propagations, conservation laws, ultra rela-
tivistic limits of quantum mechanics, quasi-geostrophic flows, minimal surfaces,
materials science and water waves. The literature is too wide to attempt a rea-
sonable list of references here, so we derive the reader to the work by Di Nezza
et al. [5], where a more extensive bibliography and an introduction to the sub-
ject are given. Regarding the non-linear fractional Schrödinger equation, see
the works in Coti Zelati and Nolasco [4], Tan et al. [24], Cheng [3], Felmer et
al. [7], Felmer and Torres [8], Guo and Xu [10], Servadei and Valdinoci [20,21].

This paper is organized as follow. In Sect. 2 we present some preliminary
regarding the framework in which we study the problem. Then we prove the
existence of a non-negative weak solution of Eq. (1.1). In Sect. 3 we complete
the proof of Theorem 1.1 obtaining regularity, decay and symmetry of the
ground state. Section 4 is devoted to the proof of the multiplicity theorem. Fi-
nally in Sect. 5 we prove the Pohozaev identity and the non-existence theorem
for positive solutions.

2. Existence of a ground state

We consider the Hilbert space

Hα(IRN ) =
{

u ∈ L2(IRN ) :
∫

IRN

(1 + |ξ|2)α|û(ξ)|2 dξ < ∞
}

endowed with the inner product

〈u, v〉α =
∫

IRN

(1 + |ξ|2)αûv̂ dξ.

The following results will be useful; for its proof see Theorem 2.8.4 in Ziemer
[25] and also [7].

Lemma 2.1. Let q ∈ [2, 2N
N−2α ]. Then there exists C > 0 such that

‖u‖q ≤ C‖u‖α ∀u ∈ Hα(IRN ).

If further q < 2N
N−2α and Ω ⊂ IRN is a bounded domain, then every bounded

sequence in Hα(IRN ) has a convergent subsequence in Lq(Ω).

The next lemma is due to Lions [16].
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Lemma 2.2. Let N ≥ 2, q ∈ (2, 2N
N−2α ) and {un} a bounded sequence in

Hα(IRN ) satisfying

lim
n→∞ sup

y∈IRN

∫
BR(y)

un(x)2 dx = 0

for some R > 0. Then un → 0 in Lq(IRN ).

We say that u ∈ Hα(IRN ) is a weak solution of the equation (I −Δ)αu =
f(x, u) if∫

IRN

(1 + |ξ|2)αû(ξ)v̂(ξ) dξ =
∫

IRN

f(x, u(x))v(x) dx ∀v ∈ Hα(IRN ).

So we will look for critical points of the functional I defined in (1.4). Assuming
(f0) and (f3) I is well defined, and using Sobolev embedding (Theorem 3.1)
and the properties of the Nemytskii operator it can be proved that I is of class
C1 in Hα(IRN ).

We consider the Nehari manifold

Λ = {u ∈ Hα(IRN )\{0} : I ′(u)u = 0}
and define

c∗ = inf
u∈Λ

I(u).

We observe that if u ∈ Λ, by (f1), u+ �= 0. And by (f2), given u ∈ Hα(IRN )
such that u+ �= 0, the function t ∈ IR+ �→ I(tu) has a unique maximum t(u)
and t(u)u ∈ Λ. Therefore

c∗ = inf
u∈Hα(IRN )\{0}

sup
t≥0

I(tu).

We define now

Γ = {g ∈ C([0, 1],Hα(IRN )) : g(0) = 0, I(g(1)) < 0}
and

c = inf
g∈Γ

sup
t∈[0,1]

I(g(t)).

Using (f2) and (f3), it is easy to check that c > 0.

Lemma 2.3. c = c∗.

Proof. Let u ∈ Hα(IRN )\{0} such that u+ �= 0. We may define gu(t) = tTu
with T > 0 large enough so that I(Tu) < 0. Then g ∈ Γ and

c ≤ sup
t∈[0,1]

I(tTu) ≤ sup
t≥0

I(tu).

Thus c ≤ c∗. For the other inequality it suffices to show that for all g ∈ Γ there
exists t ∈ (0, 1) such that g(t) ∈ Λ. First we notice that if I ′(u)u ≥ 0, by (f4),

I(u) ≥ 1
2

∫
IRN

f(x, u(x))u(x) dx −
∫

IRN

F (x, u(x)) dx

≥
(

θ

2
− 1

)∫
IRN

F (x, u(x)) dx ≥ 0.
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So, if we assume that I ′(g(t))g(t) > 0 for all t ∈ (0, 1), then I(g(t)) ≥ 0 for all
t ∈ (0, 1), contradicting that I(g(1)) < 0. �

If f̄ does not depend on x, we define Ī, Λ̄, Γ̄ and c̄ replacing f by f̄ .

Theorem 2.1. If f̄ satisfies (f0)–(f4), then Ī has a critical point with critical
value c̄.

Proof. By the Ekeland variational principle (see [18]) there is a sequence
(un)n∈N ⊂ Hα(IRN ) such that

Ī(un) → c and Ī ′(un) → 0.

By (f4), given ε > 0, for all n large enough,(
1
2

− 1
θ

)
‖un‖2

α ≤ Ī(un) − 1
θ
Ī ′(un)un ≤ c + ε + ‖un‖α.

So (un) is a bounded sequence in Hα(IRN ). Then, using Lemma 2.1, (un) has
a subsequence that converges in Lp+1

loc (IRN ) and weakly in Hα(IRN ) to some
function u. For this subsequence and for every ϕ ∈ D(IRN ),

Ī ′(un)ϕ → Ī ′(u)ϕ = 0.

It only remains to see that Ī(u) = c. Using (f4) again, for all R > 0,

Ī(un) − 1
2
Ī ′(un)un =

∫
IRN

(
1
2
f̄(un)un − F̄ (un)

)
dx

≥
∫

BR

(
1
2
f̄(un)un − F̄ (un)

)
dx.

Taking limit as n → ∞,

c ≥
∫

BR

(
1
2
f̄(u)u − F̄ (u)

)
dx.

This holds for all R > 0, so we can take the integral on IRN and we get
Ī(u) ≤ c. For the other inequality it suffices to see that u �= 0. Using Lemma
2.2, there is a sequence {yn} ⊂ IRN , R > 0 and β > 0 such that∫

BR(yn)

un(x)2 dx > β.

In fact, assuming the contrary, we have un → 0 in Lp+1(IRN ). But using (f3),
we get, for n large enough and some constant A > 0,

c̄

2
≤ Ī(un) − 1

2
Ī ′(un)un =

∫
IRN

(
1
2
f̄(un)un − F̄ (un)

)
dx ≤ A

∫
IRN

|un|p+1 dx,

which implies c̄ = 0, providing a contradiction.
We may then define ũ(x) = u(yn + x) and we use the discussion given

above to find that u = w- lim ũn is a nontrivial critical point of Ī. �

Theorem 2.2. If f satisfies (f0)–(f5), then I has a critical point with critical
value c < c̄.
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Proof. We consider a sequence un ∈ Λ such that limn→∞ I(un) = c. Let
gn = gun

, as defined in the proof of Lemma 2.3. We use Ekeland variational
principle and find sequences tn ∈ [0, 1] and wn ∈ Hα such that

lim
n→∞ I(wn) = c, lim

n→∞ I ′(wn) = 0 and lim
n→∞ ‖wn − gn(tn)‖α = 0.

Proceeding as in the proof of Theorem 2.1, we find a subsequence of wn, we
keep calling wn, that converges weakly to w and satisfies∫

BR(yn)

wn(x)2 dx > β, ∀n ∈ N

for some R, β > 0 and yn ∈ IRN . If (yn) has a bounded subsequence, the latter
implies w �= 0 and the result follows. Let us assume then, that |yn| → ∞ as
n → ∞. And also that, for given r > 0,

lim
n→∞

∫
Br(0)

wn(x)2 dx = 0,

since the contrary implies that w �= 0. We first obtain that c < c̄. Let w̄ be a
nontrivial critical point of Ī given by Theorem 2.1. Let

A = {x ∈ IRN : f(x, s) > f̄(s) ∀s > 0}.

By (f5) and the fact that w̄ is non-zero, we may find y ∈ IRN such that the
function wy, defined as wy(x) = w(x + y) satisfies

|{x ∈ A : |wy(x)| > 0}| > 0.

And so

c̄ = Ī(wy) ≥ Ī(twy) > I(twy)

for all t > 0. Choosing t∗ > 0 such that I(t∗wy) = sup
t>0

I(twy), we find t∗wy ∈ Λ

and conclude that

c̄ > I(t∗wy) ≥ inf
v∈Λ

= c.

From (f5), we have, for all t > 0,

I(tun) = Ī(tun) +
∫

IRN

(
F̄ (tun) − F (x, tun)

)
dx

≥ Ī(tun) −
∫

IRN

Ca(x)
(|tun|2 + |tun|p+1

)
dx.

Let ε > 0. Using (f5) and since (un) is a bounded sequence in Hα, there exists
R > 0 such that ∫

Bc
R

Ca(x)
(|tun|2 + |tun|p+1

)
dx ≤ ε,

for t bounded. On the other hand, since ‖wn − gn(tn)‖α → 0, we have

lim
n→∞

∫
BR

Ca(x)
(|tun|2 + |tun|p+1

)
dx = 0.

Choosing t = t∗ so that Ī(t∗un) = maxt≥0 Ī(tun), we see that c ≥ c̄ − ε. If
ε > 0 is chosen small enough, this contradicts the fact that c < c̄. �
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3. Some qualitative properties of solutions

In this section we study regularity of solutions to Eq. (1.1), in particular we
show that the solution found in Theorem 2.2 is continuous. Moreover, in case
the nonlinearity is a power, we get regularity for solutions of Eq. (1.5). Next
we study decay properties of positive solutions of (1.1).

We start with some considerations of spaces more general than Hα. Let
β ≥ 0 and q ∈ [1,∞]. We define

Lq
β = {u ∈ Lq(IRN ) : F−1[(1 + |ξ|2)β/2û] ∈ Lq(IRN )}.

The following results will be useful to study the regularity of the solution
(see [7,23]).

Proposition 3.1. Let α, β ≥ 0, (I − Δ)α is an isomorphism of Lq
β+2α to Lq

β.
If α ≥ 0 and β > 0, (I − Δ)α is an isomorphism of Cβ+2α(IRN ) to Cβ(IRN ),
where Cγ(IRN ) = Ck,γ−k(IRN ) and k = max{j ∈ N : j ≤ γ}.
Theorem 3.1. (1) If 1 < p ≤ q ≤ Np

N−αp < ∞, then Lp
α is continuously

embedded in Lq.
(2) If 1 ≤ q < N

N−α , then L1
α is continuously embedded in Lq.

(3) If 1 + N
p < α ≤ 2 and 0 < μ ≤ α − N

p − 1, then Lp
α is continuously

embedded in C1,μ.
(4) If N

p < α ≤ 2, α − N
p < 1 and 0 < μ ≤ α − N

p , then Lp
α is continuously

embedded in C0,μ.

Theorem 3.2. If f satisfies (f0) and (f3) and u is a weak solution of the equation
(I − Δ)αu = f(x, u), then u ∈ Lq0(IRN ) ∩ C0,μ(IRN ) for some q0 ∈ [2,∞) and
μ ∈ (0, 1). Moreover, |u(x)| → 0 as |x| → ∞.

Proof. We know that u ∈ L2
α and so u ∈ Lq0(IRN ), where q0 = 2N

N−2α . By
(f3), f(·, u(·)) ∈ Lp1(IRN ) with p1 = q0

p . Since (I − Δ)αu = f(x, u), we have
(I−Δ)αu ∈ Lp1(IRN ) and therefore u ∈ Lp1

2α. We have three cases: (1) p1 < N
2α ,

(2) p1 = N
2α and (3) p1 > N

2α .
In case (1) we use the Sobolev embedding to get u ∈ Lq1(IRN ), where

q1 = Np1
N−2αp1

and as we did before, u ∈ Lp2
2α, p2 = q1

p . We can again consider
three cases, but now for p2. If p2 < N

2α , then u ∈ Lq2(IRN ), q2 = Np2
N−2αp2

.
Repeating this procedure, we define a sequence (qj) such that

1
qj+1

=
j∑

i=0

pi

(
1
q1

− 1
q0

)
+

1
q1

.

Since 1 < p < N+2α
N−2α , q1 > q0 and then the right hand side above becomes

negative for j large. Let j be the smallest natural so that the sum is non-
positive. Then pj+1 = N

2α or pj+1 > N
2α .

If pj+1 > N
2α , then u ∈ Lpj+1

2α and by Sobolev embedding we may choose

0 < μ < min
{

2α − N
pj+1

, 1
}

so that u ∈ C0,μ(IRN ).
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If pj+1 = N
2α , we notice that u ∈ Lpj+1

2α̃ for α̃ < α. Then pj+1 < N
2α̃ and

we make another iteration. If α̃ is close enough to α, we have pj+2 > N
2α̃ and

we complete the argument.
Finally we observe that the fact that u ∈ Lq0(IRN ) ∩ C0,μ(IRN ) implies

|u(x)| → 0 as |x| → ∞. �

Proposition 3.2. If f satisfies (f0), (f1) and (f3) and u is a weak solution of
the equation (I − Δ)αu = f(x, u), then u is strictly positive.

Proof. We know that u ∈ Lp1
2α, p1 = 2N

p(N−2α) and (I − Δ)αu(x) = f(x, u(x)).
So we may write

u = (I − Δ)−αf(·, u(·)) = G2α ∗ f(·, u(·)).
where G2α(x) = 1

(4π)αΓ(α)

∫ ∞
0

e−π|x|2/te−t/4πt−N/2−1+αdt (see [23, p. 132]). If
we take u− as a test function,∫

IRN

u−(x)2dx =
∫

IRN

∫
IRN

G2α(y)f(x − y, u(x − y))u−(x) dy dx ≤ 0.

And therefore, u− = 0 a.e. By Theorem 3.2, u is continuous, so for all x ∈ IRN

u(x) =
∫

IRN

G2α(y)f(x − y, u(x − y)) dy.

Since G2α is strictly positive and u+ �= 0, we conclude that u > 0. �

Remark 3.1. Since
∫

G2α = 1, this kernel defines a probability measure on
IRN and we can use Jensen’s inequality for convex functions. In particular, if
1 ≤ q < ∞ and v ∈ Lq, then for all x ∈ IRN

|G2α ∗ v(x)|q =
∣∣∣∣
∫

IRN

G2α(x − y)v(y) dy

∣∣∣∣
q

≤
∫

IRN

G2α(x − y)|v(y)|q dy.

This allows to show that ‖G2α ∗ v‖q ≤ ‖v‖q.

Next we prove a stronger regularity result for non-negative solutions in
the case of power nonlinearity.

Proposition 3.3. If p > 1, q > Np
2α and u ∈ Lq(IRN ) is a non-negative solution

of (1.5), then u ∈ Lr(IRN ) for all r ≥ 1 and there exists γ ∈ (0, 2α) so that
u ∈ C1+γ+2α(IRN ).

Proof. We know that u ∈ Lq(IRN ) implies u ∈ Lq/p
2α and since q

p > N
2α , by

Sobolev embedding, we get u ∈ Cμ(IRN ) for some μ ∈ (0, 2α − Np
q ). This

implies u(x) → 0 as |x| → ∞, so u ∈ Lr(IRN ) for all r ≥ q. We observe now
that u = G2α ∗ up and up ∈ Lr for all r ≥ max{1, q

p}, so u ∈ Lr. Iterating this
procedure we conclude that u ∈ Lr for all r ≥ 1. Applying the mean value
theorem to the function tp, we get up ∈ Cμ(IRN ) and then u ∈ Cμ+2α(IRN ).
Again we iterate this procedure until μ + 2kα > 1, so u ∈ C1+γ(IRN ) where
γ ∈ (0, 2α). If p ≥ 2, we may apply the mean value theorem to the derivatives
of u, and if p < 2, we observe that the function tp−1 is of class Cp−1(IRN ). In
both cases we get up ∈ C1+γ(IRN ) and therefore u ∈ C1+γ+2α(IRN ). �
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In what follows we study the asymptotic decay of solutions for Eq. (1.1).
For that purpose we consider q ≥ 1 and we define the following complete
metric space

X =
{

v ∈ C(IRN ) : v ≥ 0 ∧ ‖v‖X := sup
x∈IRN

|e |x|
2q v(x)| < ∞

}

endowed with the distance given by the norm ‖ · ‖X and consider the operator

Fϕ : X −→ X
v �−→ G2α ∗ ϕ(v)

where ϕ is an appropriate function. �

Lemma 3.1. Let w ∈ Lq(IRN ) ∩ C(IRN ) be a positive function that vanishes
at infinity, h(x) = min

{
w(x), 1, 1

2‖G2α ∗ (e− |·|
2q )‖−1

X

}
and ϕ(v) = hv + χBr

where χBr
is the characteristic function of the ball of radius r > 0 and r is

large enough so that h = w in Bc
r. Then the operator Fϕ is well defined and

has a unique fixed point v̄ that is strictly positive and satisfies the equation

(I − Δ)αv̄ = hv̄ + χBr
.

Proof. The operator is well defined because Fϕ(v) is positive and continuous.
And

(e
|x|
2q Fϕ(v)(x))q =

(
e

|x|
2q

∫
IRN

G2α(x − y)[h(y)v(y) + χBr
(y)]dy

)q

≤ e
|x|
2

∫
IRN

G2α(x − y)[h(y)v(y) + χBr
(y)]qdy

≤ ce
|x|
2

∫
IRN

G2α(x − y)h(y)qv(y)q dy

+ce
|x|
2

∫
Br

G2α(x − y) dy.

We take now R > 0 such that G2α(x) ≤ ce− |x|
2 if |x| ≥ R. Then

e
|x|
2

∫
|x−y|≥R

G2α(x − y)h(y)qv(y)q dy

≤ ce
|x|
2

∫
|x−y|≥R

e− |x−y|
2 h(y)qv(y)q dy

≤ ce
|x|
2

∫
|x−y|≥R

e− |x|
2 e

|y|
2 h(y)qe− |y|

2 (e
|y|
2q v(y))q dy

≤ c‖v‖q
X‖h‖q

q.
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On the other hand,

e
|x|
2

∫
|x−y|<R

G2α(x − y)h(y)qv(y)q dy

≤ c‖v‖q
Xe

|x|
2

∫
|x−y|<R

G2α(x − y)h(y)qe− |y|
2 dy

≤ c‖v‖q
Xe

|x|
2

∫
|x−y|<R

G2α(x − y)h(y)qe− |x|
2 dy

≤ c‖v‖q
X‖h‖q

∞.

We notice now that

e
|x|
2

∫
Br

G2α(x − y) dy ≤
{

e
R+r

2 if |x| < R + r∫
Br

e− |y|
2 dy if |x| ≥ R + r.

We conclude that ‖Fϕ(v)‖q
X < ∞, that is ‖Fϕ(v)‖X < ∞ and therefore Fϕ is

well defined. Finally we prove that Fϕ is a contraction,

e
|x|
2q |Fϕ(v1)(x) − Fϕ(v2)(x)|
≤ e

|x|
2q

∫
IRN

G2α(x − y)h(y)|v1(y) − v2(y)| dy

≤ ‖h‖∞‖v1 − v2‖Xe
|x|
2q

∫
IRN

G2α(x − y)e− |y|
2q dy

≤ ‖h‖∞‖v1 − v2‖X‖G2α ∗ (e− |·|
2q )‖X ≤ 1

2
‖v1 − v2‖X .

This implies the existence of a unique fixed point v̄ that satisfies

v̄ = G2α ∗ (hv̄ + χBr
) > 0.

�

Theorem 3.3. Let p > 1, q = max{1, (p − 1)−1} and u ∈ L1(IRN ) ∩ C(IRN ) a
positive solution of (I − Δ)αu = f(x, u) that vanishes at infinity. If f satisfies
(f0) and (f3), then there exist a constant c > 0 such that

u(x) ≤ ce− |x|
2q ∀x ∈ IRN .

Proof. We take ϕ like in the lemma with w(x) =
f(x, u(x))

u(x)
and let v be the

fixed point of Fϕ. We have

(I − Δ)αv = hv + χBr
and (I − Δ)αu = f(x, u).

We define the functions W (x) = u(x) − cv(x) and g(x) = (I − Δ)αW (x) −
h(x)W (x) where c > 0 is large enough so that W ≤ 0 in Br and g ≤ 0 in IRN .
Since W is continuous and vanishes at infinity, if we assume that W � 0 in
Bc

r , this implies the existence of a global positive maximum x̄ ∈ Bc
r . We notice

that
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W (x̄) = G2α ∗ (g + hW )(x̄) ≤ G2α ∗ (hW )(x̄)

=
∫

IRN

G2α(x̄ − y)h(y)W (y) dy.

Observing that
∫

G2α = 1,∫
IRN

G2α(x̄ − y)(W (x̄) − h(y)W (y)) dy ≤ 0.

Since h ≤ 1, this contradicts the fact that x̄ is a global maximum, in fact
W (x̄) − h(y)W (y) is non-negative and non-trivial. Therefore W ≤ 0 in IRN

and the result follows. �

Proof of decay estimate in Theorem 1.1. Once we apply Theorem 3.3, we find
that u has exponential decay, so that w = f(x,u(x))

u(x) ∈ L1. Thus Lemma 3.1
and Theorem 3.3 can be proved with q = 1, regardless the value of p > 1. �

Ma and Chen [17] proved that if u is a positive solution of u = G2α ∗ up

and u ∈ Lq(IRN ) for q > max
{

p, N(p−1)
2α

}
, then u is radially symmetric and

decreasing about some point.

4. Existence of infinitely many radially symmetric solutions

Now we establish the existence of infinitely many solutions of the equation
(I − Δ)αu = |u|p−1u. We follow the same argument as in [24]. Let M be a
manifold on a Hilbert space H and J a C1 functional defined on H. We say that
J |M satisfies the positive Palais–Smale condition [(PS)+] if for 0 < c1 < c2 and
every sequence {wn} ⊆ M such that c1 ≤ J(wn) ≤ c2 and ‖J |′M(wn)‖ → 0,
there exists a convergent subsequence of {wn}.

We consider

M = {v ∈ Hα
r : ‖v‖α = 1}

where

Hα
r = {v ∈ Hα : v is radially symmetric}

and

J(v) =
1

p + 1

∫
IRN

|v(x)|p+1 dx =
1

p + 1
‖v‖p+1

p+1.

Lemma 4.1. If N ≥ 2, J |M satisfies the (PS)+ condition.

Proof. Let {un} ⊆ M be a sequence such that 0 < c1 ≤ J(un) ≤ c2 and
‖J |′M(un)‖ → 0. Since {un} is bounded in Hα, we may find a subsequence
that converges in Lp+1

r (IRN ) (see [22, p. 656]) and weakly in Hα(IRn) to some
function u. We keep calling this subsequence {un} and then,

J(un) → J(u) and J ′(un)v − J ′(un)un〈un, v〉 → 0 ∀v ∈ Hα(IRn).

Taking v = u we get ‖u‖p+1
p+1 = ‖u‖p+1

p+1‖u‖2
α. This implies ‖u‖α = 1 because

J(un) ≥ c1. Therefore ‖un‖α → ‖u‖α and we conclude that {un} converges
strongly to u. �
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Let Σ(M) denote the set of compact and symmetric subsets of M. The
genus γ(A) of a set A ∈ Σ(M) is defined as the least integer n ≥ 1 such that
there exists an odd continuous mapping φ : A → Sn−1. We set γ(A) = ∞ if
such an integer does not exist. For k ≥ 1, we define Γk = {A ∈ Σ(M) : γ(A) ≥
k}. We will need the following results (see [1]).

Proposition 4.1. Let J : H → IR be an even functional of class C1. Suppose
that J is bounded from above on M and J |M satisfies the (PS)+ condition.
Let

bk = sup
A∈Γk

inf
v∈A

J(v).

Then b1 ≥ b2 ≥ · · · bk ≥ · · · and bk is a critical value of J if bk > 0.

Proposition 4.2. Let Kb = {v ∈ M : J(v) = b, J |′M(v) = 0}. Under the
hypotheses of Proposition 4.1, suppose that bk = bk+1 = · · · = bk+r−1 = b.
Then γ(Kb) ≥ r. In particular, if r ≥ 2 there exists infinitely many critical
points of J |M with critical value b.

Remark 4.1. By Propositions 4.1 and 4.2, under the conditions of Proposition
4.1, there always exists infinitely many critical points of J |M.

For k ≥ 1 we consider

πk−1 =

{
l = (l1, ..., lk) ∈ IRk :

k∑
i=1

|li| = 1

}
.

This set satisfies γ(πk−1) = k because it is homeomorphic to Sk−1.

Lemma 4.2. Let q ∈ (2, 2N
N−2 ). For all k ≥ 1, there exists a constant R =

R(k) > 0 and an odd continuous mapping τ : πk−1 → H1
0 (BR) such that

(i) τ(l) is a radial function for all l ∈ πk−1 and 0 /∈ τ(πk−1).
(ii) For v ∈ τ(πk−1), ‖v‖q ≥ 1.

Lemma 4.3. For all k ≥ 1, bk > 0.

Proof. We use Lemma 4.2 with q = p+1 < 2N
N−2α < 2N

N−2 and the embeddings
H1

0 (BR) ↪→ H1(IRN ) ↪→ Hα(IRN ) to find a mapping ϕ : πk−1 → Hα(IRN )
that satisfies conditions (i) and (ii) of Lemma 4.2. Thus we may define an odd
continuous mapping ψ : πk−1 → M as

ψ(l) =
ϕ(l)

‖ϕ(l)‖α
.

Let Ak = ψ(πk−1). We see that Ak ∈ Γk. Since ϕ(πk−1) is compact, there is a
constant M > 0 such that ‖ϕ(l)‖α ≤ M for all l ∈ πk−1 and then,

inf
v∈Ak

J(v) = inf
l∈πk−1

1
p + 1

∫
IRN

|ϕ(l)(x)|p+1

‖ϕ(l)‖p+1
α

dx ≥ 1
Mp+1(p + 1)

> 0.

Therefore bk > 0. �
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Proof of Theorem 1.2. We use Sobolev embedding to see that J is bounded
on M. By Lemma 4.1, J |M satisfies the (PS)+ condition and by Lemma 4.3
and Propositions 4.1 and 4.2, it has infinitely many critical points. The result
follows from noticing that such a critical point satisfies∫

IRN

(1 + |ξ|2)αû(ξ)v̂(ξ) dξ = λ

∫
IRN

|u(x)|p−1u(x)v(x) dx ∀v ∈ Hα
r (IRN )

for some λ ∈ IR. But this equality also holds for all v ∈ Hα(RN ), in fact we
have ∫

IRN

|u(x)|p−1u(x)ϕ(x) dx = 〈G2α ∗ (|u|p−1u), ϕ〉α = 0

for all ϕ ∈ Hα(RN ) which is Hα-orthogonal to Hα
r (RN ). Finally, taking u = v

we get λ > 0 and we find the weak solution by rescaling. �

Remark 4.2. We observe that Theorem 3.2 holds for f(x, s) = |s|p−1s. There-
fore the equation has infinitely many solutions in L2(IRN ) ∩ Cμ(IRN ).

5. Pohozaev identity and non-existence result

This section is devoted to prove Theorem 1.3 on the non-existence of solutions
to (1.6) with supercritical nonlinearity. We start with the proof of a differential
identity involving the elliptic operator in our equation. We denote by S(RN )
the Schwartz space of rapidly decaying functions.

Proposition 5.1. For every function ϕ ∈ S(RN ) we have

(I − Δ)α(x · ∇ϕ) = x · ∇[(I − Δ)αϕ] + 2α(I − Δ)αϕ − 2α(I − Δ)α−1ϕ.

Proof. We start with the basic properties of the Fourier transform, for any
ϕ ∈ S(RN ),

F
(

∂ϕ

∂xk

)
= iξkϕ̂ and F(xkϕ) = i

∂

∂ξk
ϕ̂,

from where we see that

F(x · ∇ϕ)(ξ) =
N∑

k=1

F
(

∂

∂xk
(xkϕ) − ϕ

)

= i

N∑
k=1

ξkF(xkϕ) − Nϕ̂

= −(ξ · ∇ϕ̂ + Nϕ̂). (5.1)

Therefore,

F((I − Δ)α(x · ∇ϕ))(ξ) = −(1 + |ξ|2)α(ξ · ∇ϕ̂ + Nϕ̂). (5.2)
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Using (5.2) and differentiating, we see that

F(x · ∇[(I − Δ)αϕ])(ξ)
= −(ξ · ∇F((I − Δ)αϕ) + NF((I − Δ)αϕ))
= −(ξ · ∇[(1 + |ξ|2)αϕ̂] + N(1 + |ξ|2)αϕ̂)
= −(ξ · [α(1 + |ξ|2)α−12ϕ̂ξ + (1 + |ξ|2)α∇ϕ̂] + N(1 + |ξ|2)αϕ̂)
= −2α(1 + |ξ|2)αϕ̂ + 2α(1 + |ξ|2)α−1ϕ̂ − (1 + |ξ|2)α(ξ · ∇ϕ̂ + Nϕ̂). (5.3)

Then, from (5.2) and (5.3), we obtain

F((I − Δ)α(x · ∇ϕ) − x · ∇[(I − Δ)αϕ])(ξ)
= 2α(1 + |ξ|2)αϕ̂ + 2α(1 + |ξ|2)α−1ϕ̂

= 2αF((I − Δ)αϕ) − 2αF((I − Δ)α−1ϕ),

from where the result follows.
Now we are in a position of proving Theorem 1.3.

Proof of Theorem 1.3. Let us assume the contrary, that is, there is a solution
u to Eq. (1.6) such that u ∈ L∞(RN ) ∩ Lq(RN ), with q ≥ 1. Then we may
use Proposition 3.3 to see that u ∈ L1(IRN ) ∩ C1+γ+2α(IRN ) and then, by
Theorem 3.3, u has exponential decay. If ρε(x) = 1

εN ρ
(

x
ε

)
is a mollifier, with

support of ρ in the ball B1(0), then uε = ρε∗u ∈ S(RN ). Then, since u satisfies

(I − Δ)αu = up

in the sense of tempered distributions, we have

(I − Δ)αuε = (I − Δ)αρε ∗ u = ρε ∗ (I − Δ)αu = ρε ∗ up. (5.4)

and, since x · ∇uε ∈ S(RN ), we also have∫
IRN

(I − Δ)αu(x · ∇uε) =
∫

IRN

up(x · ∇uε). (5.5)

We consider the left hand side first. Using Proposition 5.1 and (5.4), we have∫
IRN

(I − Δ)αu (x · ∇uε) =
∫

IRN

u (I − Δ)α(x · ∇uε)

=
∫

IRN

ux · ∇(ρε ∗ up) + 2α
∫

IRN

u (ρε ∗ up)

−2α

∫
IRN

u(I − Δ)α−1uε. (5.6)

For the first integral in the third term, using that u is exponentially decaying
and differentiable with bounded derivative, we have

lim
ε→0

∫
IRN

ux · ∇(ρε ∗ up) =
∫

IRN

ux · ∇(up)

=
∫

IRN

x · (∇up+1 − u∇up)

=
(

−N +
N

p + 1

) ∫
IRN

up+1. (5.7)
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For the second integral in the third term in (5.6) we have

lim
ε→0

2α

∫
IRN

u(ρε ∗ up) = 2α
∫

IRN

up+1. (5.8)

For the third integral in the third term in (5.6), we use the fact that u ∈
L2(IRN ) and that uε → u in L2(IRN ) and that α ∈ (0, 1), to see that

lim
ε→0

∫
IRN

u(I − Δ)α−1uε = lim
ε→0

∫
IRN

û(1 + |ξ|2)α−1ûε

=
∫

IRN

û2(1 + |ξ|2)α−1 > 0. (5.9)

On the other hand, for the right hand side of (5.5), using that u is exponentially
decaying and differentiable with bounded derivative, we find that

lim
ε→0

∫
IRN

up(x · ∇uε) =
∫

IRN

up(x · ∇u)

=
1

p + 1

∫
IRN

x · ∇up+1

= − N

p + 1

∫
IRN

up+1. (5.10)

From Eq. (5.5), using (5.6)–(5.9) for the left hand side and using (5.10) for the
right hand side, we finally obtain(

2α − N +
2N

p + 1

) ∫
IRN

up+1 = 2α

∫
IRN

(1 + |ξ|2)α−1û(ξ)2 > 0.

But this implies that 2α−N + 2N
p+1 > 0 and then p < N+2α

N−2α , contradicting the
hypothesis. �
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