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Abstract. We study a natural generalization of the problem of mini-
mizing makespan on unrelated machines in which jobs may be split into
parts. The different parts of a job can be (simultaneously) processed
on different machines, but each part requires a setup time before it can
be processed. First we show that a natural adaptation of the seminal
approximation algorithm for unrelated machine scheduling [11] yields
a 3-approximation algorithm, equal to the integrality gap of the corre-
sponding LP relaxation. Through a stronger LP relaxation, obtained by
applying a lift-and-project procedure, we are able to improve both the
integrality gap and the implied approximation factor to 1 + φ, where
φ ≈ 1.618 is the golden ratio. This ratio decreases to 2 in the restricted
assignment setting, matching the result for the classic version. Interest-
ingly, we show that our problem cannot be approximated within a factor
better than e

e−1
≈ 1.582 (unless P = NP). This provides some evidence

that it is harder than the classic version, which is only known to be inap-
proximable within a factor 1.5− ε. Since our 1 + φ bound remains tight
when considering the seemingly stronger machine configuration LP, we
propose a new job based configuration LP that has an infinite number of
variables, one for each possible way a job may be split and processed on
the machines. Using convex duality we show that this infinite LP has a
finite representation and can be solved in polynomial time to any accu-
racy, rendering it a promising relaxation for obtaining better algorithms.

1 Introduction

The unrelated machine scheduling problem, R||Cmax in the three-field notation
of [8], has attracted significant attention within the scientific community. The
problem is to find a schedule of jobs with machine-dependent processing times
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that minimizes the makespan, i.e., the maximum machine load. In [11] a polyno-
mial time linear programming based rounding algorithm was shown to give an
approximation guarantee of 2, and a lower bound of 3/2 on the approximation
ratio of any polynomial time algorithm was shown, assuming P �= NP .

A natural generalization of this problem is to allow jobs to be split and pro-
cessed on multiple machines simultaneously, where in addition a setup has to per-
formed on every machine processing the job. This generalized scheduling problem
finds applications in production planning, e.g., in textile and semiconductor in-
dustries [18,10], and disaster relief operations [21]. Formally, we are given a set
of m machines M and a set of n jobs J with processing times pij ∈ Z+ and
setup times sij ∈ Z+ for every i ∈ M and j ∈ J . A schedule corresponds to a
vector x ∈ [0, 1]M×J , where xij denotes the fraction of job j that is assigned to
machine i, satisfying

∑
i∈M xij = 1 for all j ∈ J . If job j is processed (partially)

on machine i then a setup of length sij has to be performed on the machine.
During the setup of a job, the machine is occupied and thus no other job can
be processed nor be set up. This results in the definition of load of machine
i ∈ M as

∑
j:xij>0(xijpij + sij). The objective is to minimize the makespan, the

maximum load of the schedule. We denote this problem by R|split,setup|Cmax.
Note that by setting pij = 0 and interpreting the setup times sij as processing
requirements we obtain R||Cmax.

Related Work. Reducing the approximability gap for R||Cmax is a prominent
open question [23]. Since the seminal work by Lenstra et al. [11] there has been
a considerable amount of effort leading to partial solutions to this question. In
the restricted assignment problem, the processing times are of the form pij ∈
{pj,∞} for all i, j ∈ J . A special case of this setting, in which each job can
only be assigned to two machines, was considered by Ebenlendr et al. [6]. They
note that while the lower bound of 3/2 still holds, a 7/4-approximation can be
obtained. Svensson [19] shows that the general restricted assignment problem is
approximable within a factor of 33/17 + ε ≈ 1.9412 + ε, breaking the barrier
of 2. This algorithm is based on a machine configuration linear programming
relaxation where each variable indicates the subset of jobs assigned to a given
machine. On the other hand, this relaxation has an integrality gap of 2 for general
unrelated machines [22]. Configuration LPs have also been studied extensively
for the max-min version of the problem [22,3,7,9,2,14].

Most work concerned with scheduling splittable jobs focuses on heuristics.
Theoretical results on the subject are not only scarce, but also restricted to the
special case of identical machines. In particular, Xing and Zhang [24] describe a
(1.75−1/m)-approximation for makespan minimization, that was later improved
to 5/3 by Chen et al. [4]. The objective of minimizing the sum of completion
times is studied by Schalekamp et al. [16], who gave a polynomial time algorithm
in the case of 2 machines, and a 2.781-approximation algorithm for arbitrary m.
This was later improved to 2 + ε in [5], even in the presence of weights.

Another setting that comes close to job splitting is preemptive scheduling with
setup times [17,12,15], which does not allow simultaneous processing of parts of
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the same job. We also refer to the survey [1] and references therein for results
on other scheduling problems with setup costs.

Our Contribution. Due to the novelty of the considered problem, our aim is
to advance the understanding of its approximability, in particular in comparison
to R||Cmax. We first study the integrality gap of a natural generalization of the
LP relaxation by Lenstra et al. [11] to our setting and notice that their rounding
technique does not work in our case. This is because it might assign a job with
very large processing time to a single machine, while the optimal solution splits
this job. On the other hand, assigning jobs by only following the fractional
solution given by the LP might incur a large number of setups (belonging to
different jobs) to a single machine. We get around these two extreme cases by
adapting the technique from [11] so as to only round variables exceeding a certain
threshold while guaranteeing that only one additional setup time is required per
machine. This yields a 3-approximation algorithm presented in § 2. Additionally,
we show that the integrality gap of this LP is exactly 3, and therefore our
algorithm is best possible for this LP.

In § 3 we improve the approximation ratio by tightening our LP relaxation
with a lift-and-project approach.We refine our previous analysis by balancing the
rounding threshold, resulting in a (1+φ)-approximation, where φ ≈ 1.618 is the
golden ratio. Surprisingly, we can show that this number is best possible for this
LP; even for the seemingly stronger machine configuration LP mentioned above.
This suggests that considerably different techniques are necessary to match the
2-approximation algorithm for R||Cmax. Indeed, we also show in § 5 that it is
NP-hard to approximate within a factor e

e−1 ≈ 1.582, a larger lower bound
than the 3/2 hardness result known for R||Cmax. For the restricted assignment
case, where sij ∈ {sj,∞} and pij ∈ {pj,∞}, we obtain a 2-approximation
algorithm, matching the 2-approximation of [11] in § 4. We remark that the
solutions produced by all our algorithms have the property that at most one
split job is processed on each machine. This property may be desirable in practice
since in manufacturing systems setups require labor causing additional expenses.

As the integrality gaps of all mentioned relaxations are no better than 1 + φ,
we propose a novel job based configuration LP relaxation in § 6 that has the
potential to lead to better guarantees. Instead of considering machine configu-
rations that assign jobs to machines, we introduce job configurations, describing
the assignment of a particular job to the machines. The resulting LP cuts away
worst-case solutions of the other LPs considered in this paper, rendering it a
promising candidate for obtaining better approximation ratios. While the job
configuration LP has an infinite set of variables, we show that we can restrict a
priori to a finite subset. Applying discretization techniques we can approximately
solve the LP within a factor of (1 + ε) by separation over the dual constraints.
Finally, we study the projection of this polytope to the assignment space and
derive an explicit set of inequalities that defines this polytope. An interesting
open problem is to determine the integrality gap of the job configuration LP.
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2 A 3-Approximation Algorithm

Our 3-approximation algorithm is based on a generalization of the LP by Lenstra,
Shmoys, and Tardos [11]. Let C∗ be a guess on the optimal makespan. Consider
the following feasibility LP, whose variable xij denotes the fraction of job j
assigned to machine i. Notice that the LP is a relaxation, since it allows the
setups to be performed fractionally.

[LST] :
∑

i∈M

xij = 1 for all j ∈ J, (1)

∑

j∈J

xij(pij + sij) ≤ C∗ for all i ∈ M, (2)

xij = 0 for all i ∈ M, j ∈ J : sij > C∗, (3)

xij ≥ 0 for all i ∈ M, j ∈ J.

Let x be a feasible extreme solution. We define the bipartite graph G(x) =
(J ∪ M,E(x)), where E(x) = {ij : 0 < xij}. Using the same arguments as in
[11], not repeated here, we can show the following property.

Lemma 1. For every extreme solution x of [LST], each connected component
of G(x) is a pseudotree; a tree plus at most one edge that creates a single cycle.

We show how to round an extreme solution x of [LST]. Let E+ = {ij ∈ E(x) :
xij > 1/2} and J+ = {j ∈ J : there exists i ∈ M with ij ∈ E+}, i.e., those jobs
that the fractional solution x assigns to some machine by a factor of more than
1/2. In our rounding procedure each job j ∈ J+ is completely assigned to the
machine i ∈ M if xij > 1/2. We now show how to assign the rest of the jobs.

Let us call G′(x) the subgraph of G(x) induced by (J ∪ M) \ J+. Notice
that every edge ij in G′(x) satisfies that 0 < xij ≤ 1/2. Also, since G′(x) is a
subgraph of G(x) every connected component of G′(x) is a pseudotree.

Definition 1. Given A ⊆ E(G′(x)), we say that a machine i ∈ M is A-
balanced, if there exists at most one job j ∈ J \ J+ such that ij ∈ A. We
say that a job j ∈ J \ J+ is A-processed if there is at most one machine i ∈ M
such that ij /∈ A and xij > 0.

In what follows we seek to find a subset A ⊆ E(G′(x)) such that each job
j ∈ J \ J+ is A-processed and each machine is A-balanced. We will show that
this is enough for a 3-approximation, by assigning each job j ∈ J \J+ to machine
i by a fraction of at most 2xij for each ij ∈ A, and not assigning it anywhere
else. Since every job j ∈ J \J+ is A-processed and xij ≤ 1/2 for all i ∈ M , job j
will be completely assigned. Also, since each machine is A-balanced, the load of
each machine i will be affected by at most the setup-time of one job j. This setup
time sij is at most C∗ by restriction (3). This and the fact that the processing
time of a job on each machine is at most doubled are the basic ingredients to
show the approximation factor of 3.
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Construction of the Set A. In the following, we denote by (T, r) a rooted
tree T with root r. Consider a connected component T of G′(x). Since G′(x)
is a subgraph of G(x), Lemma 1 implies that T is a pseudotree. We denote by
C = j1i1j2i2 · · · j�i�j1 the only cycle of T (if it exists), which must be of even
length. (If such a cycle does not exist we choose any path in T from j1 to some i�.)
Here the jobs are J(C) = {j1, . . . , j�} and the machines are M(C) = {i1, . . . , i�}.
In the cycle, we define the matchingKC = {(jk, ik) : k ∈ {1, . . . , �}}. In the forest
T \KC , we denote by (Tu, u) the tree rooted in u, for every u ∈ M(C). Notice
that by deleting the matching, no two vertices in M(C) will be in the same
component of T \KC .

For every u ∈ M(C), directing the edges of (Tu, u) away from the root, we
obtain the directed tree of which each level consists either entirely of machine-
nodes or entirely of job-nodes. We delete all edges going out of machine nodes,
i.e. all edges entering job-nodes. The remaining edges we denote by Au. We
define A := KC ∪⋃

u∈M(C) Au. We obtain the following to lemmas.

Lemma 2. Every job j ∈ J \ J+ is A-processed.

Lemma 3. Every machine i ∈ M is A-balanced.

Given set A, we apply the following rounding algorithm that constructs a new
assignment x̃. The algorithm also outputs a binary vector ỹij ∈ {0, 1} which
indicates whether job j is (partially) assigned to machine i or not.

Algorithm 1. Rounding(x)

1: Construct the graphs G(x), G′(x), and the set A as above.
2: For all ij ∈ E+, x̃ij ← 1 and ỹij ← 1;

3: For all ij ∈ A, x̃ij ← xij∑
k:kj∈A xkj

and ỹij ← 1;

4: For all ij ∈ E \ (E+ ∪A), x̃ij ← 0 and ỹij ← 0.

Theorem 1. There exists a 3-approximation algorithm for R|split,setup|Cmax.

Proof. Our algorithm first finds the smallest value C∗ for which [LST] is feasible.
This can be easily done with a binary search procedure. For that value C∗,
let x be an extreme point of [LST], and consider the output x̃, ỹ of algorithm
Rounding(x). Clearly x̃, ỹ can be computed in polynomial time. We show that
the schedule that assigns a fraction x̃ij of job j to machine i has a makespan of
at most 3C∗. This implies the theorem since C∗ ≤ OPT.

First we show that x̃ ≥ 0 defines a valid assignment, i.e.,
∑

i∈M x̃ij = 1 for
all j. Indeed, this directly follows by the algorithm Rounding(x): If j ∈ J+, then
there exists a unique machine i ∈ M with ij ∈ E+ and therefore j is completely
assigned to machine i. If j �∈ J+, then

∑
i∈M x̃ij = 1 by construction.

Now we show that the makespan of the solution is at most 3C∗. First notice
that for every ij ∈ E+ we have that 1 = x̃ij = ỹij ≤ 2xij , because ij ∈ E+
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implies that xij > 1/2. On the other hand, for every j ∈ J \ J+ we have that∑
k:kj∈A xkj ≥ 1/2, because at most one machine that processes j fractionally

is not considered in A. We conclude that x̃ ≤ 2x. Then for every i ∈ M it holds
that

∑

j∈J

(x̃ijpij + ỹijsij) =
∑

j:ij∈E+

(x̃ijpij + ỹijsij) +
∑

j:ij∈A

(x̃ijpij + ỹijsij)

≤
∑

j:ij∈E+

2xij(pij + sij) +
∑

j:ij∈A

(2xijpij + sij)

≤ 2C∗ +
∑

j:ij∈A

sij .

Recall that machine i is A-balanced, and therefore there is at most one job j
with ij ∈ A. Also, ij ∈ A implies that ij ∈ E(x) = {ij : xij > 0}, and hence, by
(3), sij ≤ C∗. We conclude that

∑
j:ij∈A sij ≤ C∗, proving the theorem. 
�

We finish this section by noting that our analysis is tight. Specifically, it can be
shown that the gap between the LP solution and the optimum can be arbitrarily
close to 3.

Theorem 2. For any ε > 0, there exists an instance such that (3−ε)C∗ ≤ OPT,
where C∗ is the smallest number such that [LST] is feasible.

3 A (1 + φ)-Approximation Algorithm

In this section we refine the previous algorithm and improve the approximation
ratio. Since [LST] has a gap of 3, we strengthen it in order to obtain a stronger
LP. To this end notice that inequalities (2) in [LST] are the LP relaxation of the
following restrictions of the mixed integer linear program with binary variables
yij for machine i and job j:

∑

j∈J

(xijpij + yijsij) ≤ C∗ for all i ∈ M, (4)

xij ≤ yij for all i ∈ M and j ∈ J. (5)

A stronger relaxation is obtained by applying a lift and project step [13] to
the first inequality. For some fixed choice ij multiplying both sides of the i-th
inequality (4) by the corresponding variable yij implies (by leaving out terms)

yijxijpij + y2ijsij ≤ yijC
∗.

In case C∗ − sij > 0, this inequality implies the valid linear inequality

xij
pij

C∗ − sij
≤ yij , (6)
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since every feasible integer solution has yijxij = xij and y2ij = yij . Note that,
in optimal solutions of the LP relaxation, yij attains the smallest value that

satisfies (5) and (6). We define αij = max
{
1,

pij

C∗−sij

}
if C∗ > sij , and αij = 1

otherwise, and substitute yij by αijxij to obtain the strengthened LP relaxation

[LSTstrong] :
∑

i∈M

xij = 1 for all j ∈ J, (7)

∑

j∈J

xij(pij + αijsij) ≤ C∗ for all i ∈ M, (8)

xij = 0 for all i ∈ M, j ∈ J : sij > C∗, (9)

xij ≥ 0 for all i ∈ M, j ∈ J.

Notice that this LP is at least as strong as [LST] since αij ≥ 1 and, therefore,
the C∗ values used in [LST] and [LSTstrong] might differ. Again binary search
allows us to find the minimum C∗ for which [LSTstrong] is feasible.

Let x be an extreme point solution of this LP. We use a rounding approach
similar to the one in the previous section. Proofs that are the same as in that
section will be skipped. Consider the graph G(x). As before, each connected
component of G(x) is a pseudotree, using the same arguments that justified
Lemma 1. Also, we define again a set of jobs J+ that the LP assigns to one
machine by a sufficiently large fraction. In the previous section this fraction was
1/2. Now we parameterize it by β ∈ (1/2, 1), to be chosen later. We define E+ =
{j ∈ E(x) : xij > β} and J+ = {j ∈ J : there exists i ∈ M with ij ∈ E+}.

Consider the subgraph G′(x) of G(x) induced by the set of nodes (J∪M)\J+.
Let A be a set constructed as in the previous section. Then every machine is A-
balanced and every job is A-processed. Now we apply the algorithm Rounding(x)
of the last section to obtain a new assignment x̃, ỹ. We show that for β = φ− 1
this is a solution with makespan (1+φ)C∗, where φ = (1+

√
5)/2 ≈ 1.618 is the

golden ratio. We need the following technical lemma.

Lemma 4. Let β be a real number such that 1/2 < β < 1. Then

max
0≤μ≤1

{

μ+max

{
1

β
,
1− μ

1− β

}}

= max

{
1

1− β
, 1 +

1

β

}

.

Theorem 3. There exists a (1 + φ)-approximation algorithm for the problem
R|split,setup|Cmax.

Proof. Let x be an extreme point solution of [LSTstrong], and let x̃, ỹ be the
output of algorithm Rounding(x) described in § 2. The fact that x̃, ỹ correspond
to a feasible assignment follows from the same argument as in the proof of
Theorem 1. We now show that the makespan of this solution is at most (1+φ)C∗,
which implies the approximation factor.

For any edge ij ∈ E+, we have xij > β and hence 1 = x̃ij = ỹij ≤ 1/β · xij .
Additionally, for every j ∈ J \J+, we have again, by the choice of A, that it is A-
processed. Hence,

∑
k:kj /∈A xkj ≤ β, because at most one machine that processes
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j fractionally is not considered in A. Thus,
∑

k:kj∈A xkj ≥ 1− β, which implies
that x̃ij ≤ xij/(1− β). Hence, for machine i,

∑

j∈J

(x̃ijpij + ỹijsij) =
∑

j:ij∈E+

(x̃ijpij + ỹijsij) +
∑

j:ij∈A

(x̃ijpij + ỹijsij)

≤ 1

β

∑

j:ij∈E+

xij(pij + sij) +
1

1− β

∑

j:ij∈A

xijpij +
∑

j:ij∈A

sij .

Since machine i is A-balanced, there exists at most one job j with ij ∈ A (if
there is no such job then i has load at most C∗/β). Let j(i) be that job, and
define μi = sij(i)/C

∗. Then notice that

xij(i)(pij(i) + αij(i)sij(i)) ≥ xij(i)pij(i)

(

1 +
sij(i)

C∗ − sij(i)

)

= xij(i)pij(i)

(

1 +
μi

1− μi

)

= xij(i)pij(i)
1

1− μi
.

Combining the last two inequalities we obtain that

∑

j∈J

(x̃ijpij + ỹijsij) ≤ 1

β

∑

j:ij∈E+

xij(pij + sij) +
1

1− β
xij(i)pij(i) + sij(i)

≤ 1

β

∑

j:ij∈E+

xij(pij + sij) +
1− μi

1− β
xij(i)(pij(i) + αij(i)sij(i)) + μiC

∗

≤ max

{
1

β
,
1− μi

1− β

}∑

j∈J

xij(pij + αijsij) + μiC
∗

≤ C∗
(

μi +max

{
1

β
,
1− μi

1− β

})

.

Therefore, by the previous lemma we have that the load of each machine is at
most C∗ ·max{1/(1−β), 1+1/β}. The approximation factor is minimized when
1/(1− β) = 1 + 1/β, hence β = (−1 +

√
5)/2 = (1 +

√
5)/2− 1 = φ − 1. Thus,

the approximation ratio is 1 + 1/(φ− 1) = 1 + φ. 
�
We close this section by showing that 1 + φ is the best approximation ratio
achievable by [LSTstrong].

Theorem 4. For any ε > 0, there exists an instance such that C∗(1 + φ− ε) ≤
OPT, where C∗ is the smallest number such that [LSTstrong] is feasible.

Proof. Consider the instance depicted in Fig. 1. It consists of two disjoint sets of
jobs J and J ′. Each job j� ∈ J forms a pair with its corresponding job j′� ∈ J ′.
Each such pair is associated with a parent machine i�p such that both j� and
j′� can be processed on this machine with setup time si�pj� = si�pj′� = φ/2 and
pi�pj� = pi�pj′� = 0. Each job j of each pair is furthermore associated with a child

machine ic(j) such that sic(j)j = 0 and pic(j)j = φ+ 1. 
�
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jt

j1 j′1 jk j′k

i1p ikp

ic(j1) ic(j
′
1) ic(jk) ic(j

′
k)

· · ·

pij = 0
sij = 1

pij = 0

sij =
1

2
φ

pij = φ+ 1

sij = 0

Fig. 1. Example showing that [LSTstrong] has a gap of 1 + φ

4 A 2-Approximation Algorithm for Restricted
Assignment

We also consider the restricted assignment case, where for every j ∈ J there
are values pj and sj such that pij ∈ {pj,∞} and sij ∈ {sj,∞} for all i ∈ M .
For this setting we obtain an improved approximation ratio of 2, also based on
rounding the [LSTstrong] relaxation. After constructing the same graph G(x), we
distribute the processing requirement of each job to the machine corresponding
to its child nodes. Although this might increase the processing requirement of
a job on the child machines by more than a factor 2, we show that increasing
the load of these machines by C∗ suffices to completely process the job and its
setup.

Theorem 5. There exists a 2-approximation algorithm for scheduling splittable
jobs on unrelated machines under restricted assignment.

5 Hardness of Approximation

By reducing from Max k-Cover, we derive an inapproximability bound of
e/(e − 1) ≈ 1.582 for R|split,setup|Cmax, indicating that the problem might
indeed be harder from an approximation point of view compared to the classic
R||Cmax, for which 3/2 is the best known lower bound.

Theorem 6. For any ε > 0, there is no
(

e
e−1 − ε

)
-approximation algorithm for

R|split,setup|Cmax unless P = NP.

6 A Job Configuration LP

A basic tool of combinatorial optimization is to design stronger linear programs
based on certain configurations. These LPs often provide improved integrality
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gaps and thus lead to better approximation algorithms as long as they can be
solved efficiently and be appropriately rounded. In machine scheduling the most
widely used configuration LP uses as variables the possible configurations of jobs
in a given machine. These machine configuration LPs have been successfully
studied for the unrelated machine setting since the pioneering work of Bansal
and Sviridenko [3]. Recent progress in the area includes [19,6,22,20].

Unfortunately, while there is a natural extension of the concept of machine
configurations to R|split,setup|Cmax, this formulation surprisingly exhibits the
same integrality gap of 1 + φ as already observed for [LSTstrong]. Instead, we
introduce a new family of configuration LPs, which we call job configuration LPs.
A configuration f for a given job j specifies the fraction of j that is scheduled
on each machine. The configuration consists of two vectors xf ∈ [0, 1]M and

yf ∈ {0, 1}M such that
∑

i∈M xf
i = 1 and yfi = 1 if and only if xf

i > 0. On

machine i ∈ M configuration f requires time tfi := pijx
f
i +sijy

f
i . Let Fj be the set

of configurations for job j with tfi ≤ C for all i ∈ M . Then every feasible solution
to R|split,setup|Cmax with makespan C corresponds to an integer solution of

[CLP]:
∑

f∈Fj

λf = 1 for all j ∈ J,

∑

j∈J

∑

f∈Fj

λf t
f
i ≤ C for all i ∈ M,

λf ≥ 0 for all f ∈
⋃

j∈J

Fj .

Note that this formulation has infinitely many variables. However, by investi-
gating the separation problem of the convex dual of [CLP], we can show that
we can restrict [CLP] without loss of generality to the finite subset of so-called
maximal configurations. A configuration f ∈ Fj is maximal, if there is at most

one machine i ∈ M with 0 < xf
i < xmax

ij , where xmax
ij := (C − sij)/pij .

Theorem 7. [CLP] is feasible if and only if the restriction of [CLP] to maximal
configurations is feasible.

It can further be shown that after discretizing the configurations, the dual sep-
aration problem can be solved in polynomial time, implying that [CLP] can be
solved efficiently up to a factor (1+ ε). Henceforth, we will restrict Fj to the set
of maximal configurations for each job j ∈ J .

Projection of the Job Configuration LP. Observe that any convex combi-
nation of job configurations λ can be translated into a pair of vectors xλ, yλ ∈
[0, 1]M×J in the assignment space by setting

xλ
ij :=

∑

f∈Fj

λfx
f
i and yλij :=

∑

f∈Fj

λfy
f
i .
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We show that applying this projection to [CLP] leads to assignment vectors
described by the following set of inequalities:

[CLPproj] :
∑

j∈J

(pijxij + sijyij) ≤ C for all i ∈ M, (10)

∑

i∈M

(βixij + γiyij) ≥ M(j, β, γ) for all j ∈ J, β, γ ∈ R
M , (11)

with M(j, β, γ) := min
{∑

i∈M (βix
f
i + γiy

f
i ) : f ∈ Fj

}
.

Theorem 8. If λ ∈ [CLP] then (xλ, yλ) ∈ [CLPproj]. Conversely, if (x, y) ∈
[CLPproj] then there exists λ ∈ [CLP] such that x = xλ and y = yλ.

We conclude by showing that already a very special class of [CLPproj]-inequalities
is sufficient to eliminate the gap in the worst-case instances of [LSTstrong]. For a

set of machines S ⊆ M let L(j, S) :=
∑

i∈M\S max
{C−sij

pij
, 0

}
be the maximum

fraction of job j that can be processed within time C by the machines in M \S.
The following inequalities are satisfied by the vector x, y induced by any feasible
solution to R|split,setup|Cmax with makespan at most C.

∑
i∈S′ xij

1− L(j, S ∪ S′)
+
∑

i∈S

yij ≥ 1 for all j ∈ J and S, S′ ⊆ M with L(j, S∪S′) < 1.

Interestingly, these inequalities can be seen as a special case of inequalities (11)
by setting βi =

1
1−L(j,S∪S′) for i ∈ S′ and γi = 1 for i ∈ S. Furthermore, consider

the example instance given in the proof of Theorem 4 (cf. Fig. 1). If C < 1 + φ,
then L(j, {ip(j)}) = C/pic(j)j < 1 and therefore yip(j)j = 1 for all j ∈ J ∪ J ′

in any feasible solution to [CLPproj]. This immediately implies infeasibility of
[CLPproj] for C < 1 + φ. We also note that the exact same argument applies to
the worst-case instance of the machine configuration LP.
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