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Resumen

En las últimas décadas han crecido la cantidad de trabajos que buscan encontrar metodos
eficientes que describan el comportamiento macroscópico de los sistemas de spin, a partir de
una definición microscópica. Los resultados que se obtienen de estos sistemas no solo sirven
a la comunidad f́ısica, sino también a otras áreas como dinámica molecular, redes sociales o
problemas de optimización, entre otros. El hecho de que los sistemas de spin puedan explicar
fenómenos de otras áreas ha generado un interés global en el tema. El problema es, sin
embargo, que el costo computacional de los métodos involucrados llega a ser muy alto para
fines prácticos. Por esto, es de gran interés estudiar como la computación paralela, combinada
con nuevas estrategias algoŕıtmicas, puede generar una mejora en velocidad y eficiencia sobre
los metodos actuales.

En esta tesis se presentan dos contribuciones; (1) un algoritmo exacto multi-core
distribuido de tipo transfer matrix y (2) un método Monte Carlo multi-GPU para la sim-
ulación del modelo 3D Random Field Ising Model (RFIM). La primera contribución toma
ventaja de las relaciones jerárquicas encontradas en el espacio de configuraciones del problema
para agruparlas en árboles de familias que se solucionan en paralelo. La segunda contribución
extiende el método Exchange Monte Carlo como un algoritmo paralelo multi-GPU que in-
cluye una fase de adaptación de temperaturas para mejorar la calidad de la simulación en las
zonas de temperatura mas complejas de manera dinámica.

Los resultados muestran que el nuevo algoritmo de transfer matrix reduce el espacio de
configuraciones desde O(4m) a O(3m) y logra un fixed-size speedup casi lineal con aproxi-
madamente 90% de eficiencia al solucionar los problemas de mayor tamaño. Para el método
multi-GPU Monte Carlo, se proponen dos niveles de paralelismo; local, que escala con GPUs
mas rápidas y global, que escala con múltiples GPUs. El método logra una aceleración de
entre uno y dos ordenes de magnitud respecto a una implementación de referencia en CPU,
y su paralelismo escala con aproximadamente 99% de eficiencia. La estrategia adaptativa de
distribución de temperaturas incrementa la taza de intercambio en las zonas que estaban mas
comprometidas sin aumentar la taza en el resto de las zonas, generando una simulación mas
rápida aun y de mejor calidad a que si se usara una distribución uniforme de temperaturas.
Las contribuciones logradas han permitido obtener nuevos resultados para el área de la f́ısica,
como el calculo de la matriz transferencia para el kagome lattice en m = 9 y la simulación
del modelo 3D Random Field Ising Model en L = {32, 64}.
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Abstract

In the last decades a large amount of research has been devoted on finding efficient methods
for studying spin models and obtain the macroscopic behavior of the system starting from
a microscopic definition of it. The results obtained for some spin models have proven to be
useful not only to the physics community, but also to other fields such as molecular dynamics,
social networks and optimization problems, among others. The fact that these interaction
models can explain phenomena from other fields has led to a global interest on the subject.
The problem is however, that the cost of the computational methods involved, both exact
and Monte Carlo, can become too expensive for practical purposes. For this, it is of interest
to study how parallel computing, combined with new algorithmic strategies, can provide a
performance improvement to the existing methods.

In this thesis we present two computational contributions; (1) an exact multi-
core distributed transfer matrix algorithm and (2) a multi-GPU Monte Carlo method for
the 3D Random Field Ising Model. The first contribution consists of a parallel multi-CPU
transfer matrix algorithm that takes advantage of the hierarchical relations found in the
configuration space and forms family trees of configurations that are solved in parallel. In
the second contribution we propose a multi-GPU method for the simulation of the 3D Random
Field Ising Model. The multi-GPU algorithm is an extension of the Exchange Monte Carlo
method, since it adds a new strategy for choosing a set of temperatures that increases the
exchange rate at the locations where the simulation is most compromised.

The results show that the new transfer matrix algorithm reduces the configuration space
from O(4m) to O(3m) and runs 90% efficient for distributed multi-core CPUs, providing close
to linear speedup. For the multi-GPU Monte Carlo method, the performance scales using two
levels of parallelism; locally with faster GPUs and globally with multiple GPUs. Compared
to a CPU implementation, the multi-GPU method runs at least an order of magnitude faster
and scales with an efficiency of approximately 99% when moving from one to two GPUs. The
new temperature distribution strategy provides higher exchange rate at the low temperature
region, resulting in a better and faster simulation. The contributions of this thesis have
allowed us to obtain new scientific results, such as the transfer matrix for the kagome strip
at width m = 9 as well as physical observables for the 3D Random Field Ising Model at
L = {32, 64}.
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Introduction

This thesis is essentially a computer science research on a very attractive physical prob-
lem. When these two fields meet one usually says that the work belongs to computational
physics.

Context and Motivation

The field of Computational physics studies the computational problems involved in physics
research and it is in a constant search of new methods that are faster and more efficient
than the actual ones. This research field is in fact important for science itself, because it
eventually contributes at pursuing new knowledge.

The cost of a physical problem, measured in computing time, depends on how fast the
number of computational operations grow as a function of the problem size. It is of great
interest to know what is the minimum time required to solve a problem as well as what is the
maximum time an algorithm can take in the worst case. Typically, these bounds are found
by doing an asymptotic analysis on the problem, assuming that the constants involved will
not dominate the overall cost once the problem has reached a considerable size. When these
two bounds meet, one can say that the computational problem has been solved, since one
has found an algorithm that performs the minimum number of operations required, leaving
no room for a faster one.

In practice many physical problems have not been algorithmically solved, presenting a
gap between its lower and upper bound. This gap allows the computer science community
to research on the subject, usually by designing better algorithms that can lower the upper
bound. But improving the upper bound of an algorithm is not an easy task at all, as there
are cases where it seems not possible to go beyond certain complexity barriers. Such is the
case of spin systems, more specifically the problem of computing the partition function Z( )1

of a spin lattice, for which no worst case polynomial algorithm exists since it is an NP-Hard
problem [285]. In these situations the best one can do is to find a new algorithm that is faster
than a previous one, but will still be exponential in time. The transfer matrix technique in
the Potts model is an example of a method that can compute Z( ) much faster than other
exact methods, but is still exponential on the width of the lattice.

1The partition function Z( ) can be understood as the analytical expression of a spin lattice that encodes
all of its physical information
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The study of spin systems has been for decades an important topic of research for the
physics community because the results obtained can explain how condensed matter systems
behave according to their temperature. Some spin models have even caught the attention
of other fields for being able to explain aspects of cellular growth [104], social networks
[68] and optimization problems [300] among others. The importance of spin models lies
in the possibility to obtain macroscopic behavior from a microscopically defined system,
through the computation of Z( ) that encodes exact physical information about the system.
However, the number of combinatorial operations required to compute Z( ) grows so fast
that the algorithms soon encounter an intractable scenario in time and memory usage. This
intractability limitation has been the main problem for exact algorithms and eventually led
to the formulation of Monte Carlo methods, that instead of computing Z( ), simulate a
finite system obtaining averaged physical results that are not exact but can still be accurate
enough. While it is true that Monte Carlo methods have allowed the study of much greater
and complex systems than the exact methods, one cannot ignore the high amount of floating
point operations and memory accesses still involved in the simulation process, as well as
the difficulty for reaching equilibrium in systems with quenched disorder, such as Spin glass
and Random field models. Today, the simulation of large 3D disordered systems presents
a great challenge for computer science both in Monte Carlo convergence quality and high
performance computing.

Computational research on spin systems can be divided in two types; (1) to find faster
exact algorithms and (2) to find faster and better quality Monte Carlo methods. Both sce-
narios have challenging problems and present advantages as well as disadvantages regarding
exactness and speed. It is wise then to ask: how can the actual methods for spin lattices
benefit from new algorithmic strategies as well as from the latest computational technologies?
Fortunately, now it is possible to improve computational methods not only by finding a new
algorithm with a lower upper bound, but also by proposing parallel algorithms. The massi-
fication of parallel architectures, both CPUs and GPUs, provide an opportunity to further
improve the running time of exact and probabilistic algorithms. The CPU’s flexible multi-
core architecture makes it a good candidate for exact methods, since the computation of
the Z( ) requires irregular memory access patterns that can only be handled with efficient
caches. On the other hand, GPU architectures can provide performance that can be an order
of magnitude higher than CPUs for bandwidth and floating point intensive problems such as
the Monte Carlo simulations. But in order to achieve such level of performance, GPU-based
algorithms have to be carefully re-designed for its architecture, presenting a great challenge.

Parallel computing has become an active field in computer science and its research is
usually devoted at finding new ways of parallelization, automatic or manual, that can scale
efficiently on modern parallel processors [200]. What parallel computing seeks as a final
goal is to understand what parallel computation means at a more fundamental level and
eventually have a general parallel computing model that can immediately tell us what are
the limits of parallelism for a given problem under a certain architecture. Much research has
been done towards this direction and today there is a much more solid base of concepts and
patterns that can be used in order to take full potential of the field. The possibility to
improve exact and Monte Carlo methods by proposing new parallel algorithmic
strategies constitutes the main motivation of this thesis project.
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The Problems and Goal

In this thesis we focus on two open problems:

1. In transfer matrix methods, the number of combinatorial possibilities to explore grows
exponentially as a function of the lattice’s width, presenting an intractable scenario at
a very early stage. Although the transfer matrix method is more efficient than a direct
computation of the partition function Z( ), faster exact methods are still necessary
in order to extend the possibilities of physical research at wider sizes. Our case of
interest is the problem of computing the generic (q, v) transfer matrix for strip lattices
in the Potts model. The cost of transfer matrix methods in the Potts model is directly
related to the size of the configuration space, which is O(4m) in size for the generic
(q, v) case. Our research question is: Is it possible to design a generic (q, v) transfer
matrix algorithm that uses a reduced configuration space and is still highly parallel for
multi-core CPUs?

2. Monte Carlo simulations on large 3D systems with quenched disorder require a large
amount of computation and must traverse adverse energy landscapes in the low tem-
perature regime in order to reach equilibrium, making the simulation susceptible to
reach incorrect results. Our case of interest is the problem of simulating the 3D Ran-
dom Field Ising Model (RFIM). Our research question is: Can parallel architectures
such as GPUs, combined with Monte Carlo techniques based on replicas, improve the
simulation process for 3D lattices with quenched disorder?

The goal of this thesis is to propose high performance solutions for both prob-
lems by combining new algorithmic techniques with parallel strategies, resulting
in scalable performance.

Thesis Overview

The thesis has been organized into four Chapters. The parallel computing and physical
backgrounds required for this thesis can found in Chapters 1 and 2, respectively, and
can be read in any particular order. The aim of these two chapters is to present basic
concepts, notations, known methods and terminologies that are used throughout the thesis.
Additionally, these chapters allow the contributions to be in context to each field. The rest
of the thesis is devoted to the actual contributions, each one self-contained in a dedicated
chapter:

• Chapter 3 (Contribution 1) it focuses on the transfer matrix contribution. We an-
alyze a way of building the transfer matrix based on the deletion contraction technique
and present a new method, named Parallel Family Trees (PFT), that takes advantage
of the symmetries found between elements of the configuration space. The chapter
starts with the definition of a strip lattice, explains the transfer matrix method and
discusses related work on transfer matrix algorithms, pointing out the works that di-
rectly relate to the research. A complete section is devoted to explain in detail how
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one can reduce the configuration space, from O(4m) to O(3m), as well as how high
parallelism is achieved. We include performance results for the algorithm and present
physical results for both the square and kagome strips, at different widths.

• Chapter 4 (Contribution 2) is about the Monte Carlo contribution for fast GPU-
based simulation on disordered systems. We propose an adaptive multi-GPU method
based on the Exchange Monte Carlo algorithm, for the 3D Ising Random Field Model.
The chapter begins by presenting the problematic behind quenched disorder and how
the idea of replica based methods can bypass this issue. Then we present our multi-GPU
Exchange Monte Carlo method, explaining in detail how the two levels of parallelism
cooperate in order to offer a scalable multi-GPU solution. We explain the adaptive
strategy for increasing the exchange rate of replicas, based on recursive middle-point
insertions of temperatures. Finally, performance results are presented, showing that
the multi-GPU method scales efficiently for two GPUs and that the adaptative tem-
peratures strategy is more convenient than the uniform distribution approach.

In the conclusions we discuss the impact, applicability and limits of the results obtained
as well as comment on the future work.
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Chapter 1

Parallel Computing Background

For some computational problems, sequential algorithms are not fast enough to provide a
solution in a reasonable1 amount of time. Problems such as these can be found in natural
sciences [117, 245, 265] (Physics, Biology, Chemistry), information technologies [264] (IT),
geospatial information systems [25, 157] (GIS), structural mechanics problems [26] and even
abstract mathematical/computer science (CS) problems [191, 219, 225, 246], among other
fields. In many cases, these problems can be solved within a reasonable amount of time with
the use of a parallel algorithm, expanding the possibilities of research for the given field.

In the past, the only way to run parallel algorithms was by building a cluster of computers
or by having exclusive access to a super-computer. The first attempt on building a parallel
machine at human-scale came only when the silicon of conventional CPUs could not reach
higher frequencies due to physical constraints. At that moment, the computer industry was
forced for the first time to expand the chip’s architecture by adding multiple cores that would
work independently one to each other, thus increasing the performance through parallelism.
From that point and on, the CPU evolved to the known multi-core CPU which is a flexible and
parallel processor. Over the years, the computer science community noted that for problems
with critical regions and complex memory patterns, the multi-core CPU algorithms worked
efficiently. But there were other type of problems, very parallelizable, for which the multi-
core CPU architecture was not performing as fast as required. These problems are known as
data-parallel problems and they characterize for having a high number of sub-problems that
grow as a function of the problem size. For these types of problems one can use massively
parallel processors and achieve a higher performance.

The story of how massive parallel processors were born is an interesting one because it
combines two fields that were thought to be unrelated; computational science and video-
game industry. The constant need for solving larger scientific problems eventually led to
the construction of super-computers for understanding phenomena such as galaxy formation,
molecular dynamics and climate change, among many others. As the scientific community
expanded, the need for high performance computers that could be cheaper, accessible and
smaller became important. On the other hand, the video-game industry has the goal of

1The notion of reasonable varies for each scientific field.
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achieving real-time photo-realistic graphics, with the major restriction of running their light-
ing and polygon algorithms on consumer-level computer hardware. The need of realistic
video-games led to the invention of the graphics accelerator, which is a small parallel proces-
sor that handles millions of floating point computations per second. The two needs, combined
together, gave birth to the modern GPU.

The high compute power of GPUs, combined with the flexible parallelism of multi-core
CPUs, can produce over one Teraflops of performance in a workstation machine, making
research on high performance methods accessible by the computer science community world-
wide. A great portion of modern research on parallel computing is devoted to study the
possibilities of GPU computing when applied to scientific problems, finding out that a con-
siderable amount of speedup can be obtained with respect to a sequential CPU-based solution
[24, 65], sometimes reaching over an order of magnitude of speedup[59, 179].

Some problems however, cannot have a parallel solution [106]. For example, the approxi-
mation of

√
x using the Newton-Rhapson method [222] cannot be parallelized because each

iteration depends on the value of the previous one; there is the issue of time dependence. Such
problems do not benefit from parallelism at all and are best solved using an efficient sequen-
tial algorithm. On the other hand, there are problems that can be naturally split into many
independent sub-problems; e.g., matrix multiplication can be split into several independent
multiply-add computations. Such problems are massively parallel, they are very common
in computational physics and they are best solved using parallel computing. In some cases,
these problems become so parallelizable that they receive the name embarrassingly parallel2

or pleasingly parallel [195, 218].

One of the most important aspects of parallel computing is its close relation to the un-
derlying hardware and programming models. Typical questions in the field are: What type
of problem I am dealing with? Should I use a CPU or a GPU? Is it a MIMD or SIMD
architecture? It is a distributed or shared memory system? What should I use: OpenMP,
MPI, CUDA or OpenCL? Why the performance is not what I had expected? Should I use a
hierarchical partition? how can I design a parallel algorithm?. The answers to these questions
are indeed important when searching for a high performance solution and they lie in the areas
of algorithms, computer architectures, computing models and programming models. GPU
computing also brings up additional challenges such as manual cache usage, parallel memory
access patterns, communication, thread mapping and synchronization, among others. These
challenges are critical for implementing an efficient parallel algorithm.

This chapter is a comprehensive survey of basic and advanced topics that are often re-
quired as parallel computing background. The reader should become more confident in the
fundamental and technical aspects of parallel CPU and GPU computing, with a clear idea
of what types of problems are best suited for each architecture.

The sections are organized in the following way: fundamental concepts of parallel com-
puting and theoretical background are presented first, such as basic definitions, performance

2The term embarrassingly parallel means that it would be embarrassing to not take advantage of such
parallelization. In some cases, the term has been misunderstood as of being embarrassed to make such
parallelization for being too straightforward; this meaning is unwanted. An alternative name is pleasingly
parallel.
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measures, computing models, programming models and architectures (from section 1.1 to
section 1.5). Concepts of GPU computing start from section 1.6, and cover strategies for
designing massive parallel algorithms, the massive parallelism programming model and its
technical restrictions.

1.1 Basic concepts

The terms concurrency and parallelism are often debated by the computer science community
and sometimes it has become unclear what the difference is between the two, leading to
misunderstanding of very fundamental concepts. Both terms are frequently used in the field
of HPC and their difference must be made clear before discussing more advanced concepts
along the survey. The following definitions of concurrency and parallelism are consistent and
considered correct [38];

Definition 1.1 Concurrency is a property of a program (at design level) where two or
more tasks can be in progress simultaneously.

Definition 1.2 Parallelism is a run-time property where two or more tasks are being
executed simultaneously.

There is a difference between being in progress and being executed since the first one does
not necessarily involve being in execution. Let C and P be concurrency and parallelism,
respectively, then P ⊂ C. In other words, parallelism requires concurrency, but concurrency
does not require parallelism. A nice example where both concepts come into play is the
operating system (OS); it is concurrent by design (performs multi-tasking so that many
tasks are in progress at a given time) and depending on the number of physical processing
units, these tasks can run parallel or not. With these concepts clear, now we can make a
simple definition for parallel computing:

Definition 1.3 Parallel computing is the act of solving a problem of size n by dividing
its domain into k ≥ 2 (with k ∈ N) parts and solving them with p physical processors,
simultaneously.

Being able to identify the type of problem is essential in the formulation of a parallel
algorithm. Let PD be a problem with domain D. If PD is parallelizable, then D can be
decomposed into k sub-problems:

D = d1 + d2 + ...+ dk =
k∑

i=1

di (1.1)

PD is a data-parallel problem if D is composed of data elements and solving the problem
requires applying a kernel function f(...) to the whole domain:

f(D) = f(d1) + f(d2) + ...+ f(dk) =
k∑

i=1

f(di) (1.2)
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PD is a task-parallel problem if D is composed of functions and solving the problem
requires applying each function to a common stream of data S:

D(S) = d1(S) + d2(S) + ...+ dk(S) =
k∑

i=1

di(S) (1.3)

Data-parallel problems are ideal candidates for the GPU since its architecture works best
when all threads execute the same instructions but on different data. On the other hand,
task-parallel problems are best suited for the CPU because its architecture allows different
tasks to be executed with flexible memory access patterns. Identifying the amount of data-
parallelism and task-parallelism in a problem is critical for achieving the best partition of
the problem domain, which is in fact the first step when designing a parallel algorithm.
It also provides useful information when choosing the best hardware for the implementation
(CPU or GPU). Computational physics problems often classify as data-parallel, as the chosen
problems for this thesis, thus they are good candidates for a parallelization with multi-core
CPUs and GPUs.

1.2 Performance measures

Performance measures consist of a set of metrics that can be used for quantifying the quality
of an algorithm. For sequential algorithms, time and space give a rich amount of information
about the algorithm, and in many occasions it is sufficient. For parallel algorithms the
scenario is a little more complicated. Apart from time and space, metrics such as speedup
and efficiency are necessary for studying the quality of a parallel algorithm. Furthermore,
when an algorithm cannot be completely parallelized, it is useful to have a theoretical estimate
of the maximum speedup possible. In these cases, the laws of Amdahl and Gustafson become
useful for such analysis. On the experimental side, metrics such as memory bandwidth and
floating point operations per second (Flops) define the performance of a parallel architecture
when running a parallel algorithm.

Given a problem of size n, the running time of a parallel algorithm, using p processors, is
denoted:

T (n, p) (1.4)

From the theoretical point of view, the metrics work and span define the basis for computing
other metrics such as speedup and efficiency.

1.2.1 Work and Span

The quality of a parallel algorithm can be defined by two metrics as stated by Cormen et al.
[61]; work and span. Both metrics are important because they give limits to parallel comput-
ing and introduce the notion of work. Parallel algorithms have the challenge of being fast,
but also to generate the minimum amount of additional work from the sequential algorithm.
By doing less additional work, they become more efficient.
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Work is defined as the total time needed to execute a parallel algorithm using one pro-
cessor; denoted as T (n, 1). Span is defined as the longest time needed to execute a parallel
path of computation by one thread; denoted as T (n,∞). Span is the equivalent of measuring
time when using an infinite amount of processors.

These two metrics provide lower bounds for T (n, p) . The work law states the first lower
bound:

T (n, p) ≥ T (n, 1)

p
(1.5)

That is, the running time of a parallel algorithm must be at least 1/p of its work. With the
work law, one can realize that parallel algorithms run faster when the work per processor is
balanced.

The span law defines the second lower bound for T (n, p):

T (n, p) ≥ T (n,∞) (1.6)

This means that the time of a parallel algorithm cannot be lower than the span or the minimal
amount of time needed by a processor in an infinite processor machine.

1.2.2 Speedup

One of the most important actions in parallel computing is to actually measure how fast can
a parallel algorithm run with respect to the best sequential one. This measure is known as
speedup.

For a problem of size n, the expression for speedup is:

Sp =
Ts(n, 1)

T (n, p)
(1.7)

where Ts(n, 1) is the time of the best sequential algorithm (i.e., Ts(n, 1) ≤ T (n, 1)) and
T (n, p) is the time of the parallel algorithm with p processors, both solving the same problem.
Speedup is upper bounded when n is fixed because of the work law from equation (1.5):

Sp ≤ p (1.8)

If the speedup increases linearly as a function of p, then we speak of linear speedup. Linear
speedup means that the overhead of the algorithm is always in the same proportion with its
running time, for all p. In the particular case of T (n, p) = Ts(n, 1)/p, we then speak of ideal
speedup or perfect linear speedup. It is the maximum theoretical value of speedup a parallel
algorithm can achieve when n is fixed. In practice, it is hard to achieve linear speedup let
alone perfect linear speedup, because memory bottlenecks and overhead increase as a function
of p. What we find in practice is that most programs achieve sub-linear speedup, that is,
T (n, p) ≥ Ts(n, 1)/p. Figure 1.1 shows the four possible curves.

For the last three decades it has been debated whether super-linear speedup (i.e., Sp > p)
is possible or or not. Super-linear speedup is an important matter in parallel computing
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Figure 1.1: The four possible curves for speedup.

and proving its existence would benefit computer science, since parallel machines would be
literally more than the sum of their parts (Gustafson’s conclusion in [111]). Smith [251] and
Faber et al. [81] state that it is not possible to achieve super-linear speedup and if such a
parallel algorithm existed, then a single-core computation of the same algorithm would be no
less than p times slower (leading to linear speedup again). On the opposite side, Parkinson’s
work [221] on parallel efficiency proposes that super-linear speedup is sometimes possible
because the single processor has loop overhead. Gustafson supports super-linear speedup and
considers a more general definition of Sp, one as the ratio of speeds (speed = work/time)
[111] and not the ratio of times as in equation (1.7). Gustafson concludes that the definition
of work, its assumption of being constant and the assumption of fixed-size speedup as the
only model are the causes for thinking of the impossibility of super-linear speedup [113].

It is important to mention that there are three different models of speedup. (1) Fixed-size
speedup is the one explained recently; fixes n and varies p. It is the most popular model
of speedup. (2) Scaled speedup consists of varying n and p such that the problem size per
processor remains constant. Lastly, (3) fixed-time speedup consists of varying n and p such
that the amount of work per processor remains constant. Throughout this survey, fixed-size
speedup is assumed by default. For the case of (2) and (3), speedup becomes a curve from
the surface on (n, p).

If a problem cannot be completely parallelized (one of the causes for sub-linear speedup),
a partial speedup expression is needed in the place of equation (1.7). Amdahl and Gustafson
proposed each one an expression for computing partial speedup. They are known as the laws
of speedup.
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Amdahl’s law

Let c be the fraction of a program that is parallel, (1 − c) the fraction that runs sequential
and p the number of processors. Amdahl’s law [12] states that for a fixed size problem the
expected overall speedup is given by:

S(p) =
1

(1− c) + c
p

(1.9)

If p ≈ ∞, equation (1.9) becomes:

S(p) =
1

1− c
(1.10)

That is, if a computer has a large number of processors (i.e., a super-computer or a modern
GPU), then the maximum speedup is limited by the sequential part of the algorithm (e.g, if
c = 4/5 then the maximum speedup is 5x).

Amdahl’s law is useful for algorithms that need to scale its performance as a function of
the number of processors, fixing the problem size n. This type of scaling is known as strong
scaling.

Gustafson’s law

Gustafson’s law [110] is another useful measure for theoretical performance analysis. This
metric does not assume a fixed size of the problem as Amdahl’s law did. Instead, it uses
the fixed-time model where work per processor is kept constant when increasing p and n.
In Gustafson’s law, the time of a parallel program is composed of a sequential part s and a
parallel part c executed by p processors.

T (p) = s+ c (1.11)

If the sequential time for all the computation is s+ cp, then the speedup is:

S(p) =
s+ cp

s+ c
=

s

s+ c
+

cp

s+ c
(1.12)

Defining α as the fraction of serial computation α = s/(s + c), then the parallel fraction is
1− α = c/(s+ c). Finally, equation (1.12) becomes the fixed-time speedup S(p):

S(p) = α + p(1− α) = p− α(p− 1) (1.13)

Gustafson’s law is important for expanding the knowledge in parallel computing and the
definition of speedup. With Gustafson’s law, the idea is to increase the work linearly as a
function of p and n. Now the problem size is not fixed anymore, instead the work per processor
is fixed. This type of scaling is also known as weak scaling. There are many applications where
the size of the problem would actually increase if more computational power was available;
weather prediction, computer graphics, Monte Carlo algorithms, particle simulations, etc.
Fixing the problem size and measuring time vs p is mostly done for academic purposes. As
the problem size gets larger, the parallel part p may grow faster than α.
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While it is true that speedup might be one of the most important measures of parallel
computing, there are also other metrics that provide additional information about the quality
of a parallel algorithm, such as the efficiency.

1.2.3 Efficiency

If we divide expression (1.8) by p, we get:

Ep =
Sp
p

=
Ts(n, 1)

pT (n, p)
≤ 1 (1.14)

Ep is the efficiency of an algorithm using p processors and it tells how well the processors are
being used. Ep = 1 is the maximum efficiency and means optimal usage of the computational
resources. Maximum efficiency is difficult to achieve in an implemented solution (it is a
consequence of the difficult to achieve perfect linear speedup). Today, efficiency has become
as important as speedup, if not more, since it measures how well the hardware is used and
it tells which implementations should have priority when competing for limited resources
(cluster, supercomputer, workstation).

1.2.4 FLOPS

The FLOPS metric represents raw arithmetic performance and is measured as the number
of floating point operations per second. Let Fh be the peak floating point performance of a
known hardware and Fe the floating point performance measured for the implementation of
a given algorithm, then Fc is defined as:

Fc =
Fe

Fh
(1.15)

Fc tells us the efficiency of the numerical computation relative to a given hardware. A value
of Fc = 1 means maximum hardware usage for numerical computations.

In the year 2014, the fastest floating point performance reported was approximately 33.8
PFLOP/s by the Tianhe-2 supercomputer located in the National Super Computer Center
in Guangzhou, China. A list of the 500 most powerful super-computers in the world is kept
updated each year at the site ’www.top500.org’. There is high enthusiasm for achieving for
the first time the Exaflops scale. It is believed that in the following years, with the help of
GPU-based hardware, which can be up to an order of magnitude faster than a CPU, the goal
of Exaflops scale will be achieved. Figure 1.2 shows the performance between Nvidia’s GPUs
and Intel CPUs through the years. From the Figure one can see that the GPU performance
is approximately five times higher for double precision (FP64) and almost to 10 times higher
for single precision (FP32).
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Figure 1.2: Comparison of CPU and GPU single precision floating point performance through the years.
Plot taken from Nvidia’s CUDA C programming guide [209].

1.2.5 Performance per Watt

In recent years, power consumption has become an important matter for sustainable tech-
nology. Today the notion of performance per watt3 is one of the most important measures
for choosing hardware and has been the subject of research [17]. The initiative to develop
energy efficient hardware began as a way of doing HPC in a responsible manner. Latest
CPU architectures such as Intel’s Haswell CPUs and Nvidia’s Maxwell GPUs have opted at
improving the performance per Watt.

1.2.6 Memory Bandwidth

Memory Bandwidth is the rate at which data can be transferred between processors and main
memory. It is usually measured as GB/s. The memory efficiency Bc of an implementation
is computed by dividing the experimental bandwidth Be by the maximum bandwidth Bh of
the hardware:

Bc =
Be

Bh

(1.16)

3An updated list of the most energy efficient super computers is available at ’www.green500.org’.
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A value of Bc = 1 means that the application is using the maximum memory bandwidth
available on the hardware. Actual high-end CPUs have a memory bandwidth in the range
40GB/s ≤ Bh ≤ 80GB/s while high-end GPUs have a memory bandwidth in the range
200GB/s ≤ Bh ≤ 300GB/s.

Achieving maximum bandwidth in the GPU sometimes can be much harder than in CPU.
The main reason is because memory performance is problem-dependent. Data structures
have to be aligned in simple patterns so that many chunks of data are read or written simul-
taneously for many threads. Irregular data accesses, non-compatible alignments and different
data chunk sizes result in significant lower memory bandwidth. Latest GPU architectures
such as Fermi and Kepler can mitigate this effect by using an L2 cache for global memory
(see [63, 208] for more information on the GPU’s L2 cache).

The performance measures presented in this section are all related in some way to the
running time T (n, p) of the parallel algorithm. Measuring the mean wall-clock time with a
standard error below 5% is a good practice for obtaining an experimental value of T (n, p).
For the theoretical case, obtaining the analytical expression of T (n, p) can be non-trivial
because it will depend on parallel computing model.

1.3 Parallel Computing Models

Computing models are abstract computing machines that allow theoretical analysis on the
cost of algorithms. These models simplify the computational scenario to a reduced set of
parameters that define how much time a memory access or an arithmetic operation will cost.
Theoretical analysis is fundamental for the process of researching new algorithms, since it
can tell us which algorithm is asymptotically better. In the case of parallel computing, there
are several models available, such as the PRAM, PMH, Bulk parallel processing and LogP
models. The difference between one model and another basically resides on their definition
of processor communication and memory access.

1.3.1 Parallel Random Access Machine (PRAM)

The parallel random access machine, or PRAM, was proposed by Fortune and Wyllie in 1978
[89]. It is inspired by the classic random access machine (RAM) and has been one of the
most used models for parallel algorithm design and analysis.

In the 1990s, the PRAM model gained reputation as an unrealistic model for algorithm
design and analysis because no computer could offer constant memory access times for simul-
taneous operations, let alone performance scalability. Implementations of PRAM-designed
algorithms did not reflect the complexity the model was suggesting. However, in 2006, the
model became relevant again with the introduction of general purpose GPU (GPGPU) com-
puting APIs, although they are not pure PRAM machines.
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In the PRAM model, there are p processors that operate synchronously over an unlimited
memory completely visible for each processor (see Figure 1.3). The p parameter does not

Figure 1.3: In the PRAM model each one of the cores has a complete view of the global memory.

need to be a constant number, it can also be defined as a function of the problem size n. Each
r/w (read/write) operation costs O(1). Different variations of the model exist in order to
make it more realistic when modeling parallel algorithms. These variations specify whether
memory access can be performed concurrently or exclusively. Four variants of the model
exist.

EREW, or Exclusive Read - Exclusive Write, is a variant of PRAM where all read an
write operations are performed exclusively in different places of memory for each processor.
The EREW variation can be used when the problem is split into independent tasks, without
requiring any sort of communication. For example, vector addition as well as matrix addition
can be done with an EREW algorithm.

CREW, or Concurrent Read - Exclusive Write, is a variant of PRAM where processors can
read from common sections of memory but always write to sections exclusive to one another.
CREW algorithms are useful for problems based on tilings, where each site computation
requires information from neighbor sites. Let k be the number of neighbors per site, then
each site will perform at least k reads and one write operation. At the same time, each
neighbor site will perform the same number of memory reads and writes. In the end, each
site is read concurrently by k other sites but only modified once. This behavior is the main
idea of a CREW algorithm. Algorithms for fluid dynamics, cellular automata, PDEs and
N-body simulations are compatible with the CREW variation.

ERCW, or Exclusive Read - Concurrent Write, is a variant of PRAM where processors
read from different exclusive sections of memory but write to shared locations. This variant is
not as popular as the others because there are less situations one can model with the ERCW
variation. Nevertheless, important results have been obtained for this variation. Mackenzie
and Ramachandran proved that finding the maximum of n numbers has a lower bound of
Ω(
√
log n) under ERCW [183], while the problem is Θ(log n) under EREW/CREW.

CRCW, or Concurrent Read - Concurrent Write, is a variant of PRAM where processors
can read and write from the same memory locations. Beame and Hastad have studied optimal
solutions using CRCW algorithms [22]. Subramonian [257] presented an O(log n) algorithm
for computing the minimum spanning tree.
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Concurrent writes are not trivial and must use one of the following protocols:

• Common: all processors write the same value;

• Arbitrary : only one write is successful, the others are not applied;

• Priority : priority values are given to each processor (e.g., rank value), and the processor
with highest priority will be the one to write;

• Reduction: all writes are reduced by an operator (add, multiply, OR, AND, XOR).

Over the last decades, Uzi Vishkin has been one of the main supporters of the PRAM model.
He proposed an on-chip architecture based on PRAM [271] as well as the notion of explicit
Multi-threading for achieving efficient implementations of PRAM algorithms [272].

1.3.2 Parallel Memory Hierarchy (PMH)

The Parallel Memory Hierarchy model, or PMH, was proposed in 1993 by Alpern et al. [10]
and inspired by related works [3, 9] (HMM and UHM memory models). This model was
proposed to deal with the inconsistency between theoretical and empirical performance of
some PRAM algorithms, for assuming constant time memory accesses. Actual CPUs (such
as Intel Xeon E5 series or AMD’s Opteron 6000 series) have memory hierarchies composed of
registers, L1, L2 and L3 caches. GPUs such as Nvidia GTX 680 or AMD’s Radeon HD 7850
also have a memory hierarchy composed of registers, L1, L2 caches and the global memory.
Indeed, the memory hierarchy should be considered when designing a parallel algorithm in
order to match the theoretical complexity bounds.

The PMH model is defined by a hierarchical tree of memory modules. The leaves of the
tree correspond to processors and the internal nodes represent memory modules. Modules
closer to the processors are fast, but small, and modules far from the processors are slow,
but larger. For the i-th level module, the following parameters are defined; si as the number
of items per block (or block-size), ni the number of blocks, li the latency and ci is the child-
count. In practice, it is easier to model an algorithm by using the uniform parallel memory
hierarchy (UPMH) which is a simplified version of the PMH model. The UPMH model
defines a complete τ -ary tree (see Figure 1.4).

Figure 1.4: The uniform parallel memory hierarchy tree.
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In UPMH, composite parameters are used, such as the aspect ratio α = ni/si, the packing
factor ρ = si/si−1 and the branching factor τ which is the tree arity. Additionally, the UPMH
model defines the transfer cost ti as a function of the tree level; ti = f(i). Typical values of the
transfer cost function are f(i) = 1, i, ρi. Function f(i) = ρi is considered a realistic transfer
cost function for modern architectures. Usually, the model is referred to as UPMHα,ρ,f(i),τ to
indicate its four parameters. This model has proven to be more realistic than PRAM, but
harder for analyzing algorithms.

Alpern et al. showed that an non-blocked matrix multiplication algorithm (i.e., the ba-
sic matrix multiplication algorithm) can cost Ω(N5/p) time instead of O(N3/p) [35] as in
PRAM. In the same work, the authors prove that a parallel block-based matrix multiplication
algorithm (see Figure 1.5) can indeed achieve the desired O(N3/p) upper bound by reusing
the data from the fastest memory modules.

Figure 1.5: Classic algorithm processes sticks of computation as seen in the left side. The blocked version
computes sub-cubes of the domain in parallel, taking advantage of locality.

The entire proof of the matrix multiplication algorithm for one processor can be found in
the work of Alpern et al. [9]. The UPMH model can be considered a complement to other
models such as PRAM or BSP.

1.3.3 Bulk Synchronous Parallel (BSP)

The Bulk synchronous parallel, or BSP, is a parallel computing model focused on communi-
cation, published in 1990 by Leslie Valiant [270]. Synchronization and communication are
considered high priority in the cost equation. The model consists of a number of processors
with fast local memory, connected through a network and capable of sending and receiving
messages to and from any other processor. A BSP-based algorithm is composed of super-steps
(see Figure 1.6).

A super-step is a parallel block of computation composed of three steps:

• Local computation: p processors perform up to L local computations;

• Global communication: Processors can send and receive data among them;

• Barrier synchronization: Wait for all other processors to reach the barrier.
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Figure 1.6: A representation of a super-step; processing, communication and a global synchronization
barrier.

The cost c for a super-step using p processors is defined as:

c = maxpi=1(wi) + g maxpi=1(hi) + l (1.17)

where wi is the computation time of the i-th processor, hi the number of messages used by the
i-th processor, g is the capability of the network and l is the cost of the barrier synchronization.
In practice, g and l are computed empirically and available for each architecture as lookup
values. For an algorithm composed of S super-steps, the final cost is the sum of all the
super-step costs:

C =
S∑

i=1

ci (1.18)

1.3.4 LogP

The LogP model was proposed in 1993 by Culler et al. [66]. Similar to BSP, it focuses
on modeling the cost of communicating a set of distributed processors (i.e., network of
computers). In this model, local operations cost one unit of time but the network has latency
and overhead. The following parameters are defined:

• latency (L): the latency for communicating a message containing a word (or small
number of words) from its source to its target processor;

• overhead (o): the amount of time a processor spends in communication (sending or
receiving). During this time, the processor cannot perform other operations;

• gap (g): the minimum amount of time between successive messages in a given processor;

• processors (P): the number of processors.

All parameters, except for the processor count (P ), are measured in cycles. Figure 1.7 il-
lustrates the model with an example of communication with one-word messages. The LogP
model is similar to the BSP with the difference that BSP uses global barriers of synchro-
nizations while LogP synchronizes by pairs of processors. Another difference is that LogP
considers a message overhead when sending and receiving. Choosing the right model (BSP
or LogP) depends if global or local synchronization barriers are predominant and if the com-
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Figure 1.7: An example communication using the LogP model.

munication overhead is significant or not.

Parallel computing models are useful for analyzing the running time of a parallel algorithm
as a function of n, p and other parameters specific to the chosen model. But there are also
other important aspects to be considered related to the styles of parallel programming. These
styles are well explained by the parallel programming models.

1.4 Parallel programming models

Parallel programming models focus on the expressiveness when programming parallel ma-
chines. For example, PRAM and UPMH use the shared memory model, while LogP and BSP
use a message passing model. These two models are actually parallel programming models. A
parallel programming model4 is an abstraction of the programmable aspects of a computing
model. While computing models from section 1.3 are useful for algorithm design and analysis
(i.e., computing time complexity), parallel programming models are useful for expressing the
parallelism of the algorithm. In this section we cover four relevant parallel programming
models.

1.4.1 Shared memory

In the shared memory model, threads can read and write asynchronously within a common
memory. This programming model works naturally with the PRAM computing model and
it is mostly useful for multi-core and GPU based solutions. A well known API for CPUs
is the Open Multiprocessing interface or OpenMP [51] which is based on the Unix pthreads
implementation [204]. In the case of GPUs, OpenCL [156] and CUDA [209] are the most
common.

Many times, a shared memory parallel algorithm needs to manage non-deterministic be-
havior from multiple concurrent threads (the operating system thread scheduling is considered

4Some of the literature may treat the concept of parallel programming model as equal to computing model.
In this survey we denote a difference between the two; thus the sections (1.3) and (1.4).
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non-deterministic). When concurrent threads read and write on the same memory locations,
one must supply an explicit synchronization and control mechanism such as monitors [127],
semaphores [77], atomic operations and mutexes (a binary semaphore). These control prim-
itives allow threads to lock and work on shared resources without other threads interfering,
making the algorithm consistent. In some scenarios the programmer must also be aware of
the shared memory consistency model. These models define rules and the strategy used to
maintain consistency on shared memory. A detailed explanation of consistency models is
available in Adve et al. work [2].

For the case of GPUs, one can use atomic operations, synchronization barriers and memory
fences [209].

1.4.2 Message passing

In a message passing programming model, or distributed model, processors communicate
asynchronously or synchronously by sending and receiving messages containing words of
data. In this model, emphasis is placed on communication and synchronization making
distributed computing the main application for the model. Dijkstra introduced many new
ideas for consistent concurrency on distributed systems based on exclusion mechanisms [74].
This programming model works naturally with the BSP and LogP models which were built
with the same paradigm.

The standard interface for message passing is the Message Passing Interface or MPI [95].
MPI is used for handling communication in CPU distributed applications and is also used to
distribute the work when using multiple GPUs.

1.4.3 Implicit

Implicit parallelism refers to compilers or high-level tools that are capable of achieving a
degree of parallelism automatically from a sequential piece of source code. The advantage
of implicit parallelism is that all the hard work is done by the tool or compiler, achieving
practically the same performance as a manual parallelization. The disadvantage however is
that it only works for simple problems such as for loops with independent iterations. Kim
et al. [159] describe the structure of a compiler capable of implicit and explicit parallelism.
In their work, the authors address the two main problems for achieving their goal; (1) how
to integrate the parallelizing preprocessor with the code generator and (2) when to generate
explicit and when to generate implicit threads.

Map-Reduce [67] is a well known implicit parallel programming tool (sometimes considered
a programming model itself) and has been used for frameworks such as Hadoop with out-
standing results at processing large data-sets over distributed systems. Functional languages
such as Haskell or Racket also benefit from the parallel map-reduce model. In the 90’s, High
performance Fortran (HPF) [178] was a famous parallel implicit API. OpenMP can also be
considered semi-implicit since its parallelism is based on hints given by the programmer. To-
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day, pH (parallel Haskell) is probably the first fully implicit parallel programming language
[206]. Automatic parallelization is hard to achieve for algorithms not based on simple loops
and has become a research topic in the last twenty years [109, 168, 181, 237].

1.4.4 Algorithmic skeletons

Algorithm skeletons provide an important abstraction layer for implementing a parallel al-
gorithm. With this abstraction, the programmer can now focus more on the strategy of the
algorithm rather than on the technical problems regarding parallel programming. Algorithm
skeletons, also known as parallelism patterns, were proposed by Cole in 1989 and published
in 1991 [58]. This model is based on a set of available parallel computing patterns known as
skeletons (implemented as higher order functions to receive other functions) that are avail-
able to use. The critical step when using algorithmic skeletons is to choose the right pattern
for a given problem. The following patterns are some of the most important for parallel
computing:

• Farm: or parallel map, is a master-slave pattern where a function f() is replicated to
many slaves so that slave si applies f(xi) to sub-problem xi;

• Pipeline: or function decomposition, is a staged pattern where f()1− > f()2− > ...− >
f()n are parts of a larger logic that works as a pipeline. Each stage of the pipeline can
work in parallel;

• Parallel tasks: In this pattern, f()1, f()2, ..., f()n are different tasks to be performed in
parallel. These tasks can run completely independent or can include critical sections;

• Divide and Conquer: This is a recursive pattern where a problem A, a divide function d :
A→ {a1, a2, ..., ak} and a combine function c : {a1, a2, ..., ak}, f()→ f({a1, a2, ..., ak})
are passed as parameters for the skeleton. Then the skeleton applies a divide and con-
quer approach spanning parallel branches of computation as the recursion tree grows.

r(A, d, c, f) = c({r(d(A)1, d, c), r(d(A)2, d, c), ..., r(d(A)k, d, c)}, f) (1.19)

r(A′, d, c, f) = c(d(A′), f) (1.20)

The recursion stops when the smallest sub-problems d(A′) are reached.

There are also basic skeleton patterns for managing while and for loops as well as conditional
statements. The advantage of algorithmic skeletons is their ability to be combined or nested
to make more complex patterns (because they are higher order functions). Their limitation
is that the abstraction layers include an overhead cost in performance.

In the previous two sections we covered computing models and programming models which
are useful for algorithm analysis and programming, respectively. It is critical however, when
implementing a high performance solution, to know how the underlying architecture actually
works.
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1.5 Architectures

Computer architectures define the way processors work, communicate and how memory is
organized; all in the context of a fully working computer (note, a working computer is an
implementation of an architecture). Normally, a computer architecture is well described by
one or two computing models. It is important to say that the goal of computer architectures
is not to implement an existing computing model. In fact, it is the other way around;
computing models try to model actual computer architectures. The final goal of a computer
architecture is to make a computer run programs efficiently and as fast as possible. In
the past, implementations achieved higher performance automatically because the hardware
industry increased the processor’s frequency. At that time there were not many changes
regarding the architecture. Now, computer architectures have evolved into parallel machines
because the single core clock speed has reached its limit in frequency5 [236]. Today the most
important architectures are the multi-core and many-core, represented by the CPU and GPU,
respectively.

Unfortunately, sequential implementations will no longer run faster by just buying better
hardware. They must be re-designed as a parallel algorithm that can scale its performance as
more processors are available. Aspects such as the type of instruction/data streams, memory
organization and processor communication indeed help for achieving a better implementation.

1.5.1 Flynn’s taxonomy

Computer architectures can be classified by using Flynn’s taxonomy [88]. Flynn realized
that all architectures can be classified into four categories. This classification depends on
two aspects; number of instructions and number of data streams that can be handled in
parallel. He ended with four classifications.

SISD, or single instruction single data stream can only perform one instruction
to one data stream at a time. There is no parallelism at all. Old single core CPUs of the
1950s, based on the original Von Neumann architecture, were all SISD types. Intel processors
from 8086 to 80486 were also SISD.

SIMD, or single instruction multiple data streams can handle only one instruction
but apply it to many data streams simultaneously. These architectures allow data parallelism,
which is useful in science for applying a mathematical model to different parts of the problem
domain. Vector computers in the 70’s and 80’s were the first to implement this architecture.
Nowadays, GPUs are considered an evolved SIMD architecture because they work with many
SIMD batches simultaneously. SIMD has also been supported on CPUs as instruction sets,
such as MMX, 3DNow!, SSE and AVX. These instruction sets allow parallel integer or floating
point operations over small arrays of data.

MISD, or multiple instruction single data stream can handle different tasks over
the same stream of data. These architectures are not so common and often end up being

5Above 4.0 GHz of frequency, silicon transistors can become too hot for conventional cooling systems.
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implemented for specific scenarios such as digital attack systems (e.g., to destroy a data
encryption) or fault tolerance systems and space flight controllers (NASA).

MIMD, or multiple instruction multiple data streams is the most flexible archi-
tecture. It can handle one different instruction for each data stream and can achieve any
type of parallelism. However, the complexity of the physical implementation is high and
often the overhead involved in handling such different tasks and data streams becomes a
problem when trying to scale with the number of cores. Modern CPUs fall into this category
(Intel, AMD and ARM multi-cores) and newer GPU architectures are partially implementing
this architecture. The MIMD concept can be divided into SPMD (single program multiple
data) and MPMD (multiple programs multiple data). SPMD occurs when a simple program
is being executed in different processors. The key difference compared to SIMD is that in
SPMD each processor can be at a different stage of the execution or at different paths of the
code caused by conditional branching. MPMD occurs when different independent programs
are being run on multiple processors.

1.5.2 Memory architectures and organizations

There are two forms of memory organization, shared and distributed. In distributed memory,
each node has its own memory architecture and it is completely independent from other nodes.
Communication is based on messages between nodes through a network. In a distributed
memory scenario, the network plays a important role and its topology is different depending
on the context. Some common topologies are bus, star, ring, mesh, hypercube and tree. Also,
hybrid topologies are made based on the basic ones already mentioned.

In a shared memory organization, processors communicate through a common bank of
global memory, not needing explicit messages as in a distributed memory scheme. Today,
two architectures are mostly used; UMA and NUMA.

Uniform Memory Access or UMA consists of a shared memory in which the access
time for any processor takes the same amount of time no matter the data location. UMA is
also known as Symmetric Multi-Processors or SMP. The main disadvantage of UMA is the
low scalability when increasing the number of processors. This occurs because of the single
memory controller shared for all processors.

Non Uniform Memory Access or NUMA is an architecture where access time to
shared memory depends on the location of data relative to the processor. This means that the
memory that is closer to a processor is accessed much faster than memory closer to another
processor (i.e., cost is a function of distance). To take advantage of NUMA, the problem
must be split into independent chunks of data, each one assigned to a unique CPU. Also,
global read-only data is better replicated than shared. In practice, all NUMA architectures
implement a hardware cache-coherence logic and become cache-coherent NUMA or ccNUMA.

One can find the SMP architecture in many desktop computers with dual core hardware
and the NUMA architecture in modern multi-core machines with two or more CPU sockets
(e.g., AMD Opteron and Intel Xeon). Figure 1.8 shows the concepts of UMA and NUMA.
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Figure 1.8: The UMA (aka SMP) and NUMA memory architectures.

Finally, shared and distributed memory architectures can also be mixed, leading to a
hybrid configuration which is useful for MPI + OpenMP or MPI + GPGPU solutions.

1.5.3 Technical details of modern CPU and GPU architectures

The differences between multi-core and many-core architectures can be visualized in the
schematics of modern CPUs and GPUs.

Actual high-end CPUs, such as the Xeon E5 2600, are built with many interconnections
between the cores providing flexibility in communication (see Figure 1.9). Each core has a
local L1 and L2 cache of 64KB and 256KB, respectively, and in the center of the chip there
is a larger L3 cache of size 20MB, shared by all cores. The Quick-Path Interconnect or QPI
section (known as Hyper-transport for AMD processors) of the chip implements part of the
NUMA memory architecture. The PCI module handles communication with the PCI ports
and finally the Internal Memory Controller, or IMC, handles the memory access to its section
of RAM, completing the rest of the NUMA architecture.

Figure 1.9: On the left, an Intel Xeon E5 2600 (2012) chip schematic. On the right, the actual chip.

On the other hand, modern GPUs such as the Tesla K20X have a completely different
chip schematic that is oriented to massive parallelism. Figure 1.10 shows the schematic of
an Nvidia Tesla K20X GPU as well as its actual chip. The cores of the GPU are grouped
into SMX units, or next generation streaming multiprocessors. The most important aspects
that characterize a GPU are inside the SMX units (see Figure 1.11).
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Figure 1.10: On the left, Nvidia’s Tesla K20X GPU schematic. On the right, a picture of its chip.

Figure 1.11: A diagram of a streaming multiprocessor next-generation (SMX). Image inspired from Nvidia’s
CUDA C programming guide [209].

A SMX is the smallest unit capable of performing parallel computing. The main difference
between a low-end GPU and a high-end GPU of the same architecture is the number of SMX
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units inside the chip. In the case of Tesla K20 GPUs, each SMX unit is composed of 192
cores (represented by the C boxes). Its architecture was built for a maximum of 15 SMX,
giving a maximum of 2,880 cores. However in practice, some SMX are deactivated because
of production issues.

The cores of a SMX are 32-bit units that can perform basic integer and single precision
(FP32) floating point arithmetic. Additionally, there are 32 special function units or SFU
that perform special mathematical operations such as log, sqrt, sin and cos, among others.
Each SMX has also 64 double precision floating point units (represented as DPC boxes),
known as FP64, and 32 LD/ST units (load / store) for writing and reading memory.

Numerical performance of GPUs is classified into two categories; FP32 and FP64 perfor-
mance. The FP32 performance is always greater than FP64 performance. This is actually a
problem for massive parallel architectures because they must spend chip surface on special
units of computation for increasing FP64 performance. The Tesla K20X GPU can achieve
close to 4TFlops of FP32 performance while only 1.1TFlops in FP64 mode.

Actual GPUs such as the Tesla K20 implement a four-level memory hierarchy; (1) registers,
(2) L1 cache, (3) L2 cache and (4) global memory. All levels, except for the global memory,
reside in the GPU chip. The L2 cache is automatic and it improves memory accesses on
global memory. The L1 cache is manual, there is one per SMX, and it can be as fast as
the registers. Kepler and Fermi based GPUs have L1 caches of size 64KB that are split into
16KB of programmable shared memory and 48KB of automatic cache, or vice versa.

1.5.4 The fundamental difference between CPU and GPU archi-
tectures

Modern CPUs have evolved towards parallel processing, implementing the MIMD architec-
ture. Most of their die surface is reserved for control units and cache, leaving a small area
for the numerical computations. The reason is, a CPU performs such different tasks that
having advanced cache and control mechanisms is the only way to achieve an overall good
performance.

On the other hand, the GPU has a SIMD-based architecture that can be well represented
by the PRAM and UPMH models (sections 1.3.1 and 1.3.2, respectively). The main goal of
a GPU architecture is to achieve high performance through massive parallelism. Contrary
to the CPU, the die surface of the GPU is mostly occupied by ALUs and a minimal region
is reserved for control and cache (see Figure 1.12). Efficient algorithms designed for GPUs
have reported over 10× speedup over CPU implementations [59, 179].

This difference in architecture has a direct consequence, the GPU is much more restrictive
than the CPU but it is much more powerful if the solution is carefully designed for it.
Latest GPU architectures such as Nvidia’s Fermi and Kepler have added a significant degree
of flexibility by incorporating a L2 cache for handling irregular memory accesses and by
improving the performance of atomic operations. However, this flexibility is still far from the
one found in CPUs.
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Figure 1.12: The GPU architecture differs from the one of the CPU because its layout is dedicated for
placing many small cores, giving little space for control and cache units.

Indeed there is a trade-off between flexibility and computing power. Actual CPUs struggle
to maintain a balance between computing power and general purpose functionality while
GPUs aim at massive parallel arithmetic computations, introducing many restrictions. Some
of these restrictions are overcome at the implementation phase while some others must be
treated when the problem is being parallelized. It is always a good idea to follow a strategy
for designing a parallel algorithm.

1.6 Strategy for designing a parallel algorithm

Designing a new algorithm is not a simple task. In fact, it is considered an art [163, 215]
that involves a combination of mathematical background, creativity, discipline, passion and
probably other unclassifiable abilities. In parallel computing the scenario is no different,
there is no golden rule for designing perfect parallel algorithms.

However, there are some formal strategies that are frequently used for creating efficient
parallel algorithms. Leighton and Thomson [175] have contributed considerably to the field
by pointing out how data structures, architectures and algorithms relate when facing the
act of implementing a parallel algorithm. In 1995, Foster [91] identified a four-step strat-
egy that is present in many well designed parallel algorithms; partitioning, communication,
agglomeration and mapping (see Figure 1.13).

1.6.1 Partitioning

The first step when designing a parallel algorithm is to split the problem into parallel sub-
problems. In partitioning, the goal is to find the best possible partition; one that generates
the highest amount of sub-problems (at this point, communication is not considered yet).

Identifying the domain type is critical for achieving a good partition of a problem. If
the problem is data-parallel, then the data is partitioned and we speak of data parallelism.
On the other hand, if the problem is task-parallel, then the functionality is partitioned and
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we speak of task-parallelism. Most of the computational physics problems based on sim-
ulations are suitable for a data-parallelism approach, while problems such as parallel graph
traverse, communication flows, traffic management, security and fault tolerance often fall
into the task-parallelism approach.

1.6.2 Communication

After partitioning, communication is defined between the sub-problems (task or data type).
There are two types of communication; local communication and global communication. In
local communication, sub-problems communicate with neighbors using a certain geometric or
logical pattern. Global communications involve broadcast, reductions or global variables. In
this phase, all types of communication problems are handled; from race conditions handled by
critical sections or atomic operations, to synchronization barriers to ensure that the strategy
of computation is working up to this point.

1.6.3 Agglomeration

At this point, there is a chance that sub-problems may not generate enough work to become
a thread of computation (given a computer architecture). This aspect is often known as the
granularity of an algorithm [52]. A fine-grained algorithm divides the problem into a massive
amount of small jobs, increasing parallelism as well as communication overhead. A coarse-
grained algorithm divides the problem into less but larger jobs, reducing communication
overhead as well as parallelism. Agglomeration seeks to find the best level of granularity by
grouping sub-problems into larger ones. A parallel algorithm running on a multi-core CPU
should produce larger agglomerations than the same algorithm designed for a GPU.

1.6.4 Mapping

Eventually, all agglomerations will need to be processed by the available cores of the com-
puter. The distribution of agglomerations to the different cores is specified by the mapping.
The Mapping step is the last one of Foster’s strategy and consists of assigning agglomerations
to processors with a certain pattern. The simplest pattern is the 1-to-1 geometric mapping
between agglomerations and processors, that is, to assign agglomeration ki to processor pi.
Higher complexity problems may require more elaborate mapping patterns in order to provide
efficient performance.

Figure 1.13 illustrates all four steps using a data-partition based problem on a dual core
architecture (c0 and c1).

Foster’s strategy is well suited for computational physics because it handles data-parallel
problems in a natural way. At the same time, Foster’s strategy also works well for designing
massive parallel GPU-based algorithms. In order to apply this strategy, it is necessary to
know how the massive parallelism programming model works for mapping the computational
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Figure 1.13: Foster’s diagram of the design steps used in a parallelization process.

resources to a data-parallel problem and how to overcome the technical restrictions when
programming the GPU.

1.7 GPU Computing

GPU computing is the utilization of the GPU as a general purpose unit for solving a given
problem, unrestricted to the graphical context. It is also known by the acronym GPGPU
coined by researcher Mark Harris, which means General-Purpose computing on Graphics
Processing Units. The goal of GPU computing is to achieve the highest performance for
data-parallel problems through a massive parallel algorithm that runs on the GPU.

GPU computing started as a research field for computer graphics (CG) in the early 2000s
and gained high importance as a general purpose parallel processing technique [182]. In
2001, for the first time the graphics processing unit was built upon a programmable architec-
ture, permitting programmable lighting [56, 154, 158], shadow [57] and geometry [243] effects
to be computed and rendered in real-time. These effects were achieved using a high level
shading language such as GLSL (OpenGL Shading Language) [190], HLSL (High-level Shad-
ing Language) [212] and CG (C for Graphics) [189]. At that time, the massive parallelism
paradigm was already in the minds of the CG researchers who were designing per-vertex
and per-fragment algorithms to work in a set of millions of primitives. As the years passed,
the scientific community became interested in the power of GPUs and its low cost compared
to other solutions (clusters, super-computers). However, adapting a scientific problem to a
graphics environment was hard and challenging from the technical side. In the early days,
the act of adapting different kinds of problems to the GPU was considered as hacking the
GPU.

In 2002, McCool et al. published a paper detailing a meta-programming GPGPU lan-
guage, named Sh [192]. In 2004, Buck et al. proposed Brook for GPUs, also known as
Brook-GPU [39]. This was an extension of the C language that allowed general purpose pro-
gramming on programmable GPUs. Both Sh and Brook-GPU played a fundamental role in
expanding the idea of GPU computing by hiding the graphical context of shading languages.

In the year 2006 another general purpose GPU computing API was released. This time
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by Nvidia and named CUDA (Compute Unified Device Architecture) [209]. Technically,
the CUDA API is an extension of the C language and compiles general purpose code to be
executed on the GPU (based on the shared memory programming model). The release of
CUDA became an important milestone in the history of GPU computing because it was the
first API that offered effective documentation for getting started in the field. The CUDA
acronym refers to the general purpose architecture of Nvidia’s GPUs [63], suitable for GPU
computing. At the moment, only Nvidia GPUs can be programmed using CUDA.

In the year 2008, an open standard was released with the name of OpenCL (Open Com-
puting Language), allowing the creation of multi-platform, massively parallel code [156].
Its programming model is similar to that of CUDA but uses different names for the same
structures. The programming model behind CUDA and OpenCL is a key aspect for GPU
computing because it defines several components that are essential for implementing a mas-
sively parallel algorithm.

1.7.1 The massive parallelism programming model

The programming models explained in section 1.4 are necessary but not sufficient for under-
standing the programming model of the GPU. There are important aspects regarding thread
and memory organization that are relevant to the implementation of a GPU-based algorithm.
This section covers these aspects.

The GPU programming model is characterized by its high level of parallelism, thus the
name Massive parallelism programming model. This model is an abstract layer that lies on top
of the GPU’s architecture. It allows the design of massive parallel algorithms independent
of how many physical processing units are available or how execution order of threads is
scheduled.

The abstraction is achieved by the space of computation, defined as a discrete space where
a massive amount of threads are organized. In CUDA, the space of computation is composed
of a grid, blocks and threads. For OpenCL, it is work-space, work-group and work-item,
respectively. A grid is a discrete k-dimensional (with k = 1, 2, 3) box type structure that
defines the size and volume of the space of computation. Each element of the grid is a block.
Blocks are smaller k′-dimensional (with k′ = 1, 2, 3) structures identified by their coordinate
relative to the grid. Each block contains many spatially organized threads. Finally, each
thread has a coordinate relative to the block for which it belongs. This coordinate system
characterizes the space of computation and serves to map the threads to the different locations
of the problem. Figure 1.14 illustrates an example of two-dimensional space of computation.
Each block has access to a small local memory, in CUDA it is known as the shared memory
(in OpenCL it is known just as the local memory). In practical terms, the shared memory
works as a manual cache. It is important to make good use of this fast memory in order to
achieve peak performance of the GPU.

The programming work-flow of GPU computing is viewed as a host-device relationship
between the CPU and GPU, respectively. A host program (e.g., a C program) uploads the
problem into the device (GPU memory), and then invokes a kernel (a function written to
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Figure 1.14: Massive parallelism programming model presented as a 2D model including grid, blocks and
threads. Image inspired from Nvidia’s CUDA C programming guide [209].

run on the GPU) passing as parameter the grid and block size. The host program can work
in a synchronous or asynchronous manner, depending if the result from the GPU is needed
for the next step of computation or not. When the kernel has finished in the GPU, the result
data is copied back from device to host. Figure 1.15 summarizes the work-flow.

Figure 1.15: The GPU’s main function, named kernel, is invoked from the CPU host code.

1.7.2 Thread managing and GPU concurrency

Actual GPUs manage threads in small groups that work in SIMD mode. For AMD GPUs,
these groups are known as wavefronts and its size is 64 threads for their actual GCN (graphics
core next) architecture. For Nvidia GPUs, these groups are known as warps and the actual
architectures such as Fermi and Kepler work with a size of 32 threads. The OpenCL standard
uses a more descriptive name; SIMD width. For simplicity reasons, we will refer to these
groups as warps.

Both AMD’s and Nvidia’s GPUs support some degree of concurrency for handling the
entire space of computation. Most of the time, there will be more threads than what can
really be processed in parallel. While all threads are in progress (concurrency), only a subset
are really working in parallel. The maximum number of parallel threads running on a GPU
normally corresponds to the number of processing units. However, the maximum number of
concurrent threads is much higher. For example, the Geforce GTX 580 GPU can process

31



up to 512 threads in parallel, but can handle up to 24,576 concurrent threads. For most
problems, it is recommended to overflow the parallel computing capacity. The reason is that
the GPU’s thread scheduler is smart enough to switch idle warps (i.e., warps that are waiting
a memory access or a special function unit result, such as sqrt()) with new ones ready for
computation. In other words, there is a small pipeline of numerical computation and memory
accesses that the scheduler tries to maintain busy all the time.

1.7.3 Technical considerations for a GPU implementation

The GPU computing community frequently uses the terms coalesced memory, thread coars-
ening, padding and branching. These terms are critical technical considerations that must be
taken into account in order to achieve the best performance on the GPU.

Coalesced memory refers to a desired scenario where consecutive threads access con-
secutive data chunks of 4, 8 or 16 bytes long. When this access pattern is achieved, memory
bandwidth increases, making the implementation more efficient. In every other case, mem-
ory performance will suffer a penalty. Many algorithms require irregular access patterns with
crossed relations between the chunks of data and threads. These algorithms are the hardest
to optimize for the GPU and are considered great challenges in HPC research [215].

Thread coarsening is the act of reducing the fine-grained scheme used on a solution
by increasing the work per thread. As a result, the amount of registers per block increases
allowing to re-use more computations saved on the registers. Choosing the right amount of
work per thread normally requires some experimental tuning.

Padding is the act of adjusting the problem size on each dimension, nd, into one that
is multiple of the block size; n′d = ρdnd/ρe (where ρ is the number of threads per block per
dimension) so that now the problem fits tightly in the grid (the block size per dimension is
a multiple of the warp size). An important requirement is that the extra dummy data must
not affect the original result. With padding, one can avoid putting conditional statements in
the kernel that would lead to unnecessary branching.

Branching is an effect caused when conditional statements in the kernel code lead to
sequential execution of the if and else parts. It has a negative impact in performance
and should be avoided whenever possible. The reason why branching occurs is because
all threads within a warp execute in a lock-step mode and will run completely in parallel
only if they follow the same execution path in the kernel code (SIMD computation). If
any conditional statement breaks the execution into two or more paths, then the paths are
executed sequentially. Conditionals can be safely used if one can guarantee that the program
will follow the same execution path for a whole warp. Additionally, tricks such as clamp,
min, max, module and bit-shifts are hardware implemented, cause no branching and can be
used to evade simple conditionals.
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1.8 Latest advances and open problems in GPU com-

puting

In the field of computational physics, O(n) cost algorithms (the fast multi-pole expansion
method [293, 294, 295]) have been implemented on GPU for n-body simulations. Single GPU
implementations have been proposed for achieving high performance Potts model simulations
[265, 266] even with biological applications [53]. Multi-GPU based implementations have also
been proposed for the Potts model [166] and for n-body simulations [292]. In a multi-GPU
scenario, two levels of parallelism are used; distributed and local. Distributed parallelism is
in charge of doing a coarse grained partition of the problem, the mapping of sub-problems
to computer nodes and the communication across the super-computer or cluster. Local
parallelism is in charge of solving a sub-problem independently with a single GPU. Multi-
GPU based algorithms have the advantage of computing solutions to large scale problems that
cannot fit in a single machine’s memory. The main challenge for multi-GPU methods is to
achieve efficient distributed parallelism (e.g., hiding data communication cost by overlapping
communication with computation).

Cellular Automata are now being used as a model for fast parallel simulation of physical
phenomena, traffic simulation and image segmentation, among others [83, 100, 153, 167]. In
the field of computer graphics, new algorithms have been proposed for building kd-trees or
oct-trees in GPU to achieve real-time ray-tracing [129, 150, 301] as well as real-time meth-
ods for 3D reconstruction and level set segmentation [102, 235]. The field of programming
languages have contributed to parallel computing with high level parallel languages for the
programmer (i.e., to abstract the programmer so that the job of partitioning, communica-
tion, agglomeration and mapping is part of the compiler or framework [45, 259]). Tools for
automatically converting CPU code into GPU code are now becoming popular [128] and
useful for fields that use parallelism at a high level tool and not as a goal of their research.
In a more theoretical level, a new GPU-based computational model has also been proposed;
the K-model [41] which serves for analyzing GPU-based algorithms.

Architectural advances in parallel computing have focused on combining the best of the
CPU and GPU worlds. Parallel GPU architectures are now making possible massive par-
allelism by using thousands of cores, but also with flexible work-flows, access patterns and
efficient cache predictions. The latest GPU architectures have included dynamic parallelism
[63]; a feature that consists of making it possible for the GPU to schedule additional work
for itself by using a command processor, without needing to send data back and forth be-
tween host and device. This means that recursive hierarchical partition of the domain will
be possible on the fly, without needing the CPU to control each step. Lastly, one of the most
important revolutions in computer architecture is the introduction 3D memories such as the
High Bandwidth Memory (HBM) for GPUs and the Hybrid Memory Cube (HMC) for CPUs
[263]. A three-dimensional memory architecture can provide up to 15× better performance
than DDR3 memory, requiring 70% less energy per bit.

There are still open problems for GPU computing. Most of them exist because of the
actual limitations of the massive parallelism model. In a parallel SIMD architecture, some
data structures do not work so efficiently. Tree implementations have been implemented on
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the GPU, with an acceptable efficiency, but data structures such as classic dynamic arrays,
heaps, hash tables and complex graphs are not performance-friendly yet and need research
for efficient GPU usage. Another problem is the fact that some sequential algorithms are
so complex that porting them to a parallel version will lead to no improvement at all. In
these cases, a complete redesign of the algorithm must be done. The last open problem we
have identified is the difficulty of mapping the space of computation (i.e., the grid of blocks)
to different kinds of problem domains (i.e., geometries). A naive space of computation
can always build a bounding box around the domain and discard the non useful blocks of
computation. Non Euclidean geometry is an interesting case, since finding an efficient map
for each block of the grid to the fractal problem domain is not trivial. One way of solving
this problem would be to find an efficient mapping function from the space of computation
to the problem domain, or modify the problem domain so that it becomes an Euclidean box,
but for the last approach data organization would be an issue to consider. In this thesis we
did a research on the problem of mapping threads onto 2D triangular domains, where we
found an efficient map that runs up to 18% faster than the bounding box method [198]. The
research can be found in Appendix A.
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Chapter 2

Spin Models Background

In this chapter we present the physical background for the thesis. The topics covered are
essentially concepts related to statistical mechanics and spin models. The chapter includes
the definition of a spin lattice, the definition of the partition function Z( ), the presentation
of several spin models and an overview of the algorithmic approaches used to study these
systems.

2.1 Spin Systems

A Spin system is an abstract representation of a ferromagnet. The first model was originally
proposed by Wilhelm Lenz and was later studied by his student Ersnt Ising in 1925, which
he solved for the one-dimensional case. Through the years, this model became known as the
Ising model [133]. In 1944 the two-dimensional version was solved by Lars Onsager [213].
Over the following decades, extensions and generalizations were made to the model, giving
birth to new spin models.

The study of spin systems starts with the definition of the spin lattice structure, which
is essentially a graph that represents the system in question. The following is a technical
definition of a spin lattice that is general for many spin models.

Definition 2.1 A spin lattice is a graph G(V,E), with |V | spins si ∈ {x1, x2, ..., xq} that
sit on the vertices of the graph, and |E| edges that represent the interactions Jij ∈ [−1, 1]
between neighboring spins.

Figure 2.1 illustrates a square spin lattice in one, two and three dimensions. A spin si can
take one of q possible spin states {x1, x2, ..., xq}. The interactions Jij usually take the values
{1,−1}, which correspond to the ferromagnetic and anti-ferromagnetic cases, respectively.
One of the most important aspects in spin systems is the Hamiltonian, denoted H, which
describes the energetic behavior of the lattice as a function of the temperature. A Hamiltonian
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Figure 2.1: The square spin lattice in one, two and three dimensions.

usually has the following form:

H = −
∑
e∈E

Jijf(si, sj)−
∑

i

hisi (2.1)

and depending on the model, some parameters get fixed or not. The first sum of the Hamil-
tonian carries all the energy contributions that are made for each pair of spins connected
by an edge e ∈ E. Function f(x, y) (usually the product of spins or the Kronecker delta)
acts on the pair of spins, returning a value that describes the energetic interaction for the
given pair. The second sum is optional and corresponds to the contributions from external
magnetic field H = {h1, h2, ..., hN} where si is affected by hi.

Every spin lattice must define boundary conditions for handling the spins at the limit of
the lattice. The most common ones are free, cylindrical, band and periodic. Figure 2.2 shows
them for the case of the two-dimensional lattice.

Figure 2.2: The free, cylindrical, band and periodic boundary conditions in two-dimensions.

The free boundary condition is nothing more than the default case of a graph. The cylin-
drical and band boundary conditions correspond to semi-periodic settings, that depending
on the side chosen, will produce a different structure unless the lattice has equal height and
width. The periodic boundary condition is where the lattice connects all its sides, becoming
a torus. For simplicity, we will assume free boundary conditions as the default setting.

The Hamiltonian makes the spin lattice a dynamic system and its behavior is strongly
dictated by the temperature T at which it is exposed. If the system is exposed enough
time to a certain temperature T , it will eventually reach equilibrium. This minimum energy
configuration is known as the ground state of the system, and there is one for each temperature
value.

For several spin models, one can observe a phenomenon known as a phase transition,
where the macroscopic properties of the system suffer an abrupt change around a singular
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value of temperature, denoted Tc for critical temperature. From a more mathematical point
of view, the phase transition of i-th order corresponds to the point where the i-th derivative
of the free energy is not an analytical point. Figure 2.3 shows an example of how a phase
transition would look for the case of the specific heat C as a function of the temperature.

Figure 2.3: For the 3D Ising model, the system exhibits a phase transition at Tc ≈ 4.5.

Phase transitions are important not only for the physics community, but in general for
understanding how dynamical systems based on local interactions are capable of propagating
long range correlations that diverge in the infinite volume limit. The notion of phase transi-
tion can be mapped to other dynamical systems such as cellular growth, social interactions,
cellular automata, cellular growth or even computer networks [68, 104, 160, 300].

The study of phase transitions requires the ground states of the system, which for most
of the cases is an NP-Hard problem [285]. The canonical way for studying phase transitions
is through statistical mechanics ; a theoretical framework that provides a way for obtaining
the exact macroscopic properties of a system by computing the partition function Z( ).

2.1.1 The partition function Z( )

Let G = (V,E) be a lattice, with |V | spins si ∈ [x1..xq]. The partition function, denoted
Z(G, q, β), encodes all the physical information of the lattice into the expression

Z(G, q, β) =
∑
r

e−βH(σr) (2.2)

where β = 1
KBT

, KB is the Boltzmann constant, T the temperature and H(σr) is the energy

of the lattice at a given configuration σr
1, where r = 1, 2, ..., q|V |. Once Z( ) is computed,

1A configuration σr can be seen as the graph G with a specific combination of spin values on its vertices.
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one can obtain the free energy of the system:

F = −KBT log(Z) (2.3)

One can obtain many physical properties of the system such as specific heat, entropy and
susceptibility by differentiating expression (2.3) with respect to the temperature and the
magnetic field. The partition function can be used to study a wide range of phenomena from
the lattice.

The aspect that makes one spin model different from another is the definition of the
Hamiltonian H, which describes how the interactions between neighboring spins occur. H
must be defined in order to compute Z( ). The following subsections briefly describe the
models that most relate to this thesis.

The following Sections present several spin models and methods as part of the physical
background for this thesis. Due to the high quantity, it is more practical to mention beforehand
which ones will be actually used in this thesis. The spin models to keep in mind are Potts
(Chapter 3) and Ising, Random Field (Chapter 4) ones. The exact methods to keep
in mind for Chapter 3 are deletion-contraction and transfer-matrix, while the Monte
Carlo methods for Chapter 4 are Metropolis-Hastings and Exchange Monte Carlo.

2.1.2 Ising Model

The Ising model is the most popular model for spin lattices. The name was given after the
physicist Ernst Ising who found that no phase transitions exist in the one-dimensional spin
lattice [133]. The two-dimensional square lattice was solved analytically by Onsager in 1944
[213], for which phase transitions were found. In this model, the interaction energy Jij is
a constant and si = ±1, that is q = 2. The interactions are described with the following
Hamiltonian:

H = −J
∑
〈i,j〉

sisj (2.4)

where the sum is over all neighboring sites in the graph. The model is still used today as a
research model for the 3D case, which has not been solved, and for checking the correctness
of new algorithms with their exact solution in 2D.

2.1.3 Potts model

The Potts model [226] is the generalization of the Ising model and it was named after Renfrey
Potts, who described it in 1951. This model no longer assumes two possible spin values,
instead it assumes q possible ones, i.e., si = 1, 2, .., q. The coupling constant J still remains
as a constant, and the Hamiltonian is defined as

H = −J
∑
〈i,j〉

δ(si, sj) (2.5)
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where the sum is over neighboring sites in the graph, si, sj are the spin values of the neighbor
sites and δ is the Kronecker delta:

δ(si, sj) =

{
1 if si = sj
0 if si 6= sj

(2.6)

In this model no solution has been found yet. Modern research on Potts model is mostly
devoted to study the 2D and 3D cases using exact algorithms as well as Monte Carlo simu-
lations.

2.1.4 Spin Glass: Edwards-Anderson model

The Spin glass Edwards-Anderson model [80] introduces disorder to the system. The peculiar
features of Spin Glass systems, which are found experimentally, can be described theoretically,
using quenched disorder. From the practical point of view, this means that one must average2

the free energy over all disorder realizations. In a spin glass, the interaction energy Jij is
no longer a constant for the whole lattice, but instead it follows a probability distribution
resulting in specific values for each pair of neighbor sites. There are several variations of
spin glass sub-models, but the Edwards-Anderson model is the most natural to follow since
it defines the Hamiltonian as an extension to the Ising model:

H = −
∑
〈i,j〉

Jijδ(si, sj) (2.7)

The original Hamiltonian does not use the Kronecker delta. However, by introducing it, the
Hamiltonian still works as originally intended (i.e., for Ising model), plus for any value of
q. The name spin glass comes from the analogy to the spatial disorder of particles found in
glass materials. Only the mean-field3 version of spin glass has been solved analytically by
using the concepts of replica symmetry [162] and replica symmetry breaking [194, 220]. Exact
study of spin glasses with only local interactions is a problem for which no solution exists,
and the computation of Z( ) is NP-hard for the exception of the 2D case with no magnetic
field [15].

2.1.5 Random Field model

The Random field model [296] introduces an external random field to the system. The
external field was actually considered in the original description of the Ising model, but it
was usually assumed to be homogeneous. The case of a random external field is seen as a
separate spin model because of its higher complexity. The Hamiltonian for the Ising Random
Field model is given by

H = −
∑
〈i,j〉

Jsisj − h
∑

i

hisi (2.8)

2To average the logarithm of Z( ) and not Z( )
3The mean-field version assumes that each spin interacts with every other spin, i.e., an all-with-all scenario
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Similar to a spin glass, the random field presents quenched disorder, this time through the
magnetic field H = {h1, h2, ..., hn} with random values hi = ±1. The scaling factor h specifies
the strength of the magnetic field.

The magnetic field acts against the classic ferromagnetic order of the spins. If the strength
h of the field is sufficiently larger than J , then the system can become disordered even at the
low temperature regime.

2.2 Exact methods for computing Z( )

An exact method is essentially an algorithm for computing the partition function Z( ) of the
lattice in a given spin model. In general, exact methods have an exponential cost, with the
exception of some spin models under special circumstances, such as the 2D Ising Spin Glass
for planar graphs, where Z( ) can be computed in polynomial time [15]. More interesting
scenarios, such as the 3D versions of the Ising, Spin Glass and Random Field models are
all cases where the computation of Z( ) is NP-hard. For the case of the Potts model, the
two-dimensional case is already NP-hard, thus an attractive model for doing research since
it is not as intractable as the 3D cases of the other models. In the following subsections we
describe three approaches for computing Z( ).

2.2.1 Using the definition

For illustration, we show how the computation of Z( ) is carried on for a small graph G(V,E)
in the Ising model, with |V | = 4 and |E| = 4, as shown in Figure 2.4.

Figure 2.4: An example of a small square lattice in the Ising model, with |V | = 4 and |E| = 4.

The vertices of G take spin values {−1, 1}, which are visually represented as black or
white colors, respectively. The edges of G correspond to the energy interactions, which in
this case are ferromagnetic interactions, that is J > 0.

The main idea of the partition function is that it encodes the energy of every possible
spin configuration, into a mathematical expression that can be treated later to obtain other
physical properties. For this example, in order to compute Z( ), first one has to compute H
for each one of the 24 possible spin configurations {σ1, σ2, ..., σ16} as shown in Figure 2.5.
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Figure 2.5: In order to compute Z( ), H must be computed for all spin configurations.

The Hamiltonians for σ1, σ2 and σ10 would be:

H(σ1) = −J − J − J − J = −4J

H(σ2) = +J + J − J − J = 0

H(σ10) = +J + J + J + J = 4J

The process is carried in the same way for the rest of the configurations. Once all the
Hamiltonians are computed, the partition function becomes:

Z(G, q, β) =
∑
r

e−βH(Gr) = 2e4βJ + 2e−4βJ + 12 (2.9)

For this example, the configurations {σ1, σ10, σ11, σ16} are the only ones where H(σi) 6= 0.
The configurations where H(σi) = 0 contribute only with a constant term.

The cost of the Hamiltonian itself is Θ(|E|), i.e., linear in the number of edges, which is
not a high cost in computing time. However, as the lattice becomes larger, the computation of
Z( ) becomes rapidly intractable since the number of Hamiltonians required grows asymptot-
ically as Θ(q|V |). For the case of disordered models the cost is even worse, because it requires
to compute one partition function for each possible distribution of Jij or hi, depending if it
is the Spin Glass or Random Field model, respectively. Therefore, exact analysis based on
the computation of Z( ) is usually done for small lattices in the Ising or Potts models, where
the computation is still tractable for some sizes of interest.

There are other exact approaches that, while still exponential, can be faster than the
original definition.

2.2.2 Deletion-contraction

The deletion-contraction method [283], or DC method, was initially used to compute the
Tutte polynomial [269] and was then extended to the Potts model after a relation of duality
was found between the two (see [256, 282]). DC re-defines Z(..) as the recursive expression

Z(G, q, v) = Z(G− e, q, v) + vZ(G/e, q, v) (2.10)

G − e is the deletion operation, where edge {e} is removed, while G/e is the contraction
operation, where the pair of vertices connected by {e} are merged into one and {e} is removed.
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The auxiliary variable v = e−βJ − 1 makes Z(..) a polynomial. There are three special cases
where DC can perform a recursive step with linear cost:

Z(G, q, v) =


(q + v)Z(G/e, q, v); if {e} is a spike.
(1 + v)Z(G− e, q, v); if {e} is a loop.
q|V |; if E = {∅}.

(2.11)

The computational complexity of DC has a direct upper bound of O(2|E|). When |E| >> |V |
a tighter bound is known based on the Fibonacci sequence complexity [283]; O((1+

√
5

2
)|V |+|E|).

In general, the time complexity of DC can be written as

T (G) = min

(
O(2|E|), O

(1 +
√

5

2

)|V |+|E|)
(2.12)

Given a graph G, DC builds a recursion tree starting from any edge of G. Figure 2.6
shows how the process of computing Z( ) is carried for the lattice of Figure 2.4.

Figure 2.6: The recursion tree of deletion contraction technique. The method can take advantage of the
graph structure.

The red edges represent the chosen edge for DC. The left arrows corresponds to a deletion,
while the right ones correspond to contractions. It is convenient to represent a contracted
edge with a crossed line instead of literally contracting it, this way one can always see which
part of the original graph was contracted.

Once DC has finished, Z( ) is obtained by collecting the accumulated expressions found
at the leaves of the recursion tree. Continuing with the example, the collection of terms leads
to the following partition function.

Z(G, q, v) = q4 + 4q3v + 6q2v2 + qv4 + 4qv3 (2.13)
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The difference between the original definition of Z( ) and the DC method is that the former
uses the spin representation approach, where the cost of the algorithm is combinatorial on
the number of spin states and vertices, while the latter uses the generic (q, v) approach where
the cost is combinatorial on the number of edges. By doing proper edge selection, one can
increase the frequency of linear cases and improve the performance of DC significantly. There
will still be cases however where DC is not the best choice, such as the case of long strips,
or strip lattices. For this type of lattices, one can use a more efficient strategy that can take
advantage of the repeating structure of the graph.

2.2.3 Transfer matrix technique

In the previous methods, the construction of Z( ) has been based on a combinatorial algorithm
applied to the whole lattice. The advantage of that approach is that there is little restriction
to the input graph as no assumptions are made about its structure. Nevertheless, there are
many cases where the graph of interest is not random, neither too complex, but instead a
lattice that repeats a pattern through its domain. There is a kind of lattice with repeating
structure, called the strip lattice, for which the computation of Z( ) can be done more
efficiently.

A strip lattice is defined as a bidimensional graph G = (V,E) that repeats its pattern at
least along one dimension. It can be built as the concatenation of graph layers K1, K2, ..., Kn

sharing their boundary vertices and edges. Figure 2.7 illustrates how the notion of strip
lattice applies to the case of the square and kagome lattices. The transfer matrix, denoted

Figure 2.7: Two strip lattices; square and kagome, both with a width (vertical) of m = 6.

M , takes advantage of the repeating nature of the lattice, allowing the study of very long
graphs. The dimension of M grows proportional to a combinatorial function Γ(m) where m
is the width of G(V,E) and it represents the different ways in which two layers can connect.
The set of configurations generated by the base corresponds to the configuration space of the
problem. The rows of M , identified by σi, correspond to all the possible initial conditions Ki

can have, while the columns of M , identified by ϕj, correspond to all the possible ways Ki

can end, after the local algorithm as been applied. The elements of M are denoted fσi,ϕj(q, v)
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and correspond to partial partition functions in (q, v):

M =

∣∣∣∣∣∣∣∣
fσ1,ϕ1(q, v) fσ1,ϕ2(q, v) ... fσ1,ϕn(q, v)
fσ2,ϕ1(q, v) fσ2,ϕ2(q, v) ... fσ2,ϕn(q, v)

... ... ... ...
fσΓ(m),ϕ1(q, v) fσΓ(m),ϕ2(q, v) ... fσΓ(m),ϕΓ(m)

(q, v)

∣∣∣∣∣∣∣∣ (2.14)

The computational cost of a transfer matrix method comes from two sources; (1) the size
of Γ(m) and (2) the cost of the local algorithm. The size of the configuration space is given by
Γ(m) and corresponds to the size of M . The local algorithm generates the partial partition
functions fσi,ϕj(q, v) at each position of M . The upper-bound for the cost of computing M
of a strip lattice G of width m follows the form:

T (G,m) = O(Γ(m)Λ(K)) (2.15)

Where Λ(K) is the cost of the local algorithm when applied to one block K of G. If the
spin representation was chosen, then Γ function would depend on a different parameter, such
as q. For the rest of the thesis we will assume that the transfer matrix method is based on
the generic (q, v) representation. In Chapter 3 we specify what Γ(m) and Λ(K) are in more
detail and how they end up for our contribution.

Once M is computed, we have that the partition function for a strip lattice of length n
and width m is a vector ~Z

~Zn = M ~Zn−1 = Mn ~Z0 (2.16)

Where ~Z0 are the initial conditions. Once the expression is computed, the first component
of ~Zn becomes the partition function of G. The other elements of ~Zn correspond to partition
functions of the strip lattice but with different initial conditions ; σ1, σ2, ..., σΓ(m). The matrix

M and the initial conditions ~Z0 can be stored analytically as string polynomials parameterized
by (q, v) for multiple numerical evaluation.

In the case of an infinite length strip, the analysis can be done with the eigenvalues of M .
In this case, the free energy per site becomes:

f =
1

nK
lnλ+ (2.17)

where nK is the number of non-shared vertices per block K and λ+ is the dominant eigenvalue
of M with nontrivial coefficient associated.

At this point, the background for the first contribution has been covered. The next Section
contains the background about Monte Carlo methods which is only required for the second
contribution. The reader may prefer to jump directly to Chapter 3 for the first contribution
and then come back.

2.3 Monte Carlo methods

If the exactness requirement of a problem is relaxed, then one can come up with methods
that run faster than the original exact ones and even reconsider some NP-Hard problems
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that were intractable in the past.

A Monte Carlo method is, in its most basic definition, a randomized algorithm that
computes a result within a deterministic amount of time. This result is no longer guaranteed
to be exact since it has a probability of being incorrect, but in exchange it is significantly
faster than its exact counterpart and brings the possibility to attempt intractable problems
from a different point of view. The challenge is to make the Monte Carlo algorithm provide a
result with a small error probability in a reasonable amount of time. In order to get a small
error, one usually employs a large number of Monte Carlo steps until a certain tolerable error
has been met for that specific problem.

Monte Carlo algorithms for spin systems are strongly based on the notion of measuring
the thermal average of a physical observable from a system represented as a Markov Chain
process. The following sub-sections present the main ideas that lead to the formulation of a
Monte Carlo algorithm.

2.3.1 Computation of Averages

The definition of a Spin model Monte Carlo algorithm begins with the notion of measuring
thermal averages, as explained by C. Gabriel [94].

The probability of a spin lattice to be on a specific configuration σr is defined as the
Boltzmann factor.

P (σr) =
e−βH(σr)

Z
(2.18)

Depending on the temperature, some configurations are more probable than others. Based
on this fact, the thermal average of an observable A is expressed as

〈A〉 =
1

Z

∑
σr∈{σ}

e−βH(σr)A(σr) (2.19)

where {σ} denotes all possible configurations of the system and H(σr) is the Hamiltonian of
the lattice at a specific configuration σr. The expression for the average can we re-written as

〈A〉 =
∑
σr∈{σ}

A(σr)P (σr) (2.20)

to express that the thermal average is just the sum of the measures of A at all possible
configurations, with the probabilities acting as the weight factors.

The problem of computing an average using the form from expression (2.20) is that the
number of terms grows as O(q|V |) and the expression for the average soon becomes intractable
for any computer. For illustration: a small system composed of |V | = 299 spins, with q = 2,
has already 2299 ≈ 1090 terms which is more than the number of particles in the observable
universe (≈ 1080). The approach to overcome this problem is to use the central limit theorem,
which says that if random independent variables x1, x2, ...., xm are drawn from the same
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distribution, then the arithmetic average

A =
1

M

M∑
m=1

A(xm) (2.21)

in the limit M → ∞ will always be distributed according to a Gaussian distribution, no
matter from which distribution the xm where drawn. In addition, the variance of A becomes

Var(A) =
Var(A)

M
(2.22)

which allows the approximation of expression (2.20) to the average sample of random variables
{x1, x2, ..., xM} in the form of

〈A(x)〉 =
1

M

M∑
m=1

A(xm)±
√

Var(A)

M
(2.23)

with a distribution according to Px. At this point, the question is how to produce the required
random variables.

2.3.2 Markov Chain Monte Carlo (MCMC)

A Markov-Chain can produce random variables according to a given distribution P . Let
{Y1, Y2, ..., YN} be the possible states of a system, all exclusive to each other. A stochastic
process is called a Markov Chain if the probability of the next event Xt+1 only depends on
the previous one Xt.

P (Xt+1 = Yj|Xt = Yi) = Wij(t) (2.24)

W
(t)
ij is a matrix with the transition probabilities for all pairs {i, j}. The matrix satisfies

Wij ≥ 0 and
∑N

j=1 Pij = 1. A Markov Chain is called ergodic if

∀i, j ∃K > 0 : (WK)ij > 0 (2.25)

which means that all states {Y1, Y2, ..., YN} can eventually be reached, no matter what state
the process began with. Ergodicity is an important property that is required for Monte Carlo
methods in spin systems, because it guarantees that equilibrium can be reached through suc-
cessive simulation steps independently of what initial conditions were chosen for the lattice.

The stochastic process of a spin lattice is modeled with an ensemble of Markov Chains,
all sharing the same transition matrix Wij. Under this scheme, the states of the ensemble
at time t follow a distribution πt(Yi). The evolution of all states in the ensemble is achieved
by applying Wij to the distribution and obtaining a new distribution for the next time step.
In order to compute appropriate averages, one requires the distribution to be an invariant
distribution, also known as stationary distribution, that satisfies

π∞Wij = π∞ (2.26)
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Repeated applications of Wij to the distribution can eventually lead to a unique invariant
distribution P (Yi). The question is what transition matrix Wij must be used in order to
achieve the invariant distribution. A sufficient condition is that the transition probabilities
satisfy detailed balance

P (Yi)Wij = P (Yj)Wji (2.27)

Detailed balance is sufficient for making sure that the process will converge and measurement
of averages will eventually be possible in the thermodynamical equilibrium.

Algorithms based on the notion Markov chains are known as Markov chain Monte Carlo
(MCMC) methods. A MCMC applies a randomized algorithm to simulate the behavior of
the spins in the lattice, much like a dynamical system based on particles. In the end, the goal
for a MCMC algorithm is to simulate the system towards the thermodynamic equilibrium.
The simulation process involves modifying (also known as flipping) the spins of the system at
discrete time steps, based on probabilistic rules that depend on the energy of the lattice and
the given temperature. The evolution of the system favors the configurations with less energy
over the ones with more energy. Eventually, after many simulation steps, the system will
reach equilibrium; the stage where measurements can be made to get averages of the physical
observables. The statistical error for the averaged measurement of a physical observable A is

∆〈A〉 =

√
σA
N

(1 + 2τA) (2.28)

Where σA is the variance of A, N is the number of Monte Carlo steps and τA is the correlation
time.

Today, many MCMC algorithms exist, some more sophisticated than others, but the most
emblematic, simple and frequently used is the Metropolis-Hastings algorithm [123, 193].

2.3.3 The Metropolis-Hastings Algorithms

The Metropolis-Hastings algorithm is the most used MCMC algorithm for the simulation
of spin models. The method works much like a Cellular Automata (CA) with a non-
deterministic rule [132, 244]. The first notion of the Metropolis-Hastings algorithm was
presented in the work of N. Metropolis et. al. in 1953 [193], which was then generalized by
W.K Hastings in 1970 [123].

The Metropolis-Hastings algorithm in the context of spin models is known as the heat bath
method, which is a special case of the algorithm. The method generates a sequence of states
that are distributed according to the Gibbs distribution. It does so efficiently by what is
called the importance sampling method, which generates the sequence of samples on regions
where it is more probable to find the system according to the temperature T . Each step
of the algorithm is computed by applying a local probabilistic rule f( ) to the spins of the
lattice. The rule is local because it uses information just from the neighboring sites. The
steps of the Metropolis-Hastings algorithm are:

1. Initialize the lattice with an arbitrary configuration.

47



2. Pick a spin sti , and choose a trial state st+1
i 6= sti as the candidate state for step t+ 1.

3. Compute the energy difference ∆h = h2−h1, where h1 and h2 are the local Hamiltonians
for sti and st+1

i , respectively.

4. Accept st+1
i as the next spin state for sti , with probability

P (sti ⇒ st+1
i ) =

{
1 , ∆h ≤ 0

e
−∆h
κT , ∆h > 0

(2.29)

If the new state is not accepted, then the original one is kept, i.e., st+1
i := sti .

5. Go to step 2.

Figure 2.8 illustrates an example of flipping a spin in the Ising model, forth and back, based
on the energy of the neighboring spin states. .

Figure 2.8: The process of flipping a spin, forth and back, with the Metropolis-Hastings algorithm.

For spin models with no disorder, such as the Ising and Potts model, the Metropolis-
Hastings algorithm can provide a good quality simulation. However, near a phase transition
the amount of simulation steps required to reach equilibrium increases approximately as L2,
with L being the linear size of the lattice. This effect is known as the critical slow down (CSD)
and it has been one of the major problems for the Metropolis-Hastings algorithm [252, 253]
and in general for simulating algorithms based on local spin flips. This problematic led to
the proposal of new MCMC algorithms based known as the cluster algorithms.

2.3.4 Cluster Algorithms

In 1987 and 1989, two Monte Carlo algorithms were proposed, one by Swendsen and Wang
[262] and the other by Wolff [287]. In both methods, the authors found that by flipping
clusters of spins, one can accelerate the simulation process near the critical temperature,
solving the CSD problem. The important change introduced with cluster methods is the
notion of global spin updates, in contrast to the local spin updates strategy used in the
Metropolis-Hastings algorithm.

A cluster algorithm works iteratively, at each iteration forming random clusters of spins
and flipping them afterwards. The clusters are basically labels that are put on the spins,
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indicating whom they belong to. The main difference between Swendsen and Wang’s algo-
rithm and Wolff’s algorithm is that the former creates many clusters per iteration while the
latter handles just one per iteration. The clustering phase of the algorithm is where most of
the algorithmic complexity lies and where some ideas can be proposed. One approach that is
used for forming the clusters is the ants in the labyrinth strategy [73], where ants are placed
at random sites and each one begins the generation of a cluster by replicating to adjacent
sites. The ants in the labyrinth strategy follows five steps:

1. Label all spins as free.

2. Place an ant at a random free site and label it as taken to begin a cluster.

3. Add free neighbor spins of the same state to the cluster, with probability P = 1−e−2Jβ

4. Label each successfully added spin as taken and spawn an ant at its location.

5. Each ant starts from step (3). If no ants were spawned, then go back to step (2).

Figure 2.9 illustrates how two clusters are created with the ants in a labyrinth strategy.

Figure 2.9: The cluster creation process for the Swendsen and Wang algorithm.

Cluster algorithms have proven to be significantly faster than the Metropolis-Hastings
method for 2D lattices, specially near the critical temperature. The next MCMC algorithm
is a different kind of method, that based on the random walks, can solve the CSD problem
while still providing local updates on the spins.

2.3.5 The Worm Algorithm

The Worm algorithm, introduced by Prokof’ev and Svistunov in 2001 [230], is inspired by the
random walk process, where closed paths of spins are updated by probabilistic movements
of two end-points. The method solves the CSD problem and it is considered more flexible
than the Cluster algorithms since it is applicable to a wide class of models; from classic
ferromagnetic models [71] to quantum models [231]. Its autocorrelation time is also efficient;
for example for the Ising model, autocorrelation time has found to be ≈ ln L for both 2D
and 3D cases [94].

The formulation of the worm algorithm starts with the high-temperature representation
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of Z. In the Ising model we have that

Z =
∑
σr∈{σ}

e−βH(σr) =
∑
σr∈{σ}

∏
〈i,j〉

eKsisj (2.30)

The Ising high-temperature expansion specifies that sisj = ±1, thus allowing Z to be ex-
pressed in terms of hyperbolic functions

Z =
∑
σr∈{σ}

∏
〈i,j〉

eKsisj =
∑
σr∈{σ}

∏
〈i,j〉

[
cosh(K)

(
1 + tanh(K)sisj

)]
(2.31)

which can be relocated in the expression, considering that the number of edges in a 2D lattice
is |V | and the bond states are nb = 0, 1.

Z = cosh(K)2|V |
∑
{nb}

tanh(K)
∑
nb
∑
σr∈{σ}

∏
〈i,j〉

snbi s
nb
j (2.32)

The sum of bond products from expression (2.32) can be re-formulated as the product of
incident bonds per spin ∑

σr∈{σ}

∏
〈i,j〉

snbi s
nb
j =

∏
i

∑
si

spi

i (2.33)

where pi is the sum of the values of the bonds incident to spin si. The sum
∑

si
spi

i just covers
the case for each possible spin value; i.e., si = ±1. The only case where

∑
si
spi

i 6= 0 is when
pi is even, which leads to a more simplified expression for Z

Z = 2|V | cosh(K)2|V |
∑
{nb}

tanh(K)
∑
nb (2.34)

In this new form we assume pi is even and in order to satisfy this condition, the terms of
the sum must necessarily correspond to closed paths made of bonds. The new form of Z in
expression (2.34) has an important meaning because it says that the partition function can
be expressed using a configuration space based only on closed paths. This concept is what
leads to the formulation of the worm algorithm.

The worm algorithm specifies how to create closed paths dynamically in time by the use
of two end-points, namely i1, i2, which act like bond-drawing pencils moving in the lattice
domain based on probability functions. After successive movements, the bonds eventually
form closed paths. The steps of the worm algorithm are:

1. Choose a random location in the lattice to place both i1,2.

2. (a) If i1 = i2 then with probability p0 ∈ [0, 1] move both end points i1, i2 to a new
random location.

(b) Else, go to step (3).

3. Pick an incident bond b of i2 with probability P (j | 〈i1, j〉) = 1
Nnn

.

4. If bond value is Nb = 0, accept with probability R = tanh(K) moving i2 towards b as
well as increasing the bond value to Nb = 1. Else Nb = 1, thus accept with probability
R = 1 moving i2 towards b as well as decreasing the bond value to Nb = 0. Update
averages and go back to step (2).
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Figure 2.10: Closed paths formed by the worm algorithm in a lattice with periodic boundary conditions.

Figure 2.10 illustrates how worms are made randomly throughout the lattice.

It is important to clarify that in the Worm Algorithm, measurement of the
averages is not done over the spin configuration as in the traditional way, but
instead it is done progressively on the bonds as the closed paths are built. The
formal description on how to get the averages can be found in the original article by Prokof’ev
and Svistunov [230].

The Worm algorithm is considered efficient because it solves the CSD problem present
in the Ising and Potts model, while still taking into account the local interactions between
the spins, making it more flexible for other models. From the point of view of parallel
computation it is not so efficient however, since the formation of worms does not provide
enough parallelism for massively parallel architectures [69].

So far, we have presented Monte Carlo methods that can reach equilibrium on non-
disordered spin models, some more efficiently than others. The following MCMC algorithm
is different because it simulates many copies of the system in order to reach equilibrium in
models with quenched disorder, such as the Spin Glass and Random Field ones.

2.3.6 Exchange Monte Carlo (Parallel Tempering)

Some spin models, such as the Spin Glass and Random Field, present quenched disorder,
which is a type of disorder where one of the parameters of the Hamiltonian is no longer
fixed, instead it is a distribution of random variables across the spin lattice. For the Spin
Glass, it is the coupling constant, while for the Random Field, it is the magnetic field at
each spin location. These systems, which are also called hardly-relaxing, are characterized
for presenting an adverse energy landscape in the low-temperature regime that cannot be
traveled easily by traditional MCMC algorithms. The reason is because at some point of the
simulation the system will eventually become trapped at a local minimum, never approaching
its ground state, as shown in Figure 2.11.

One way to overcome the local minimum problem is to introduce the notion of replicas,
that is, keep more than one instance of the problem under simulation. The Exchange Monte
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Figure 2.11: Quenched disorder leads to rough energy landscapes in the low temperature regime. Traditional
algorithms trap the system at a local minimum.

Carlo algorithm, also known as Parallel Tempering, is an algorithm based on exchanging
information between replicas of the system, all individually simulated. The idea of exchanging
replicas for studying systems with quenched disorder was first introduced by Swendsen and
Wang in 1986 [261] and then extended by Geyer in 1991 [97]. Hukushima and Nemoto
presented in 1996 the full method as it is known today [130].

The Exchange Monte Carlo method is based on the principle that a system simulated at
the low-temperature regime can escape from a local minimum by exchanging its configuration
with another system that has been simulated at a higher temperature. The reason why high-
temperatures configurations help the low temperature ones escape a local minimum is because
the energy landscape at the high temperature is smoother and easier to explore, allowing
the appearance of configurations that were needed, but were unlikely to appear at the low
temperature regime. This act exchanging configurations between high T and low T systems
can be described as shaking the energy landscape so that the red ball from Figure 2.11 can
eventually fall into the green spot.

The steps of the Exchange Monte Carlo algorithm, for the case of the Ising Random Field
model, are the following:

1. Choose R different temperatures {β1, β2, ..., βR} where β = 1/T .

2. Choose an arbitrary magnetic field placing random values at each spin location H =
{h1, h2, h3..., h|V |} with hi = rand(±1). This disorder instance will be shared among
all replicas.

3. Initialize a set X of R lattices or replicas, X = {X1, X2, ..., XR}, with an arbitrary
spin configuration and associate each one with the corresponding temperature, i.e.,
Xi ⇐⇒ Bi.

4. Simulate each replica simultaneously and independently in the Random Field Model,
using the disorder instance for all replicas, using a standard MCMC algorithm such as
Metropolis-Hastings.
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5. Attempt to exchange two configurations Xm and Xm+1, with probability

W (X, βm|X ′, βm+1) =

{
1 for ∆ < 0

e∆ for ∆ > 0
(2.35)

where ∆ = (βm+1 − βm)(H(X)−H(X ′)).

6. If the system is not equilibrated, go to step (4) and repeat the process.

The efficiency of the algorithm depends, in a great part, of the initial parameters chosen
such as the temperatures and how separate they are one from another. Temperatures that
are too separated will incur in an algorithm with very low exchange rate, which has a negative
impact since trapped systems have less chance of escaping. On the other hand, temperatures
that are too close can produce an unnecessary amount of exchanges, leading to a higher
computational work and unstable equilibrium states for each replica. The low and high values
of the temperatures are also important to consider, since the main idea of the algorithm is that
the highest temperature is high enough to provide easy exploration of the energy landscape,
in order to feed the low temperature ones with the required information. Last but not least,
parallel tempering is potentially parallel, and the parallelization can be done at different
levels of depth, making it an attractive topic of research for the high performance computing
(HPC) community.
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Chapter 3

Parallel Family Trees for Transfer
Matrices in the Potts Model

3.1 Abstract

The computational cost of transfer matrix methods for the Potts model is related to the
question into how many ways can two layers of a lattice be connected?. Answering the ques-
tion leads to the generation of a combinatorial set of lattice configurations. This set defines
the configuration space of the problem, and the smaller it is, the faster the transfer matrix
can be computed. The configuration space of generic (q, v) transfer matrix methods for
strips is in the order of the Catalan numbers, which grows asymptotically as O(4m) where
m is the width of the strip. Other transfer matrix methods with a smaller configuration
space indeed exist but they make assumptions on the temperature, number of spin states,
or restrict the structure of the lattice. In this paper we propose a parallel algorithm that
uses a sub-Catalan configuration space of O(3m) to build the generic (q, v) transfer matrix
in a compressed form. The improvement is achieved by grouping the original set of Catalan
configurations into a forest of family trees, in such a way that the solution to the problem is
now computed by solving the root node of each family. As a result, the algorithm can run
exponentially faster than the Catalan approach while still highly parallel. The resulting ma-
trix is stored in a compressed form using O(3m × 4m) of space, making numerical evaluation
and decompression to be faster than evaluating the matrix in its O(4m × 4m) uncompressed
form. Experimental results for different sizes of strip lattices show evidence that the parallel
family trees (PFT) strategy has an exponential advantage over the Catalan Parallel Method
(CPM), especially when dealing with dense transfer matrices. In terms of parallel perfor-
mance, we report strong-scaling speedups of up to 5.7X when running on an 8-core shared
memory machine and 28X for a 32-core cluster. The best balance of speedup and efficiency
for the multi-core machine was achieved when using p = 4 processors, while for the cluster
scenario it was in the range p ∈ [8, 10]. Because of the parallel capabilities of the algorithm, a
large-scale execution of the parallel family trees strategy in a supercomputer could contribute
to the study of wider strip lattices.
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3.2 Introduction

The Potts model [227] has been widely used to study physical phenomena of spin lattices
such as phase transitions [32] in the thermodynamical equilibrium. Lattices such as square,
triangular, honeycomb and kagome are of high interest and are being studied frequently
[46, 48, 49, 249]. When the number of possible spin states is set to q = 2, the Potts model
becomes the classic Ising model [133], which was solved by Onsager [214] for the infinite-
volume limit on a torus. For higher values of q the problem becomes much harder and no
analytical solution has been found yet. Only at the critical temperature, the exact partition
function of the Potts model on the square, triangular and honeycomb lattices have been
obtained [289]. It is of interest to study the problem in the form of a strip lattice. Hopefully,
the study of sufficiently wide strips could contribute at understanding the physical properties
of such complex systems under different boundary conditions.

An effective technique for obtaining the partition function of strip lattices is to compute
its transfer matrix, denoted M . The transfer matrix technique allows the study of strips that
repeat their lattice structure along one of its dimensions. M can be computed symbolically
or numerically (fully or partial) evaluated on (q, v). When there is enough disk space, we find
that it is more convenient to compute M using polynomials on (q, v). Indeed, computing M
with general (q, v) has an impact on performance and memory, but it gives the advantage
that M will not have to be re-computed many times when doing numerical sweeps for q and
v. Another advantage is that from the general (q, v) transfer matrix one can generate many
partially evaluated instances of the transfer matrix that can be used later for numerical sweeps
on the remaining parameter. For limited computational resources, generating M partially or
fully evaluated is a practical choice.

If the strip lattice represents an infinite band, then analysis can be performed by computing
the eigenvalues of M . If the strip lattice is finite, then an initial condition vector ~Z0 is needed.
In that case, boundary conditions have to be specified. Typical boundary conditions are free,
periodic, cylindrical and cyclic. M and ~Z0 together form a partition function vector ~Zn based
on the following recursion:

~Z(n) = M ~Zn−1 = ~Z = Mn ~Z0 (3.1)

Computing the powers of Mn is done in a numerical context, otherwise memory usage would
become intractable. WhenMn is computed, only the first element of ~Zn becomes the partition
function of the strip lattice, because it uses the original initial conditions from ~Z0, while the
other elements use different initial conditions. The choice of the initial vector ~Z0 is important,
since it cannot be orthogonal to the eigenvector corresponding to the first eigenvalue of M .

This work focuses on the process of building M , which is an NP-hard problem [285] where
exponential cost algorithms are involved in the process, with the width m as the exponent.
There are different approaches for building M : (1) In the spin representation approach, an
integer value is chosen for q and the transfer matrix M is obtained by combining the different
spin configurations in the graph layer. Under this approach, the size of M becomes q|V |×q|V |,
where |V | is the number of spins in the layer of the strip. A more detailed explanation on
the spin representation approach is available in the first of the six works by Salas, Sokal and
Jacobsen series of papers [241]. (2) One can also obtain M as a product of sparse matrices of

55



asymptotic size O(4m) [33, 137], one per edge and practically linear in the number of edges,
where M is not constructed explicitly but only its action on a given vector of states. (3)
Alternatively one can compute M with a generic (q, v) method where the configuration space
grows proportional to the Catalan numbers [50] or asymptotically as O(4m), leading to a
matrix of size O(4m×4m). Indeed there are other strategies that can achieve smaller transfer
matrices [23, 98, 242], but they assume special properties for the lattice, work only for finite
graphs or need to fix the values of v and/or q in order to take any advantage. We believe
it is worth studying what are the possibilities for algorithmic improvements in the generic
(q, v) Catalan based approach since it is a general method applicable to any planar strip.

In the light of these aspects just mentioned, we ask question 1: Is there a generic (q, v)
method that can compute the transfer matrix for any planar strip lattice, using a sub-Catalan
configuration space?. From our research we have found that: a hierarchical symmetry exists
among elements of the configuration space that define the transfer matrix. This symmetry is
revealed when first applying deletion-contraction to certain edges of the strip layer. If this
symmetry is used so that the configuration space is re-organized as a forest of hierarchical
families, then a parallel computation only on the root nodes is sufficient for generating
a compressed transfer matrix. When exploiting this symmetry, the configuration space is
reduced from O(4m) to O(3m), which is an improvement to the actual bound on general
transfer matrix methods for strips. This result allows us to answer positively to question 1.

With the evolution of computer architectures towards a higher amount of cores [30, 76],
parallel computing is not anymore limited to clusters or super-computing; workstations can
also provide high performance for solving physical problems [200]. It is in this last category
where most of the scientific community lies, therefore parallel implementations for multi-
core machines are the ones to have the largest impact on the community. Considering how
technology is changing, we ask question 2: Can transfer matrix methods work in parallel for
modern multi-core architectures and scale their performance efficiently as more processors are
used?. Given the amount of data-parallelism on the number of root nodes, the performance
of the algorithm scales efficiently as more processors are used. Results on a multi-core 8-
core machine show a speedup of 5.7X is achieved when using p = 8 processors, and an
efficiency of 95% is achieved when using p = 4. Results on a 32-core cluster confirm that the
implementation can scale in a distributed scenario, achieving a speedup of 28X when using
p = 32 processors and an efficiency of over 90% for the full range p ∈ [1, 32] when dealing
with large square strips. We can also confirm that a compressed transfer matrix not only
saves data space in comparison to the original one, but it is also faster to load considering
that it must be first evaluated for any practical usage. In the case of cluster performance,
a dynamic scheduler is mandatory in order to bypass potential performance valleys that are
caused by the combination of unbalanced work and a static scheduler. Again, this result
allows a positive answer for question 2.

3.3 Related work

The transfer matrix methods were introduced by Derrida et. al. in 1980 [72] as an approach to
study percolation and phenomenological re-normalization. In 1982, Baxter used transfer ma-
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trix techniques in his seminal works as a tool for solving statistical mechanics problems [19].
Salas, Sokal and Jacobsen have greatly contributed with a series of results, plus an additional
unnumbered one that follows the same line, in which they study the physics of square and tri-
angular strip lattices through the transfer matrix technique [140, 141, 142, 143, 240, 241, 242].
In those works, the authors use different types of algorithmic optimizations for the construc-
tion of M based on the symmetries available. Different scenarios are considered along the
works, such as the zero temperature (chromatic polynomial) case, ferromagnetic and antifer-
romagnetic cases, and different boundary conditions such as free, periodic, cylindrical and a
special boundary condition that consists of adding two extra vertices on the sides of the strip.
Some of the contributions made in these works include the use of non-nearest neighbors par-
titions for v = −1, sparse matrix factorization, algebraic input from the representation of the
Temperley-Lieb algebra, symmetries for different boundary conditions and the computation
of the limiting curves or partition function zeroes for the different boundary conditions up
to m ≤ 13. State of the art works on the square lattice normally study strips in the range
3 ≤ m ≤ 13. For the case of the square lattice with free boundary conditions, Salas et. al.
achieved m = 12 using v = −1 [240]. It should be noted that if v 6= −1 and free bound-
ary conditions are used, then the configuration space is the one proportional to the Catalan
numbers and the problem becomes computationally harder to handle. The problem of the
matrix size has also been improved by algebraic techniques [98] in the spin representation,
reducing the matrix size when working with q = 2 and q = 3. The authors studied the square
and triangular strips with layers of up to r = 11 spins, which is equivalent to a square strip
of width m ≈ 5. Jacobsen et. al. have studied the q-state Potts model for q = 4cos2(π/a)
being a Beraha number with a > 2 and integer [141]. In the work, the authors study strips of
widths in the range m ∈ [2, 6]. The relevance of their work is that they manage to compute
the partition function using the RSOS representation. Álvarez et. al. [11] have reported
exact results for the kagome strip of width m = 5 using the generic (q, v) Catalan based
transfer matrix technique. In contrast to these related works, we are interested in exploring
a general (q, v) method that can allow the study of strips in the state of the art range for free
boundary conditions using generic (q, v). For simplicity, we will restrict our physical results
just to the computation and validation of the limiting curves using free boundary conditions
in order to stay within the scope of our work, but not restrict the proposed strategy to these
conditions.

More general methods for computing the exact partition function of a lattice have also
been proposed [23, 121, 248]. Bedini et. al. [23] proposed a transfer matrix method for
computing the partition function of arbitrary graphs using a tree-decomposed transfer matrix
technique. For arbitrary graphs, they mean any type of finite graph; i.e., random or regular
planar/non-planar graphs. In their work, the authors obtain a sub-exponential complexity
when processing random planar graphs. Their algorithm is considered the best so far for
arbitrary graphs and the authors manage to achieve results for regular lattices of up to 18×18
sites. If the tree-decomposed transfer matrix method is applied to a strip, the configuration
space to explore becomes the same as the traditional transfer matrix methods for strips, i.e.,
the tree-width becomes the width of the strip and the cost is proportional to the Catalan
number of the tree-width. The work is closely related to another result by Jacobsen in which
large regular lattices of up to 20×21 sites were studied [137] by using a sparse transfer matrix
method based on the product of sparse matrices, of dimension 3m for v = −1 and 4m for
v 6= −1. The work of Haggard et. al. [115] is considered to have the best implementation
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of a deletion-contraction technique for the computation of the Tutte polynomial for any
arbitrary graph (the Tutte polynomial is the dual of the partition function [282]). Their
algorithm reduces the computation tree in the presence of loops, multi-edges, cycles and
biconnected graphs (as one-step reductions). By using a cache, some computations can be
reused (i.e., sub-graphs that are isomorphic to the ones stored in the cache do not need to be
computed again). An alternative algorithm to Haggard et. al. was proposed by Björklund
et. al. [29] which achieves exponential time only in the number of vertices; O(2nnO(1)) with
n = |V |. Asymptotically their method is better than deletion-contraction considering that
many interesting lattices have more edges than vertices. However, Haggard et. al. [115]
have stated that the memory usage of Björklund’s method is too high for practical use.
These techniques, which are more general than the ones from the beginning of this section,
cannot be directly compared against the classic transfer matrix approach, nevertheless they
still needed to be mentioned as part of the related work background. General techniques
compute the transfer matrix efficiently for arbitrary graphs, but do not take advantage of
the regular graph structure when it is available. On the other hand, classic transfer matrix
methods for strips indeed take advantage of the regular graph structure but for arbitrary
graphs are not so efficient because for each layer there is a new non-sparse transfer matrix
to be computed. Both strategies play an important role in the study of spin lattices. In
our case, we focus on strips with regular graph structure, therefore our approach should be
considered as a classic transfer matrix method.

Research on transfer matrices for strip lattices in the Potts model have not reported
experimental results on the parallel performance, except for a prior work of the authors [199]
that consists of a parallel method for computing general (q, v) transfer matrices using the
Catalan approach, which will be named the Catalan Parallel Method (CPM) for the ease of
referencing it later on. The CPM method was successfully used to study new widths of the
kagome strip [11] with generic (q, v). The present work is a substantial improvement from
CPM.

3.4 Algorithm overview

3.4.1 Data structure

Since the graph is a strip lattice, only layer Kn(V ′, E ′) of the graph G(V,E) is explicitly
needed. The following naming scheme is now introduced for distinguishing two types of
boundary vertices in the layer: shared vertices and external vertices. For convention, shared
vertices are indexed top-down from 0 to m− 1 and correspond to the left-most ones of Kn,
which are being shared with layer Kn−1. External vertices are the right-most ones of Kn and
are indexed bottom-up from |V ′| −m to |V ′| − 1. Figure 3.1 illustrates the data structure
for an square strip of m = 3.
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Figure 3.1: Example data structure for a square strip lattice of width m = 3.

3.4.2 DC-based transfer matrix computation

When using (q, v) polynomials, the configuration space of generic q transfer matrix methods
turns out to be the set of all non-crossing partitions on a sequence of m serially connected
vertices. The size of this configuration space is defined by the Catalan numbers:

Γ(m) = Cm =
1

m+ 1

(
2m

m

)
=

(2m)!

(m+ 1)!m!
=

m∏
k=2

m+ k

k
(3.2)

We will first explain how the transfer matrix can be built from partial DC repetitions and
then proceed to the parallel family trees strategy.

At this point we introduce two terminologies that are important for the rest of the section;
initial configurations and terminal configurations. These configurations define a combinato-
rial sequence of identifications1 on the external and shared vertices of layer Kn. Initial
configurations, denoted σi with i ∈ [0..Cm − 1], define a combinatorial sequence of identifi-
cations just on the external vertices of Kn. The terminal configurations, denoted ϕj with
j ∈ [0..Cm − 1], define a combinatorial sequence of identifications just on the shared vertices
of Kn. Initial configurations generate terminal ones, through the DC method.

The case of σ1 is the basic case and matches Kn. That is, σ1 is the initial configuration
where no identifications are applied to the external vertices of Kn. It is equivalent as saying
that σ1 is the empty partition of the Catalan set. Similarly, ϕ1 corresponds to the base case
where no shared vertices are identified. In other words, ϕ1 is the empty configuration for the
Catalan set on the shared vertices of Kn. For illustration, Figure 3.2 shows the configuration
space for the square lattice of width m = 3:

σ1 σ2 σ3 σ4 σ5

Figure 3.2: The configuration space for a square lattice of width m = 3.

In order to compute the transfer matrix M (row by row), one must apply Cm partial DCs,
each time to a different initial configuration σi. Each one of the Cm partial DC applications

1For identification we mean a pair of vertices that actually represent a single vertex (they are identified).
Graphically, it is represented by a crossed curved connecting the pair of vertices.
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generates a row of M in the form of partial partition functions on (q, v), distributed into a
maximum of Cm terminal configurations. By partial DC we mean to perform DC on the layer,
with the corresponding initial configuration σi applied, but stopping the recursion branches
whenever they meet an edge that connects two shared vertices. The stop condition on the
recursion branches is needed otherwise one would be processing vertices and edges of the
next layer of the strip, breaking the idea of a transfer matrix. For the example of Figure 3.1
with m = 3, the partial DC is applied to σ1, σ2, σ3, σ4 and σ5 from Figure 3.2.

An example of a partial DC for the example of m = 3 is illustrated in Figure 3.3 for the
case when computing the first row. The process is analogous for the other four rows of M
(i.e., σ2, σ3, σ4 and σ5).

... ... ...

z    (q, v)1,1

1

+ z   (q, v)1,2 + z    (q, v)1,5+ z    (q, v)1,3 + z    (q, v)1,4

σ

1ϕ 2ϕ 3ϕ 4ϕ 5ϕ

Figure 3.3: Terminal configurations generated from a partial DC on a square strip of width m = 3.

Once a recursion branch has been stopped, partial partition functions zi,j(q, v) appear asso-
ciated to remanents of the graph layer. Remanents are parts of the graph layer that cannot
be computed (i.e, edges connecting shared vertices) and they match one of the Cm possi-
ble terminal configurations that can exist. For some initial configurations, not all terminal
configurations may be generated from a single DC, but only a subset of them.

A terminal configuration ϕj contains a unique sequence of planar identifications on the
shared vertices that is useful to differentiate one from another. We use the term key to
denote such sequences since they allow fast search and modification in a hash table. Proper
construction of keys are achieved by using a simple algebra that defines how multiple iden-
tifications on shared vertices are combined. A key of n identifications is denoted as Π =
πx1,y1 + πx2,y2 + ...+ πxn,yn . The following properties hold true for keys:

πa,b = πb,a (3.3)

πa,b + πc,d = πc,d + πa,b (3.4)

πa,b + πb,c = πa,b,c (3.5)

Properties (3.3) and (3.4) allow the application of a lexicographical order on the keys, while
property (3.5) allows them to be combined through transitivity. There are important differ-
ences when comparing this algebra to the partition algebras studied by Halverson and Ram
[116], specially because the former is much simpler and defines operations on a single layer
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of points, while the latter defines a different set of operations for a partition monoid that is
represented as a graph of two layers of points. Nevertheless, we can still find a relation with
the number of partitions in the case of the planar sub-monoid Pk, which is C2k for two layers
of length k, and the number of keys for a single layer of length m, which is Cm.

Using Stirling’s approximation, we have that Cm ≈ 4m

m3/2
√
π
, which is consistent with the

upper bound:

Cm =
1

m+ 1

(
2m

m

)
≤
(

2m

m

)
≤ 4m (3.6)

Dutton and Brigham proved in 1986 that the Stirling approximation of the Catalan numbers
is in fact already a valid upper bound [78]. In addition, they obtain tighter lower and upper
bounds for the Catalan numbers. The cost of the DC-based transfer matrix method is the
product of the cost of the partial DC and the size of the configuration space Cm.

So far, the worst case running time of the algorithm for computing M is:

T (Kn(V ′, E ′),m) = O
(

Γ(m) ·DC(Kn))
)

= O
(

4m ·min
(

2|E
′|,
(1 +

√
5

2

)|V ′|+|E′|))
(3.7)

In the following sub-section, we show how a finer analysis can lead to a smaller configu-
ration space of Γ(m) = O(3m) for computing a compressed transfer matrix M .

3.4.3 Family trees strategy

It is possible to reduce the Catalan configuration space by exploiting a symmetry present
in the deletion-contraction (DC) method, resulting in an exponentially faster algorithm.
Basically, the idea is the following: if the DC procedure is forced to act first on certain external
edges of the layer, and act later on the rest of the graph, then symmetries appear between
nodes of the recursion tree and other initial configurations. Exploiting such symmetry allows
one to group many Catalan configurations into families of configurations, where a single DC
procedure applied to the root node of a family contributes to the solution of the whole family.

Forcing DC to start on the external edges results in a recursion tree composed of two
phases; (1) a perfect binary tree (PBT) of height h = m− 1− b and (2) several sub-trees tj
with j ∈ [1..2h] (see Figure 3.4).
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Figure 3.4: When DC is forced to start on the external edges, the recursion is divided into two phases.

Variable b is the number of external edges that sit in between an identification πij where
at least one of its vertices is i or j. These b edges are left for phase (2) because they do
not produce the symmetries needed for the family trees strategy. Each node of the PBT of
phase (1) that comes from a contraction produces a unique algebraic symmetry to one of
the configurations found in the original Catalan set. The configuration of a contracted node
from the recursion tree is denoted χi and the symmetric correspondence is χi ←→ σi. All χi

configurations that share the same PBT, together form a family tree. Following the example
of the square strip with m = 3, its configuration space would be grouped into two family
trees (see Figure 3.5); {σ1, σ2, σ3, σ4} and {σ5}, being σ1 and σ5 their root configurations,
respectively.

χ1

1 2 4t 3t t t

χ5

χ2

χ 4χ3
1t

111 1

5

v

v

v

Figure 3.5: An example of the perfect binary tree and subtrees for m = 3.

The solution of a configuration, namely 〈σi〉, is defined in terms of its symmetric χi found
in the PBT:

〈σi〉 = (1 + v)c
2d−1∑
k=0

vb(k)〈χki 〉 (3.8)

Variable d denotes the number of deletions (i.e., holes in the external layer) and variable c the
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contractions accumulated along its path, both starting from the root. The (1+v)c coefficient
corresponds to the expression for the c loops that are present in the external layer of σi, but
are missing in χi. For the example of the square strip of width m = 3, c = 0, 1, 1, 2, 0 for
χ1, χ2, χ3, χ4, χ5, respectively. Function b(k) counts the number of non-zero bits of k and
the expression χki is the application of the binary mask k just on the holes of χi. The mask
works as follows: if bit kj = 1, with j ∈ [0..d − 1], then the j-th hole is filled with an edge,
otherwise it is left as a hole.

When d = 0, χi represents exactly the starting point of an eventual solution 〈σi〉, alge-
braically symmetric in (1 + v)c. When d > 0, χi is no longer the starting point of 〈σi〉, but
instead it is the left-most node in an eventual recursion tree of the solution 〈σi〉, at level d.
In order to compute 〈σi〉, 2d − 1 variations of χi are needed to build the missing steps and
eventually reach σi in a bottom-up way. An important property of the variations of χi is that
they actually correspond to other family members within the PBT that will be eventually
solved too. This means that there is no need to compute these variations, instead one has to
make the correct relations between the different family members. We propose a hash map
of the type (χi, r[]) so that for each χi, represented by its unique key, there is an array of
related configurations r[] that need 〈χi〉. Each time a contracted configuration is reached in
the PBT, equation (3.8) is applied and 2d− 1 relations are inserted in the hash map. Figure
3.6 illustrates the example of the strip of width m = 3 when processing χ3; it needs χ4 in
order to build the solution 〈σ3〉.

Figure 3.6: An illustration of how χ3, with d = 1, builds the solution of σ3 bottom up with the help of χ4.

The solution for each family member 〈χi〉 can be written in terms of the solutions of the 2h

subtrees. A convenient way for storing the solution for a whole family is to write a system of
equations, using a linear combination of the 2h sub-trees. A vc coefficient is included, where
c is the amount of contractions found in the path from the familiar to the sub-tree. For the
example of the strip of m = 3, the solution for the family of σ1 is:

〈σ1〉 = 〈χ1〉 = 〈t11〉+ v〈t12〉+ v〈t13〉+ v2〈t14〉, (3.9)

〈σ2〉 = (1 + v)〈χ2〉 = (1 + v)[〈t13〉+ v〈t14〉] (3.10)

〈σ3〉 = (1 + v)[〈χ3〉+ v〈χ4〉] = (1 + v)[〈t12〉+ v〈t14〉] (3.11)

〈σ4〉 = (1 + v)2〈χ4〉 = (1 + v)2〈t14〉 (3.12)
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Note how 〈σ3〉 includes 〈χ4〉, as shown in Figure 3.6. The solution for the family of σ5 is

〈σ5〉 = 〈χ5〉 = 〈t51〉 (3.13)

These equations, plus the solutions of the sub-trees, conform the compressed transfer matrix
for the example strip of width m = 3. It is important to mention that the sub-trees are
stored only once and the system of equations use indices to the sub-trees.

Given how DC works, identification can only occur on pairs of vertices that are neighbors.
This aspect of DC allows us to establish a formal definition for a family.

Definition 3.1 A family is a set of configurations in which for any chosen pair σi and σj of
the set, the difference of their corresponding keys Πi and Πj is Πi−j = πx1,x1+1 + πx2,x2+1 +
...+ πxn,xn+1.

In other words, the difference between σi and σj must only consist of identifications of
length l = 1. Configurations that differ at least by one identification of length l > 1 belong to
a different family. Each family is identified by its root configuration, therefore it is important
to know which configurations are root and which are not.

Definition 3.2 A root configuration is an instance of Kn where its key Π = πx1,y1 + πx2,y2 +
...+ πxn,yn satisfies |xi − yi| > 1 for i ∈ [1..n].

That is, a root configuration is one that does not have identifications of length l = 1. The
number of root configurations will be denoted ∆m as a function of the width m. We formulate
the following expression for ∆m, based on Definition 3.2 and using the inclusion-exclusion
principle:

∆m =
m−1∑
k=0

(−1)k
(
m− 1

k

)
Cm−k (3.14)

Theorem 3.3 The amount of root configurations is upper bounded as ∆m = O(3m).

Proof. Using (3.6) into (3.14) leads to the following bound:

∆m =
m−1∑
k=0

(−1)k
(
m− 1

k

)
Cm−k ≤

m−1∑
k=0

(
m− 1

k

)
(−1)k4m−k = 4

m−1∑
k=0

(
m− 1

k

)
(−1)k4m−1−k

(3.15)

= 4(4− 1)m−1 (3.16)

= O(3m) (3.17)

Step 3.16 is obtained by using the Binomial formula with x = 4 and y = −1.

The number of root configurations ∆m corresponds to the number of non-crossing non-
nearest-neighbor partitions (nc-nnn). The number of nc-nnn can also be counted with the
Motzkin number evaluated at m− 1; ∆m = Mm−1, where Mm is

Mm =

bm/2c∑
j=0

(
m

2j

)
Cj (3.18)
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The asymptotic number of nc-nnn partitions has been previously studied by Chang et. al.
in [47] by using the asymptotic behavior of Mm:

Mm =
33/2

2
√
π m3/2

3m
[
1 +O(m−1)

]
(3.19)

Although the asymptotic bound was already obtained in two earlier works [47, 242] in the
context of nc-nnn partitions, the proof of Theorem 3.3 still remains interesting as a short
and alternative way to establish the O(3m) upper bound coming from an inclusion-exclusion
formulation that has not considered the Motzkin numbers.

Upper bound for relating k-hole familiars

Counting the amount of family relations within a DC procedure allows one to precise an
upper bound on the number of accesses made to the hash map. For each DC application,
the cost of relating family members is defined as:

g(h) =
h−1∑
k=0

c(k, h)r(k) (3.20)

Where r(k) = 2k−1 is the cost of performing the relations for a k-hole configuration. Function
c(k, h) counts the number of k-hole configurations, which is a subset of the total number of
familiars. Since familiars can only be contracted nodes within the PBT, the size of a family
is 2h−1. A direct upper bound can be computed assuming the worst case for r(k):

g(h) < (2m − 1)
h−1∑
k=0

c(k, h) ≤ (2m − 1)2h < 4m = O(4m) (3.21)

A tighter upper bound is possible when c(k, h) is analyzed more carefully. The following
pattern can be found when counting the number of k-hole configurations.

c(0, h) = h (3.22)

c(1, h) = 1 + 2 + ...+ h− 1 (3.23)

c(2, h) = (1) + (1 + 2) + ...+ (1 + 2 + 3...+ h− 2) (3.24)

c(3, h) =
[
(1)
]

+
[
(1) + (1 + 2)

]
+ ...+

[
(1) + (1 + 2) + ...+ (1 + 2 + 3 + ...+ h− 3)

]
(3.25)

The recursion for c(k, h) is:

c(k, h) =
h−k∑
i=0

c′(k − 1, i), 1 ≤ k ≤ h− 1 & c(0, h) = h (3.26)

c′(k, h) =
h∑

i=0

c′(k − 1, i), 1 ≤ k ≤ h− 1 & c′(0, h) = h (3.27)
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Function c(k, h) is equivalent to counting the number of k-faces in a regular (h − 1)-
simplex [64]. A regular (h− 1)-simplex is a (h− 1)-dimensional polytope that is the convex
hull of h vertices in a regular spatial distribution. A regular simplex can also be seen as the
generalization of the notion of a triangle or a tetrahedron, for an arbitrary dimension. A
regular (h− 1)-simplex can be drawn in the plane by placing h vertices inscribed in a circle,
with all pairs connected (see Figure 3.7).

5-simplex4-simplex3-simplex2-simplex1-simplex0-simplex

Figure 3.7: Examples of regular simplexes drawn on the plane.

The number of k-faces in a (h− 1)-simplex [125] is defined as:

c(k, h) =

(
h

k + 1

)
(3.28)

Using (3.28) in (3.20), we have that

g(h) =
h−1∑
k=0

(
h

k + 1

)
(2k − 1) (3.29)

Theorem 3.4 The cost of relating all configurations within a PBT is upper bounded as
g(m− 1) = 1

6
(3m − 3 · 2m + 3) = O(3m).

Proof. For simplicity, we will assume that every DC application processes the default initial
configuration. This configuration is the one that spans the largest family, hence the worst
case where b = 0, that is h = m− 1.

g(h) ≤ g(m− 1) =
m−2∑
k=0

(
m− 1

k + 1

)
(2k − 1) =

m−2∑
k=0

(
m− 1

k + 1

)
2k −

m−2∑
k=0

(
m− 1

k + 1

)
(3.30)

Both summations obey the following form:

m−2∑
k=0

(
m− 1

k + 1

)
ak =

1

a

m−1∑
k=1

(
m− 1

k

)
ak =

1

a

(
−1 +

m−1∑
k=0

(
m− 1

k

)
ak

)
(3.31)

Using the Binomial theorem for the summation, we get

1

a

(
−1 +

m−1∑
k=0

(
m− 1

k

)
ak

)
=

(a+ 1)m−1 − 1

a
(3.32)

Using a = 2 and a = 1 leads to the first and second terms of Eq. (3.30)

g(h) ≤ g(m− 1) =
3m−1 − 1

3
− 2m−1 − 1

2
=

1

6
(3m − 3 · 2m + 3) = O(3m) (3.33)
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Running time of the family trees strategy

The asymptotic sequential running time of the family trees algorithm applied to the layer
Kn(V ′, E ′) of a strip lattice is:

T (Kn(V ′, E ′),m) = ∆m

(
DC + g(m− 1)

)
(3.34)

= O
(

3m
(
min

(
2|E

′|,
(1 +

√
5

2

)|V ′|+|E′|)
+ 3m

))
(3.35)

The extra cost provided by g(m − 1) does not incur in too much extra computation
compared to the cost of DC itself, where the amount of edges of Kn(V ′, E ′) must at least
double the amount of edges in the boundary, that is E ′ ≥ 2(m− 1). Additionally, g(m− 1)
is considering the worst case for each root configuration where h = m − 1. In practice, all
configurations, except for the default one, will have h < m− b− 1 with b > 0.

Parallel family trees

By default, the algorithm does not know the ∆m different root configurations except for σ1

which is given as part of the input of the strip lattice and is the one that triggers the compu-
tation. Under this scheme, the configuration space would have to be explored incrementally,
each time adding a sub-set of configurations from the terminal configurations found from a
DC application. This is indeed a problem for parallelization because the data-parallel ele-
ments are being discovered sequentially, limiting the efficiency and scalability of a parallel
computation. In order to solve this problem, we use a recursive generator g(A[ ][ ], s,H, S),
that with the help of a hash table H, generates all the ∆m configurations before hand and
stores them in an array S. A[ ][ ] is an auxiliary array that stores the intermediate aux-
iliary subsequences and s is the accumulated sequence of identifications. Before the first
call to g(A[ ][ ], s,H, S), A = [[0, 1, 2, ...,m − 1]], s is null and H as well as S are empty.
g(A[ ][ ], s,H, S) is defined as:

g (A [ ] [ ] , s ,H, S){
i f ( ! add sequence ( s ,H, S ) )

re turn ;
f o r ( i n t k=0; k<A. s i z e ( ) ; k++){

f o r ( i n t j =2; j<A[ k ] . s i z e ( ) ; j++){
f o r ( i n t i =0; i<j −1; i ++){

i f ( c a n i d e n t i f y (A[ k ] , i , j ) ){
cA = copy (A) ;
cs = copy ( s ) ;
i d e n t i f y (cA , i , j , k , c s ) ;
d i v i d e (cA , i , j , k ) ;
g (cA , cs ,H, S ) ;

}}}}}
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Basically, g(..) performs a recursive partition of the domain A. If |j − i| ≤ 3 then no
further identifications can be carried on, otherwise the identification would be of length l = 1
and the generated configuration would not be a root configuration. Similarly, for the top
and bottom parts if |j − i| ≤ 2 then no more identifications are possible. Each time a new
identification i, j is added, the resulting configuration is checked in the hash table. If it is
a new configuration, then it is added, else it is discarded as well as all further recursion
computations continuing from that point. By using this approach we ensure that redundant
recursion branches are never computed. Once g(..) has finished, S becomes the array of all
possible configurations and H the hash that maps configurations to indices.

Parallel family trees are achieved by first generating all root configurations with g(..),
followed by the parallel computation of p family trees simultaneously, using p processors and
a total of ∆m/p family trees per processor. The initial key needed by each processor pi is
obtained by reading in parallel from S[pi], assuming the PRAM-CREW model. Once the key
is obtained, it is applied to the external vertices of its own local copy of the base layer σ1.
Foster’s four-step strategy [91] describes the design process of a parallel algorithm; partition-
ing, communication, agglomeration, mapping. The design steps for the parallel family trees
is illustrated in Figure 3.8.

p

p

M

0

1

Partitioning
Communication

Mapping
Agglomeration

Figure 3.8: Foster’s four step strategy for achieving parallel family trees, for two processors.

The work for each processor pi is divided in the following steps: (1) pick one root con-
figuration key from S[], (2) apply it to its local copy of the Kσ1 layer, (3) perform the DC
procedure, (4) write the results into non-volatile memory, i.e., sub-tree results as well as
the linear equations into disk, and (5) go to step (1) if there are still root configurations
remaining. For step (3), familiars of a root configuration are detected at runtime within the
PBT by computing its key, each time the recursion comes from a contraction. When the
beginning of a sub-tree is reached, no more familiars are guaranteed to be found on what
is left of the recursion, therefore the algorithm can proceed to compute the whole sub-tree
without needing to check for the existence of familiars. The solution of a sub-tree ti is a vec-
tor of expressions zi,j(q, v) that associates a j index to a terminal configuration ϕj within the
sub-tree ti. The hash-map H from the generator becomes useful for searching with average
cost O(1) the index j of a terminal configuration ϕj. Also, H ensures that all vectors are
consistent with the order established in the generator and in the transfer matrix.

The 2m−1 sub-tree vectors and the coefficients for the set of equations provide the solution
for a whole family. Both of these results are saved locally for each processor. This output for-
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mat based on sub-trees and coefficients makes the matrix compressed in the same proportion
of the improvement in the running time.

The asymptotic running time for the parallel family trees algorithm using p processors is:

T (Kn(V ′, E ′),m) = O
(3m

p

[
DC(Kn) + g(k,m)

])
(3.36)

= O
(3m

p

[
min

(
2|E

′|,
(1 +

√
5

2

)|V ′|+|E′|)
+ 3m

])
(3.37)

Further computations for achieving physical results require decompression of the matrix,
leading to a matrix of Catalan dimensions again. In practice, large symbolic matrices need
first to be evaluated before doing any analysis. If the numerical evaluation is performed before
decompressing the matrix, then the process is much faster than first decompressing and then
evaluating, even faster than evaluating an uncompressed transfer matrix on (q, v). Numerical
evaluation has the potential to be exponentially faster as a consequence of the parallel family
trees compression, which is in the same order of the running time improvement.

The analysis of the algorithm has been made for the case of free boundary conditions but
it is not restricted to it. For different boundary conditions such as cylindrical, full periodic or
cyclic, the parallel family trees can be still applied following the same principle, while taking
advantage of additional symmetries like the dihedral group in the cylindrical case. The rest
of the paper assumes free boundary conditions unless we explicitly mention the contrary.

For the case of a finite strip, the initial conditions vector ~Z1 is computed by applying DC
to each one of the Cm terminal configurations :

~Z1 = (DC(ϕ1), DC(ϕ2), ..., DC(ϕCm)) (3.38)

The computation of ~Z1 has very little impact on the overall cost of the algorithm and practi-
cally costs O(mCm) in time because a terminal configuration contains mostly spikes and/or
loops, which are linear in cost for DC.

3.5 Algorithm improvements

3.5.1 Serial and Parallel paths

The DC contraction procedure can be improved for graphs that present serial or parallel
paths between two endpoints va and vb, as shown in Figure 3.9.

Figure 3.9: Serial and parallel paths.
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A serial path , denoted s, is a set of edges e1, e2, ..., en that serially connects n− 1 vertices
between va and vb. It is possible to process a serial path of n edges in one recursion step by
using the following expression;

Z(K, q, v) =

[
(q + v)n − vn

q

]
Z(K−s, q, v) + vnZ(K/s, q, v) (3.39)

A parallel path p is a set of edges e1, e2, ..., en that reduntandly connect va and vb. It is
possible to process a parallel path of n edges in one recursion step by using the following
expression;

Z(K, q, v) = Z(K−p, q, v) +
[
(1 + v)n − 1

]
Z(K/p, q, v) (3.40)

3.5.2 Axial Symmetry

One practical optimization is to detect the lattice’s reflection symmetry when computing the
root configurations as well as the Catalan configurations. When detecting reflection symme-
try, the size of the configuration space is decreased for all symmetric pairs of configurations,
no matter if it is initial, terminal or root. As the width of the strip lattice increases, the
number of symmetric states increases too, leading to configuration spaces almost half the
size of the original. We establish reflection symmetry between two configurations ϕa and ϕb
with keys πa1,...,an and πb1,...,bn respectively in the following way:

πa1,...,an = πb1,...,bn ⇔ ai = (m− 1)− bn−i+1 (3.41)

Exploiting this symmetry results in a matrix size Cs
m:

Cs
m =

Cm
2

+
m!

2bm
2
c!

(3.42)

For large values of m, Cs
m ≈ Cm

2
.

For the case of root configurations, Chang et. al. [47] proved that the number of non-
crossing non nearest-neighbor partitions under reflection symmetry, which we denote ∆s

m,
is:

∆s
m =

1

2
Mm−1 +

(m′ − 1)!

2

bm′/2c∑
j=0

m′ − j
(j!)2(m′ − 2j)!

(3.43)

where m′ =
⌊
m+1

2

⌋
. The expression was also obtained by Salas and Sokal [242] for studying

the square lattice symmetries when v = −1. When m→∞ we have:

∆s
m ∼

√
3

4
√
π m−3/2

3m
[
1 +O(m−1)

]
(3.44)

Table (3.1) shows how the amount of Catalan and root configurations increase for non-
symmetric and symmetric lattices up to m = 14. If cylindrical boundary conditions are used,
then the reflection symmetry can be replaced by the symmetry of the dihedral group which
further reduces the size of the matrix. For this manuscript we limit our work to the case of
free boundary conditions.
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Table 3.1: Number of Catalan and root configurations under non-symmetric and symmetric cases.

m Cm Cs
m ∆m ∆s

m

1 1 1 1 1
2 2 2 1 1
3 5 4 2 2
4 14 10 4 3
5 42 26 9 7
6 132 76 21 13
7 429 232 51 32
8 1430 750 127 70
9 4862 2494 323 179

10 16796 8524 835 435
11 58786 29624 2188 1142
12 208012 104468 5798 2947
13 742900 372308 15511 7889
14 2674440 1338936 41835 21051

3.6 Implementation

We tried two implementations for the parallel family trees parallel algorithm; one using
OpenMP [51] and the other one using MPI [90]. We observed that the MPI implementation
achieved better performance in the multi-core scenario and allows parallel computation in
a distributed scenario. For this, we decided to continue the research with the MPI imple-
mentation for both multi-core and distributed scenarios. Basic mathematical operations on
symbolic expressions are handled through the GiNaC C++ library [18]. Parallel execution
of the algorithm receives two parameters; the number of processors p and the block size B,
which is the amount of consecutive jobs per process. When the parallelization is unbalanced,
the value of B plays an important role for efficiently distributing work to all processors. In
our implementation we make each process to generate its own H lookup table and S array.
This small sacrifice in memory leads to better performance than if H and S were shared
among all processes. There are mainly three reasons why the replication approach is better
than the sharing approach: (1) caches will not have to deal with consistency of shared data,
(2) there is no sending/receiving of data structures and (3) the allocation of the replicated
data is correctly placed on memory modules when working under a NUMA architecture. The
last claim is true because on NUMA systems memory allocations on a given process are au-
tomatically placed in its fastest location according to the NUMA topology between memory
and CPU cores. It is responsibility of the OS (or make manual mapping) to stick the process
to the same processor throughout the entire computation.

The implementation writes each row to a persistent secondary memory (i.e., HDD or
SSD) as soon as it is computed. Each processor does this with its own file, therefore the
matrix is fragmented into p files. In practice, a fragmented matrix is not a problem at all,
because numerical evaluation is needed before using the matrix in its full form. Furthermore,
a fragmented matrix allows parallel numerical evaluation.
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3.7 Performance results

We have realized performance tests for the parallel transfer matrix method implemented with
MPI for both shared and distributed memory scenarios. The experimental design consists
of measuring the main performance metrics (i.e., running time, speedup, efficiency, knee) of
the implementation by computing the compressed transfer matrix several times, each time
varying the number of processors p. We also compute the improvement factor with respect
to previous work [199]. The experiments are divided into two categories; (1) multi-core and
(2) cluster. For each case, we measure performance with two strip lattices; (1) square and
(2) kagome, respectively (see Figure 3.10).

Figure 3.10: The square and kagome lattices used for measuring performance.

Explicit algebraic expressions for the sparse-matrix factorization ofM for all the Archimedean
lattices (which include the square and kagome lattices) have been computed by Jacobsen
[138], on finite lattice regions of up to |E| = 882 edges. The approach taken by the sparse-
matrix differs from the standard transfer matrix technique, since the former processes a whole
finite lattice region, using one sparse matrix computation per edge, while the latter computes
a dense TM for each different graph layer of width m.

Note: PFT refers to the actual Parallel Family Trees strategy and PCM to the Parallel
Catalan Method from [199].

3.7.1 Multi-core results

The machine used for the multi-core performance tests has an 8-core CPU AMD FX-8350 at
4.0 GHz, 8GB of RAM and uses the openMPI implementation of the MPI standard [90].

Square strip lattice test

For the square lattice, we measure performance for 9 different strip widths in the range
m ∈ [2, 10]. For each width, we measure 8 average execution times, one for each value of
p ∈ [1, 8]. As a whole, we perform a total of 72 average measurements for the square test.
The standard error for each average execution time is below 5%. Different block sizes where
tested, giving no significant difference on performance. For this reason, we kept a block size
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of B = 1. The other performance measures include speedup, efficiency and the knee2 [79].
In this case we took advantage of the reflection symmetry for all sizes of m.

Figure 3.11 shows all four performance measures for the square lattice. From the results,
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Figure 3.11: Multi-core running time, speedup, efficiency and knee for the square strip test.

we observe that the running time grows at an exponential rate which is compatible with the
upper bound in (3.37), assuming that the cost of DC had a little impact on the algorithm.
Indeed it is possible for DC to have a little impact, considering that algorithmic improvements
are linear and they occur with more or less frequency depending on the edge selection order
[115] and the lattice structure. For the speedup, there is improved performance for every
value of p as long as m > 4. For m ≤ 4, the problem is not large enough to justify parallel
computation, hence the overhead from MPI makes the implementation perform poorly and
sometimes even worse than the sequential version. The plot of the execution times confirms
this behavior since the curves cross each other for in the transition from m = 3 to m = 4.
The maximum speedup obtained was 5.7 when using p = 8 processors. From the lower left
plot we can see that efficiency decreases as p increases, which is expected in every parallel
implementation. What is important is that for large enough problems (i.e., m > 6), efficiency
is over 62% for all p. For the case of p = 4, we report at least 95% of efficiency, which is
close to perfect linear speedup. For m ≤ 6, the implementation is not so efficient because
the amount of computation involved is not enough to keep all cores working at full capacity.
The knee is useful for finding the optimal value of p for a balance between efficiency and
computing time. It is called knee because the hint for the optimal value of p is located in

2In the knee, point counting is in reverse order.
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the knee of the curve (thought as a leg), that is, its lower right part. In order to know the
value of p suggested by the knee, one has to count the position of the closest point to the
knee region, in reverse order. Our results of the knee for m > 6 show that the best balance
of performance and efficiency is achieved with p = 4 (for m ≤ 6, the knee is not effective
since there was no speedup in the first place). In other words, while p = 8 is faster, it is not
as efficient as with p = 4.

Kagome strip lattice test

For the test of the kagome lattice, we used 6 different strip widths in the range m ∈ [2, 7].
For each width, we measured 8 average execution times, one for each value of p ∈ [1, 8]. As a
whole, we performed a total of 48 measurements for the kagome test. The standard error for
each average execution time is below 5%. Additional performance measures such as speedup,
efficiency and knee have also been computed. Different values of block size were tested,
achieving noticeable differences on performance as B changed. We found by experimentation
that B = 1 makes the work assignment slightly more balanced. In this test we can only use
lattice axial symmetry for m = 2, 4, 6, 8, ... . For this reason we decided to run the whole
kagome benchmark without axial symmetry in order to maintain a coherence between odd
and even values of m.

Figure 3.12 shows the performance results for the kagome strip test. From the results
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Figure 3.12: Multi-core running time, speedup, efficiency and knee for the kagome strip test.

we have that the parallel performance is still scalable even for dense layers; the maximum
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speedup is over 4.7 for p = 8 on the largest problems. When m > 5, the efficiency of the
parallel implementation is approximately over 60% for all values of p. In this test the knee is
harder to identify, however for the largest problems one can see a small curve that suggests
p = 4 which is in fact 90% efficient when solving large problems.

3.7.2 Cluster results

The cluster used for the tests has a total four nodes; each one with 32GB RAM and two
quad-core processors Xeon 5500 2.26 GHz. The full systems offers a total of 32 processing
cores and 128GB RAM. The network is Ethernet gigabit centralized and the implementation
of MPI is openMPI.

Square results

For the test of the square strip lattice in the cluster environment, we tested 9 different strip
widths in the range m ∈ [2, 10]. For each width, we measure 32 average execution times, one
for each value of p ∈ [1, 32]. This process is repeated for both static and dynamic scheduling.
The standard error for each average execution time is below 5%. For the dynamic scheduler
we have chosen a block size value of B = 1. This value of B produces the highest amount
of communication between the worker processes and the scheduler, hence the most dynamic
scenario. Advantage of axial symmetry has also been taken.

Figure 3.13 shows the performance measures of the running time, speedup, efficiency and
the knee [79] for the cluster environment. Note that for each color (size), the solid and dashed
lines represent static and dynamic scheduling, respectively.

From the results we observe that the reduction of the running time becomes effective
starting from problems of size m ≥ 6. Speedup has an overall linear behavior for the full
range p ∈ [1, 32] which tells good scalability. Interestingly, near p = 4 there is a region
of super-linear speedup [284] that occurs only for sizes m = 6, 8. For p > 10, super-linear
speedup vanishes for all problem sizes. In the cluster environment, the behavior between
static (solid lines) and dynamic scheduling (dashed lines) is notorious; the former behaves
irregularly producing several performance valleys, while the latter behaves regularly, gives
higher performance and produces close to zero performance valleys. The maximum speedup
achieved is approximately 28X for p = 32, being superior in the dynamic case by a small
margin. The efficiency of the parallel algorithm stays above 90% for the largest case of
m = 10. Again, dynamic scheduler proves to be much more efficient than the static one
when m > 6, and overall the algorithm is over 70% efficient for large enough problems, that
is m ≥ 8. The knee suggests that p ∈ [8, 10] gives the best balance of running time and
efficiency whenever m ≥ 8.
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Figure 3.13: Cluster running time, speedup, efficiency and the knee for the square strip test.

Kagome results

For the test of the kagome strip lattice in the cluster environment, we tested 5 different strip
widths in the range m ∈ [3, 7]. For each width, we measure 32 average execution times, one
for each value of p ∈ [1, 32]. This process is repeated for both static and dynamic scheduling.
The standard error for each average execution time is below 5%. For the dynamic scheduler
we have chosen a block size value of B = 1, same as in the square cluster test.

Figure 3.13 shows the performance measures of running time, speedup, efficiency and the
knee [79] for the cluster environment. Note that for each color (size), the solid and dashed
lines represent static and dynamic scheduling, respectively.

The results show that the reduction of the running time becomes effective in a cluster as
long as m ≥ 6. In this case, speedup is closer to a logarithmic curve rather than a linear
one. It is interesting to note that speedup gets stuck at specific values for sizes m = 4, 5, 6.
The reason why is because the size of the configuration space is not large enough for cluster
execution; ∆m ≤ 32 for m = 4, 5, 6. In fact, the values of p where speedup starts to get
stuck actually match the values found for ∆4,∆5,∆6 in Table 3.1. This phenomenon is
totally normal in cluster or supercomputer environments, where the amount of work needed
to reach full system occupancy is not always provided by the problem input. In order for
speedup to take off, the configuration space must be equal or greater than the amount of
processors available in the system.
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Figure 3.14: Cluster running time, speedup, efficiency and knee for the kagome strip test.

There is a notorious difference in performance between static and dynamic scheduling.
With dynamic scheduling, the performance valleys are practically non-existent, giving a
much more stable parallel performance for the full range of p. Efficiency is not as good as in
the square test; the largest problem is solved with an efficiency over 55%, while the others
reach below 50% at some point of p. Dynamic scheduling proves to be in average more
efficient than static scheduling, by-passing the performance valleys. The Knee curve suggests
a value p ≈ 8 for a good balance between running time and efficiency.

3.7.3 Impact of DC on algorithm performance

We observed from the results that the running time of PFT applied to the kagome strip is
slower than in the square strip. DC may cost too much in layers with a dense number of edges
if optimizations do not occur too frequently. For the square lattice layer, we can write the DC
worst case cost as O(22m)−O(opt) = O(4m−opt) which is one of the fastest cases we can find,
and optimizations, namely O(opt), appear without too much effort. If we multiply this cost
by the configuration space we have that the upper bound for the time to compute the transfer
matrix of the square strip is O(3m × (4m − opt)) = O(12m − 3m · opt), which is a notorious
improvement with respect to the O(16m) bound with the standard Catalan technique, even
if no DC optimizations occur. Now for the kagome we can write the DC worst case cost as
O(26m)−O(opt) = O(64m− opt) which would cost O(3m× (64m− opt)) = O(192m−3m · opt)
in time when computing the matrix. For dense layers the performance depends on how good
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the optimizations are and how frequently one can make them appear for a specific strip
type. In our case the optimizations for kagome did not occur as frequent as in the square
case because we programmed the heuristics in a very general way, nevertheless the method
still managed to perform at least two times faster than the Catalan approach. It should be
possible to make DC become more aware of the kagome structure and make it to generate
the maximum number of optimization opportunities, as mentioned in the work of Haggard
et. al. [115].

3.7.4 Performance on wider strips

We ran the PFT method to compute general (q, v) transfer matrices on square strips at
m = {11, 12, 13} and kagome strips at m = {8, 9}, using free boundary conditions and all
the 32 processors we had available. Table 3.2 presents the results.

Table 3.2: Executions times for wider strips.

m lattice time
8 Kagome ∼ 11 12 hours
9 Kagome ∼ 3 months
11 Square ∼ 5.5 mins
12 Square ∼ 46 mins
13 Square ∼ 6.7 hours

The parallel performance was not included in the performance plots because it would
have required excessive amount of time to benchmark for all values of p, specially for p =
1 where the computation is sequential. For the kagome strip we consider that we have
reached the limit of tractability and wider kagome strips would become intractable3 with our
hardware resources. For the square strip, we believe it is still possible to go further with
our hardware resources, possibly up to m = 14, or in the best scenario up to m = 15 before
reaching intractability. Moreover, if cylindrical boundary conditions are used, then it should
be possible to go further beyond by using the symmetry of the dihedral group.

An important aspect of having a parallel solution is that if enough processors are used,
that is p = ∆m, then the time for computing the transfer matrix becomes proportional to the
depth of the largest directed-acyclic graph (DAG) of computation, which would correspond
to the time required to solve the deepest family. The DAG concept allows one to know what
to expect when having more processors (i.e., a supercomputer) and gives insights on the
limits of computation regarding parallelism. If we apply the DAG concept to our results,
we have that the time needed to compute the TM for the square strip would have been less
than 5 seconds for m = 11 using p = 1142 processors, less than 10 seconds for m = 12 using
p = 2947 processors and less than 5 minutes for m = 13 using p = 7889 processors. Analogous
for kagome; the time needed to compute the TM would have been between 2 ∼ 3 hours for
m = 8 using p = 70 processors and ∼ 1 week for m = 9 using p = 323 processors. As we

3We consider that a problem becomes intractable when the time it takes to be solved is in the order of
years for a given computer. It is possible that a faster computer can handle the problem, making it tractable.
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mentioned earlier, DC heuristics that are aware of the kagome structure should improve the
performance further.

3.7.5 Comparison with related work

In this subsection we compare the Parallel Family Trees (PFT) strategy against the Catalan
Parallel Method (CPM) [199] by using the improvement factor of the following metrics: (1)
running time, (2) matrix evaluation time and (3) matrix space. Figure 3.15 shows the results.
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Figure 3.15: Comparison between Parallel Family Trees (PFT) and the Catalan Parallel Method (CPM).

The first aspect to note from the running time results is that there is an non-linear im-
provement with respect to CPM that is independent of the amount of processors used. This
improvement corresponds to the asymptotic reduction from O(4m) to O(3m) in configuration
space. The improvement is less clear in the kagome strip test, but we expect that it should
manifest when exploring larger sizes of m or when using better heuristics for the DC opti-
mizations. For the space metric, we observe that the size of the compressed matrices is indeed
smaller than in the CPM case. Moreover, for the square strip the amount of compression
increases non-linearly as we expected from the theoretical bound. For the kagome test, the
compression factor stabilizes at approximately 1.5. We believe that the reason why kagome
compression stays fixed is because the kagome matrix is more sparse than in the square
case, making the method to group zero-elements instead of large polynomials, reducing the
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compression factor from the maximum possible if the matrix was dense. For the results of
Matrix evaluation, we observe that evaluation and decompression on a PFT-matrix is faster
than just evaluation on a CPM-matrix. The improvement seems to be a consequence of the
compression factor achieved previously, since the behavior is similar.

3.7.6 Dynamic scheduler and block size

The role of the block size under dynamic scheduling can be viewed as the amount of staticness
induced to the program. A value of B = 1 means a fully dynamic scheduler, while a value
of B = dn/pe means a fully static scheduler. Given that the dynamic scheduler of our
implementation communicates via 1-byte messages, it is safe to use B as long as the network
is sufficiently fast and dedicated to the cluster, like in our case. In a limited and shared
network environment, one could consider exploring the range 1 < B < dn/pe until a good
local minimum is found.

3.7.7 Axial Symmetry

When using axial symmetry, we observed an extra improvement in performance of up to
2X for the largest values of m. This improvement applies to both sequential and parallel
execution. The size of the transfer matrix is improved under axial symmetry, in the best cases
we achieved almost half the dimension of the original matrix, which in practice translates
into up to 1/4 of the space of the original non-symmetric matrix. Lattices as the kagome
will only have certain values of m where it is axial symmetric. In the other cases, one must
perform a non-symmetric computation.

3.8 Validation

In this section we present some physical results we have computed for different widths of
the square strip using free boundary conditions, as a way to validate the correctness of the
parallel family trees method by comparing the curves with the ones from related works.

The first set of results are shown in Figure 3.16. In the graphics we present the lim-
iting curves on the complex q-plane for different values of the temperature-like parameter;
v = {−1.0,−0.5,−0.1}, at different strip widths in the range m ∈ [2, 8]. The case v = −1
corresponds to the chromatic polynomial and the crossings with the real-q axis can be inter-
preted as the real values of q for which no q-coloring exists. The curves were obtained by
using the direct-search approach method which consists of scanning the complex domain in
small discrete steps, and checking on each discrete location the condition |λ1| = |λ2| where λ1

and λ2 are the first and second dominant eigenvalues, respectively. If the condition is true,
then the pair (x, y) is a point of the curve, where x and y are the real and imaginary parts
of q, respectively. Due to numerical precision limits, we allowed %1 of numerical error for
accepting the condition |λ1| = |λ2|. For the case of v = −0.5 we allowed up to %4 of error
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for drawing the limiting curve at size m = 8. The curves for v = −1 agree with the ones
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Figure 3.16: Limiting curves on the complex q−plane for v = {−1.0,−0.5,−0.1}. In each graphic there are
seven limiting curves with different colors, each one corresponding to a different strip width.

presented by Salas et. al. in Figure 21 of ref. [241]. The curves for v = −0.5 and v = −0.1,
although grouped in a different way, agree with the result obtained by Chang et. al. from
Figures 2, 3, 4 of ref. [47]. Limiting curves for 6 ≤ m ≤ 8 did not appear in the cited work.

For the next set of physical results we are interested in fixing the q parameter at values
q = {2, 3, 4} and compute the dimensionless reduced internal energy Er as well as the reduced
function CH of the specific heat C, for different strip widths in the range m ∈ [2, 8]. The
dimensionless reduced internal energy is defined as

Er = −E
J

= (v + 1)
∂f

∂v
(3.45)

where f is the free energy density as defined in equation (2.17), J the coupling constant
which is J > 0 for the ferromagnetic case (0 < v <∞) and J < 0 for the antiferromagnetic
case (−1 < v < 0). The specific heat is defined as

C =
∂E

∂T
= kBK

2(v + 1)

[
∂f

∂v
+ (v + 1)

∂2f

∂v2

]
(3.46)

and CH uses the reduced form

CH =
C

kBK
(3.47)

The results are presented in Figure 3.17, where each row presents the results for a given q
value. The curves for 2 ≤ m ≤ 5 agree with the ones presented by Chang et. al. [47]. Results
for 6 ≤ m ≤ 8 did not appear in the cited work.

Although the computation of new physical curves for wider strips is indeed possible, it
would require more time with our resources, or a much larger cluster than ours for faster
results. Nevertheless, our present results already show that with the PFT strategy known
results are obtained faster than with CPM. We would like to remind the reader that the focus
of this work is on the algorithmic improvements and the possibilities to compute the general
(q, v) transfer matrix for strips, using a configuration space that is asymptotically O(3m) .
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Figure 3.17: Plots for reduced internal energy Er and reduced specific heat CH for q = {2, 3, 4}.
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3.9 Discussion

We have presented a parallel strategy for computing the general (q, v) transfer matrix of strip
lattices in the Potts model. Our main result is the asymptotic reduction of the configuration
space, from O(4m) to O(3m), by re-organizing the problem domain as parallel family trees
(PFT). Using this strategy, the transfer matrix can now be computed by just processing the
root configurations, which are O(3m) in number. Computation of the family trees can be
performed completely in parallel because family trees are independent from each other, and
the configuration space is generated a priori, removing any potential time-dependence. We
have compared the experimental results of PFT show evidence of the exponential advantage
over the Catalan Parallel Method (CPM) [199], both in sequential and parallel execution.

The resulting matrix of PFT is a compressed structure based on systems of linear equa-
tions. Numerical evaluation on the matrix, including decompression time, is actually faster
than numerical evaluation using the CPM method, by a factor that is proportional to the
improvement we measured for running time. Therefore, it is not only faster to generate the
matrix using PFT, but it is also faster to use it later for extracting the physical information.

Multi-core results have shown that PFT benefits from shared-memory parallelism, achiev-
ing a maximum of 5.7X of speedup for the square strip test when using p = 8 processors. At
p = 4, the efficiency of the implementation is still over 95%, which is worth mentioning. By
plotting the knee curve, we have managed to confirm that choosing p = 4 is in fact a wise
decision for a balance of speed and efficiency. In the Multi-core scenario, a dynamic scheduler
did not produce a beneficial change in performance, therefore static scheduling still remains
convenient.

For the cluster results, we achieved up to 28X of speedup using p = 32 for the square
strip tests, with an efficiency above 90% for a strip of width m = 10 (largest one). For the
kagome strip test, efficiency stayed above 55% for a strip of m ≥ 7 and the maximum value
of speedup reached was close to 20X when using p = 31. A small super-linear speedup region
emerged near p = 4 when solving square strips of sizes m = 6, 8, giving an efficiency of up
to 120%. We believe that this is just a particular fortunate event, possibly produced by the
reduction of cache misses, which is caused when partitioned data fits entirely in cache. In
general, we do not expect super-linear behavior since we are measuring fixed-size speedup
which is upper bounded as Sp ≤ p [112]. The knee curve suggests that p ∈ [8, 10] produces a
good balance between speed and efficiency. An important result in cluster execution is that
dynamic scheduling is mandatory in order to achieve a performance curve that will not fall
into performance valleys, as static scheduling did. On average, dynamic scheduling achieves
considerable higher performance than static scheduling.

One of the goals of this work was to present an algorithmic improvement that is implicitly
parallel and scalable. For this, we introduced a preprocessing step that generates all possible
root configurations and Catalan configurations, which are critical for processing the family
trees in parallel. This step takes a small amount of time compared to the whole problem.
Other technical improvements had been introduced, some of them being already known in the
literature [115]; (1) fast computation of serial and parallel paths of the graph, (2) exploiting
axial symmetry, (3) a set of algebra rules for making consistent keys in all leaf nodes and
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(4) a hash table for accessing column values of the transfer matrix. In particular, when
taking advantage of axial symmetry, the implementation achieved extra improvement of up
to 2X in performance, using almost a quarter of the matrix space used in a non-symmetric
computation.

In order to achieve a scalable parallel implementation, some small data structures were
replicated among processors while some other data structures per processor were created
within the corresponding worker process context, not in any master process. This allocation
strategy results in faster cache performance and brings up the possibility to scale better under
NUMA architectures. It is not a problem to store the matrix fragmented into many files as
long as the matrix is in its symbolic form. In practice, it is first necessary to evaluate the
matrix on q and v before doing any further numerical analysis. Therefore, the fragmented
parts can be evaluated at runtime as they become read. This evaluation can also be done in
parallel.

The only technical restriction of the parallel family trees strategy in order to work is
that vertices of the left and right boundaries of the layer need to be connected sequentially.
This restriction is not a problem, because any planar strip lattice can be rotated so that
the restriction is satisfied. Additionally, PFT allows any graph structure along the vertical
direction, that is, one can study strips where its Ki layer is composed by a sequence of
different tiles.

In the kagome tests, the performance results were not as good as we expected, because
the number of edges in the layer is much higher than in the square case, making DC to take
a considerable amount of time for each configuration. We believe that the dependence of
DC on the number of edges in the layer is a sensible aspect for the PFT algorithm, and an
extrapolation of this situation would suggest that the largest Archimedean lattices could be
much harder to the point of being intractable. However, it is important to consider that
DC can significantly improve its performance if the heuristics are improved so that they
choose the best sequence of edges based on the connectivity of the graph layer [115]. These
heuristics, combined with the linear-cost optimizations, can make the PFT method more
resistant to the number of edges in the layer. Furthermore, if more processors are used to the
point that p = ∆m, then the time for computing the TM will be much lower than in our case
with p = 32, and will correspond to the time taken to solve the deepest DAG of computation.
For this reason, we expect that an execution on a large cluster or supercomputer could allow
the computation of transfer matrices of strips wider than what has been reached before.

In the next Chapter, we present the second and last contribution of the thesis, which
consists of a multi-GPU Monte Carlo method for disordered systems.
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Chapter 4

Adaptive Multi-GPU Exchange
Monte Carlo for the 3D Random Field
Ising Model

The study of disordered spin systems through Monte Carlo simulations has proven to be a
hard task due to the adverse energy landscape present at the low temperature regime, making
it difficult for the simulation to escape from a local minimum. Replica based algorithms such
as the Exchange Monte Carlo (also known as parallel tempering) method have proven to be
effective at overcoming this problem, reaching equilibrium on disordered spin systems such
as the Spin Glass or Random Field models, by exchanging information between replicas of
neighbor temperatures. In this Chapter we present a multi-GPU Exchange Monte Carlo
method designed for the simulation of the 3D Random Field Model. The implementation is
based on a two-level parallelization scheme that allows the method to scale its performance
in the presence of faster and GPUs as well as multiple GPUs. In addition, we modified
the original algorithm by adapting the set of temperatures according to the exchange rate
observed from short trial runs, leading to an increased exchange rate at zones where the
exchange process is sporadic. Experimental results show that parallel tempering is an ideal
strategy for being implemented on the GPU, and runs between one to two orders of magnitude
with respect to a single-core CPU version, with multi-GPU scaling being approximately 99%
efficient. The results obtained extend the possibilities of simulation to sizes of L = 32, 64 for
a workstation with two GPUs.

4.1 Introduction

Monte Carlo methods have become a convenient strategy for simulating finite size spin lattices
towards equilibrium and to perform average measurements of physical observables. Classic
spin models such as Ising [55, 133] and Potts [226] are usually simulated with the Metropolis-
Hastings algorithm [123, 193], cluster [14, 262, 287] or worm algorithm [230], with the last
two being more efficient reaching equilibrium near the critical temperature Tc [253].
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For systems with quenched disorder such as the Spin Glass and the Random Field Ising
Model (RFIM) we can find that classic algorithms are not efficient anymore in the low tem-
perature regime. In this work we are interested in studying the 3D RFIM, which introduces
a disordered magnetic field {h1, h2, · · · , hn} of strength h, to the Hamiltonian:

H = −
∑
〈i,j〉

Jsisj − h
∑

i

hisi (4.1)

The reason why classic MCMC algorithms fail is because systems with quenched disorder
present an adverse energy landscape, making the simulation with a classic MCMC algorithm
to easily become trapped in a local minimum, thus never reaching the ground state of the
system. Figure 4.1 illustrates the problem. The problem occurs at low temperatures, i.e.,

free 

energy

con�guration space

ground state

trapped

High Temp

Low Temp

Figure 4.1: At low temperature, classic algorithms fail to reach the ground state for systems with quenched
disorder.

T ≤ Tc, which is a required zone to explore if one is studying phase transitions. Instead
of simulating the system with one instance of the lattice, as in classic algorithms, one can
simulate R replicas at different temperatures and exchange information among them, to
eventually overcome the local minimum problem [130, 261]. By exchanging information
between replicas from time to time, information from the high temperature regime arrives to
the replicas at low temperature, shaking the system and providing the opportunity to escape
the local minimum. The algorithm based on this principle is known as the Exchange Monte
Carlo method, also as Parallel Tempering, and it is one of the most used algorithms for
simulating systems with quenched disorder. The notion of exchanging replicas for studying
systems with quenched disorder was first introduced by Swendsen and Wang in 1986 [261]
and then extended by Geyer in 1991 [97]. Hukushima and Nemoto presented in 1996 the full
method as it is known today [130].

The replica based approach has been used to simulate 2D and 3D spin glasses [80, 130,
151, 211, 233]. While it is true that replica based methods overcome the main difficulty of
the Monte Carlo simulation in disordered systems, the computational cost is still considered
a problem, since it requires at least Ω(R · Ld) per time step, with L being the linear size of
the lattice and d the number of dimensions. Furthermore, the number of simulation steps
required to reach the ground state is in the order of millions, and increases as the lattice
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gets larger. In this work we are interested in the particular case of simulating the 3D Ising
Random Field model at sizes L = {8, 16, 32, 64} using the Exchange Monte Carlo method
adapted to massively parallel architectures such as the GPU.

The fast expansion of massively parallel architectures [200] provides an opportunity to
further improve the running time of data-parallel algorithms [6, 7, 184]; Parallel Tempering
(PT) in this case. The GPU architecture, being a massively parallel architecture, can easily
perform an order of magnitude faster than a CPU. Moreover, the GPU is more energy efficient
and cheaper than classic clusters and supercomputers based on CPU hardware. But in order
to achieve such level of performance, GPU-based algorithms need to be carefully designed and
implemented, presenting a great challenge on the computational side. This computational
challenge is what motivates our work.

In this work, we propose a multi-GPU method for modern GPU architectures for the simu-
lation of the 3D Random Field Ising Model. The implementation uses two levels of parallelism;
(1) spin parallelism that scales in the presence of faster GPUs, and (2) replica parallelism
that scales in the presence of multiple GPUs. Both levels, when combined together, provide
a substantial boost in performance that allows the study of problems that were too large in
the past for a conventional CPU implementation, such as L = {8, 16, 32, 64}. In addition
to the parallelization strategy, we also propose a new temperature selection scheme, based
on recursive insertion of points, to improve the exchange rate at the zones where exchange
is often less frequent. Physical results have been included for the 3D random field model at
sizes L = {8, 16, 32, 64}.

The rest of the Chapter is organized as follows: Section 4.2 presents the related work
regarding parallel implementations of the Exchange Monte Carlo method. In Section 4.3 we
point out the levels of parallelism present in the Exchange Monte Carlo method, and ex-
plain the multi-GPU method in its two levels. Section 4.4 presents the Adaptive Temperature
strategy we use for choosing the temperature distribution and show how it can improve the
results of the simulation as well as reduce simulation time. In Section 4.5 we show the ex-
perimental performance results, which consist of comparison against a CPU implementation,
performance scaling under different GPUs as well as under one and two GPUs, and results on
the improvement provided by the adaptation technique, compared to a simulation without
the approach. Section 4.6 we present the exchange rate of the adaptive strategy and compare
it to other homogeneous approaches. In Section 4.7 we present some physical results on the
3D Ising Random Field, for sizes L = {8, 16, 32, 64}. Finally, in Section 4.8 we discuss our
results and conclude our work.

4.2 Related Work

Several works have shown the benefits of GPU-based implementations of MCMC algorithms
for spin systems. The Metropolis-Hastings algorithm has been efficiently re-designed as a
GPU algorithm for both 2D and 3D lattices [31, 86, 180, 228]. The parallelization strategy
is usually based on the checkerboard decomposition of the problem domain, where black and
white spins are simulated in a two-step parallel computation. Although the checkerboard
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method violates detailed balance, it still obeys the global balance condition which is sufficient
to ensure convergence of the stochastic process. M. Weigel proposed the double checkerboard
strategy (see Figure 4.3), that takes advantage of the GPU’s shared memory [278, 279, 280]
for doing partial Metropolis sweeps entirely in cache. In the work of Lulli et. al., the authors
propose to reorganize the lattice in alternating slices in order to achieve efficient memory
access patterns.

For cluster algorithms, recent works have proposed single and multiple GPU implementa-
tions, for both Ising and Potts models [164, 165, 166, 275]. For the case of the Swendsen and
Wang algorithm, which is a multi-cluster one, some use a parallel labeling strategy based on
the work of Hawick et. al. [124]. The cluster work of Weigel uses an approach based on
self-labeling with hierarchical sewing and label relaxation [275]. A study on the parallelism
of the Worm algorithm has been reported by Delgado et al. [70]. The authors conclude that
an efficient GPU parallelization is indeed hard because very few worms stay alive at a given
time.

Two GPU-based implementations of the Exchange Monte Carlo method have been pro-
posed. The first one was proposed by Weigel for 2D Spin Glasses [279], in which the author
treats all the replicas of the system as one large lattice, therefore additional replicas in prac-
tice turn out to be additional thread blocks. The second work is by Ye Fang et. al [82]
and they propose a fast multi-GPU implementation for studying the 3D Spin Glass. In their
work, the authors propose to keep the replicas in shared memory instead of global memory.
This modification provides a performance memory accesses that are an order of magnitude
faster than global memory ones, but limits the lattice size to the size of the shared memory,
which for todays GPUs it means 3D lattices of size L ≤ 16. Katzgraber et. al. proposed a
method for improving the temperature set in the Exchange Monte Carlo method [152]. The
strategy is based on keeping a histogram record of the number of round trips of each replica
(i.e., the number of times a replica travels from Tmin to Tmax and vice versa), and improving
the locations where this value is the lowest. Another strategy was presented by Bittner et.
al., where they propose a method for obtaining a good set of temperatures and also they
propose to set the number of lattice sweeps according to the auto-correlation time observed
[27].

To the best of our knowledge, there is still room for additional improvements regarding
GPU implementations for the Exchange Monte Carlo method, such as using concurrent
kernel launches, extending the double checkerboard strategy to 3D, optimal 3D thread blocks,
global-memory multi-GPU partitions, and low level optimizations for the case of the 3D
Random Field model, among others. In relation to choosing the temperature set, it is still
possible to explore different adaptive strategies based on recursive algorithms. In the next
section we present our parallel implementation of the Exchange Monte Carlo method as well
as our strategy for choosing an efficient temperature set.
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4.3 Multi-GPU approach

For a multi-GPU approach, we analyze the Exchange Monte Carlo to find out how many
levels of parallelism exist.

4.3.1 Parallelism in the Exchange Monte Carlo method

The Exchange Monte Carlo method is an algorithm for simulating systems with quenched
disorder. The notion of exchanging replicas was first introduced by Swendsen and Wang in
1986 [261], later extended by Geyer in 1991 [97]. In 1996, Hukushima and Nemoto formulated
the algorithm as is it known today [130]. The algorithm has become widely known for its
efficiency at simulating Spin Glasses, and for its simplicity in its definition. Due to its general
definition, the algorithm can be applied with no difficulties to other models different from
the spin glass model such as the Random Field Ising Model (RFIM), which is the model of
study in this work.

The algorithm works with M replicas X = {X1, X2, ..., XM} of the system with each one at
a different temperature. The main steps for one disorder realization of our parallel Exchange
Monte Carlo algorithm, for the case of the Ising Random Field model, are the following:

1. Choose M different temperatures {β1, β2, ..., βM} where β = 1/T .

2. Choose an arbitrary random magnetic fieldH = {h1, h2, h3..., h|V |} with hi = rand(±1).
This instance H of disorder is used for the entire simulation by all M replicas.

3. Set an arbitrary spin configuration to each one of the M replicas and assign the corre-
sponding temperature, i.e., Xi ← βi.

4. [Parallel] Simulate each replica simultaneously and independently in the Random
Field Model for p parallel tempering moves, using H for all replicas and a highly
parallel MCMC algorithm such as Metropolis-Hastings. At each parallel tempering
move, exchange the odd xor even configurations Xi with their next neighbor Xi+1,
with probability

W (Xi, βi|Xi+1, βi+1) =

{
1 for ∆ < 0

e∆ for ∆ > 0
(4.2)

where ∆ = (βi+1 − βi)(H(Xi+1) − H(Xi)). Choosing odd or even depends if the j-th
exchange is odd or even, respectively.

The algorithm itself is inherently data-parallel for step (4) and provides a sufficient number
of data elements for a GPU implementation. In fact, there are two levels of parallelism that
can be exploited; (1) spin parallelism and (2) replica level parallelism. In spin parallelism
the challenge is to come up with a classic MCMC method that can take full advantage of
the GPU parallel power. For this, we use a GPU-based Metropolis-Hastings implementation
optimized for 3D lattices. For (2), the problem seems pleasingly parallel for a multi-GPU
implementation, however special care must be put at the exchange phase, since there is
a potential memory bottleneck due to the distributed memory for a multi-GPU approach.
Figure 4.2 illustrates the two levels of parallelism and their organization.
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Figure 4.2: The two levels of parallelization available in the exchange Monte Carlo method.

4.3.2 Spin Level Parallelism

Spin parallelism corresponds to the parallel simulation of the spins of a single replica and
we propose to handle it by using a single CUDA kernel based on the double checkerboard
idea, proposed by M. Weigel [279, 280]. A double checkerboard approach allows the efficient
simulation of spin systems using coalesced memory accesses, as well as the option to choose
multiple partial sweeps in the same kernel at a much higher performance because of the
GPU’s shared memory. In the original works by Weigel, the optimizations are only described
and implemented for the 2D Ising Spin Glass [279, 280], but the author mentions that the
ideas can be extended to 3D by using a more elaborate thread indexing scheme. The spin
parallelization implementation of this work is a double 3D checkerboard and corresponds to
the extension mentioned by the author.

A double checkerboard is a two-fold Metropolis-Hastings simulation strategy that is com-
posed of several fine grained checkerboards organized into one coarse checkerboard. The case
of 2D is illustrated in Figure 4.3.

Figure 4.3: A double 2D checkerboard of D ×D = 4× 4 tiles, each one containing T × T = 16× 16 spins.
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The double checkerboard method starts by simulating all spins from the orange tiles of
T × T spins, doing a local two-step black-white simulation on the fine grained checkerboard
of T × T . The tile sub-checkerboard is loaded entirely in GPU shared memory, including a
halo of spins that reside on the neighbor tiles of the opposite color. After all orange tiles
are finished, the same is done for the white tiles. Two kernel executions are needed to fully
synchronize all threads when changing tile color. While it is true that only L3/4 spins are
being simulated at a given time, its advantage is that the memory access pattern is fully
coalesced and the spin flip is performed in shared memory.

In order to create a double 3D checkerboard, we convert both the fine and coarse grained
checkerboards to 3D. For this, we use the fact that a 3D checkerboard can be generated by
using alternated 2D checkerboard layers stacked over a third dimension. For a given point
p = (x, y, z) in 3D discrete space, its alternation value A = {0, 1} is defined as

A = (px + py + pz) mod 2 (4.3)

Indeed one could build a space of computation of the size of the whole lattice, launch the kernel
and compute the value of A using expression (4.3), but this approach would be inefficient
because 3L3/4 threads would remain idle waiting for its turn in the checkerboard process.
Instead, we use a space of computation composed of L3/4 threads; T 3/2 threads per block
and D3/2 blocks, where D is the number of tiles per dimension. Figure 4.4 illustrates a space
of computation of L3/4 threads being sufficient for handling a double 3D checkerboard.

Map

Space of Computation Problem Domain

Figure 4.4: A space of computation of size L3/4 threads is necessary and sufficient for simulating the spins
in parallel using a double 3D checkerboard approach.

For the halos it is important to consider what percentage of the spins loaded into the GPU
shared memory will actually be halo spins. Halo spins are more expensive to load into shared
memory than internal tile spins due to the unaligned memory access pattern, therefore one
would want the minimum number of halo spins in the shared memory. Considering that
actual GPU architectures have a constant warp of threads w and require a constant block
volume V to be specified, finding the minimum halo is equivalent to solve the optimization
problem of minimizing the surface of a closed box with dimensions w × x × y and constant
volume V . The objective function to minimize is the surface expression

S = 2(wy + xy + wx) (4.4)

subject to V = wxy, from where we can rewrite S in one variable. Setting the derivative of
S to zero leads to

∂S

∂x
= 2(w − V/x2) = 0 (4.5)
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where we finally get the solution: x = y =
√
V/w. Considering that the number of spins

inside a tile is double the number of threads (because of the checkerboard approach) and
that the maximum number of threads in a block is Bmax = 1024 for actual GPUs, we have
that V = 2|Bmax|. With this, x = y = 8 and the optimal block to use is Bopt = (32, 4, 8).

4.3.3 Replica Level Parallelism

Replica level parallelism is based on the combination of concurrent kernel execution from
modern GPUs and coarse parallelism from the multi-GPU computing. In modern GPU
architectures, one can launch multiple kernels in the same GPU and let the driver scheduler
handle the physical resources to execute these kernels concurrently for that GPU. Starting
from the Kepler GPU architecture, it is possible to launch up to 32 kernels concurrently
on a single GPU. The idea is to divide the M replicas into k available GPUs and simulate
m = dM/ke replicas concurrently for each GPU. It is possible that m > 32, but it is not a
problem because the GPU can handle the exceeding kernels automatically with very small
overhead, by using an internal execution queue. With the new approach, the new number of
replicas becomes

M ′ = D ·m ≤M +D (4.6)

where D is the number of GPUs used in the multi-GPU computation. By using M ′ replicas
instead of M , we guarantee a balanced parallel computation for all GPUs and at the same
time the extra replicas help to produce a better result. One assumes that D ≤M .

In a multi-GPU approach, the shared memory scenario transforms into a distributed
scenario that must be handled using global indexing of the local memory regions. For each
GPU, there is a region of memory allocated for the m replicas. For any GPU Di, the global
index for its left-most replica is DL

i = m · i while the global index for its right-most replica
is DR

i = m · i +m− 1 = m(i + 1)− 1.

Replica exchanges that occur in the same GPU are efficient since the swap can just be
an exchange of pointers. In the limit cases at DL

i and DR
i , the task is not local to a single

GPU anymore, since the exchange process would need to access replicas DR
i−1 and DL

i+1,
both which reside in different GPUs. Because of this special case, the pointer approach
is not a robust implementation technique for a multi-GPU approach, neither explicit spin
exchanges because it would require several memory transfers from one GPU to another. The
solution to this problem is to swap temperatures, which is totally equivalent for the result
of the simulation. One just needs to keep track of which replica has a given temperature
and know their neighbors. For this we use two index arrays, trs and rts, for temperatures
replica sorted and replica temperature sorted, respectively. Figure 4.5 illustrates the whole
multi-GPU approach.

The temperature swap approach is an efficient technique for single as well as for clusters
of GPU-based workstations, since for each exchange only two floating point values (i.e.,
2×32bits) need to be swapped. This part of the algorithm results in little overhead compared
to the simulation time, thus we opted to implement it on the CPU side.
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Figure 4.5: The multi-GPU version of replica level parallelism combined with temperature swapping.

4.4 Adaptive Temperatures

The random field, as any other system with quenched disorder, becomes difficult to study as
L increases. For L ≥ 64 the selection of parameters is already a complex task, since a small
change on one can lead to a bad quality simulation.

One important parameter for simulation is the selection of temperatures and the distance
among them. In general, for the low-temperature regime and near the transition point Tc, the
replicas need to be placed at temperatures much closer compared to the high temperature
regime in order to achieve an acceptable exchange rate. If these temperature requirements
are not met, the simulation may suffer from exchange bottlenecks, preventing the information
to travel from one side to other. Indeed one can decide to simulate with a dense number
of temperatures for the whole range, but this strategy tends to be inefficient because the
simulation does much more work than it should. Based on this facts, we propose to use an
adaptive method that builds, incrementally, a good distribution of temperatures based on the
exchange rates needed at each region. Two immediate advantages of adding temperatures is
that (1) the initial adaptation phase costs significantly less compared to an approach that
adapts the final number of temperatures from the beginning, and (2) we do not generate
exchange holes since we just insert temperatures.

The idea is to start with M replicas, equally distributed from Tlow to Thigh. The adaptive
method performs an arbitrary number of trial simulations to measure the exchange rate
between each consecutive pair of replicas. After each trial simulation, an array of exchange
rates is obtained and put in a min-heap. For the a intervals with lowest exchange rate
(with a chosen arbitrarily), new replicas are introduced using its middle value as the new
temperature.

Figure 4.6: The adaptive temperature strategy choosing the lowest four exchange rates for three trial runs.
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The trial simulations use multi-GPU computation. Given that the number of trial runs
and the number of intervals to split is given a priori, the memory pool can be allocated before
hand and equally distributed among all GPUs. After each trial run, the new i-th new replica
is assigned to the j-th GPU with j = i mod k, where k is the number of GPUs. The order
in which new replicas are assigned to each GPU actually does not affect the performance
neither the result of the simulation.

4.5 Performance results

In this section we present the performance results of our multi-GPU implementation (which
we have named trueke for exchange in Spanish, which is trueque) and compare them against
other GPU and CPU implementations. The purpose of including a comparison against a
sequential CPU implementation is not to claim very high speedups, but rather to provide a
simple reference point for future comparisons by the community.

4.5.1 Benchmark Plan

Four performance metrics, averaged over N repetitions, are used to measure the parallel
performance of trueke (Note, in this section T means running time, not temperature):

1. Benchmark the Spin-level Performance by computing the average time of a spin
flip:

〈Tspin〉 =
1

L3N · w

N∑
i=1

Tw (4.7)

where w corresponds to the number of sweeps chosen for the Metropolis simulation.

2. Benchmark the Replica-level Performance by computing the average time of a par-
allel tempering realization:

〈Trep〉 =
1

N · x

N∑
i=1

Tx (4.8)

where x is the number of exchange steps chosen for the simulation.

3. Benchmark the Multi-GPU Performance Scaling by measuring, based on the single
GPU and multi-GPU running times t1, tg, the fixed-size speedup SGPU and efficiency
EGPU

SGPU = T1/Tg

EGPU = SGPU/g
(4.9)

at different problem sizes when using two (g = 2) GPUs.

4. Benchmark the Adaptive Temperatures Performance by computing the average
time of an adapted parallel tempering realization:

〈Tadapt〉 =
1

N

(
N∑

i=1

Tk +
N∑

i=1

Tx

)
(4.10)
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where Tk is the time for doing k trials.

The number of repetitions (i.e., N) for computing the performance averages range between
[10, 40] (i.e., less repetitions are required for benchmarking large problem sizes), which are
sufficient to provide a standard error of less than 1%.

The workstation used for all benchmarks (including the comparison implementations) is
equipped with two 8-core Intel Xeon CPU E5-2640-V3 (Haswell), 128GB of RAM and two
Nvidia Tesla K40 each one with 12GB.

4.5.2 Spin and Replica level Performance Results

The first two benchmark results are compared, for reference, against a cache-aligned CPU
implementation of the 3D Ising Random Field running both sequential and multi-core. Ad-
ditionally, we include the Spin-level performance of Weigel’s GPU implementation for the 2D
Ising running on our system, as a reference of how close or far trueke’s spin flip performance
is compared to Weigel’s highly optimized code for 2D Ising model. The L values used in
Weigel’s implementation, which simulate L2 spins, have been adapted to the form L′ =

3
√
L2

so that the input sizes can be compared against the 3D ones, in the number of total spins.

Figure 4.7 presents the results of spin flip time and the average parallel tempering time.
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Figure 4.7: On the left, spin-level performance. On the right, replica-level performance.

On the spin level performance results (left plot of Figure 4.7), we observe that trueke
with 100 multi-hit updates (i.e., mh = 100) is over two orders of magnitude faster than
the sequential CPU implementation and over one order of magnitude faster than the multi-
core CPU implementation using 16 cores. It is worth noting that trueke is almost as fast as
Weigel’s highly optimized GPU Metropolis implementation for the 2D Ising model which uses
mh = 100 too. If no multi-hit updates are used, then the performance of trueke decreases
as expected, becoming 6× ∼ 7× faster than the multi-core implementation. It is important
to consider that the comparison has been done using just one GPU for trueke while using
two CPU sockets (8 cores each) for the CPU implementation. Normalizing the results to one
silicon chip, one would obtain that for spin-level performance the GPU performs approxi-
mately one order of magnitude faster than a multi-core CPU. In order to obtain good quality
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physical results, the 3D Ising Random Field model must be simulated with mh = 0. For this
reason, the rest of the results do not include the case when mh = 100.

The replica performance results (right plot of Figure 4.7) shows that the multi-GPU imple-
mentation outperforms the CPU implementation practically in the same orders of magnitude
as in the spin level performance result with mh = 0. This result puts in manifest the fact
that the exchange phase has little impact on the replica level parallelism, indicating that
multi-GPU performance should scale efficiently.

4.5.3 Multi-GPU Scaling

Figure 4.8 presents the speedup and efficiency of trueke for computing one 3D Ising Random
Field simulation using two Tesla K40 GPUs.
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Figure 4.8: Multi-GPU speedup and efficiency for different lattice sizes.

From the results, we observe that as the problem gets larger, the replica level speedup
improves almost to SGPUs=2 = 2 which is the perfect linear speedup. The efficiency plot
shows that the replica-level parallel efficiency approaches to EGPUs=w = 1 as the lattice
becomes larger, indicating that replica-level parallelism does not degrade when increasing L.
This favorable behavior can be explained in part by the fact that the work of the exchange
phase grows at least as Wex = Ω(M) + Ω(ML3) where the Ω(M) term is the sequential work
for exchanging the M replicas, while the Ω(ML3) term is the parallel work for computing
the energy at each replica, which is done with a parallel GPU reduction, in O(log(L3)) time
for each replica. It is clear that the amount of parallel work grows faster than the sequential
work, therefore the parallel efficiency of the whole method should be higher as L,M and the
number of GPUs increase.

4.5.4 Performance of The Adaptive Temperatures Technique

Table 4.1 presents the running times of the adaptive temperatures technique compared to
dense and spare homogeneous techniques for L = 32, 64. The simulation parameters used for
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all simulations were 100 disorder realizations, each one with 2000 parallel tempering steps
and 10 Metropolis sweeps. For L = 32, the adaptation phase used 10 trial runs with 2
insertions at each trial. For L = 64, the adaptation used 32 trial runs, with 3 insertions at
each trial. The trial runs also use 2000 parallel tempering steps with 10 Metropolis sweeps.

Table 4.1: Executions times, in seconds, for adaptive and uniform approaches.

L sparse-sim dense-sim adapt-trials adapt-sim adapt (trials + sim)
32 670.25 1417.04 41.84 1167 1209.49
64 10386.75 26697.17 1689.46 19994.70 21684.15

From the results, it is observed that a full adaptive simulation, including its adaptation
time, is more convenient than a dense simulation with no adaptation from the point of view
of performance. The sparse technique is the fastest one because it simply uses less replicas,
but as it will be shown in the next Section, it is not a useful approach for a disordered system
starting from L ≥ 64, neither the dense one, because the exchange rate becomes compromised
at the low temperature regime.

4.6 Exchange Rates with Adaptive Temperatures

Results on the exchange rate of the adaptive strategy is presented by plotting the evolu-
tion of the average, minimum and maximum exchange rates through the trial runs. Also a
comparison of the exchange rates between a dense homogeneous set, the adaptive set and a
sparse homogeneous set is presented. The simulation parameters were the same as the ones
used to get the performance results of Table 4.1. Figure 4.9 presents the results.
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Figure 4.9: On the left, the evolution of average, min and max exchanges through the trial runs. On the
right, the exchange rates for the whole temperature range.

From the left plot we observe that as more replicas are added, the average and minimum
exchange rates increase and tend to get closer, while the maximum exchange rate stabilizes
after starting from trial number 10. For the right plot, it is clearly shown that the dense
approach, although is an homogeneous approach, does not generate an homogeneous exchange
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rate value for the whole temperature range. For the sparse approach the scenario is even
worse because at the low temperature regime there almost no exchanges. On the other hand,
the adaptive method generates an exchange rate that is almost homogeneous for the entire
range, which is preferred in order to have more control of the simulation. The numbers on
the labels indicate the number of replicas used, and it can be seen that the adaptive method
uses less replicas than the dense homogeneous approach, therefore it runs faster.

4.7 Preliminary Physical Results

For the correctness of the whole algorithm, including the exchange phase, we ran simulations
in the 3D Random Field Ising Model with field strength h = 1. The observables have been
measured using 5000 parallel tempering steps, 10 sweeps at each step, 1 measurement at each
parallel tempering step and using the adaptive temperatures technique.

Average observables are computed as [〈A〉], where [..] corresponds to the average over
different disorder realizations and 〈A〉 denotes the thermal average for a single random field
configuration. The magnetization 〈|M |〉 is defined as

[〈|M |〉] =

[〈∣∣∣ 1

V

L3∑
i=1

si

∣∣∣〉] (4.11)

The specific heat is

[C] =
L3

T 2

[
(〈E2〉 − 〈E〉2)

]
(4.12)

where E is the average energy per site. The Binder factor is an average at the disorder
realization level and it is defined as:

[g] =
1

2

(
3− [〈M4〉]

[〈M2〉]2
)

(4.13)

and the correlation length is

[ξ] =
[√〈M2〉
〈F 〉

− 1
]

(4.14)

with:

F =
1

3L3

(
F1 + F2

)
(4.15)

F1 =
( L3∑

i

hi cos(K · ix)
)2

+
( L3∑

i

hi cos(K · iy)
)2

+
( L3∑

i

hi cos(K · iz)
)2

(4.16)

F2 =
( L3∑

i

hi sin(K · ix)
)2

+
( L3∑

i

hi sin(K · iy)
)2

+
( L3∑

i

hi sin(K · iz)
)2

(4.17)

where K = 2π/L, hi = {−1, 1} is the disordered magnetic field value at spin si and {ix, iy, iz}
correspond to the spatial coordinates of a given spin si in the lattice. For visual clarity,
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we only included the error bars of the largest size studied, i.e., L = 64, nevertheless it is
worth mentioning that the error bars for L = 8, 16, 32 were even smaller than the ones for
L = 64. The results are presented in Figure 4.10 and confirm the transition-like behavior
at 3.8 ≤ Tc ≤ 3.9, or 0.2564 ≤ βc ≤ 0.2631, as shown by Fytas and Malakis in their phase
diagram when h = 1 [93]. The results presented in this section are preliminary, with up to
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Figure 4.10: Preliminary physical observables for the 3D Random Field with h = 1.

2000 disorder realizations for L = 64 (less for L < 64), each doing 5000 exchange Monte Carlo
steps with 10 Metropolis-Hastings sweeps between exchanges. A physical paper devoted to
the physical results will be prepared for the future.

4.8 Discussion

We presented a multi-GPU implementation of the Exchange Monte Carlo method, named
trueke, for the simulation of the 3D Ising Random Field model. The parallelization strategy
is organized in two levels; (1) spin-level parallelism, which scales in the presence of more cores
per GPU, and (2) the replica-level parallelism that scales in the presence of additional GPUs.
The spin-level parallelism is up to two orders of magnitude faster than its CPU counterpart
when using multi-hit updates, and between one and two orders of magnitude faster when not
using multi-hit updates. The parallel scaling of the method improved as the problem size
got larger, in part because the amount of parallel work increases faster than the sequential
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work (i.e., exchange phase). This behavior is indeed favorable for multi-GPU computation,
where trueke achieved approximately up to 99% of efficiency when using two GPUs. Due to
hardware limitations, we could not go beyond two GPUs, which would have been ideal for
having a better picture of how the performance would scale in large systems. Nevertheless,
we intend to put trueke available to the community in the near future, so that it can be
benchmarked in systems with a high number of GPUs.

The adaptive strategy for selecting the temperature set was based on the idea of inserting
new temperatures in between the lowest exchange rates found by an arbitrary number of
trial runs. As a result, the simulation used more replicas at the locations were exchange
rates were originally low, and less replicas were the exchange rate was already good, such
as in the high temperature regime. The adaptive strategy outperformed any homogeneous
approach, since these last ones had to deal with an over-population of replicas at places that
actually did not require more temperature points, resulting in extra computational cost and
slower performance, and an under-population of replicas at the low temperature regime near
Tc, generating low exchange rates. The adaptive method works better when a small number
of points are added at each trial run, i.e., between one and five insertions at each trial
run, because this way is more unlikely to misplace an insertion. Compared to the method
by Katzgraber et. al. [152], our adaptive method differs since it feedbacks from the local
exchanges of pairs of temperatures, always lifting the minimum values observed by inserting
new temperatures, while in the work of Katzgraber et. al. they feedback by counting the
number of times a replica travels the whole temperature range and based on this information
they move the temperature set. In the method by Bittner et. al [27], they vary the number of
Metropolis sweeps based on the auto-correlation times in order to avoid two replicas getting
trapped exchanging together, which they identify as a problem for Katzgraber method. Our
approach of inserting new temperatures provides the advantage that it does not compromise
the rest of the temperature range and the technique by itself is general since it is just based
on improving the lowest k minimum exchange rates observed at each trial run. For the near
future, we intend to do a formal comparison of all three implementations of the methods.

The main reason for choosing multi-GPU computing at the replica-level, and not at the
realization level (fully independent parallelism) as one would naturally choose, is mostly
because the latter strategy is not prepared for the study of large lattice systems, which
would be of great interest for the near future. From our experience with the 3D RFIM, the
number of replicas needed to keep at least 35% ∼ 45% of exchange rate grew very fast as
L increased. Thus, distributing the replicas dynamically across several GPUs extends the
possibilities of studying larger disordered lattices.

The multi-GPU approach proposed, alias trueke, has allowed us to study th 3D Ising
Random Field model at size L = 64 for which its results can become physical contributions
to the field. It is expected that eventually, as more GPUs are used, larger lattices could be
studied.
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Conclusions

This thesis has addressed the problem of the expensive computations involved in the study
of spin systems when using both exact and Monte Carlo approaches. The main goal of this
thesis, which was to elaborate novel parallel methods for each type of approach, was achieved
and the two research questions formulated at the beginning were answered positively. The
computational concepts and research developed in this thesis has contributed to the field of
parallel computing and computational physics in the form of scientific publications.

For the exact case, the contribution was a new parallel algorithm for computing the gen-
eral (q, v) transfer matrix of strip lattices in the Potts model. The algorithm achieves an im-
portant reduction in the asymptotic size of the configuration space, from O(4m) to O(3m), by
re-organizing the problem domain as parallel family trees (PFT). With this re-organization,
the transfer matrix can now be computed by just processing the root configurations, which
are O(3m) in number. Experimental performance results have shown evidence that PFT has
an exponential advantage over the Catalan Parallel Method (CPM) [199]. Moreover, it is
not only faster to generate the matrix using PFT, but it is also faster to use it later for
extracting the physical information since numerical evaluation is done at the compressed
stage. In terms of parallel performance scaling, PFT achieves 28X of speedup using p = 32
for the square strip tests, with an efficiency above 90% for a strip of width m ≥ 10. For
the kagome strip test, efficiency stayed above 55% for a strip of m ≥ 7 and the maximum
value of speedup reached was close to 20X when using p = 31. The best balance between
speedup and efficiency was found at p ∈ {8, 9, 10}. If more processors are used to the point
that p = ∆m, then the time for computing the TM would only be the time to solve the
deepest dag of computation. For this reason, we expect that an execution on a large cluster
or supercomputer could allow the computation of transfer matrices of strips wider than what
has been reached before. Part of the Chapter of this work was published in the proceedings
of the 15-th IEEE International Conference on High Performance Computing and Commu-
nications (HPCC 2013) [199], and the full Chapter was published in the Computer Physics
Communications Journal [197]

For the Monte Carlo case, the contribution was a massively parallel multi-GPU
method, alias trueke, for the simulation of 3D lattices in the Random Field Ising Model.
The method is based on the Exchange Monte Carlo algorithm, but re-designed to have two
levels of parallelism; spin-level parallelism and replica-level parallelism. Spin-level parallelism
scales in the presence of more powerful GPUs, while replica-level parallelism scales in the
precense of multiple GPUs. When both levels of parallelism are combined, the result is a
highly efficient parallel method that is between one and two orders of magnitude faster than
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the equivalent sequential CPU implementation. The multi-GPU performance scaling using
two GPUs achieved almost perfect linear speedup, with approximately 99% of efficiency. The
fact that the multi-GPU efficiency becomes better as the size increases puts in evidence that
as the problem gets larger, the amount of parallel work grows faster than the amount of
sequential work, favorating a GPU-cluster scenario. In addition to the paralelism, we also
proposed a new adaptative algorithmic strategy that inserts temperatures at the places that
suffered from low exchange rates. As a result, the adaptative algorithm allowed to compute
physical results as good as if using a very dense approach, while having a much smaller com-
putational cost. With the resources available, it was possible to compute preliminary physical
results for L = {8, 16, 32, 64}, but with more GPUs and enough time, it is possible to aim for
larger sizes such as L = {128, 256}. In the near future we expect to obtain definitive physical
observables for the 3D Random Field Ising Model at L = 64 and hopefully L = 128. For
this, one must test many simulation parameters in order to find a good set that will make
the simulation reach equilibrium properly. This research of this Chapter will be submitted
to a comptutational physics journal in the near future.

Two additional works of this thesis became contributions as well. The parallel computing
background was published as a survey paper in the Journal Communications in Computa-
tional Physics [200] and the work presented in the Appendix about GPU maps in triangular
domains was published in the proceedings of 16-th IEEE International Conference on High
Performance Computing and Communications (HPCC 2014) [198].

Future work

We believe it would be interesting to study how the efficiency of GPU computing is affected
when working on particle-based domains that have different geometries, such as triangular
structures, spheres, pyramids and also fractal geometries. In such scenarios GPU comput-
ing needs efficient mapping strategies, different from the standard map f(x) = x, in order
to minimize the number of unnnecessary threads and still preserve spatial thread locality.
Improvements on this field would have inmmediate applications to science and engineering,
including the possibility of extending the results of Chapter 4 for different geometries. An
initial research was done during the time of this thesis, about GPU maps (available in Ap-
pendix A), where we found that GPU performance can increase up to 18% when using a
dedicated map function for handling GPU threads in 2D triangular structures. The study
of GPU maps for complex domains is a fresh and modern research line in the field of GPU
computing and can provide interesting results for the field of parallel algorithms and parallel
architectures.
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[99] Stéphane Gobron, Hervé Bonafos, and Daniel Mestre. GPU accelerated computation
and visualization of hexagonal cellular automata. In Proceedings of the 8th international
conference on Cellular Automata for Reseach and Industry, ACRI ’08, pages 512–521,
Berlin, Heidelberg, 2008. Springer-Verlag.
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[240] Jesús Salas and Alan D. Sokal. Transfer matrices and partition-function zeros for
antiferromagnetic Potts models. V. Further results for the square-lattice chromatic
polynomial. J. Stat. Phys., 135(2):279–373, 2009.

[241] Jess Salas and AlanD. Sokal. Transfer matrices and partition-function zeros for antifer-
romagnetic Potts models. I. General theory and square-lattice chromatic polynomial.
Journal of Statistical Physics, 104(3-4):609–699, 2001.

[242] Jess Salas and AlanD. Sokal. Transfer matrices and partition-function zeros for anti-
ferromagnetic Potts models VI. square lattice with extra-vertex boundary conditions.
Journal of Statistical Physics, 144(5):1028–1122, 2011.

[243] Pedro V. Sander and Jason L. Mitchell. Progressive buffers: view-dependent geometry
and texture lod rendering. In Proceedings of the third Eurographics symposium on Ge-
ometry processing, SGP ’05, Aire-la-Ville, Switzerland, Switzerland, 2005. Eurographics
Association.

[244] Joel L. Schiff. Cellular Automata: A Discrete View of the World. Wiley-Interscience,
2008.
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Appendix A

GPU-maps for triangular domains

There is a stage in the GPU computing pipeline where a grid of thread-blocks, or space of
computation, is mapped to the problem domain. Normally, the space of computation is a
k-dimensional bounding box (BB) that covers a k-dimensional problem. Threads that fall
inside the problem domain perform computations and threads that fall outside are discarded,
all happening at runtime. For problems with non-square geometry, this approach makes
the space of computation larger than what is necessary, wasting many threads. Our case of
interest are the two-dimensional triangular domain problems, alias td-problems, where almost
half of the space of computation is unnecessary when using the BB approach. Problems
such as the Euclidean distance map or collision detection are td-problems and they appear
frequently as part of a larger computational problem. In this work, we study several mapping
functions and their contribution to a better space of computation by reducing the number of
unnecessary threads. We compare the performance of four existing mapping strategies; the
bounding box (BB), the upper-triangular mapping (UTM), the rectangular box (RB) and the
recursive partition (REC). In addition, we propose a map g(λ), that maps any λ block to a
unique location (i, j) in the triangular domain. The mapping is based on the properties of the
lower triangular matrix and works in block space. The theoretical improvement I obtained
from using g(λ) is upper bounded as I < 2 and the number of unnecessary blocks is reduced
from O(n2) to O(n). Experimental results using different Nvidia Kepler GPUs show that for
computing the Euclidean distance matrix g(λ) achieves an improvement of up to 18% over
the basic bounding box (BB) strategy, runs faster than UTM and REC strategies and it is
almost as fast as RB. Performance results on shared memory 3D collision detection show
that g(λ) is the fastest map of all, and the only one capable of surpassing the brute force
(BB) approach by a margin of up to 7%. These results help us realize that one of the main
advantages of g(λ) is the fact that it uses block space mapping, where coordinate values are
small in magnitude and thread organization is not compromised, making the map stable in
performance under different memory access patterns.
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A.1 Introduction

GPU computing is without question a well established research area [4, 5, 200, 205, 216],
since the release of general purpose computing platforms such as CUDA [209] and OpenCL
[156]. In the CUDA GPU programming model there are three constructs that allow the
execution of highly parallel algorithms; (1) thread, (2) block and (3) grid. Threads are the
smallest elements and they are in charge of executing the instructions of the GPU kernel. A
block is an intermediate structure that contains a set of threads organized in an Euclidean
space. Blocks provide fast shared memory access as well as synchronization for all of its
threads. The grid is the largest construct of the GPU and it is in charge of keeping all blocks
together, spatially organized for the whole execution of the kernel. These three constructs
play an important role when mapping the execution resources to the problem domain, and are
also necessary for the GPU to schedule and distribute the work properly among its clusters
of processing cores. OpenCL chooses different names for these constructs; (1) work-element,
(2) work-group and (3) work-space, respectively.

For every GPU application, there is a stage in which the grid, or space of computation, is
mapped to a problem domain for an eventual computation later on. This map can be defined
as a function f(x) : Rk → Rp that transforms each k-dimensional point x = (x1, x2, ..., xk)
of the grid to a unique p-dimensional point of the problem domain. In other words, f(x)
maps the space of computation to the problem domain. When the problem domain is simple
in shape, rectangular or square grids are good choices because the bounding box perfectly
matches the domain. Rectangular or square grids are the most used ones and they are char-
acterized for using the bounding box strategy (BB) map, where f(x) = x. Other problems
however do not match a box shaped domain because they have a different geometry. For
instance, some 2D problems have a triangular shaped domain. We call these type of problems
triangular-domain-problems or simply td-problems. Building a square grid for a td-problem
is not the best choice because it generates unnecessary thread-blocks that would need to
execute if-else conditionals to discard themselves, leading to a performance penalty. The
scenario is illustrated in Figure A.1, where the unnecessary blocks are painted with a sad red
face.

Figure A.1: The BB strategy is not the best choice for a td-problem.
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In this work we address the lack of comparisons between different existing mapping strate-
gies for td-problems, presenting performance results running the same tests under the same
hardware. The idea is to establish a common benchmark for all mapping strategies, using
three different GPUs, and measure their performance under three cases: (1) dummy ker-
nel, (2) Euclidean distance matrix and (3) collision detection. We have chosen these three
problems because they represent different scenarios; (1) very small kernel, (2) global mem-
ory patterns and (3) shared memory patterns. In addition to this benchmark, we present
a new map g(λ), that works in block space and uses the lower-triangular matrix properties.
Map g(λ) basically makes three contributions; (1) simpler implementation than the other
strategies, (2) greater square root range than in UTM [13] and (3) uncompromised thread
organization per block.

The rest of the Appendix is organized as follows: Section A.2 presents related work on
GPU maps. Section A.3 covers the formulation of g(λ). Details about its implementation
and how we chose the fastest square root function are in Section A.4. In Section A.5 we
present the performance results for all existing strategies using three different Nvidia Kepler
GPUs; (1) GTX 765M, (2) GTX 680 and (3) Tesla K40. Finally, in Section A.6 we conclude
by discussing the main points of our work.

A.2 Related Work

The problem of improving the space of computation for td-problems is indeed important
because any contribution on the matter will eventually, by consequence, benefit every problem
of this class. Many computational problems are in fact td-problems ; Euclidean distance maps
(EDM) [176, 186, 187], collision detection [13], graph traversal through adjacency matrices
[155], Cellular Automata (e.g John Conway’s Game of life [96]) in triangular domains, matrix
inversion [234], LU/Cholesky decomposition [114], among others.

In the field of distance maps, Ying et. al. have proposed a GPU implementation for
parallel computation of DNA sequence distances [291] which is based on EDM. In their
work, the authors mention that the problem domain is indeed symmetric and they do realize
that only the upper or lower triangular part of the interaction matrix requires computation.
Li et. al. [176] have also worked on GPU-based EDMs on large data and have also identified
the symmetry involved in the computation. However, in both works there is no mention of
the mapping of the space of computation.

Jung et. al. [147] proposed in 2008 packed data structures for representing triangular and
symmetric matrices with applications to LU and Cholesky decomposition [114]. The strategy
is based on building a rectangular box strategy (RB) for accessing and storing a triangular
matrix (upper or lower). Data structures become practically half the size with respect to
classical methods based on the full matrix. Originally, this strategy is aimed at the memory
structure of the matrix, but it can also be applied analogously to the space of computation.

In 2009, Ries et. al. contributed with a parallel GPU method for the triangular matrix
inversion [234]. The authors identify that the space of computation indeed can be improved
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by using a recursive partition (REC) of the grid, based on a divide and conquer strategy.

In 2012, Q. Avril et. al. proposed a GPU mapping function for collision detection based on
the properties of the upper-triangular map [13]. The map, namely UTM, is a function f(k)→
(a, b), where k is the linear index of a thread tk and the pair (a, b) is a unique two-dimensional
coordinate in the upper triangular matrix. The authors mention that for the square root
computation they use Carmack’s and Lomont’s fast square root approximation (based on
the Newton-Raphson approximation algorithm [222]) for speeding up the mapping function.
Approximation errors are fixed by using two conditionals statements inside the kernel. Their
square root implementation sqrt(x) is accurate for x ∈ [0, 100M ], which according to their
map function, would refer to problems in the range N ∈ [0, 3000].

Up to date, there has not been a dedicated comparison of the different strategies proposed
for improving the space of computation in td-problems. In the best case we can find a
comparison between Avril’s map and the BB strategy [13] where the authors report a speedup
of almost 2X, however the filtering is done by thread ID instead of by block coordinates,
making the BB map slower.

The triangular map can still be improved to work for problem sizes of N < 30000 and
also to be able to use the GPU shared memory, through a blockwise formulation.

A.3 The blockwise triangular map

A.3.1 Formulation

It is important first of all to distinguish between two types of mappings that can be performed
on the GPU; (1) threadwise mapping and (2) blockwise mapping. Threadwise mapping is
where each thread uses its own unique index as the parameter for the mapping function, just
as in the UTM map [13]. In blockwise mapping threads use their block index to map all of
them to a specific location, followed by a local shift according to the relative position in the
block. We have chosen to continue with blockwise mapping and its advantages are explained
later on.

Let N be the problem size (assuming data-parallel elements), A a td-problem of size
N(N + 1)/2, n = dN/ρe the number of blocks needed to cover the data along one dimension
and ρ the number of threads per block per dimension, or dimensional block-size (for simplicity,
we assume all dimensions are the same). A BB strategy would simply build a square grid,
namely GBB, of nxn blocks and put conditional instructions to cancel the computations
outside the problem domain. A finer analysis tells that n(n + 1)/2 blocks are sufficient to
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cover the problem domain of A:

A =

∣∣∣∣∣∣∣∣∣∣
0
1 2
3 4 5
... ... ... ...

n(n−1)
2

n(n−1)
2

+ 1 ... ... n(n+1)
2
− 1

∣∣∣∣∣∣∣∣∣∣
(A.1)

Note : for the rest of the paper we will refer to our mapping approach as LTM for lower
triangular mapping, or simply g(λ).

The idea is to build a two-dimensional balanced grid GLTM that covers the lower-triangular
matrix, just using n(n+ 1)/2 blocks. By balanced grid, we mean n′ = d

√
n(n+ 1)/2e blocks

per dimension. Figure A.2 illustrates GLTM and how it is smaller than GBB from Figure
A.1, while still providing the necessary number of blocks to cover the problem domain. The

Figure A.2: The LTM strategy uses just the necessary number of blocks to cover the problem domain.

result is a reduction from n(n− 1)/2 ∈ O(n2) to n/2 ∈ O(n) unnecessary blocks.

The next step is to formulate g(λ) = (i, j) where (i, j) are the coordinates in problem
space and λ is the index of block Bx,y computed as λ = x+ yn′ in block space.

Theorem A.1 For any block Bx,y with λ = x+ yn′, its mapping function g(λ) is:

g(λ) = (i, j) =
(⌊√1

4
+ 2λ− 1

2

⌋
, λ− i(i + 1)/2

)
(A.2)

. The λ index can be expressed as a triangular number with an unknown summation limit
x.

λ =
x∑
k=1

k (A.3)

The index of the far left block that lies on the same row of the λ-th block corresponds to the
sum in the range [1, i]. Similarly, the index of the far left block of the (i + 1)-th row is a sum
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in the range [1, i + 1]. For all λ indices under the same row i, the range of the summation
lies in a range [1, i + ε], where ε < 1:

i∑
k=1

k ≤ λ =
i+ε∑
k=1

k <
i+1∑
k=1

k (A.4)

Therefore x ∈ R and i = bxc. Since
∑x

k=1 k = x(x+ 1)/2, x is found by just solving a second
order equation with coefficients a = 1, b = 1 and c = −2:

x2 + x− 2λ = 0 (A.5)

The solution of interest is:

x =

√
1 + 8λ− 1

2
=
√

1/4 + 2λ− 1/2 (A.6)

And the i coordinate of the λ-th block is computed as:

i = bxc =
⌊√

1/4 + 2λ− 1/2
⌋

(A.7)

Coordinate j is the distance from the λ-th block to the left most block in the same row:

j = λ− i(i + 1)

2
(A.8)

If the diagonal is not needed, then g(λ) becomes:

g(λ) = (i, j) =
(⌊√1

4
+ 2λ+

1

2

⌋
, λ− i(i + 1)/2

)
(A.9)

When comparing LTM and its closest counterpart UTM [13], we identify three improve-
ments: (1) g(λ) uses fewer floating point operations than in UTM since it uses the lower-
triangular mapping. (2) LTM maps blocks and not threads as in UTM. Since g(λ) is a map
of blocks and the number of blocks is n = N/ρ, the square root gives smaller approximation
errors, allowing accurate computation for larger values of N . (3) Thread organization is not
compromised in LTM, while in UTM it is.

A.3.2 Bounds on the improvement factor

The reduction of unnecessary blocks from O(n2) to O(n) may suggest that the improvement
could reach in the best case a 2X factor. For this to be possible, one would need to measure
just the mapping time, so that necessary and unnecessary blocks do the same jobs, and
assume that the mapping function g(λ) is as cheap as in the BB strategy. In the following
analysis we analyze the improvement factor considering a more realistic scenario where g(λ)
has a higher cost than the BB map, due to the square root computation involved.
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The LTM strategy depends strongly on the square root which in theory is asymptotically
O(M(n)) [297] where M(n) is the cost of multiplying two numbers of n digits. Considering
that real numbers are represented by a finite number of digits (i.e., floating point numbers
with a maximum of m digits), then all basic operations cost a fixed amount of time, leading
to a constant cost M(m) = Cs ∈ O(1). All other computations are elemental arithmetic
operations and will be taken as an additional cost of Ca ∈ O(1). The LTM strategy has a
cost of τ = Cs + Ca = O(1) for each mapped thread. On the other hand, the BB strategy
checks for each thread if By <= Bx in order to continue or not, also leading to a constant
cost of β ∈ O(1).

For this particular case, asymptotic analysis does not give precise information about the
improvement factor, since both the LTM and BB strategies lie in the same complexity order
(i.e., n(n+1)/2 ∈ O(n2)) therefore the improvement should be a constant factor. We proceed
to a finer non-asymptotic analysis in order to find the constants involved in the improvement
factor.

Let |GBB| and |GLTM | be the number of blocks for the BB and LTM strategies, respectively,
and ρ the number of threads per block per dimension as mentioned earlier. It is indeed evident
that β is cheaper than τ , therefore τ = kβ with a constant k ≥ 1. The improvement factor
I can be obtained by dividing the total cost of BB by LTM across their entire grids:

I =
β|GBB|ρ2

τ |GLTM |ρ2
=

βn2

τn(n+ 1)/2
=

2βn2

τn2 + τn
(A.10)

As shown in (A.10), the improvement does not depend on the threads, but instead, on the
blocks. For large n we have:

I =
2βn2

τn2 + τn
≈ 2β

τ
(A.11)

If τ ≥ 2β, performance is equal to or worse than that of BB. A real improvement is achieved
when:

β ≤ τ < 2β (A.12)

By using the relation τ = kβ in (A.11) we get that:

I ≈ 2/k (A.13)

Since k > 1, the range of I is:
0 < I < 2 (A.14)

Any value in the range 1 < I < 2 means an improvement in performance and a value in
the range 0 < I < 1 will mean a slowdown respect to the BB strategy. Constant k can be
interpreted as the cost and overhead of the mapping function. A value of k ≈ 1 means that
the maximum possible improvement is achieved; Imax ≈ 2, under large n. In practice, a value
of k ≈ 1 is too optimistic and would not occur. Our hypothesis is that actual hardware could
give a value in the range 1.5 ≤ k < 2.0 which would correspond to 1.00 < I ≤ 1.33. Any
value of k ≥ 2 will lead to no improvement at all, resulting in slower performance than the
BB strategy. It is important to put emphasis on the fact that Ca (arithmetic operations) will
not have much room for optimization as Cs. Therefore, getting the maximum possible value
of I will finally depend on how fast the square root can be.
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A.4 Implementation of LTM

In this section we choose the best of three square root implementations to be used in the
LTM map. We also explain in general terms the idea behind the other mapping strategies
we have also implemented for later comparison.

A.4.1 Choosing the best square root

The performance of the LTM strategy depends strongly on how fast the computation of index
i is. More precisely, the computation of the square root as mentioned earlier. We made three
versions of the LTM map, using different square root implementations, and computed the
improvement factor with respect to the BB strategy. The first one, named LTM-X, uses the
default sqrtf(x) function from CUDA and it is the simplest one.

The second implementation of LTM, named LTM-N, computes the square root by using
three iterations of the Newton-Raphson method [222, 297]. We use the implementation of
Carmack and Lomont. This implementation has proved to be effective for applications that
allow small errors. The initial value used is the magic number ’0x5f3759df’ (this initial guess
became known when ’Id Software’ released Quake 3 source code back in the year 2005).
We have found that adding a constant of ε = 10−4 to the result of the square root can fix
approximation errors in the range N ∈ [0, 30720].

The third implementation, named LTM-R, uses the hardware implemented reciprocal
square root, rsqrtf(x): √

x =
x√
x

= x · rsqrtf(x) (A.15)

In terms of simplicity, LTM-R is similar to LTM-X, the only difference is that it adds ε = 10−4

at the end to fix approximation errors, just like in LTM-N.

We measured the improvement factor of each implementation with respect to the BB
strategy by running a dummy kernel that computes the i, j indices and writes the sum i+j to a
constant location in memory. It is necessary to perform at least one memory access otherwise
the compiler can optimize the code removing part of the cost of mapping. Figure A.3 shows
the improvement factor as I = BB/LTM using the three different implementations, running
on three different Nvidia Kepler GPUs; GTX 680, GTX 765M and Tesla K40. We have
included the BB map for reference, as an horizontal black line at I = 1. On the right side
of Figure A.3 we compare the number of unnecessary blocks between BB and LTM. From
the results, we observe that LTM-X is slower than BB when running on the GTX 680 and
GTX 765M, achieving I680 ≈ 0.87 and I765M ≈ 0.83, respectively. For the same two GPUs,
LTM-N achieves an improvement of I680 ≈ 1.025 and I765M ≈ 0.96 which is practically the
performance of BB. On the other hand, LTM-R achieves improvements of I680 ≈ 1.15 and
I765M ≈ 1.1. From these results, we observe that using the inverse square root is the best
option for the GTX 680 and GTX 765M. For the case of the Tesla K40, we observe that all
three implementations achieve an improvement of IK40 ≈ 1.08, allowing to choose LTM-X
without any performance penalty.
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Figure A.3: On the left, the performance of the different square root strategies and on the right the number
of unnecessary blocks using ρ = 16.

A.4.2 Implementing the other strategies

We have implemented the other mapping strategies; BB, RB, REC and UTM following the
details provided by the authors [13, 147, 234]. To each implementation we added the following
restriction: the map cannot use any memory that grows as a function of N . This means no
auxiliary array such as lookup tables are allowed; constants are allowed though. We have
put this restriction in order to guarantee that GPU memory is dedicated to the application
problem.

For the bounding box (BB) strategy, blocks above the diagonal are discarded at runtime,
without needing to compute a thread coordinate. This is done by checking if Bx > By for
every thread. For the rest of the threads, the coordinate is computed. The condition i > j
is still performed to discard threads on blocks where Bx = By. This implementation of BB
is faster than computing the thread coordinate first and filtering afterwards.

The rectangular box (RB) strategy is based on the work of Jung et. al. [147]. This
method takes the sub-triangular portion of the threads where tx > N/2, rotates it CCW
and places it above the diagonal to form a rectangular grid (see Figure A.4). The original
work was actually a memory packing technique aimed at the data structures and not a GPU
map, however the main idea of the strategy is suitable as a mapping function. We remove
the lookup texture used in the original implementation and perform the coordinate mapping
arithmetically at runtime. All threads below the diagonal just need to map to i = ty − 1,
while j remains the same. Threads in or above the diagonal map to i = N − ty − 1 and
j = N − i − 1. This mapping is for even values of N . The case of odd N is the same
idea but partitioning at bN/2c. A remarkable feature of the RB map is that the number of
unnecessary blocks is asymptotically O(1).

The recursive partition (REC) strategy was proposed for the GPU [234] for matrix in-
version. In this method, the size of the problem is defined as N = m2k where k and m
are positive integers and m is a multiple of ρ (the block-size). The idea is to do a binary
bottom-up recursion of k levels, similar to merge-sort (see Figure A.4). At each level, a grid
of blocks is launched for parallel execution, a total of k times. This method requires an
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additional pass for computing the blocks at the diagonal. More details of how the grid is
built and how blocks are distributed are well explained in [234]. In the original work, the
mapping of blocks to their respective locations at each level is achieved by using a lookup
table stored in constant memory. In this work, we do the mapping at runtime as in RB.

Figure A.4: The RB and REC strategies.

The upper-triangular mapping (UTM) was proposed by Avril et. al. [13] for performing
efficient collision detection on the GPU. This method is very similar to LTM; given a problem

size N and a thread index k, its unique pair (a, b) is computed as a = b−(2n+1)+
√

4n2−4n−8k+1
−2

c
and b = (a+ 1) + k− (a−1)(2n−a)

2
. The UTM strategy uses the idea of mapping to the upper-

triangular matrix without the diagonal. Mapping to the upper-triangular matrix still allows
solving lower-triangular shaped domains, and vice-versa via transposition. An important
difference between UTM and LTM is that UTM uses linear thread organization and the map
works in linear thread space, where very large numbers need to be computed in the square
root. On the other hand LTM uses a two-dimensional thread organization and the map works
in linear block space, making the square root to work with smaller numbers than what UTM
uses.

A.5 Experimental results

Our experimental design consists of measuring the performance of LTM and compare it
against all existing strategies; bounding box (BB), upper-triangular mapping (UTM) [13],
rectangular box (RB) [147] and the recursive partition (REC) [234]. We checked that the
outputs for each strategy were always correct. Three tests are performed to each strategy;
(1) the dummy kernel, (2) EDM and (3) Collision detection. Test (1) just writes the (i, j)
coordinate into a fixed memory location. The purpose of the dummy kernel is to measure
just the cost of the strategy and not the cost of the application problem. Test (2) consists
of computing the Euclidean distance matrix (EDM) using four features. The purpose is
to measure what is the performance of all strategies when solving a global memory based
problem. Test (3) consists of performing collision detection of N spheres with random radius
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inside a unit box. The goal of this last test is to measure the performance of the kernels
using a shared memory approach.

The reason why we have chosen these tests is because they are simple enough to study
their performance from a GPU map perspective and use different memory access paradigms
such as global memory and shared memory. Based on these arguments, we expect that
the performance results obtained by the three tests will give insights on what would be the
behavior for more complex problems that fall into one of the two memory access paradigms.
Furthermore, we have decided to run the tests on three different GPUs in order to obtain
metrics general enough that can provide performance patterns. The details of the hardware
and the maximum number of simultaneous blocks (sblocks) for each GPU is listed in table
A.1. Performance results for the dummy kernel, EDM and collision detection in 1D/3D are

Table A.1: Hardware used for experiments.

Component Description
CPU Intel(R) Core(TM) i7-3770K @ 3.50GHz
RAM 32GB DDR3 1333MHZ
GPU1 Geforce GTX 680 (GK104, 2GB, 1536 cores, sblocks = 128)
GPU2 Geforce GTX 765M (GK106, 2GB, 768 cores, sblocks = 80)
GPU3 Tesla K40 (GK110, 12GB, 2880 cores, , sblocks = 240)
API CUDA 5.5

presented in Figure A.5. On each graphic we plot the performance of all four strategies as
different dashed line colors, while the point symbol corresponds to the different GPU chosen
for that test. The performance of each mapping strategy is given in terms of its improvement
factor I with respect to the BB strategy (i.e., the black and solid horizontal line fixed at
I = 1). Values that are located above the horizontal line represent actual improvement,
while curves that fall below the horizontal line represent a slowdown with respect to the
BB strategy. For the dummy kernel test we observe that the RB strategy is the fastest one
achieving up to 33% of improvement with respect to BB when running on the GTX 765M.
LTM comes in the second place achieving a stable improvement of 18% when running on the
GTX 680. The REC and UTM strategies performed slower than BB for the whole range of
N . We note that this test running on the Tesla K40 does not provide any clear performance
difference between the mapping strategies once N > 15000, since they all converge to a 7%
of improvement with respect to BB.

For the EDM test, we observe that RB is again the fastest map achieving an improvement
of up to 28% with respect to BB when running on the Tesla K40 GPU. In second place comes
LTM with a stable improvement of 18% and third the REC map with an improvement that
reaches up to 12% for the largest N . The performance of the UTM strategy is lower than
BB and unstable for all GPUs. At this point, we have to consider that UTM was designed
to work in the range N ∈ [0, 3000], where it actually does perform better than BB offering
up to 4% of improvement over BB. For this test, performance differences did manifest for all
GPUs, even on the Tesla K40.

For the collision detection test we have included two cases; 3D and 1D collision detection.
From all the map strategies, only LTM manages to perform better than BB, offering an
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Figure A.5: Improvement factors for the dummy kernel, Euclidean distance matrix and collision detection.

improvement of up to 7%. Indeed, the performance scenario changes drastically in the
presence of a different memory access pattern such as shared memory; the RB strategy,
which was the best in global memory, now performs slower than BB. The case is similar with
the REC map which now performs much slower. It is important to mention that the UTM
map is the only strategy that cannot use a 2D shared memory pattern because the mapping
works in linear thread space. At low N , UTM achieves a 100% of improvement because of
the different memory approach used. However as N grows, its performance is over passed
by the rest of the strategies that use shared memory. For the case of 1D collision detection,
results are not so beneficial for the mapping strategies and in the case of LTM performance
is in the limit of not becoming an improvement. The 1D results show that in low dimensions
the benefits of a mapping strategy can be not as good as in high dimensions.

A.6 Discussion

We have studied the benefits of GPU maps for triangular domain problems, alias td-problems.
These maps allow the use of a smaller space of computation compared to the bounding box
strategy (BB) in order to solve a problem. By using a smaller space of computation, the
number of unnecessary threads is reduced and the GPU kernel can execute faster. Our
proposed GPU map, namely LTM for lower triangular map, uses a g(λ) function to map the
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space of computation to any td-problem. The main advantage of LTM is that it works in
block space, not affecting thread organization and allowing problem sizes to be at least in
the range of N ∈ [0, 30720], which is ten times the range achieved in the upper triangular
map (UTM) [13]. It is important to mention that the problem size must be large enough to
generate more blocks than the number of blocks the GPU can handle in parallel. Assuming
a warp of 32 threads, a value of N ≥ 800 already generates more than double the number
of blocks in parallel for any of the GPUs we used. For smaller values of N , the BB strategy
will still remain useful.

When comparing all mapping strategies under the same performance tests, we found that
the rectangular box (RB) and LTM are the best mapping strategies for a global memory
based problem such as EDM, achieving 28% and 18% of improvement, respectively. The
recursive partition (REC) strategy managed to provide up to 12% of improvement for the
global memory problem. The UTM strategy achieved less performance than the BB method
and could not provide exact results when N > 3000. For shared memory collision detection
we found that no strategy but LTM managed to perform better than BB, by 7%. The reason
why LTM could still provide an improvement under a different memory access pattern is
because LTM maps in block space thus it does not compromise thread organization. The
benefits of block space mapping are better manifested under shared memory algorithms or
thread coarsening techniques [210].

The implementation of the LTM strategy is extremely short in code and totally detached
from the problem, making it easy to adopt. When choosing the best implementation of square
root, we found that the reciprocal square root was the most convenient option for GK104
and GK106 GPUs such as the GTX 680 and GTX 765M, respectively. When running the
LTM map on Nvidia’s Tesla K40 GPU, which is a GK110 architecture, we found that the
computation of the square root can be performed just using the default function sqrtf(x)
without any performance penalty. This makes the implementation of LTM even simpler.

The performance of mapping strategies for td-problems still varies depending on the GPU
used and on the way memory is accessed, making it hard to choose the best map. Never-
theless, we have found some important performance patterns among our results; the RB and
LTM maps are good for global memory problems while the LTM map is the only one good
for a shared memory based problem. This scenario puts LTM in advantage over the other
maps, since it is the only strategy that can work for both global and shared memory based
problems.
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