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PLANIFICACIÓN ÓPTIMA DE GENERACIÓN ELÉCTRICA EN MULTIETAPAS 

CONSIDERANDO CAMBIOS EN LAS POLÍTICAS DE ENERGÍAS RENOVABLES 

Se presenta un modelo para diseñar un plan de acción para la generación eléctrica que incorpora 

futuro riesgo de cambio en la política de energía renovable. El modelo permite un plan en 

múltiples etapas, en donde algunas decisiones pueden ser tomadas hoy y otras pospuestas al 

futuro, cuando la incerteza de un cambio de política es revelada. El modelo es lo suficientemente 

flexible para considerar diversas potenciales medidas de energías renovables, las cuales pueden 

ser implementadas por medio de penaltis, impuestos a la emisión de carbono, subsidios u otros. 

El modelo es resuelto por medio de una descomposición tipo Benders para poder lidiar con un 

problema de altas dimensiones como la planificación eléctrica de un país. Se muestra que la 

planificación en múltiples etapas muestras mejorías substanciales en términos de costos y 

reducción de riesgo.  

El modelo es implementado para el SIC (Sistema Interconectado Central de Chile), para 2 etapas 

o años objetivos, 2025 y 2035, en que se elaboraron 3 casos, el primero en el cual no hay cambios 

en políticas de energía renovable, el segundo en el cual desde el año 2035 hay un chance de que 

se imponga una política de impuesto a las emisiones de carbono y finalmente, el último caso en 

que en el año 2035 se impone una política de 33% de generación mínima renovable no 

convencional. 

Para los 3 casos mencionados anteriormente se tienen distintos portafolios energéticos, donde se 

puede apreciar el efecto que tiene cada cambio de política para el sistema de generación eléctrica 

de un país. 

El principal objetivo de esta tesis es elaborar un modelo que permita la incorporación del riesgo 

ante cambios de políticas en el tiempo en la planificación y operación de generación eléctrica. 
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OPTIMAL ELECTRICITY GENERATION PLANNING UNDER RENEWABLE 

POLICY TARGETS 

We present a multi-stage model to design the expansion planning for electricity generation to 

incorporate future ‒although uncertain‒ new renewable policy targets. The model allows an 

expansion planning in multiple stages in which some decision can be taken today, and others 

postponed to the future, when the uncertainty of new potential policies are eliminated. The model 

is flexible enough to consider diverse 'potential' renewable policy measures which can be 

implemented by different mechanisms such as penalties, carbon taxes, subsidies, amongst others. 

The model is solved by a Benders decomposition algorithm to tackle large dimension problems 

for a country level planning for electricity generation. We show that a multi-stage planning 

provide important economic benefits in term of costs and risks reductions. 

 

The model is implemented for the Chilean Central Interconnected System (CIS), for 2 stages or 

objective year, 2025 and 2035, in which we elaborate 3 different cases, first the system without 

changes of renewables policy, the second one, the system with a probability of a carbon tax 

implemented since 2035, and the last one, the model with a 33% policy target. 

For the 3 cases mentioned above have different energy portfolios, where you can see the effect 

each change of policy for the power generation system of a country. 

The main objective of this thesis is to develop a model that allows the incorporation of risk from 

policy changes over time in the planning and operation of electric generation 
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1. Introduction 

"BEIJING — China and the United States made common cause on Wednesday against the threat of 

climate change, staking out an ambitious joint plan to curb carbon emissions as a way to spur nations 

around the world to make their own cuts in greenhouse gases. The landmark agreement, jointly 

announced here by President Obama and President Xi Jinping, includes new targets for carbon emissions 

reductions by the United States and a first-ever commitment by China to stop its emissions from growing 

by 2030." (New York Times. November 11th, 2014) 

"With this Clean Power Plan, by 2030, carbon pollution from our power plants will be 32 percent lower 

than it was a decade ago..... Over the next few years, each state will have the change to put together its 

own plan for reducing emissions -- because every state has a different energy mix". (Barack Obama 

Speech about U.S. announced of the new Clean Power Plan. August 3rd, 2015).   

 

The expansion planning for electricity generation is a complex problem, in which a strategy for 

the  future construction of generation plants is designed, constrained to economic projections 

(e.g. costs prediction, risk exposures, uncertainty regarding future demands of energy) and 

operational issues (e.g. stability of the system and security supply). However, in recent years, 

expansion planning for electricity generation is facing new challenges due to a generalized 

environmental concern. Many plants of electricity generation, such as those based on fossil-fuels, 

can induce serious environmental damages including global warming, pollution, acid rain, and 

rising sea levels. In the last 10 years, an increasing number of countries are committed to reach 

progressively new renewable policy targets. For instance, the Renewables 2015 Global Status 

Report, from REN 21, shows that 164 countries have renewable policy targets by 2015 from only 

55 countries by early 2005.
1
 These renewable policy targets has been (or they will be) 

implemented by each country through different mechanisms, including strict quotas for 

renewable generation (with the possibility of removing generation permissions) or by inducing 

economic incentives (e.g. penalties, carbon tax and subsidies) to induce change in the 

technologies for electricity production (see, e.g., Stern, 2008; Harstad, 2012a,b; Marron and 

Toder, 2014). Although a rapid pace of policy adoption can encourage renewable energy 

development and reduce carbon emissions, it can also be risky if renewable policies are not 

considered properly in the optimal design for the expansion planning for electricity generation. 

                                                 
1
 REN21 is an international non-profit association made up of members of international organizations (e.g., 

European commission, UNIDO and the World Bank) and governments (e.g., United Kingdom, Norway and Brazil). 
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For example, in the case that the electricity generation planning does not take into account a 

potential future renewable policy target, which can be implemented with severe economic 

penalties, today it can be economically convenient to install a fossil fuel power plant to expand 

the energy matrix. Afterwards, if the renewable policy target is implemented, the decision of 

having installed a technology with high emission factor will increase the cost of the system above 

the level expected. Thus, given the current environmental concern, 'potential' new (or changes in) 

renewable policy targets has to be taken into account in an expansion planning for electricity 

generation. 

We propose a novel multi-stage model to design the expansion planning for electricity generation 

to incorporate future ‒although uncertain‒ new renewable policy targets. The model allows an 

expansion planning in multiple stages in which some decision can be taken today, and others 

postponed to the future, when the uncertainty of new potential policies are eliminated (i.e. after 

the future disclosure of the new policy measure from governments and/or regulators). The model 

is flexible enough to consider diverse 'potential' renewable policy measures which can be 

implemented by different mechanisms such as penalties, carbon taxes, subsidies, amongst others. 

The model deliver an optimal allocation of new electricity generation plants, which can operate 

with different technologies including the use of fossil fuels (e.g. Coal, Oil and Liquefied Natural 

Gas), conventional renewables (e.g. Hydro and Run-of-River) and  non-conventional renewables 

(e.g. Solar Photovoltaic, Wind, Biomass, Geothermal, Concentrated Solar Power and Small-

hydro), for effect of this thesis, we used this classification of technologies although is little 

different to international community. The model generate an optimal allocation of plants in each 

stage by taking into account simultaneously: changes in renewable policy targets, expected costs, 

risk exposures (i.e., prices volatilities, hydrological scenarios and demand growth) and 

operational issues to assure the electricity supply security(e.g. generation reserves to maintain 

reliable operation).   

  

As mentioned above, increasing concern for environmental protection has driven countries all 

over the world to introduce progressively new renewable policy target, which induce a change in 

the 'rules of the game'. There is also an uncertainty of the 'levels' of future new policy targets and 

'how' they will be implemented.  For instance, the target adopted in Europe in 2008 is to reach a 

20% share of total final energy production from renewables generation by 2020; however it was 
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uncertain the target for 2030. In 2011, the European Renewable Energy Council (EREC) 

suggested as potential target a 45% share of total final energy from renewables by 2030. 

However, just in 2014, José Manuel Durão Barroso (President of the European Commission) 

announced the official European target of 27% of renewable energy generation share by 2030. 

Moreover, there is uncertainty of the continuity of some incentives, which has been already 

implemented by governments to induce renewable generation of energy. For example, Alexander 

Dombrovski (advisor to the President of Ukraine) announced on October 2014 that Ukraine 

removed its income tax exemption for companies that sell renewable electricity. In addition, in 

the United States there is uncertainty of the continuity of the Energy Investment Tax Credit (ITC) 

which will last until December 2016.
2
 Consequently, the uncertainty generated by 'potential' 

changes and/or new energy policies may affect the development of future electricity generation 

projects.  

The model not only considers simultaneously potential changes in renewable policy measures 

jointly to investment and operational costs, but also it takes into account variables related to 

security supply and risk exposures. The model includes operational issues in relation to security 

of electricity supply, since the system must be capable of absorbing changes from the intermittent 

electricity production of renewable technologies (see, e.g., De Jonghe et al. 2010; and Pérez-

Arriaga and Battle, 2012; and Inzunza et al. 2014). For instance, in the case of an electricity 

generation planning which is mainly composed of renewable technologies which are 

characterized by an irregular electricity generation, it would probably necessary to install at the 

same time fossil-fuel plants as reserves, in order to generate electricity in hours when the 

renewable resource is not available (e.g. electricity generation based on the solar photovoltaic 

technology does not generate at night, in the absence of solar radiation). In this context, several 

authors have already focused on security supply in expansion generation. For instance, Huang 

and Wu (2008), Gotham et al. (2009), and Vithayasrichareon and MacGill (2014) analyze an 

optimal planning with different quotas of renewable generation, in which the objective is to 

deliver a secure sustainable electricity system by taking care of the operational aspects of the 

technologies' allocation. Delarue et al. (2011) include additional operational constraints to allow 

an efficient absorption of the generation system in cases of intermittent renewable outputs. 

Recently, given the high growth the growth of renewable generation,  De Jonghe et al. (2010), 

                                                 
2
 The ITC reduces federal income taxes for qualified tax-paying owners based on capital investment in renewable 

energy projects. 
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Pérez-Arriaga and Battle (2012) and Inzunza et al. (2014) suggest that additional security supply 

constraints has to be considered to provide more stability to the system.  

Our multi-stage planning model maintaining system security levels through scheduling various 

types of reserves jointly to the provision of various tools and controls to give stability to the 

system such as: the use of demand side services (customers responding to a signal to change the 

amount of energy they consume from the power system at a particular time); inclusion of the 

preservation of system inertia levels (the amount of kinetic energy stored in all spinning turbines 

and rotors in the system) and spinning and standing reserves (i.e., an optimal reserves allocation 

of diverse technologies to give stability to the system).  

Furthermore, the multi-stage model takes into account risks associated to unexpected changes in 

economic variables and diverse climate conditions. Historically, even in recent years, the 

expansion planning for electricity generation has been performed mainly from a perspective of 

minimizing costs (see, e.g., Neuhoff et al. 2008; Steffen and Weber, 2013; and Eide et al., 2014). 

However, an expansion planning faces several uncertainties due to the fact that is designed to 

operate in the 'future'. Thus, future electricity generation will face several risks such as 

unexpected changes in fossil-fuel prices, changes in the demand growth and different weather 

conditions. In fact, if we break down electricity production into the different technologies used 

for generation, each technology can be seen as part of a large portfolio with different assets. 

Hence, the use of multiple technologies based on renewables and fossil-fuels can induce benefits 

of diversification and thus reduce levels of risk exposure, given the diverse characteristics and 

different underlying stochastic processes that describe their costs and generation availability.
3
 For 

instance, on average the highest demand requirement on a day is in general between 12:00 and 

14:00 hours, which is exactly the time when photovoltaic generation has the maximum 

availability for electricity production(in the case of SIC of Chile); hence renewable technologies 

can also be used to hedge changes in  demand.  To evaluate the level of these sources of 

uncertainty, we use the Conditional Value-at-Risk (CVaR). The use of the CVaR is due to two 

main reasons: firstly, it is a coherent measure of risk (see Artzner, 1999) which has some useful 

properties for our model such as sub-additivity, monotonicity and positive homogeneity; and 

secondly, optimization problems with CVaR (thanks to its properties as a coherent measure of 

risk) can be reduced to linear programming problems (see Rockafellar and Uryasev, 2002). 

                                                 
3
 Portfolio analysis in the energy sector was introduced by Bar-Lev and Katz (1976) and recently by Awerbuch and 

Berger (2003), Awerbuch (2006), Jansen et al. (2006), Delarue et al. (2011) and Inzunza et al. (2014). 
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The model is solved by a Benders decomposition algorithm to tackle large dimension problems 

for a country level planning for electricity generation. The  Benders decomposition algorithm 

consists in dividing the optimization problem in two sub problems called master and slave. The 

master problem is formulated to optimize the investment decision (i.e. installed capacities per 

each form of electricity generation) in the present and future stages of the optimal generation 

planning. The slave problem is formulated to make optimal dispatch decisions 'hour by hour' in 

the system (i.e. the hourly generation per each plant); and thus take into account generation 

profiles of renewable technologies and profiles of the demand to take into account dynamics of 

the electricity consumption over the day. These dispatch decisions represent the operation of the 

capacity imposed by the first stage. In each iteration, the algorithm guide the master problem 

based on the dynamics of the slave problem, as it progresses towards an optimal expansion 

planning.  

We implement the multi-stage planning in a real (country level) power system. The aim of this 

implementation is to present a genuine example of an expansion planning, including different 

analyses and policy exercises, which  can be used as a guide to implement  our approach in other 

regions or countries. We implement the model for the Chilean Central Interconnected System 

(CIS), where expansion planning is performed in a two-stage decisions problem. The first set of 

decisions are made in 2015 to build generation plants that will be operative in 2025 (henceforth, 

stage I). The second set of decisions are made in 2025 for the construction of generation plants 

that will be operative in 2035 (henceforth, stage II). The generation planning for 2025 consider  

the current installed capacities which are already based in different generation technologies; 

while that the generation planning for 2035 is also conditional to the installed capacity 'planned' 

for 2025. In addition, the decisions made in 2025 (for stage II, objective year 2035) are 

conditional to the information observed in that year; thus in the second stage it is possible to 

adjust the expansion planning based on future 'knowledge' which is not currently available. 

Future information received in 2025 is not only concerning to 'potential' renewable policy 

changes, but also it is about changes in fossil-fuel prices, future hydrological scenarios and 

changes in the growth rates for projected demands.  

The implementation of our multi-stage planning model in the Chilean CIS is useful to understand 

the benefits of postponing decisions to the future, when more information is available and 

uncertainties are reduced. In order, to analyze the benefits of the decision flexibility of our multi-
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stage approach, we compare our multi-stage planning model with a single-stage planning model 

in which all expansion decisions are developed today and they cannot be modified. Hence, when 

we implement the single-stage planning model in the Chilean generation system, all decision are 

made in 2015 which includes to start building generation plants right now (which will be 

operative in 2025) and to  start the construction of generation plants in 2025 (which will be 

operative in 2035). The main difference of the single-stage planning in relation to the multi-stage 

planning is that the former cannot modify decisions in 2025 (decisions are fixed), while that in 

the later the expansion plan can be modified in 2025 depending of the new information received. 

We show that, even in a scenario without changes in policy measures, our multi-stage planning 

model provide important economic benefits in term of costs and risks reductions. Costs and risk 

reduction are observed since updated information in 2025 about regarding uncertain hydrological 

scenarios, fossil-fuel prices and demand growth is used in the optimal planning for stage II.  

Finally, we perform two policy exercises to analyze the risk of a 'potential' change in renewable 

policy measures. Firstly, we analyze the effect of a 'potential' future carbon tax of 10 dollars per 

tones of CO2 under our multi-stage planning model, which is compared to a single-stage 

expansion plan. This carbon tax is uncertain and it may be announced with a 50% of probability 

in 2025 and it will be implemented in 2035. We show that economic benefits are larger for the 

multi-stage planning model than the single stage-setup when the uncertainty of a policy tax is 

included. For instance, for an average level of risk, there is a 41% of more savings thanks to the 

flexibility of the multi-stage model when there is an additional uncertainty coming from a 

potential carbon tax than in the case when there is only uncertainty coming from hydrological 

scenarios, fossil-fuel prices and demand growth.  

Secondly, we analyze the impact of a 'potential' policy target. We analyze the case where there is 

a policy target of 33% share of total electricity generation from non-conventional renewables by 

2035.
4,5

 We assume that this policy target is uncertain and it may be announced with a 50% of 

probability by 2025 and it will be implemented in 2035. In the case that this target is not reached, 

a penalty of 50 dollars is charged in each hour per megawatt which is not generated through non-

                                                 
4
 Non-conventional renewable technologies for the Chilean regulation consider all renewable technologies excluding 

large hydro reservoirs and run-of-river with installed capacity larger than 40 megawatts. Large hydropower plants 

(hydro-reservoirs and run-of-river) are considered as conventional renewable energy sources. This type of energy is 

the most used in Chile, with a participation of approximately 40% in the current energy matrix.  
5
 A potential policy target of a target of 33% share of total electricity generation from non-conventional renewables 

by 2035 in the Chilean CIS is congruent with the current environmental policy from Government of Chile. Currently, 

there is already a target of 20% share of total electricity generation from non-conventional renewables by 2025. 
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conventional renewables. We show that there are also important economic benefits of take into 

account the risk of a new policy target in the multi-stage expansion model. In addition, we 

present evidence that an optimal allocation of technologies including non-conventional renewable 

generation can generate a diversification effect by reducing not only the risk from uncertain 

hydrological scenarios, but also the financial risks of the system generated by volatility of fossil-

fuel prices. Hence, we also shows that economic benefits of the multi-stage are less evident when 

the optimal planning is designated to reduce the levels of risk, because already for this building 

plans are considered a high level of non-conventional renewables.   

A deficient expansion planning in the energy sector may limit economic growth and human 

development by affecting key elements of the well-functioning of a country (e.g. industrial 

production, telecommunications, financial markets, health services and security systems). Thus 

our multi stage model gives an step ahead in term of flexibility and adaptability to the expansion 

of the energy matrix, depending of future environmental conditions, political scenarios, 

operational issues and economic dynamics. The rest of the thesis is organized as follows. Section 

2 introduces the multi-stage model to determine expansion planning for electricity generation. 

Section 3 describes the model implementation. Section 4 presents the main results jointly to 

policy exercises in relation to changes in renewable policy measures. Section 5 concludes. 
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2. The Model 

 Consider an expansion planning for electricity generation in which decisions about the 

construction of generation plants can be taken at different stages.  Hence, some decision can be 

taken today and others can be postponed to the future in    years when more and useful 

information is available, where    is the current time and             . For convenience, let 

the current planning time be equal to zero. There is a set of different technologies              

that can be used to build generation plants of electricity, which will take   years to be built.  

The generation plants can potentially generate electricity in each hour                 of the 

year (i.e. 365*24=8760 hours). The potential electricity produced in each hour by the technology 

  depends of installed capacity of generation in megawatts [MW],     , and on the features of the 

technology (i.e. solar generation levels are different in summer and in winter , and it can be only 

obtained when there is sunlight). The installed capacity of generation by the technology   is 

composed by the direct capacity,   , to meet the demand plus the governor reserves,      
  , which 

reflect the capacity in megawatts that is exclusive for 'governor' (i.e. a feedback controller) to 

control system frequency after sudden, large disturbances and thus to keep the security of 

electricity supply (i.e.,             
  ).  

We include the possibility of demand side services (DSS), in which customers responded to 

signals (e.g. signals can be economic incentives such discounted prices for electricity) to change 

the amount of energy that they consume from the system power at a particular time. Demand side 

services can help shift electricity consumption away from peak hours where electricity 

consumption is high, or enable greater usage of excess electricity generation from renewables, as 

well as help maximize the use of a smart infrastructure. However, switches in the demand are 

costly (e.g. additional costs given the discounted prices to generate the change in the demand 

and/or shifst in the demand to different schedules can induce some social costs ). The cost of 

demand decrease (increase) due to shifts in demand is     (   ), in which the amount of 

changes in demand is   
   (  

 ).    

Suppose that there is a set of states                that will describe the generation features in 

all years in the period [       ]. The state    that will be governing the period between    and 

     includes: i) renewable policy measures,      , such as renewable quotas, potential 

subsidies and/or penalties for renewable and fossil-fuel technologies; ii) the annuitized 
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investment cost,         , to install the technology  ; iii) the operation and maintenance costs, 

         per hour of electricity generated  by using the technology  ; iv) hydrological 

conditions to evaluate effects of the uncertainty that such condition on the constructions of plants 

based on hydrological scenarios; and v) the demand,       , per hour [MWh] in a representative 

year between    and      which is updated depending of projections of the demand growth. The 

values     (    and           may be affected by      , since they can include potential 

economic incentives (or disincentives) for the generation based on particular types of 

technologies. In the section Results, we show two examples of changes in the policy renewable 

(carbon tax and target of generation renewable). 

Let       be the possible set of planning decisions (i.e. construction of electricity generation 

plants, the hourly generation in each plant in a representative year) in the period [       ] given 

the state   . Suppose that the optimal group of planning decisions is  ̃          for the state   ,  ̃ 

embraces: a) the installed capacity of generation in megawatts [MW] for the technology   

denoted by         , which it has to be taken in      given the fact that a generation plant take   

years to be built and where                     
      ; b) the generation,          in 

megawatts per hour [MWh] in the state    for the technology   and the hour  ; and c) the demand 

switches for the demand side services in which    
       and    

       are negative and positive 

shifts in the demand, respectively.   In the case that optimal group of planning decisions is  ̃ in 

the state   , this group of decisions may generate a lost load,        , in a given hour   in which 

there is non-supply of electricity: 

                 
        

      ∑        

     

   (1) 

which is costly since there is a social cost,     , when the demand is not fully covered. The 

present value of the costs of the system at time   ,      , for the period [       ] facing the 

scenario    is given by : 

      ∑
 

      
*∑                  

     

 ∑ ∑                  

          

       

   

 ∑   
          

     

∑   
         

     

      ∑        

     

+ 

(2) 
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where   is the annual discount rate for the generation planning. The cost of the system,      , 

between    and      has four components: the investment costs,                  ; the 

operation and maintenance costs,                  ; potential additional costs due to shifts in 

demand,   
          and   

         ; and the social costs of  non-supply of electricity in the 

hour  ,             .  

As a first step, we describe the multi-stage model without taking into account operational 

constraints. However, afterward, we will include additional constraints to the system to describe 

realistic conditions of the generation planning and electricity distribution, especially regarding 

the security of electricity supply.  

The optimal allocation in the multi-stage model is based on a portfolio analysis, in which both 

costs and risks are incorporated in the optimal decision. Portfolio analysis in the energy sector 

was introduced by Bar-Lev and Katz (1976) and recently used by Awerbuch and Berger (2003), 

Awerbuch (2006), Jansen et al. (2006), Delarue et al. (2011) and Inzunza et al. (2014). The main 

difference of our model with previous planning for electricity generation is that we incorporate 

the possibility of decisions in multiple stages, which is used to reduce the risk of changes in 

renewable policy targets and risk exposures (i.e., prices volatilities, hydrological scenarios and 

demand growth).  Moreover, and differently from previous studies, we analyze simultaneously in 

a multistage setup operational aspects in terms of the security of electricity supply, social costs of 

non-supply, and include several features to characterize properly a country level electricity 

planning 

Therefore, the value of the total planning cost in the year     ,        , in which the new plants 

will be built and operative in the year    is given by the Bellman equation of the optimization 

problem expansion planning for electricity generation, which is constrained by a given level of 

risk: 

           
 ̃      

 

            
∑ [      

 

      
     ]

      

      
(3) 

  s.t 

 

   
∑             

            

       
(4) 
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Where        is the probability of occurrence of the state   , and the risk is characterized by the 

Conditional Value-at-Risk (    ).  

Nevertheless, the constraint in equation (4) is not linear, which makes large dimension 

optimization problems difficult to solve. Nevertheless, Rockafellar and Uryasev (2002) and 

Krokhmal et al. (2002) show that a CVaR constraint in a portfolio optimization problem can also 

be written as a linear programming problem, by adding a set of linear constraints and auxiliary 

variables (due to the properties of the CVaR given that is a a coherent measure of risk, see 

Artzner, 1999). Thus, we can re-write equations (3)-(4) as: 

           
   ̃      

 

      
∑ [      

 

      
     ]

      

      
(5) 

  s.t.   

  
 

   
∑         

      

             
(6) 

              (7) 

Where   is an auxiliary variable that is now  part of the optimization problem; while    is another 

auxiliary variable that reflects right deviation of the cost with respect to  . The risk tolerance 

level in the      is given by   , which represents the α-CVaR's upper bound of generation 

portfolio costs. 

 

2.1 Operational Constraints and demand shifting 

 In terms of operational constraints to maintain the security of electricity supply, it is 

important to take into account that it is not possible to increase (or to reduce) instantaneously and 

drastically the generation of electricity when there is a modification in generation conditions. For 

instance, neither turbines from a large hydro-generation plant nor a coal based generation plant 

can instantaneously change their level of electricity production, because there is kinetic inertia in 

both turbines and rotors. Modifications in generation conditions are quite important when 

renewable generation plants are in the system. For example, there is no electricity generation 

from plants using solar energy at night; thus other technologies have to be used at night. 
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Therefore, we impose constraints to ramp rates, in relation to the rates that reflect 'how' quickly a 

technology i can modify its electricity production 

Suppose that the number of online generation units synchronized to the power system is          

from the technology  , in the hour   under scenario    (e.g., the online plants of windmills for 

wind generation). Let    (  ) be the maximum (minimum) power output of each unit of 

technology  : 

                                    (8) 

                        (9) 

In terms of ramp rates, which are the rate that a plant changes its output-generation (this rate is 

expressed in megawatts per hour), we constraint the difference in output-generation between two 

consecutive hours. Let    be the ramp rate limit for the technology  , then we add the constraint::  

                   

    {                   }                              

 (10) 

                   

    {                   }                               

 (11) 

Equations (10) (Equation (11)) reflect the constraint that in the ramping-up case (ramping-down 

case), the change in generation cannot be larger than the ramping capability of the units that are 

connected during two consecutive hours, plus the output of units connected (disconnected). It is 

assumed that units are both connected and disconnected at their minimum output, which is a 

conservative assumption.  

The model also considers constraints in terms of demand shifting for demand side services 

(DSS). Thus, the demand can change in every period under some limits given by: 

  
        

 
        

and 

 (12) 

  
        

 
         

 (13) 
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where   
 

and   
 

 are the maximum proportion of demand in any hour that can be reduced and 

augmented, respectively.  However, the model also imposed that demand changes due to demand 

shifting are balanced within a time window: 

∑   
     

      
 

 ∑   
     

      
 

     (14) 

where   represents a set of days in a year, and   
  is a set of hours in a time window of 24 hours.  

 

 

 

 

Constraints for renewable generation 

 The model constrains the generation according to normalized hourly profiles depending of 

the technology used for in each plant. Suppose that the generation technology    uses wind; thus 

this technology is constrained by:  

                              (15) 

Where         is the maximum generation output factor ‒a value between zero and one‒ for 

wind which describe the profile for every hour of a representative year  in the period [       ]. 

Suppose that the generation technology     is by solar photovoltaic, there is also an upper bound 

constraint given by: 

                                 (16) 

Where          is the maximum generation output factor for solar photovoltaic for every hour of 

the year.  Similar upper bound restrictions are used to other renewable technologies such as 

biomass, geothermal, concentrated solar power or small hydro. In relation to run-of-river 

generation,    , we impose that: 

 
     

    
                                     (17) 

and for hydro-reservoir,    , generation:  
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                                         (18) 

in which           and          are the maximum generation availability for run-of-river and 

hydro-reservoir technologies, respectively; while       
    

 and       
     are decision variables which 

represent the capacities’ headroom in terms of spinning-kinetic reserves and mechanical reserves, 

respectively; this capacities’ headroom is used exclusively to regulate contingencies for primary 

frequency response (both expressed in megawatts).
6
 In addition, and also regarding to plants 

based on hydro-reservoir, let            denote the volume of stored water in reservoir in hour   

under scenario   ;              the water inflow per hour; and              the water lost through 

spillage. Then, the hydro-reservoir is constrained by:  

                                                
          

 

                           

 (19) 

with   is the efficiency of the hydro-technology and   is a factor used to consider losses of stored 

water due to evaporation and/or seepage in the reservoir. Finally, the model also considers that 

there is an upper bound of stored water,  ̅ , in a reservoir used for the plants with this technology:   

            ̅     (20) 

 

 

Security of electricity supply constraints and demand side service 

The model consider the use of headroom reserves to adjust possible contingencies unexpected 

changes in the generations of some plants and/or when a plant fails, which is very relevant when 

electricity plants based on renewable generation are in the system. This contingencies would 

induce a changes in frequency, and thus to affect the security of the electricity supply. Therefore, 

the model also has constraints for the dynamics of the primary frequency response. An optimal 

electrify generation planning is adequate in terms of the primary frequency response if system 

frequency does not drop below a given limit after any single generation contingency. 

                                                 
6
 In the case of fossil fuels, the upper bound constraints are     

    
         

                             

         where            is also the maximum generation availability for the fossil-fuel technology   in hour   

under scenario   . 
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We assume in our model that the system has a feedback controller, called 'governor' that 

identifies changes in system frequency. The mission of this governor is to turn on some reserves 

(capacity headroom), which we call 'governor reserves', that are used in the dispatch during 

contingencies. The governor reserves reflect the capacity that is exclusive for governors to control 

system frequency after sudden large disturbances in the system. Suppose that the optimal set of 

governor reserves, which are available in hour   under scenario   , for each of the different 

technologies is:     
           

              
      ,.

7,8 
Let’s assume that there is a large disturbance 

in system generation,   , measured in megawatts; thus we impose the following constraint for 

the security supply: 

   ∑    
  

     

      
 (21) 

The security supply constraint reflected in equation (21) is a necessary, but not sufficient 

condition to keep the stability of the system, because it is important to consider the reaction speed 

of reserves to produce electricity in terms of emergency ramp rates as described in equations 

(10)-(11). 

Suppose that     
         is the optimal governor reserve for the technology  , in hour   under 

scenario  ); this reserve is composed     
       online units which have a has an emergency ramp 

rate limit   . Let impose that governor has a dead band     (which is the interval of no action 

when a change in frequency is small) and the frequency cannot to drop below the level     .
9
 

Let’s assume that there is a large change in system generation,   , in which the pre-contingency 

frequency is   . Thus, we include the constraint presented in Chávez et al. (2014), where they 

show that the 'minimum' governor response emergency ramp rate of the reserves,   ∑        
       , 

in order to avoid levels below     , has to respect: 

       

              (∑          
               )

 ∑    
         

    

 
 (22) 

                                                 
7
 Spinning-kinetic and mechanical reserves,       

  and       
  as explained in equations (17)-(18), are subsets of the 

governor reserves. 
8
 It is important to notice that governor reserves usually are referred to reserves with fossil-fuel technologies; 

however we want to keep the generality of the model, thus any technology can contribute to the generation reserves. 
9
 Thus, in the first instants after a contingency, since there is a dead band, the system frequency is controlled by the 

inertial response of the own system.  
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Where    is the constant of inertia for technology  ,      is the maximum power output of each 

unit of technology  , and    is the constant of the missing unit that induces the contingency   .
10

 

Equation (22) reflects a constraint for the security of electricity supply including reserves for all 

technologies in an aggregated ways. Consequently, to improve the security supply of the system 

we also include constrains for the each of the reserves that uses different technology, and hence 

to take into account differences in ramp rates.  

Let        
   be the time in which the system can  recover after a contingency    with the  

governor reserves:        
       ∑        

       . Let        
   also be the time that a governor 

reserve with the technology   can reach its maximum electricity generation:        
  

      
          

      . Hence, we impose the constraint that all technologies have to respect that 

       
         

   which can be expressed as: 

      
  

      
     

 
  

∑       
     

  

 
 (23) 

Moreover, we limit the amount of reserves that can be provided by each generator as: 

      
                          (24) 

where    is defined in equation (8). 
11

 

To conclude this section, it is important to point out the several of the constraints above non-

linear which induce a complex problem when our model is implemented in a country level 

expansion planning for electricity generation. In the case of convex non-linear constraints, they 

are linearized by using tangent planes, and for the non-convex equations we define two 

alternative convex linear programming models that serve as upper and lower bounds to the 

optimal solution. In Appendix A we describe these simplifications.  

 

                                                 
10

 In equation (22) , ∑                      is equal to the post contingency system kinetic energy. 
11

 It is important to mention that the model can also analyze a contingency event by considering the use of demand 

side services (DSS) where customers may change the amount of energy they consume from the system after being 

provided with a signal. Hence, instead of analyzing a contingency event       the model also allows the analysis of 

the effect of DSS measures by assuming that a contingency is characterized by           
     , where 

   
      is the amount of change in electricity consumption in hour   under scenario   , from a DSS perspective 

which can be also used as a tool for the primary frequency control. 
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3. Model Implementation 

We implement our multi-stage model to plan the expansion in a real ‒country level‒ electricity 

generation system power. As mentioned in the introduction, the objective of this implementation 

is to provide a concrete example of the use of our model for an optimal expansion plan. This 

example is useful since it could be used as a guide for the implementation of our model in other 

countries.  

We implement the model to the Chilean Central Interconnected System (CIS). In the Chilean 

CIS, the current energy matrix is composed by conventional renewables technologies (run of the 

river and large hydro reservoirs), non-conventional renewables (solar photovoltaic, wind and 

biomass) and fossil fuels energy (oil, liquefied natural gas and coal). As the model considers a 

future generation plants, we also include new forms of non-conventional renewables sources such 

as small hydro, geothermal and concentrated solar power. 

The expansion planning is performed in a two-stage decisions problem. In the expansion 

planning, the first set of decisions are performed in 2015 for the construction of new generation 

plants which will be operative in 2025 (stage I). The second set of decision are developed in 2025 

to build additional generation plants, which will be operative in 2035 (stage II). We select the 

years 2025 and 2035 due to several reasons. In general countries select new policy target after 10 

years from the previous targets because it is necessary this period to adjust the installed energy 

matrix to reach the new policy goal (e.g. in Europe there is policy target of 20% and 27% share of 

total final energy from renewables are by years 2020 and 2030, respectively). Periods of 10 years 

is reasonable time to have the flexibility to build any generation plants, since some of them needs 

several studies of feasibility, studies of environmental impact, environmental permissions, and 

the construction per se.
12

  

Table 1 shows investment costs, maintenance costs, current installed capacity and projected 

upper bounds in terms of future new generation plants per each generation technology. It is 

important to notice that cost values in Table 1 do not include fossil-fuel costs. Investments costs 

and maintenance costs in Table 1 were obtained from projections described in the report called 

"Escenarios Energéticos- Chile 2030". The report  "Escenarios Energéticos- Chile 2030" was 

                                                 
12

 For instance, the International Energy Agency report that a large hydro reservoir plan can take up 7.5 years only 

for the construction, which starts after all studies of feasibility, studies of environmental impact, environmental 

permissions. See: http://www.iea-etsap.org/web/e-techds/pdf/e07-hydropower-gs-gct.pdf. 
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developed by a group of Chilean institutions associated with the electricity generation sector, in 

which academics participate, where the Chilean Ministry of Energy and the Chilean Ministry of 

Environmental Affairs are part of the advisory committee. In the implementation for the 

expansion planning of the Chilean CIS, we assume that these costs are constant between 2025 

and 2075. Current installed capacities based on the different generation technologies were taken 

from the Chilean Association of Electricity Generators (Electricity Bulletin dated in December 

2014).  Hence, planning decision for 2025 takes considers the current installed capacities; while 

that generation planning decisions for 2035 is also conditional to the installed capacity 'planned' 

for 2025. Upper bound capacities reflect the maximum capacities that could be installed by both 

years 2025 and 2035, which were carefully chosen for each technology depending on the 

availability of energy sources, taking into account the reality of Chile in terms of economic 

conditions and development, and the number of projects approved or being studied by the 

Chilean Ministry of Energy. 
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Table 1 Investment costs, maintenance costs, and current installed capacity and higher 

bounds for future installed capacities 

 

The table presents the annuitized investment cost, variable maintenance cost, lifespan, current 

installed capacity and maximum capacity (higher bound) for each generation technology 

considered in the model. Costs values do not include fossil-fuel costs. Costs values in this table 

are taken from research named "Energy Scenarios Chile 2030". The cost parameters are adjusted 

to the Chilean reality, thus they may differ with international values. Current installed capacities 

are taken from an Electricity Bulletin emitted by the Chilean Association of Electric Generators 

and are updated to December 2014. Higher bounds are carefully chosen for each technology 

depending on energy sources’ availability and the number of projects that could be ready for 

operation before 2035. Biomass technology used in this study is biogas which is used in an 

integrated gasification combined cycle with a load factor of 85%. 

 

 

 

Electricity generation based on renewable energy is intermittent and cannot be completely 

controlled since is affected by climate conditions; thus we use generation profiles. We obtain data 

of profiles hour by hour for generation based on solar, wind, small hydro based on climate 

conditions of a representative year, which were obtained from measurements in different regions 

of Chile. These profiles were provided by the Chilean Ministry of Energy and University of 

Chile. For instance, Figure 1 reports the solar generation profile in an average day and in each 

month of a representative year. Figure 1 shows that between 12:00 and 14:00 hrs are the hours of 

the day with highest generation availability through solar generation, and in the night it does not 

produce any energy through this technology; while that January and December are the months 

with highest  solar generation availability thanks to the summer in the southern hemisphere. 

 

 

 

 

Annuitized Investment 

Cost

Variable Maintenance 

Cost

Current Installed 

Capacity
Higher Bound

[$/kW-year] [$/MWh] [MW] [MW]

Coal 221 4,6 2394 6000

Oil 55 14,7 2303 4000

Reservoir 202 4,6 4053 10770

Wind 188 9,1 634 6150

Solar PV 132 4,4 169 4000

Liq. Nat. Gas (LNG) 93 2,9 2777 4000

Run-of-river 202 4,6 1965 6150

Biomass 241 4,3 504 1540

Geothermal 395 13,1 0 310

Small hydro 303 6,9 350 1230

Solar CSP 463 8,3 0 310
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Figure 1. Solar photovoltaic generation profile in an average day and in each month of a 

representative year.  

The left hand side of the figure shows the average profile of the maximum availability of solar 

photovoltaic generation per hour in an average day. The right hand side of the figure presents the average 

behavior of the maximum availability of solar photovoltaic generation in each month of a representative 

year. The solar photovoltaic profile was obtained from data provided by the Chilean Ministry of Energy 

and University of Chile.  

 

Figure 2 and Figure 3 also present the generation profile in an average day and in each month of a 

representative year for wind generation and small hydro generation, respectively. Figure 2 report 

that wind generation availability is highest at night and in January, July and December. In 

relation to small hydro, Figure 3 shows the behavior of rivers in Chile. In Chile an important part 

of the rivers receive snowmelt water. Thus, the generation availability increases progressively 

during the day when the sun melt the snow, and it is also highest in the Chilean summer time 

(January and December).
13

 

 
Figure 2. Wind generation profile in an average day and in each month of a representative year.  
The left hand side of the figure shows the average profile of the maximum availability of wind generation 

per hour in an average day. The right hand side of the figure presents the average behavior of the 

maximum availability of wind generation in each month of a representative year. The wind generation 

profile was obtained from data provided by the Chilean Ministry of Energy and University of Chile.  
 

                                                 
13

 The profile of geothermal is not explained since its highest   generation availability is almost constant with values 

around 0.85. 
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Figure 3 Small hydro generation profile in an average day and in each month of a 

representative year.  
The left hand side of the figure shows the average profile of the maximum availability of small hydro 

generation per hour in an average day. The right hand side of the figure presents the average behavior of 

the maximum availability of small hydro generation in each month of a representative year. The small 

hydro generation profile was obtained from data provided by the Chilean Ministry of Energy and 

University of Chile. 

 

In relation to generation plants based on both fossil-fuels, they have advantages and 

disadvantages. Fossil-fuel generation has as drawback the contribution to serious environmental 

problems due to the important level of CO2 emissions, which is responsible of pollution, global 

warming and acid rain. Fossil-fuel generation has also associated a financial risk due to the 

volatility of fossil fuel prices, which can affect directly the generation costs for the system (this 

price volatility will represent a source of uncertainty, as we will explain in the following 

paragraphs). However, fossil-fuel generation also has some advantages. Fossil-fuel generation is 

very effective as reserve to regulate generation in case of potential contingencies and to regulate 

the intermittency of generation based in renewable energy (e.g. solar or wind generation); thus 

they are fundamental to maintaining the security of supply electricity. In addition, some of the 

generations based on fossil-fuel (at present) are cheaper than other non-conventional renewable 

options.  

Conversely, electricity generation based on renewable energy has has also pros and cons. 

Renewable generation has as disadvantage that the levels of electricity productions vary over 

time and cannot be modified since they depend of the weather conditions (see Figures 1-3).  In 

addition, some renewable generation technologies have some higher prices than fossil-fuel 

technologies. Nevertheless, renewable energy production has benefits in terms of low levels of 

carbon emissions, which generate positive externalities to the environment. In addition, 
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renewable generation has some properties that can be used as a hedge tool against the volatility of 

fossil-fuel prices. For example, Awerbuch (2006) shows evidence that an optimal allocation of 

technologies including renewable generation can generate a diversification effect by reducing the 

financial risks of the system, generated by volatility of fossil-fuel prices. Furthermore, renewable 

generation has hedging benefits when the demand changes. For instance, we obtain the demand 

profile hour by hour for a representative year from the Chilean National Commission of Energy, 

and we observe that it is negatively correlated to the profile of renewable technologies. Figure 4 

shows the demand profile of electricity consumption in an average day and in each month of a 

representative year. Figure 4 shows that there is a high demand between 12:00 and 14:00 (which 

is the same time when there is highest solar generation availability), and the demand is also high 

at around 22:00 (the same time where there is highest generation availability with small hydro). 

In terms of the months of the year, the demand is o high in July when there a high level of wind 

generation, and it is also high in December when there is elevated generation availability from 

solar generation and small hydro generation.  

 

 

 

  
Figure 4 Demand profile of electricity consumption in an average day and in each month of 

a representative year. 

The left hand side of the figure shows the average profile of the demand of electricity 

consumption per hour in an average day. The right hand side of the figure presents the average 

behavior of the demand of electricity consumption in each month of a representative year. The 

demand of electricity consumption profile was obtained the National Commission of Energy 

which is Associated Chilean Ministry of Energy. 

 

The model is solved to determine optimal portfolios of generation technologies. We optimize the 

vector of generation capacities in a first stage, and the operation of the proposed generation 

infrastructure in a second stage, both of which are coordinated by a Benders-based method. The 

Benders decomposition algorithm allows us to tackle large dimension problems which are the 
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case of the Chilean CISS since it is country level planning. This algorithm consists in splitting the 

optimization problem in two sub problems called master and slave. The master problem is 

designed to optimize the investment decision (i.e., generation capacities) in all stages of the 

optimal expansion planning. The slave problem is formulated to make optimal dispatch decisions 

hour by hour in the system (i.e. hourly generation per technology), depending of the hourly 

demand profile and the availability of renewable resources. These dispatch decisions represent 

the operation of the capacity imposed by the first stage. The Benders’ Decomposition-based 

algorithm used for solving the large-scale model is described in the Appendix B.  

In addition, we assume a discount rate of 10% on annual basis, and that after 2035 all generation 

plants will have a lifespan of 40 years. Thus, using the notation from our model      years, 

       ,        ,         and        , where decisions of building new plants are 

made in    and   , which will be operative in    and   , respectively. Additional parameters used 

in the model implementation are reported in Appendix C. 

 

Sources of uncertainty 

In the model there are four sources of uncertainties: fossil fuel prices, hydrology conditions, 

demand growth rate used for demand projections, and changes in energy policies to incentive 

renewable generation.  Though the use of Monte Carlo simulations we generate 8,000 paths to 

describe the potential scenarios for the years 2025 and 2035. In these 8,000 scenarios we simulate 

the market condition hour by hour of years 2025 and 2035, which represent 140,160,000 hours 

(i.e. 2*8000*365*24) of potential generation conditions that will be used to obtain each 

evaluation point of expansion for the Chilean CIS.  

It is important to notice that in the implementation for the expansion of the Chilean CISS, our 

multi-stage model allows that decisions made in 2025 (which will be implemented in 2035) are 

conditional to the information observed in that year; thus in the second stage it is possible to 

adjust the expansion planning based on future information which is not currently available.  

In relation to fossil-fuel price scenarios, they were generated by assuming that fossil-fuel prices 

follow a geometric Brownian motion: 

     
    

       
 
 
   

              
  √    

(25) 
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We simulate correlated paths by using the y the Cholesky decomposition of the correlation matrix 

of fossil-fuel returns.
14

 The fossil-fuel scenarios are generated by using the historical descriptive 

statistics of fossil fuel returns, which are presented in Table 2. Historical data of fossil fuel prices 

to build Table 2 cover the years between 1984 and 2014, and they were obtained from the Energy 

Information Administration which is part of the U.S. Department of Energy.
15

 We use 

international fossil-fuel prices instead of Chilean values, since the price of commodities are 

traded internationally. 

 

 

 

 

 

 

 

 

Table 2 Descriptive statistics of fossil-fuel returns  
 

The table contains statistical data used to elaborate the Monte-Carlo fossil-fuel scenarios. It is 

assumed that prices follows a geometric Brownian motion, thus statistical parameters of fuel 

price returns time series such as mean returns, standard deviation, expected price; and correlation 

coefficients are needed to build the price scenarios for Coal, Liquefied natural gas and Oil (fossil-

fuels considered in the model). The correlated random sequences for each fossil-fuel prices are 

generated by Cholesky decomposition of the correlation matrix. Time series of historical 

international fossil-fuel prices are obtained from the Energy Information Administration of the 

US. The period covered is from 1984 to 2014. 

 
 

We simulate hydrological scenarios that may affect the security supply of electricity from 

generation from hydro reservoir and run-of-river. We use historical hydrological data to simulate 

scenarios, which characterized 50 years (between 1960 to March 2010) of weekly averages for 

each generator with hydro-reservoir, and monthly averages of water inflows for each run-of-river 

                                                 
14

 Suppose that the number of fossil fuels is   , and the Cholesky decomposition of the correlation matrix of fossil-

fuel returns is  . Suppose we generate a vector, [           ]
T
, of random numbers that distribute       . Then the 

correlated paths in equation (25) are generated by:  [     
        

        
 ]=  [          ]

T
.  

15
 Fossil-fuel prices were converted to 2014 US dollars using the CPI of the United States. 

Coal LNG Oil

Mean Returns 2% 2% 6%

Standard Deviation Returns 12% 14% 21%

Coal 1 - -

LNG 0.4 1 -

Oil 0.2 0.7 1

Correlation Coefficients
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generator. This hydrological series were obtained the Chile National Commission of. Table 3 

presents summary statistics of historical hydrological events that affected the average capacity of 

generation produced by hydro reservoirs and run-of-river generators. This table present 

probabilities of occurrence of different levels of capacity factors of generation of electricity, 

which were used in the simulation of scenarios to characterize the uncertainty of hydro 

conditions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 Descriptive statistics of historical hydrological events 

 

The table presents summary statistics of historical hydrological events that affected the average 

capacity of generation produced by hydro reservoirs and run-of-river generators. The table 

present probabilities of occurrence of different levels of capacity factors of generation of 

electricity. Which were generated from historical data observed over a period of 50 years, from 

1960 to 2010. The "Capacity factor" refers to the ratio of the actual output of a power plant over a 

period of time, to its potential output if it had operated at full nameplate capacity over the same 

period of time. Capacity factors vary greatly depending on the hydrological condition, thus a dry 

(wet) year is associated to low (high) capacity factors. The hydrological series used to build the 

scenarios are extracted from the National Commission of Energy which is part of the Chilean 

Ministry of Energy. 
 

 
 

In the simulation of hydro scenarios, in the case of run-of-river generation, we generate hour by 

hour profiles using data of inflow data in hourly basis for a representative year (which was 

provided by the Chilean Ministry of Energy and University of Chile). Thus, hourly inflow data 

was adjusted depending of the level of run-of-river simulated (through historical simulations) in 

relation to the average level in the representative year. In the case of hydro-reservoir 

# of Scenario 1 2 3 4 5 6 7 8 9 10
Probability [p.u.] 0,06 0,06 0,13 0,17 0,13 0,11 0,17 0,08 0,04 0,06
Reservoir average capacity factor 16% 24% 30% 34% 41% 46% 52% 57% 63% 71%
Run-of-river average capacity factor 42% 49% 51% 47% 51% 53% 55% 58% 54% 59%
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regeneration, we simulate weekly profiles using data of inflow data in weekly basis also from the 

year 2012. The weekly hydro-reservoir profiles were also adjusted depending of the level of 

generation of hydro-reservoir simulations regarding to the average level in the representative 

year. 

We also simulate different demand growth rate conditions, to capture the uncertain of demand 

projections in 2025 and 2035. We assume that the demand growth rate,  , can be amplifies or 

reduced by an random factor  . Hence, hence the annual demand growth rate is stochastic and its 

value is given by    . In our implementation for the Chilean CIS, we assume that   is equal to 

5% which is based on the Chilean projections obtained from the Chilean Ministry of Energy. In 

the case of   we assume conservative scenarios, in which   has a discrete distribution with 

support                              with a cumulative distribution function 

                          . We use the demand profile hour by hour for a representative year 

from the National Commission of Energy (see Figure 4), which is adjusted depending of the 

growth rate to obtain projected profiles for the years 2025 and 2035.  

Moreover, we also simulate potential changes in energy policy measures that may incentive 

renewable generation. Thus, we perform two policy exercises to capture the uncertainty of a 

policy change. First, we assume that a 'potential' carbon tax may be announced in 2025 with a 

given probability, which will be implemented in 2035. Second, we also assume that a 'potential' 

renewable policy target may be announced in 2025 with a given probability, which will be 

implemented in 2035, where if the policy target is not reached a penalty has to be paid. We 

provide a detailed explanation of both policy exercises in Section 4.  

 

4 Results 

4.1  Optimal planning under multi-stage decisions without policy measures 

As we mentioned in the previous section, we implement our multi-stage planning model in the 

Chilean Central Interconnected System. Thus, it is important to note that Chile is very rich in 

hydrological resources due to the geographical location (i.e. beside the Andes mountain range). 

Thus, diverse forms of generation using hydrological resources are very convenient. In addition, 
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the Andes also allows a high potential of geothermal generation. The long coast of Chile facing 

the Pacific Ocean is also favorable for wind generation; while that the Atacama Desert presents 

favorable for solar electricity generation. Therefore, despite that this study represent a concrete 

implementation of our multi-stage model, some of the results may not be necessarily the same for 

other countries. However, as explained before, the implementation of our model to the Chilean 

system power can be used as a guide for potential implementations of our approach to other 

regions of the world.  

Table 4 reports the optimal planning obtained through our multistage model, which there are no 

policy measures related to the incentives of renewable generation. Therefore, the results in Table 

4 represent our base case results. Table 4 shows that run-of-river generation is installed 

immediately to the maximum possible level in the first stage. Run-of-river generation is installed 

immediately because this technology is cheap, and in the worst case (in a dry year)  its capacity 

factor of generation is reduced to only 42% (See Table 3), which is still very high compared to 

hydro reservoir regeneration where in a dry year the capacity factor is reduced massively to 16%.  

 

Table 4 Optimal allocation under multi-stage decisions without policy measures 

The table reports the output result of the expansion planning for electricity generation using our 

multi-stage model, which is implemented Chilean Central Interconnected System (CIS) without 

imposing any policy measure. The first set of decisions are made in 2015 to build electricity 

generation plants, which will be operative in 2025 (stage I). The second set of decisions are made 

in 2025 for the construction of generation plants which will be operative in 2035 (stage II). The 

table shows the optimal allocation (installed capacity in megawatts) of six different portfolios, 

named by letters from A to F, constrained by different levels of risk in terms of the CVaR 

(measured in millions of US dollars). Risk increases from left to right and it is associated with the 

fossil-fuel price volatility, uncertain hydrological scenarios and changes in the growth rates for 

projected demands. Percentage of renewable energy installed and renewable generation indicated 

for each portfolio in the last rows of the table do not consider hydro and run of river technologies 

since in Chile they are considered as conventional sources of renewable energy.  
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Table 4 shows that hydro reservoir generation presents high levels of installed capacity in both 

stages if we observe the optimal planning with minimum cost (on the right hand side, which is 

the case with high risk measured by the CVaR). This is due to the fact that hydro reservoir 

generation is very economical in terms of expected value, though highly risky to very dry years. 

Hence, installed capacity of hydro reservoir generation is reduced progressively in the optimal 

planning expansions under lower levels risks (on the left hand side).  

As there is a reduction installed capacity of hydro reservoir generation, when we move to the left 

side of Table 4, there is a substitution effect following priority order. The first technology to 

reduce risk levels instead of hydro reservoir generation is small-hydro generation. After arriving 

to the maximum of installed capacity of small-hydro, hydro reservoir generation generations is 

Expected Cost [MM $]

CVaR [MM $]

MW % MW % MW % MW % MW % MW %

Coal 2394 10,2% 2394 11,2% 2394 11,5% 2394 11,4% 2394 11,3% 2394 11,2%

Oil 2303 9,8% 2303 10,8% 2303 11,0% 2303 11,0% 2303 10,8% 2303 10,8%

Reservoir 4053 17,3% 4053 19,0% 4053 19,4% 4833 23,0% 5795 27,3% 6032 28,3%

Wind 634 2,7% 634 3,0% 634 3,0% 634 3,0% 634 3,0% 634 3,0%

Solar PV 3082 13,2% 984 4,6% 519 2,5% 169 0,8% 169 0,8% 169 0,8%

LNG 2777 11,8% 2777 13,0% 2777 13,3% 2777 13,2% 2777 13,1% 2777 13,0%

Run-of-river 6150 26,2% 6150 28,8% 6150 29,5% 6150 29,3% 6150 28,9% 6150 28,9%

Biomass 504 2,2% 504 2,4% 504 2,4% 504 2,4% 504 2,4% 504 2,4%

Geothermal 310 1,3% 310 1,5% 310 1,5% 0 0,0% 0 0,0% 0 0,0%

Small hydro 1230 5,2% 1230 5,8% 1230 5,9% 1230 5,9% 524 2,5% 350 1,6%

Solar CSP 0 0,0% 0 0,0% 0 0,0% 0 0,0% 0 0,0% 0 0,0%

Coal 5087 12,9% 4818 12,5% 4673 12,6% 4254 11,6% 3890 10,9% 3794 10,9%

Oil 2303 5,8% 2303 6,0% 2303 6,2% 2303 6,3% 2303 6,4% 2303 6,6%

Reservoir 9812 24,8% 10266 26,7% 10724 28,8% 10770 29,4% 10770 30,1% 10770 31,0%

Wind 6150 15,6% 5034 13,1% 3489 9,4% 3358 9,2% 2803 7,8% 1887 5,4%

Solar PV 4000 10,1% 4000 10,4% 4000 10,8% 4000 10,9% 4000 11,2% 4000 11,5%

LNG 2777 7,0% 2777 7,2% 2777 7,5% 2777 7,6% 2777 7,8% 2777 8,0%

Run-of-river 6150 15,6% 6150 16,0% 6150 16,5% 6150 16,8% 6150 17,2% 6150 17,7%

Biomass 1540 3,9% 1540 4,0% 1540 4,1% 1540 4,2% 1540 4,3% 1540 4,4%

Geothermal 310 0,8% 310 0,8% 310 0,8% 310 0,8% 310 0,9% 310 0,9%

Small hydro 1230 3,1% 1230 3,2% 1230 3,3% 1230 3,4% 1230 3,4% 1230 3,5%

Solar CSP 145 0,4% 0 0,0% 0 0,0% 0 0,0% 0 0,0% 0 0,0%

74267 73284 72796 72485 72204

92150 93150 94500 96699 98868

Optimal allocation under multi-stage decisions without policy measures 

Installed Capacity/Total Capacity (Stage I)

Installed Capacity/Total Capacity (Stage II)

10,0%

Portfolios 

A B C D E F

MIN CVAR MIN COST

72137

% of Renewable (NC) 

Energy Installed
24,6%

(Decision made today for stage I  //  Decision made in stage I for stage II)

27,6% 25,8%

% of Renewable (NC) 

Generation
24,4% 19,1% 17,9% 14,4%

% of Renewable (NC) 

Energy Installed
33,9% 31,5% 28,4% 28,4%

91173

% of Renewable (NC) 

Generation
34,2% 31,6% 28,6% 28% 27% 25,6%

8,9%

17,2% 15,3% 12,1% 8,6% 7,8%
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substituted by geothermal generation, and after that solar photo-voltaic generation is triggered. In 

the second stage, the demand is covered with wind generation since small-hydro, geothermal and 

solar photo-voltaic reach the maximum of installed. Therefore, in the first stage the priority order 

to replace hydro reservoir generation is by generation based on small-hydro, geothermal and then 

solar photo-voltaic technologies. 

In the second stage, wind generation is triggered to cover the projected demand by the year 2035. 

Coal generation is also installed; however it has 2 purposes: to cover the increase in the projected 

demand, and to cover (as reserve) the intermittency of renewable generation, especially from 

wind and solar photovoltaic technologies. In addition, when we move to the left side of Table 4, 

there is also a substitution effect of hydro reservoir generation by wind generation and coal 

generation to reduce the levels of risk exposure to dry hydrological scenarios, and when wind 

generation reach the maximum capacity level (in the planning point A, which is the expansion 

strategy with minimum level of risk) the generation based on concentrated solar power (CSP) is 

triggered.  

As consequence substitution effect described in the previous paragraph between hydro-reservoir 

generation and other renewable technologies, there are more non-conventional renewable 

technologies for generation planning with low level of risk (left hand side) to points with low 

levels of costs (right hand side). The Chilean government defines non-conventional renewable 

technologies to all renewable generation except large hydro reservoirs and run-of-river with 

installed capacity larger than 40 megawatts Chilean Non-Conventional Renewable Energy Law 

(Law 20.257). Electricity generation based on liquid natural gas (LNG) and oil are never 

triggered (in both stages) due to two reasons: i) very expensive in relation to other technologies; 

and ii) their price returns have a high level of volatility (see Table 2). The only fossil-fuel 

generation that is triggered is one based on coal, since it is cheapest fossil fuel technology and it 

has an annual return volatility of only 12% which is lower than generation based on liquid natural 

gas (14%) and oil (21%). Therefore, an optimal allocation of technologies including non-

conventional renewable generation can generate a diversification effect by reducing not only the 

risk from uncertain hydrological scenarios, but also the financial risks of the system generated by 

volatility of fossil-fuel prices. Moreover, since generation based on liquid natural gas and oil are 

not installed despite that the demand on average has increase a 5% per year, this demand has 

been covered with other technologies including non-conventional renewable generation, which 
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has a generated a reduction in the participation of fossil-fuel generation, which induce damages to 

the environment.  

It is important to notice that the values of the installed capacity of renewable energy differ from 

the values of expected renewable generation (In Table 4 and in the following analyses, for some 

portfolios the former is higher than the later and vice versa); although the answer behind these 

differences is intuitive. In the model, we assumed initial capacities for all technologies, according 

to the current energy matrix in Chile. However, this assumption does not ensure that the model 

will decide to generate with that installed capacity. The most extreme case is the oil electricity 

generation (with 2303 MW of installed capacity). The model does not trigger additional capacity 

for this technology; furthermore, this technology is set nearly to zero for generation in every hour 

of the year, because it is not economically convenient ‒i.e. oil has the highest operating costs of 

all technologies. In addition, some renewable technologies cannot generate electricity since they 

depend on weather conditions or time-periods during the day (e.g., solar photovoltaic generation 

can produce energy in the hours of the day with sunlight). Both effects can produce differences 

between the installed capacity and expected generation of non-conventional renewable generation 

in the different portfolios. These considerations can also induce differences within installed 

capacities. For example, since  oil electricity generation does not expand from its current installed 

capacity, it  always has 2303 MW of installed capacity, however the percentage of installed 

capacity is different across portfolios (in the first stage, portfolio A and portfolio B have a level 

of 9.8% and 10.8%, respectively).  

Similar to Table 4, Table 5 reports the optimal planning without renewable policy measures; 

however, in the optimal expansion planning is obtained with single-stage model. In the single-

stage model all planning decisions (based on projections of the system) are made today and they 

cannot be modified. Thus, in the implementation for the expansion planning of the Chilean CIS , 

single-stage planning model are developed in 2015 to start building generation plants right now 

(which will be operative in 2025) and to  start the construction of generation plants in 2025 

(which will be operative in 2035). The main difference of the single-stage planning in relation to 

the multi-stage planning is that the former cannot modify decisions for 2025 (decisions are fixed), 

while that the later the expansion plan can be modified in 2025 depending of the new information 

received. 
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The results presented in  Table 5 for the single-stage model has the same qualitative features of 

the results of the multi-stage model reported in Table 4 (i.e., substitution effects between 

technologies, order priority of non-conventional renewable generation, and reduction of risk 

exposure thanks to the use of plants based on renewable energy resources). Most importantly, 

Table 5 shows that, even in a scenario without changes in policy measures, our multi-stage 

planning model provide important economic benefits in term of drop in costs and risks. Costs and 

risk reduction are observed since updated information in 2025 about regarding fossil-fuel prices 

and demand growth is used in the optimal planning for stage II. The economic benefits in terms 

of costs and risk reduction can be observed in Figure 5, which describe different optimal 

allocations without renewable policy measures of plants depending of risk levels under multi-

stage decisions (results from Table 5) and single-stage decisions (results from Table 5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 Optimal allocation under one-stage decisions without policy measures 

 

The table reports the output result of the expansion planning for electricity generation using a 

one-stage model, which is implemented Chilean Central Interconnected System (CIS) without 

imposing any policy measure. In the one-stage planning model, all decision is made in 2015 

which includes to build generation plants right now (which will be operative in 2025) and to 

build generation plants in 2025 (which will be operative in 2035). The main difference of the 

single-stage planning in relation to the multi-stage planning is that the former cannot modify 

decisions for 2025 (decisions are fixed), while that the later can modify decision in 2025 

depending of the new information received. The table shows the optimal allocation (installed 

capacity in megawatts) of six different portfolios, named by letters from A to F, constrained by 

different levels of risk in terms of the CVaR (measured in millions of US dollars). Risk increases 

from left to right and it is associated with the fossil-fuel price volatility, uncertain hydrological 

scenarios and changes in the growth rates for projected demands. Percentage of renewable energy 



 

 

32 

 

installed and renewable generation indicated for each portfolio in the last rows of the table do not 

consider hydro and run of river technologies since in Chile they are considered as conventional 

sources of renewable energy.  
 

 

 

 

 

Expected Cost [MM $]

CVaR [MM $]

MW % MW % MW % MW % MW % MW %

Coal 2394 10,2% 2394 10,6% 2394 11,5% 2394 11,4% 2394 11,3% 2394 11,3%

Oil 2303 9,8% 2303 10,2% 2303 11,0% 2303 11,0% 2303 10,8% 2303 10,8%

Reservoir 4053 17,3% 4053 17,9% 4053 19,4% 4833 23,0% 5795 27,3% 5795 27,3%

Wind 634 2,7% 634 2,8% 634 3,0% 634 3,0% 634 3,0% 634 3,0%

Solar PV 4000 17,1% 3177 14,0% 519 2,5% 169 0,8% 169 0,8% 169 0,8%

LNG 2777 11,8% 2777 12,3% 2777 13,3% 2777 13,2% 2777 13,1% 2777 13,1%

Run-of-river 6150 26,2% 6150 27,2% 6150 29,5% 6150 29,3% 6150 28,9% 6150 28,9%

Biomass 800 3,4% 504 2,2% 504 2,4% 504 2,4% 504 2,4% 504 2,4%

Geothermal 310 1,3% 310 1,4% 310 1,5% 0 0,0% 0 0,0% 0 0,0%

Small hydro 1230 5,2% 1230 5,4% 1230 5,9% 1230 5,9% 524 2,5% 524 2,5%

Solar CSP 0 0,0% 0 0,0% 0 0,0% 0 0,0% 0 0,0% 0 0,0%

Coal 5714 14,5% 4686 12,1% 4182 11,1% 4135 11,0% 3851 10,7% 3971 11,6%

Oil 2303 5,8% 2303 5,9% 2303 6,1% 2303 6,1% 2303 6,4% 2303 6,7%

Reservoir 10770 27,3% 10752 27,8% 10747 28,4% 10770 28,7% 10770 29,9% 10770 31,4%

Wind 6150 15,6% 6150 15,9% 6150 16,3% 4357 11,6% 3124 8,7% 1257 3,7%

Solar PV 4000 10,1% 4000 10,3% 4000 10,6% 4000 10,6% 4000 11,1% 4000 11,7%

LNG 2777 7,0% 2777 7,2% 2777 7,3% 2777 7,4% 2777 7,7% 2777 8,1%

Run-of-river 6150 15,6% 6150 15,9% 6150 16,3% 6150 16,4% 6150 17,1% 6150 17,9%

Biomass 1540 3,9% 1540 4,0% 1540 4,1% 1540 4,1% 1540 4,3% 1540 4,5%

Geothermal 310 0,8% 310 0,8% 310 0,8% 310 0,8% 310 0,9% 310 0,9%

Small hydro 1230 3,1% 1230 3,2% 1230 3,3% 1230 3,3% 1230 3,4% 1230 3,6%

Solar CSP 310 0,8% 1 0,0% 0 0,0% 0 0,0% 0 0,0% 0 0,0%

75605

91173

73998 73199

91650 92650

Installed Capacity/Total Capacity (Stage I)

24%

24,3%

8,6%

10,0%

Installed Capacity/Total Capacity (Stage II)

28,3%

8,6%

FA B C D E

Optimal allocation under one-stage decisions without policy measures 

(Decision made today for stage I  and stage II)

Portfolios 

MIN CVAR MIN COST

% of Renewable (NC) 

Generation
29,2% 24,6% 17,9%
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Energy Installed
29,7% 25,8% 15,3%
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Generation
34,7% 33,7% 33,7%
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Figure 5 Efficient frontier formed by different optimal allocations of plants depending of 

risk levels under multi-stage decisions and single-stage decisions (without policy measures). 

The figure reports the efficient frontier composed by different optimal planning setups depending 

risk levels, and without any policy measure. The table reports the output result of the expansion 

planning for electricity generation using our multi-stage model (values from Table 4) and using a 

single stage model (data from Table 5). 

 

Figure 5 shows the economic benefits of our multi-stage, since there are important reductions in 

costs for the different levels of risk proxied by the CVaR. Nevertheless, when we observe point 

on the right hand side of the figure (with high levels of risk but with lowest expected costs), the 

difference in expected costs decrease between the multi-stage and the single stage planning 

models. This table shows that the flexibility of the model, even without a possible change politics 

plays no small role and reaffirms the importance of good planning considering the information 

that can be obtained in time. Figure 5 also shows that on the left hand side of the figure, the 

curves are almost flat for both models. This means that the risk of the system can be can be 

reduced dramatically by just increasing by a little amount the costs with almost no cost increase. 

 

4.2 Optimal allocation under multi-stage decisions with a potential carbon 

tax 

The high level of CO2 due to emissions from fossil fuel combustion is one of the main causes of 

global warming, which has generated international concern. The climate change has challenging 

the principles that have guided policymakers, who have turned to induce incentives to renewable 

energy production. For example, in 2000 the UK government set a target of 10% of electricity 

supply coming from renewable energy by 2010. After that, in 2008 the European Union 

committed itself to generating 20% of its energy from renewable sources by 2020. As part of this 

commitment by 2020, the UK also changed the energy policy to incentive renewable generation 

to be in line with the European promise. 

To promote a sustainable and clean form of energy by encouraging the development of low 

carbon-emission technologies, some countries have implemented economic incentives such as a 

carbon taxes or penalties when targets are not reached. An expansion planning for electricity 
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generation should also consider 'future' changes in renewable policy targets, which can be 

reflected in a future  complete new renewable policy target. Thus, we perform a policy exercise 

to analyze the risk of a change in a renewable policy measure in terms of a 'potential' future 

carbon tax.  

Suppose that with probability        
   in the stage    there is an announcement of a renewable 

policy measure that will be implemented in the stage    , which reflected in the future 

state     
 

. The potential renewable policy measure is related to a carbon tax of   dollars per 

tones of CO2. Thus, we re-define the operation and maintenance cost (      ) variable in order 

to include a carbon penalization, 

  ̃          {
                                      

     

                                                
    

 
 (26) 

Where     denotes the carbon emission factor for each technology [tonCO2/MWh]. By simply 

replacing             with   ̃         , we can incorporate the effect of a carbon tax into the 

model. 

In the implementation to the Chilean CIS, we assume that   is equal to 10 dollars per tones of 

CO2 produced, and the probability     
   of this announcement in 2025  is equal to an 50%. 

Regarding the carbon emission factors, Table 6 shows the average levels per each technology.  

 

 

Table 6 Carbon dioxide equivalent emission factors 

 

The table reports the carbon dioxide equivalent emission factors. “Carbon dioxide equivalent” is 

a term for describing different greenhouse gases in a common unit. For any quantity and type of 

greenhouse gas, CO2e means the amount of CO2 which would have the equivalent environmental 

impact. Emission factors are related to the technology used to generate electricity from each 

energy source indicated in the table. The factors shown in the Table are multiplied by the 

corresponding potential carbon tax [$/TCO2e], resulting in extra operating costs which are added 

to the Variable Operation and Maintenance Costs.  
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Table 7 reports the optimal planning obtained through our multistage model, where there is an 

additional uncertainty generated by a potential carbon tax. Table 7 has a similar qualitative 

behavior of Table 4; in fact the optimal planning for the first stage is exactly the same. The effect 

of the potential carbon tax is observed mainly in stage 2 (when the tax may be applied). The 

potential policy tax generates a direct impact on coal generation, which is reflected in a 

substitution effect of coal plants by wind generation. For instance, in the point F (minimum cost 

expansion planning) the amount of coal generation is reduced in relation to Table 4 while that 

wind generation increase. Nevertheless, coal generation is not reduced drastically, since an 

important part of the electricity plants based on coal help as reserved to maintain the stability of 

the system due to the intermittent production that characterized non-conventional electricity 

generation. 

 

 

 

 

Table 7 Optimal allocation under multi-stage decisions with a potential carbon tax 

The table reports the output result of the expansion planning for electricity generation using our 

multi-stage model, which is implemented Chilean Central Interconnected System (CIS) with a 

potential carbon tax of 10 dollars per tones of CO2. This carbon tax is uncertain and it may be 

announced with a 50% of probability in 2025 and it will be implemented in 2035. The first set of 

decisions are made in 2015 to build electricity generation plants, which will be operative in 2025 

(stage I). The second set of decisions is made in 2025 for the construction of generation plants 

which will be operative in 2035 (stage II). The table shows the optimal allocation (installed 

capacity in megawatts) of six different portfolios, named by letters from A to F, constrained by 

different levels of risk in terms of the CVaR (measured in millions of US dollars). Risk increases 

from left to right and it is associated with the fossil-fuel price volatility, uncertain hydrological 

scenarios and changes in the growth rates for projected demands. Percentage of renewable energy 

installed and renewable generation indicated for each portfolio in the last rows of the table do not 

consider hydro and run of river technologies since in Chile they are considered as conventional 

sources of renewable energy.  
 

Energy Source Technology
CO2e Emission factors

[TCO2e/GWh]

Coal Pulverized Combustion 949

Oil Diesel fuel 779

LNG Combined Cycle Gas Turbine 436

Solar PV Photovoltaic 48

Geothermal Hydrothermal (steam turbine) 28

Biomass Integrated gasification combined cycle 24

Solar CSP Concentrated Solar Power 20

Wind Onshore wind turbine 11

Reservoir Conventional (dams) 7

Run-of-river Run of the river 4

Small hydro Hydroelectric power < 40MW 4
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Similar to Table 5, Table 8 reports the optimal planning single-stage model with a potential 

carbon tax provides important economic benefits in term of drop in costs and risks. As when we 

compared Table 4 and Table 5, the multi-stage planning model important economic benefits in 

term of drop in costs and risks in relation to a single stage model. Nevertheless, the economic 

benefits are larger when the uncertainty of a policy tax is included. For instance, for a level of 

CVaR of USD$95,500,000,000 the cost saved thanks to the multistage model in relation to the 

single stage model without any renewable policy measure (with a potential carbon tax) is 

USD$132,000,000 (USD$186,000,000) which reflect additional savings of 41% when there is an 

additional uncertainty coming from a potential carbon tax.  

 

 

 

Expected Cost [MM $]

CVaR [MM $]

MW % MW % MW % MW % MW % MW %

Coal 2394 10,3% 2394 11,5% 2394 11,4% 2394 11,3% 2394 11,3% 2394 11,2%

Oil 2303 9,9% 2303 11,0% 2303 11,0% 2303 10,9% 2303 10,8% 2303 10,8%

Reservoir 4053 17,5% 4053 19,4% 4833 23,0% 5420 25,6% 5795 27,3% 6031 28,3%

Wind 634 2,7% 634 3,0% 634 3,0% 634 3,0% 634 3,0% 634 3,0%

Solar PV 2864 12,3% 519 2,5% 169 0,8% 169 0,8% 169 0,8% 169 0,8%

LNG 2777 12,0% 2777 13,3% 2777 13,2% 2777 13,1% 2777 13,1% 2777 13,0%

Run-of-river 6150 26,5% 6150 29,5% 6150 29,3% 6150 29,1% 6150 28,9% 6150 28,9%

Biomass 504 2,2% 504 2,4% 504 2,4% 504 2,4% 504 2,4% 504 2,4%

Geothermal 310 1,3% 310 1,5% 0 0,0% 0 0,0% 0 0,0% 0 0,0%

Small hydro 1230 5,3% 1230 5,9% 1230 5,9% 799 3,8% 524 2,5% 350 1,6%

Solar CSP 0 0,0% 0 0,0% 0 0,0% 0 0,0% 0 0,0% 0 0,0%

Coal 5116 12,8% 4599 12,0% 4203 11,2% 3806 10,3% 3703 10,3% 3527 10,0%

Oil 2303 5,8% 2303 6,0% 2303 6,1% 2303 6,2% 2303 6,4% 2303 6,5%

Reservoir 10306 25,8% 10744 27,9% 10770 28,7% 10770 29,2% 10770 30,0% 10770 30,4%

Wind 6103 15,3% 4797 12,5% 4235 11,3% 4000 10,8% 3171 8,8% 2830 8,0%

Solar PV 4000 10,0% 4000 10,4% 4000 10,7% 4000 10,8% 4000 11,1% 4000 11,3%

LNG 2777 6,9% 2777 7,2% 2777 7,4% 2777 7,5% 2777 7,7% 2777 7,8%

Run-of-river 6150 15,4% 6150 16,0% 6150 16,4% 6150 16,7% 6150 17,1% 6150 17,4%

Biomass 1540 3,8% 1540 4,0% 1540 4,1% 1540 4,2% 1540 4,3% 1540 4,3%

Geothermal 310 0,8% 310 0,8% 310 0,8% 310 0,8% 310 0,9% 310 0,9%

Small hydro 1230 3,1% 1230 3,2% 1230 3,3% 1230 3,3% 1230 3,4% 1230 3,5%

Solar CSP 145 0,4% 0 0,0% 0 0,0% 0 0,0% 0 0,0% 0 0,0%

Optimal allocation under multi-stage decisions with a potential carbon tax 

(Decision made today for stage I  //  Decision made in stage I for stage II)

Portfolios 

MIN CVAR MIN COST

99108

F

74620 73429 72987 72753 72601 72552

A B C D E

91829 93200 94600 95999 97498

Installed Capacity/Total Capacity (Stage I)

% of Renewable (NC) 

Energy Installed
23,9% 15,3% 12,1% 10,0% 8,6% 7,8%

27,4%
% of Renewable (NC) 

Generation
34,1% 31,1% 30,0% 29,6% 28,0%

8,9%

Installed Capacity/Total Capacity (Stage II)

% of Renewable (NC) 

Energy Installed
33,3% 30,9% 30,2% 30,0% 28,5% 28,0%

% of Renewable (NC) 

Generation
23,8% 17,9% 14,4% 11,7% 10,0%
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Table 8 Optimal allocation under one-stage decisions with a potential carbon tax 

The table reports the output result of the expansion planning for electricity generation using a 

one-stage model, which is implemented Chilean Central Interconnected System (CIS) with a 

potential carbon tax of 10 dollars per tones of CO2. This carbon tax is uncertain and it may be 

announced with a 50% of probability in 2025 and it will be implemented in 2035. In the one-

stage planning model, all decision is made in 2015 which includes to build generation plants right 

now (which will be operative in 2025) and to build generation plants in 2025 (which will be 

operative in 2035). The main difference of the single-stage planning in relation to the multi-stage 

planning is that the former cannot modify decisions for 2025 (decisions are fixed), while that the 

later can modify decision in 2025 depending of the new information received. The table shows 

the optimal allocation (installed capacity in megawatts) of six different portfolios, named by 

letters from A to F, constrained by different levels of risk in terms of the CVaR (measured in 

millions of US dollars). Risk increases from left to right and it is associated with the fossil-fuel 

price volatility, uncertain hydrological scenarios and changes in the growth rates for projected 

demands. Percentage of renewable energy installed and renewable generation indicated for each 

portfolio in the last rows of the table do not consider hydro and run of river technologies since in 

Chile they are considered as conventional sources of renewable energy. 

 

Expected Cost [MM $]

CVaR [MM $]

MW % MW % MW % MW % MW % MW %

Coal 2394 10,3% 2394 11,5% 2394 11,4% 2394 11,3% 2394 11,3% 2394 11,2%

Oil 2303 9,9% 2303 11,0% 2303 11,0% 2303 10,9% 2303 10,8% 2303 10,8%

Reservoir 4053 17,5% 4053 19,4% 4833 23,0% 5519 26,1% 5791 27,3% 6031 28,3%

Wind 634 2,7% 634 3,0% 634 3,0% 634 3,0% 634 3,0% 634 3,0%

Solar PV 4000 17,2% 568 2,7% 169 0,8% 169 0,8% 169 0,8% 169 0,8%

LNG 2777 12,0% 2777 13,3% 2777 13,2% 2777 13,1% 2777 13,1% 2777 13,0%

Run-of-river 6150 26,5% 6150 29,5% 6150 29,3% 6150 29,1% 6150 28,9% 6150 28,9%

Biomass 681 2,9% 504 2,4% 504 2,4% 504 2,4% 504 2,4% 504 2,4%

Geothermal 310 1,3% 310 1,5% 0 0,0% 0 0,0% 0 0,0% 0 0,0%

Small hydro 1230 5,3% 1230 5,9% 1230 5,9% 726 3,4% 527 2,5% 350 1,6%

Solar CSP 0 0,0% 0 0,0% 0 0,0% 0 0,0% 0 0,0% 0 0,0%

Coal 5652 14,1% 4255 11,1% 3628 9,7% 3279 8,9% 3693 10,3% 3907 11,0%

Oil 2303 5,8% 2303 6,0% 2303 6,1% 2303 6,2% 2303 6,4% 2303 6,5%

Reservoir 10770 26,9% 10770 28,0% 10770 28,7% 10770 29,2% 10770 30,0% 10770 30,4%

Wind 6150 15,4% 6150 16,0% 6093 16,2% 5891 16,0% 3664 10,2% 1481 4,2%

Solar PV 4000 10,0% 4000 10,4% 4000 10,7% 4000 10,8% 4000 11,1% 4000 11,3%

LNG 2777 6,9% 2777 7,2% 2777 7,4% 2777 7,5% 2777 7,7% 2777 7,8%

Run-of-river 6150 15,4% 6150 16,0% 6150 16,4% 6150 16,7% 6150 17,1% 6150 17,4%

Biomass 1540 3,8% 1540 4,0% 1540 4,1% 1540 4,2% 1540 4,3% 1540 4,3%

Geothermal 310 0,8% 310 0,8% 310 0,8% 310 0,8% 310 0,9% 310 0,9%

Small hydro 1230 3,1% 1230 3,2% 1230 3,3% 1230 3,3% 1230 3,4% 1230 3,5%

Solar CSP 310 0,8% 0 0,0% 0 0,0% 0 0,0% 0 0,0% 0 0,0%

75748 73583 73118 72889 72727 72631

91829 93200 94600 95999 97498 100035

Optimal allocation under one-stage decisions with a potential carbon tax 

(Decision made today for stage I  and stage II)

Portfolios 

MIN CVAR MIN COST

FA B C D E

% of Renewable (NC) 

Generation
28,2% 18,1% 14,4% 11,2% 10,0%

Installed Capacity/Total Capacity (Stage I)

% of Renewable (NC) 

Energy Installed
29,5% 15,5% 12,1% 9,6% 8,6% 7,8%

8,9%

24,8%
% of Renewable (NC) 

Generation
34,7% 33,7% 33,6% 33,2% 29,0%

Installed Capacity/Total Capacity (Stage II)

% of Renewable (NC) 

Energy Installed
33,9% 34,4% 35,1% 35,2% 29,9% 24,1%
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The behavior of the single stage model is very interesting. Table 8 shows that the substitution 

effect there is a reduction in the installed capacity of coal and increase in the wind generation 

However, the amount in which the capacity of coal reduced is smaller than the capacity of wind 

installed. This, the model install more wind generation 'just in case' which is only used if the 

carbon tax is implemented. Thus a single stage model generates an inefficient solution, which is 

improved by a multistage model in which decision can be adjusted. The economic benefits in 

terms of costs and risk reduction can be observed in Figure 6, which describe different optimal 

allocations of plants with a potential policy depending of risk levels under multi-stage decisions 

(results from Table 7) and single-stage decisions (results from Table 8).  

 

Figure 6 Efficient frontier formed by different optimal allocations of plants depending of 

risk levels under multi-stage decisions and single-stage decisions (with a potential carbon 

tax).  

The figure reports the efficient frontier composed by different optimal planning setups depending 

risk levels, with a potential carbon tax of 10 dollars per tones of CO2. This carbon tax is 

uncertain and it may be announced with a 50% of probability in 2025 and it will be implemented 

in 2035. The table reports the output result of the expansion planning for electricity generation 

using our multi-stage model (values from Table 7) and using a single stage model (data from 

Table 8). 
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4.3  Optimal allocation under multi-stage decisions with a potential 

renewable policy target for the year 2035 

In responding to climate change and in order to reduce the share of fossil-fuel generation, several 

governments have enacted (or have changed the level of previous) renewable energy support 

policies. For instance in Chile, the country of implementation of our multistage model, a change 

of a previous policy target occurred recently. In 2008, within the Non-Conventional Renewable 

Energy Law (Law 20.257), the first renewable energy target was established. The goal of this law 

was to achieve 10% of non-conventional renewable generation by 2024 (non-conventional 

renewable generation includes all renewable technologies, except large hydro reservoirs and run-

of-river with installed capacity larger than 40 megawatts). The subsequent government stressed 

the importance of further renewable energy production and replaces the figure '10% by 2024' in 

Law 20.257 with a new requirement of '20% by 2025'. 

Therefore, we can use our multi-stage model to evaluate the flexibility benefits of postponing 

some decisions given the uncertainty of imposing a new policy target. Suppose that with a 

probability        
   in the stage    there is an announcement of a renewable policy measure that 

will be implemented in the stage      , which reflected in the future state      
 . The potential 

renewable policy measure is concerning renewable policy target of       proportion of share of 

total electricity generation that will be generated from renewables by the stage      . 
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(27) 

Where     is a penalty charged in each hour per megawatt which is not generated through non-

conventional renewables, while the      is a subset of the electricity generation technologies 

(      ) called 'renewables' (or in the Chilean case, non-conventional renewables). The present 

value of cost of the system,  ̃        , considering penalties when the policy target is not 

reached,          , for the period [             ] facing the scenario        is given by: 
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(28) 

Equation (28) present the total costs including the economic incentives to reach the goal of the 

renewable policy target. This equation (28) can be used instead of equation (2) in the multi-stage 

planning model. 

In the implementation for the Chilean CIS, as mentioned above in this section, the current 

renewable generation target is 20% by 2025, but the authorities 'may' suddenly announced a new 

renewable policy target (e.g., a new policy target by 2035, 10 years after the current policy 

target). Thus, we perform an exercise in which a new policy target will be announced in 2025 

with a level of one third of share of total electricity production will be generated from non-

conventional renewables by 2035. This policy target is uncertain and it may be announced with a 

50% of probability in 2025 and it will be implemented in 2035. Since this policy exercise 

concerns policy target, we also impose the Chilean policy target of 20% share of total electricity 

generation from non-conventional renewables by 2025 (which is already known with certainty by 

2015). In the case that any of these targets is not reached, a penalty of 50 dollars is charged per 

megawatt which is not generated through non-conventional renewables in each hour of a 

complete year. Therefore, in equation (27),    is equal to 20%,    is equal to 33%,     
   is equal 

to 100% and     
   is equal to 50% and     is equal to 50 dollars per megawatt which is not 

generated through non-conventional renewables in each hour of a complete year.  

Table 9 reports the optimal planning obtained through our multistage model, where there is an 

additional uncertainty generated by a potential policy target. As explained in Table 4, Table 9 

shows that the first policy target (which is known by 2015) is reached in the first stage following 

the same priority order: firstly, small-hydro generation; secondly, geothermal generation; and 

thirdly, solar photo-voltaic generation. Then in the second stage, wind generation is installed 
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largely in relation to Table 4, and thus to reach the potential scenarios with the policy target. In 

addition, some coal is also installed in relation to the stage one which is used mainly as reserve 

for the intermittently generation produced by plants based on non-conventional renewable 

energy. It is important to notice that in Table 9, the percentage of non-conventional renewable 

generation is below the target of 33%, because the multi-stage model only installs additional non-

conventional technologies only in the cases when the policy target is implemented in 2035.  
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Table 9 Optimal allocation under multi-stage decisions with a new potential policy target 
The table reports the output result of the expansion planning for electricity generation using our multi-

stage model, which is implemented Chilean Central Interconnected System (CIS) with a new policy target 

of 33% share of total electricity generation from non-conventional renewables by 2035. This policy target 

is uncertain and it may be announced with a 50% of probability in 2025 and it will be implemented in 

2035. Since this policy exercise concerns policy target, we also impose the Chilean policy target of 20% 

share of total electricity generation from non-conventional renewables by 2025 (which is already known 

with certainty by 2015). In the case that any of these targets is not reached, a penalty of 50 dollars is 

charged per megawatt which is not generated through non-conventional renewables in each hour. The first 

set of decisions are made in 2015 to build electricity generation plants, which will be operative in 2025 

(stage I). The second set of decisions is made in 2025 for the construction of generation plants which will 

be operative in 2035 (stage II). The table shows the optimal allocation (installed capacity in megawatts) of 

six different portfolios, named by letters from A to F, constrained by different levels of risk in terms of the 

CVaR (measured in millions of US dollars). Risk increases from left to right and it is associated with the 

fossil-fuel price volatility, uncertain hydrological scenarios and changes in the growth rates for projected 

demands. Percentage of renewable energy installed and renewable generation indicated for each portfolio 

in the last rows of the table do not consider hydro and run of river technologies since in Chile they are 

considered as conventional sources of renewable energy.  

 

Expected Cost [MM $]

CVaR [MM $]

MW % MW % MW % MW % MW % MW %

Coal 2394 9.8% 2394 11.0% 2394 11.0% 2394 11.0% 2394 11.0% 2394 11.0%

Oil 2303 9.5% 2303 10.6% 2303 10.6% 2303 10.6% 2303 10.6% 2303 10.6%

Hydro 4053 16.6% 4053 18.6% 4053 18.7% 4053 18.7% 4053 18.7% 4053 18.7%

Wind 634 2.6% 634 2.9% 634 2.9% 634 2.9% 634 2.9% 634 2.9%

Solar PV 4000 16.4% 1387 6.4% 1341 6.2% 1341 6.2% 1341 6.2% 1341 6.2%

LNG 2777 11.4% 2777 12.8% 2777 12.8% 2777 12.8% 2777 12.8% 2777 12.8%

Run-of-river 6150 25.3% 6150 28.3% 6150 28.3% 6150 28.3% 6150 28.3% 6150 28.3%

Biomass 504 2.1% 504 2.3% 504 2.3% 504 2.3% 504 2.3% 504 2.3%

Geothermal 310 1.3% 310 1.4% 310 1.4% 310 1.4% 310 1.4% 310 1.4%

Small hydro 1230 5.1% 1230 5.7% 1230 5.7% 1230 5.7% 1230 5.7% 1230 5.7%

Solar CSP 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0%

Coal 5834 14.2% 4706 12.2% 4262 11.3% 3808 10.2% 3612 9.8% 3244 9.0%

Oil 2303 5.6% 2303 6.0% 2303 6.1% 2303 6.2% 2303 6.3% 2303 6.4%

Hydro 10369 25.3% 10036 26.0% 10427 27.6% 10466 28.1% 10471 28.5% 10770 29.8%

Wind 6150 15.0% 5581 14.4% 4725 12.5% 4653 12.5% 4297 11.7% 3836 10.6%

Solar PV 4000 9.8% 4000 10.4% 4000 10.6% 4000 10.7% 4000 10.9% 4000 11.1%

LNG 2777 6.8% 2777 7.2% 2777 7.4% 2777 7.5% 2777 7.6% 2777 7.7%

Run-of-river 6150 15.0% 6150 15.9% 6150 16.3% 6150 16.5% 6150 16.8% 6150 17.0%

Biomass 1540 3.8% 1540 4.0% 1540 4.1% 1540 4.1% 1540 4.2% 1540 4.3%

Geothermal 310 0.8% 310 0.8% 310 0.8% 310 0.8% 310 0.8% 310 0.9%

Small hydro 1230 3.0% 1230 3.2% 1230 3.3% 1230 3.3% 1230 3.4% 1230 3.4%

Solar CSP 299 0.7% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0%

29.3%
% of Renewable (NC) 

Generation
34.7% 32.6% 31.0% 30.8% 30.2%

20.0%

Installed Capacity (Stage II)

% of Renewable (NC) 

Energy Installed
33.0% 32.8% 31.3% 31.5% 31.0% 30.2%

% of Renewable (NC) 

Generation
26.6% 20.1% 20.0% 20.0% 20.0%

93999 94999

Installed Capacity (Stage I)

% of Renewable (NC) 

Energy Installed
27.4% 18.7% 18.5% 18.5% 18.5% 18.5%

9732690747 92000 93000

F

75247 73405 72984 72818 72720 72650

A B C D E

Optimal allocation under multi-stage decisions with a potential renewable policy target 

(Decision made today for stage I  //  Decision made in stage I for stage II)

Portfolios 

MIN CVAR MIN COST
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Similar to Table 5, Table 10 reports the optimal planning single-stage model with a potential 

policy target provide important economic benefits in term of drop in costs and risks. However, 

the economic benefits are larger when the uncertainty of a policy tax is included. For instance, for 

a level of CVaR of USD$95,500,000,000 the cost saved thanks to the multistage model in 

relation to the single stage model without any renewable policy measure (with a potential policy 

target) is USD$132,000,000 (USD$163,000,000) which reflect additional savings of 17% when 

there is an additional uncertainty coming from a potential carbon tax.  

Table 10 shows that is not optimal to have a level below the policy target due to the penalty 

imposed; for all potential planning (from point A to point F) the policy target is reached. For 

instance, in the second stage in point F (minimum cost point); there is a massive increase in the 

capacity of installed wind generation to cover in the potential scenario of an implementation of 

the policy target by 2035. 
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Table 10 Optimal allocation under one-stage decisions with a new potential policy target 
The table reports the output result of the expansion planning for electricity generation using a one-stage model, 

which is implemented Chilean Central Interconnected System (CIS) with a new policy target of 33% share of total 

electricity generation from non-conventional renewables by 2035. This policy target is uncertain and it may be 

announced with a 50% of probability in 2025 and it will be implemented in 2035. Since this policy exercise concerns 

policy target, we also impose the Chilean policy target of 20% share of total electricity generation from non-

conventional renewables by 2025 (which is already known with certainty by 2015). In the case that any of these 

targets is not reached, a penalty of 50 dollars is charged per megawatt which is not generated through non-

conventional renewables in each hour. In the one-stage planning model, all decision is made in 2015 which includes 

to build generation plants right now (which will be operative in 2025) and to build generation plants in 2025 (which 

will be operative in 2035). The main difference of the single-stage planning in relation to the multi-stage planning is 

that the former cannot modify decisions for 2025 (decisions are fixed), while that the later can modify decision in 

2025 depending of the new information received. The table shows the optimal allocation (installed capacity in 

megawatts) of six different portfolios, named by letters from A to F, constrained by different levels of risk in terms 

of the CVaR (measured in millions of US dollars). Risk increases from left to right and it is associated with the 

fossil-fuel price volatility, uncertain hydrological scenarios and changes in the growth rates for projected demands. 

Percentage of renewable energy installed and renewable generation indicated for each portfolio in the last rows of the 

table do not consider hydro and run of river technologies since in Chile they are considered as conventional sources 

of renewable energy.  

 

Expected Cost [MM $]

CVaR [MM $]

MW % MW % MW % MW % MW % MW %

Coal 2394 9,7% 2394 10,6% 2394 11,0% 2394 11,0% 2394 11,0% 2394 11,0%

Oil 2303 9,4% 2303 10,2% 2303 10,6% 2303 10,6% 2303 10,6% 2303 10,6%

Reservoir 4053 16,5% 4053 18,0% 4053 18,7% 4053 18,7% 4053 18,7% 4053 18,7%

Wind 634 2,6% 634 2,8% 634 2,9% 634 2,9% 634 2,9% 634 2,9%

Solar PV 4000 16,2% 2140 9,5% 1341 6,2% 1341 6,2% 1341 6,2% 1341 6,2%

LNG 2777 11,3% 2777 12,3% 2777 12,8% 2777 12,8% 2777 12,8% 2777 12,8%

Run-of-river 6152 25,0% 6152 27,3% 6152 28,4% 6152 28,4% 6152 28,4% 6152 28,4%

Biomass 773 3,1% 504 2,2% 504 2,3% 504 2,3% 504 2,3% 504 2,3%

Geothermal 310 1,3% 310 1,4% 310 1,4% 310 1,4% 310 1,4% 310 1,4%

Small hydro 1230 5,0% 1230 5,5% 1230 5,7% 1230 5,7% 1230 5,7% 1230 5,7%

Solar CSP 0 0,0% 0 0,0% 0 0,0% 0 0,0% 0 0,0% 0 0,0%

Coal 5651 13,7% 4480 11,3% 3921 10,1% 3447 9,0% 3128 8,2% 2691 7,2%

Oil 2303 5,6% 2303 5,8% 2303 5,9% 2303 6,0% 2303 6,1% 2303 6,1%

Reservoir 10770 26,1% 10751 27,1% 10770 27,8% 10770 28,1% 10770 28,3% 10770 28,7%

Wind 6150 14,9% 6150 15,5% 5797 14,9% 5797 15,1% 5797 15,3% 5797 15,4%

Solar PV 4000 9,7% 4000 10,1% 4000 10,3% 4000 10,4% 4000 10,5% 4000 10,6%

LNG 2777 6,7% 2777 7,0% 2777 7,2% 2777 7,2% 2777 7,3% 2777 7,4%

Run-of-river 6152 14,9% 6152 15,5% 6152 15,9% 6152 16,1% 6152 16,2% 6152 16,4%

Biomass 1540 3,7% 1540 3,9% 1540 4,0% 1540 4,0% 1540 4,1% 1540 4,1%

Geothermal 310 0,8% 310 0,8% 310 0,8% 310 0,8% 310 0,8% 310 0,8%

Small hydro 1230 3,0% 1230 3,1% 1230 3,2% 1230 3,2% 1230 3,2% 1230 3,3%

Solar CSP 310 0,8% 0 0,0% 0 0,0% 0 0,0% 0 0,0% 0 0,0%

Optimal allocation under one-stage decisions with a potential renewable policy target 

(Decision made today for stage I  and stage II)

Portfolios 

MIN CVAR MIN COST

F

75528 73624 73100 72938 72860 72798

A B C D E

94003 95000

Installed Capacity/Total Capacity (Stage I)

% of Renewable (NC) 

Energy Installed
28,2% 21,4% 18,5% 18,5% 18,5% 18,5%

9694391173 92000 93000

20,0%

Installed Capacity/Total Capacity (Stage II)

% of Renewable (NC) 

Energy Installed
32,9% 33,3% 33,2% 33,6% 33,9% 34,3%

% of Renewable (NC) 

Generation
29,0% 22,0% 20,0% 20,0% 20,0%

33,0%
% of Renewable (NC) 

Generation
34,7% 33,7% 33,0% 33,0% 33,0%
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The economic benefits in terms of costs and risk reduction can be observed in Figure 7, which 

describe different optimal allocations of plants with a potential policy target depending of risk 

levels under multi-stage decisions (results from Table 9) and single-stage decisions (results from 

Table 10). Figure 7 shows that economic benefits of the multistage are less evident when the 

optimal planning has a low level of risk (e.g. optimal planning in point a in Table 9 and in Table 

10), since already for this building plan are considered a high level of non-conventional 

renewables since they are useful a hedge instrument against uncertainties from hydrological 

scenarios and volatilities of fossil-fuel prices.  

 

Figure 7 Efficient frontier formed by different optimal allocations of plants depending of 

risk levels under multi-stage decisions and single-stage decisions (with a new potential 

policy target).  

The figure reports the efficient frontier composed by different optimal planning setups depending 

risk levels, with a new policy target of 33% share of total electricity generation from non-

conventional renewables by 2035. This policy target is uncertain and it may be announced with a 

50% of probability in 2025 and it will be implemented in 2035. Since this policy exercise 

concerns policy target, we also impose the Chilean policy target of 20% share of total electricity 

generation from non-conventional renewables by 2035 (which is already known with certainty by 

2015). In the case that any of these targets is not reached, a penalty of 50 dollars is charged per 

megawatt which is not generated through non-conventional renewables in each hour of a 

complete year. The table reports the output result of the expansion planning for electricity 

generation using our multi-stage model (values from Table 9) and using a single stage model 

(data from Table 10). 
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5 Conclusion 

In this study, we introduce a novel multi-stage model for optimal electricity generation planning 

under to deal with the risk of a policy change. Currently, there is a generalized environmental 

concern. Many plants of electricity generation, such as those based on fossil-fuels, can induce 

serious environmental damages including global warming, pollution, acid rain, and rising sea 

levels. In the last 10 years, an increasing number of countries are committed to reach 

progressively new renewable policy targets. Thus, given the current environmental concern, 

'potential' new (or changes in) renewable policy targets has to be taken into account in an 

expansion planning for electricity generation. 

The model allows an expansion planning in multiple stages in which some decision can be taken 

today, and others postponed to the future, when the uncertainty of new potential policies are 

eliminated. The model generate an optimal allocation of plants in each stage by taking into 

account simultaneously: changes in renewable policy targets, expected costs, risk exposures (i.e., 

prices volatilities, hydrological scenarios and demand growth) and operational issues to assure 

the electricity supply security.  The model is solved by a Benders decomposition algorithm to 

tackle large dimension problems for a country level planning for electricity generation. 

We implement the multi-stage planning in a real (country level) system power. The aim of this 

implementation is to present a genuine example of an expansion planning, including different 

analyses and policy exercises, which can be used as a guide to implement our approach in other 

regions or countries. We implement the model for the Chilean Central Interconnected System 

(CIS), where expansion planning is performed in a two-stage decisions problem. The first set of 

decisions is made in 2015 to build generation plants that will be operative in 2025. The second 

set of decisions is made in 2025 for the construction of generation plants that will be operative in 

2035. 

We perform two policy exercises to capture the uncertainty of a policy change. First, we assume 

that a 'potential' carbon tax may be announced in 2025 with a given probability, which will be 

implemented in 2035. Second, we also assume that a 'potential' renewable policy target may be 

announced in 2025 with a given probability, which will be implemented in 2035, where if the 

policy target is not reached a penalty has to be paid. 
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We show that, even in a scenario without changes in policy measures, our multi-stage planning 

model provide important economic benefits in term of costs and risks reductions. In addition, we 

present evidence that an optimal allocation of technologies including non-conventional renewable 

generation can generate a diversification effect by reducing not only the risk from uncertain 

hydrological scenarios, but also the financial risks of the system generated by volatility of fossil-

fuel prices. Hence, we also shows that economic benefits of the multi-stage for renewable policy 

targets are less evident when the optimal planning is designated to reduce the levels of risk, 

because already for this building plans are considered a high level of non-conventional 

renewables.   
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Appendix A: Assumptions and simplifications 

Simplification in operation constraints 

 Constraints (10) and (11) have a common term,                      , that uses the 

minimize function to choose the minimum value between the number of online units of 

technology i under scenario s in hour j compared to hour j-1. This term can be represented in a 

linear form by using an auxiliary variable,       
   , and two additional constraints as shown in 

equations (A1) and (A2): 

      
              (A1) 

      
          .  (A2) 

 These equations impose an upper bound to       
    and can replace the minimize 

function                     , thus equations (10) and (11) can be re-written as: 

                      
                             (A3) 

                      
                              (A4) 

Hence equations (A1)-(A4) rather than (10)-(11) are used in the model.  

 

Simplification in security of supply constraints 

 Equation (21) is non-linear but convex and thus can be linearized by using tangent planes. 

To do so, technologies are grouped into two categories according to their emergency ramp rates 

in order to reduce the number of planes and computational resources used. These two groups are 

denoted by     and    , which are sets classified as slow/fast response units for having low/high 

ramp rate. Additionally, a third group is defined,    , which corresponds to technologies that do 

not participate in primary frequency response (PFR), but are connected through synchronous 

machines to the system and thus add inertia to it. Units’ contribution to inertia (H) and their 

maximum power output ( ̅) are assumed to be equal among all units.  

 The numbers of units of the three groups are calculated using equations (A5)-(A7): 
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        ∑       

     

 
 (A5) 

 

        ∑       

     

 
 (A6) 

 

        ∑       

     

 
 (A7) 

Where SL, FT and NG are respectively slow response, fast response and non-governor 

(synchronous units that are online and do not participate in primary frequency control).  

Hence we re-define the region given by equation (22) as that associated with equations (A5)-

(A8).  

       

                                            ̅        

 (               )    
   

 (A8) 

The linear form of restriction (A8) is obtained through tangent planes linearization. 

 Another non-linear constraint is equation (23). This restriction is non-convex, so it has to 

be treated differently. In this case, upper and lower bounds of the optimal solution are computed. 

The lower bound is obtained by removing equation (23) from the formulation, leading to a 

portfolio solution with a lower expected cost of investment and operation but which may violate 

equation (23) and thus not be technically feasible due to the fact that primary reserves are not 

allocated correctly within the installed technologies.  

 The upper bound of the optimal solutions is computed by solving a particular case of the 

model, in which only one technology may participate in PFR. This simplifies equations because 

when only one technology saves primary reserve, constraint (24) ends up being a simple linear 

equality. This is reasonable, because if only one technology participates in primary frequency 

response, all reserve must be stored in that technology. In this way, we may produce several 

upper bound solutions by defining various levels of participation from different generation 

technologies in PFR. Hence, a number of technically feasible suboptimal solutions can be 
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obtained, ultimately selecting that with the lowest gap with respect to the lower bound solution. 

We found for all case studies analyzed in this paper that the selected technically feasible solutions 

present less than 0.8% gap. For this reason, all the simulations done in this paper, consider 

reservoirs for hydro power as the only technology committed to Primary Frequency Response. 

 

 

Simplification in Operating reserve constraints 

 The operating reserves security criterion for this study consists of holding reserve for 

contingency purposes and to protect the system from unpredicted changes in the availability of 

solar and wind resources. Other renewable energy sources such as Biomass and Geothermal are 

not included in this analysis because their availability can be predicted accurately (both 

availability profiles have zero standard deviation). 

 As defined in Silva (2010), we use a realistic criterion for the representation of operating 

reserve policies, where reserve amounts required (Red) are considered for two purposes; the first 

is to restore primary frequency control reserves after they have been deployed,   , and the 

second is to deal with unpredicted changes in variable renewable generation. Thus, the operating 

reserve requirement must be a function of the contingency magnitude, the non-conventional 

renewable generation and its installed capacity:      (                        ) 

 According to Silva (2010), when uncertainty of renewables forecasts is considered for 

reserve and these forecast errors are assumed to be non-correlated, normally distributed, with 

zero mean and a certain standard deviation, the reserve requirement may be quantified as shown 

in equation (A9), which requires saving 3 times the total standard deviation of the forecast errors. 

         √     
        

   
(A9) 

 Standard deviations of wind and solar forecast errors –wind and solar  respectively– have to 

be computed using a certain forecast policy. Wind availability has no clear relationship to hours 

of the day as solar radiation does, so, a persistent 4 hour ahead forecast is employed to compute 

its forecast error standard deviation. This methodology produces one parameter that represents 

the uncertainty for all hours of the year. Solar radiation, on the other hand, is forecast using a 

day-ahead criterion. Four typical days of radiation are computed (one for each season) and the 
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standard deviation error is calculated for the 24 hours of the day and for every season. The 

highest of the 4 values computed for every hour is taken as the conservative estimate. 

         √     
       

        
          

  
(A10) 

In equation (A10), installed capacities are included because forecasts are made in terms of the 

capacity factor. It can be argued that the above requirement might be too conservative. This is 

mainly because if, for example, no wind is forecasted for a certain hour, it would not be 

reasonable to keep reserve for wind purposes. Due to this fact, the following correction is made: 

    ,
     √     

       
        

          
                 

                                                             

 

(A11) 

In this equation, for hours on which the wind capacity factor of the hourly profile used (which is 

taken as the forecast) is smaller than the total uncertainty (            ), a deterministic 

criterion is employed; assuming that in the worst case scenario, all scheduled wind fails to occur. 

On hours where the wind forecast is sufficiently high, the probabilistic criterion is established. 

 The same logic may be applied to solar technology. Nonetheless, as an individual 

standard deviation is computed for every hour, the above correction is not needed for typical zero 

radiation hours (at night, for example).  

 As equation (A11) is non-linear, algebra factorization and a first order Taylor series 

expansion is used to get a linear approximation shown by equation (A12). This linear function is 

always greater than the original equation (A11), so it is a conservative approximation. 

   

 ,
     (

 

√ 
 (                     )  (  

 

√ 
)     )                  

                                                                                                      

 

 (A12

) 

Where     represents                       . The absolute value function can be easily 

linearized by equations (A13) and (A14): 

                           (A13) 

     (                     )   (A14) 
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 Finally, to account for all reserves considered in the reserve amounts required, Red 

(spinning and standing reserves), constraint (A15) is added to the model.  

     ∑      
 

   

    (∑  
   

          )       
   

 (A15) 

Here,       
  is the capacity headroom in terms of spinning-kinetic reserves used to regulate 

contingencies as reserves for primary frequency response and the term    represents the fraction 

of generation capacity that contributes to operating reserves. The equation (A15) also includes a 

demand response parameter,      
 , to study the effect of responsive loads used in the operating 

reserve time frame. 

 

 

Appendix B. Solution Methodology 

In this section we explain the solution methodology based on Bender’s decomposition algorithm, 

a technique which is meant to reduce computational complexity of large-scale problems. Here we 

use a vectors and matrices notation
16

 to abbreviate the linear systems. For a better understanding, 

we explain first the relation between the nomenclature used to explain the model, with the vectors 

and matrices notation used in this section: 

   is a vector containing investment costs and   is the set of first-stage decision variables 

(installed capacities):     ⇔ ∑             .  

     
 is the set of first-stage decision variables (installed capacities) then    happened: 

      
⇔ ∑                .  

  

            is a function of the decision variable  , operational costs   , and    which is a 

matrix of all constraints related with the decision variable of installed capacities. Later 

           will be defined as the second-stage problem. 

   ⇔ ∑ ∑                         ∑     
           ∑     

     
           ∑            

   Represents the an approximation of Value at Risk (VaR). 

 The function denoted by          represents the maximum between the expression in 

parenthesis and zero:                       

 

                                                 
16

  Vectors are written as bold, lower-case letters and matrices as bold upper-case letters. 
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Bender's method coordinates a two-stage stochastic linear programming model to determine the 

optimum portfolio of generation technologies of a future power system. In the first stage, the 

investment decision takes place and therefore we minimize total investment and operation costs 

across a large number of future scenarios, subject to a given level of CVaR.  

 

The first-stage problem is given by:  

                       ∑    
  (     

    
)     
   ∑    

    
       

   
  ∑ ∑    

    
  (     

    
)             
  

(B1) 

                    

  
 

   
  ∑ ∑    

             (        (     
    

)      
     

        

 (     
    

)    )
 
      ̅̅ ̅̅ ̅̅ ̅  

 

(B2) 

     

   
           

     
        

(B3) 

    (B4) 

  

where   is a set of polyhedral constraints that ensure that   corresponds to a feasible solution. 

Equation (45) represents an upper bound to the CVaR calculated in the left side of the equation. 

    ̅̅ ̅̅ ̅̅ ̅ is the maximum allowed portfolio’s CVaR. 

 

The second stage represents the operation of the capacity imposed by the first stage (dispatch 

decisions). The second-stage problem is given by: 

For          

(    
)   (     

    
    

)              
    (B5.1) 

       

   
      

     (B6.1) 
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    (B7.1) 

Para            

(    
)   (   

    
    

    
)              

    (B5.2) 

       

   
      

      (B6.2) 

 

    (B7.2) 

where   corresponds to the generation ( ⇔       ), thus            is the minimization of the 

operational costs for every scenario s. Matrix    contains all constraints related with the 

generation of each technology, in particular demands constraints . Therefore, equation (B5) is a 

matrix-vector expression which summarizes almost all the constraints explained in the model.   

is an auxiliary vector to fit the constraints expressed in matrices    and   . 

 

The master problem (P1) is defined by a convex dominion and a convex objective function. This 

allows the linearization of non-linear terms through tangent planes, as it is done in the classic 

Benders’ decomposition problem. 

Moreover, function            has the same structure as the classic slave problem from 

Benders’ decomposition (Benders,  962), so the same approximation (and cutting planes 

selection algorithm) can be used for solving this particular problem according to Papavasiliou et 

al. (2014). 

 

Taking this into account, the master problem can be re-written, including optimality cuts derived 

from Benders’ algorithm as follows  

 

                  (B8) 

      

            ∑    
    

     

     

 
 (B9) 

   



 

 

59 

 

            ∑     ( ( ̂             )    ̂         
    

  )

     

  

 ∑    
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 ∑    

∑    

        

      

     

     ̅̅ ̅̅ ̅̅ ̅ 
 (B12) 

      
    (B13) 

       
         

          (B14) 

     (B15) 

Auxiliary variables    are used for obtaining the linear form of constraint (45) and u
i
s are the 

Lagrange multipliers of P2s associated with the coupling constraints (i.e. generation capacities), 

considering the i
th

 investment decision trial  ̂ . Constraint (52) is added to avoid unboundedness 

by setting a lower limit. Using P1’ and P2s shown by equations (48)-(58), the following 

algorithm is proposed: 

Step 0: Set      Initialize  ̂        ,  ̂         and    ̂  e  ̂ 
  
       . Go to step 1. 

Step 1: Solve P1’. Set   ̂  equal to the optimal first-stage solution and set  ̂       ̂  and 

 ̂        
 

   
 ∑    

∑                  ̂     
. 
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Go to step 2. 

Step 2: For all    , solve P2s using   ̂  as input. Set   
  equal to the optimal multipliers of the 

coupling constraints in equation (49). Set 

 ̂             ∑    
    ( ̂     

    
    

)     
   ∑    

    
     

 ∑    
              

 ( ̂ 
  
    

    
    

)  and  ̂               ̂
     .  

Where            is the function that computes the       percentile conditional value at risk 

of the cost vector   with the associated probabilities vector  .    ̂   corresponds to the vector 

containing the total costs of every scenario         =       ̂     ( ̂     
    

    
)    

   
   ̂ 

  
    ( ̂ 

  
    

    
    

)with probability     
    

, given the first-stage decision 

 ̂   ̂ 
  
        and   is the vector containing scenarios’ probabilities totals. Go to step 3. 

Step 3: If | ̂       ̂     |      and | ̂       ̂     |     then exit with  ̂   ̂ 
  
        as 

the optimal solution. Otherwise, set       and go to step 1. 

 

For the purpose of simplicity the addition of Benders’ feasibility cuts is not explained, although 

they might be necessary for obtaining the optimal solution. The addition of these cuts does not 

vary from the standard procedure done in Benders’ classical decomposition algorithm (Benders, 

1962). 

 

It is important to underscore that the exit criterion of the algorithm ensures that both expectation 

and CVAR functions are correctly approximated in the neighborhood of the optimal solution. We 

used an exit criterion of 1%. 
 

Appendix C: Additional parameter values 

 The values were selected according to regulation of the power sector in Chile and 

standard level in the electric power sector. A 399.67 $/MWh value of lost load is used, 

according to the short-term failure cost reported by the Chilean regulator (National 

Commission of Energy). Maximum units’ outputs is assumed to be 400 MW with an 

hourly ramp rate (  ) of 40 MW/h for Coal, 240 MW/h for Geothermal and Oil, 200 

MW/h for LNG, Biomass and Solar CSP, and 360 MW/h for hydro-electric technologies. 

Emergency ramp rates (  
 ) are those used by Chaves et al. (2014) and equal to 38 MW/s 

for thermal plants and 8 MW/s for hydro-electric plants.
17

 In real power systems, primary 

frequency response service is provided by a subset of the conventional plants 

synchronized, which is represented in our model by defining two types of unit per 

technology: with and without capability to respond to frequency changes, in which the 

                                                 
17

 Emergency ramp rates are the ramp rates of the reserves used by the governor to maintain the security supply. 
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former presents a slightly higher investment cost that permits identification of the demand 

for the frequency response service. Also, operation is secured against the outage of a 

single unit (i.e. 400 MW), under which frequency is not allowed to violate a minimum 

value of 49.2 Hz from nominal value of 50 Hz (governors’ dead-band are assumed to be 

equal to  25mHz and units’ inertia ( ) is equal to 5 s).
 18,19

  We assume that costs 

associated with demand services are equal to 1 (2) $/MW if demand decreases (increases), 

reservoir seepage and evaporation losses are equal to 0.5% of stored water, and maximum 

capacity of the reservoir is very high and thus does not constrain hydro’s output. 

Portfolios will be determined by using a α-CVaR with an α of 95%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
18

 Chilean regulator states that under frequency load shedding must take place when system frequency reaches a 

threshold of 49.2 Hz. 
19

 Maximum allowed governors’ dead band in Chile. 
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Table 11 Parameters values 

The table contains the parameters values assumed in the model. The table shows the 

nomenclature of the parameters (symbol), a brief description, the value considered as an input 

parameter and the corresponding unit of measurement. As the model is implemented for the 

Chilean Central Interconnected System (CIS), some values are reported by the Chilean regulator 

while others are taken from references. They respect standards level in the electric power sector. 

The acronym "p.u." refers to "per unit", expression of quantities as fractions of a defined base 

unit quantity. 

Symbol Description Value Unit 

     Value of lost load 399.67 $/MWh 

 ̅ Maximum power output of generic unit 400 MW 

   Minimum units output 
160 for thermal 

40 for hydro 
MW 

   Hourly ramp rate 

40 for Coal 

240 for Oil, Geothermal 

200 for LNG, Biomass, CSP 

360 Hydro 

MW/h 

  
  Emergency ramp rate 

38 for thermal plants 

8 for hydro plants 
MW/s 

   Nominal system frequency 50 Hz 

    Governors frequency dead band ±25 mHz 

     Minimum frequency allowed 49.2 Hz 

H Inertia constant of generic unit 5 s 

   
Factor of losses of stored water due to evaporation 

and/or seepage in the reservoir 
0.0051 p.u. 

 ̅  Upper bound of stored water 10,321 MMm
3
 

ηi Average inflow-to-power rate 6,840 MWh/m
3 

ΔP Size of largest generation outage 400 MW 

       
  Deployment time of operating reserves 0.25 h 

     
  

Amount of curtailable demand for the operating 

reserve timeframe 
200 MW 

     
  

Amount of curtailable demand for the primary 

frequency control timeframe 
200 MW 

   
Fraction of fast start generation capacity that 

contributes to operating reserves 
1 p.u. 

    Cost of demand decrease 1 $/MW 

    Cost of demand increase 2 $/MW 

  
 

 Maximum fraction of demand that can be decreased 5% p.u. 

  
 

 Maximum fraction of demand that can be increased 5% p.u. 

  
CVaR parameter that defines the (1-  )% highest 

cost scenarios 
95% p.u. 

     
Standard deviation of wind forecast errors in all 

hours 
12.8% p.u. 

       Standard deviation of solar forecast errors in hour j 0% - 10.6% p.u. 

X Renewable policy target 20% p.u. 

 

 


