
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE INGENIERÍA ELÉCTRICA

SIMULATION TOOL DEVELOPMENT FOR SEMICONDUCTOR DEVICES
BASED ON DRIFT-DIFFUSION AND MONTE CARLO

TESIS PARA OPTAR AL GRADO DE MAGÍSTER EN CIENCIAS DE LA INGENIERÍA
MENCIÓN ELÉCTRICA

MEMORIA PARA OPTAR AL TÍTULO DE INGENIERO CIVIL ELÉCTRICO

FRANCISCO ESTEBAN REYES ASPÉ

PROFESOR GUÍA:
MARCOS DÍAZ QUEZADA

MIEMBROS DE LA COMISIÓN:
AXEL OSSES ALVARADO

ÁNGEL ABUSLEME HOFFMAN
FAUSTO PATRICIO MENA MENA

SANTIAGO DE CHILE
2015

ii

RESUMEN DE LA TESIS PARA OPTAR AL TITULO DE:
INGENIERO CIVIL ELÉCTRICO Y GRADO DE MAGISTER
EN CIENCIAS DE LA INGENIERIA MENCION ELÉCTRICA
POR: FRANCISCO ESTEBAN REYES ASPÉ
FECHA: JULIO 2015
PROFESOR GUÍA: MARCOS DÍAZ QUEZADA

SIMULATION TOOL DEVELOPMENT FOR SEMICONDUCTOR DEVICES BASED ON
DRIFT-DIFFUSION AND MONTE CARLO

Las simulaciones computacionales son un importante recurso para ayudar en el diseño y a
entender el funcionamiento de dispositivos semiconductores de una forma rápida y económica, por
lo que se han desarrollado diversas herramientas de simulación, tanto comerciales como libres. No
obstante, diversos centros de investigación y universidades han optado por desarrollar programas
propios, lo que les permite tener continuidad en el desarrollo, control y mayor entendimiento
de los fenómenos simulados. Bajo esta misma idea, el presente trabajo tiene como objetivo
desarrollar herramientas de simulación para materiales y dispositivos semiconductores, centrado
principalmente en el problema en dos dimensiones, y que tenga la flexibilidad suficiente para
propósitos prácticos de diseño y educacionales, sirviendo además como un punto de partida para
trabajos futuros.

Para cumplir el objetivo mencionado, se implementaron dos modelos clásicos de simulación:
Arrastre-Difusión o DD (Drift-Diffusion) y Monte Carlo o MC (que resuelve la ecuacion de
transporte de Boltzmann). Dichos modelos tienen diferentes grados de precisión, capacidades y
costos computacionales, cubriendo ası́ un gran rango de dispositivos y necesidades. Para ambos, se
utilizó una malla no estructurada de Voronoi, para cuya generación se presenta un algoritmo basado
en la triangulación de Delaunay, lo que permite la descripción de diversas topologı́as.

Ambos modelos fueron incluidos en un mismo programa escrito en MATLAB, con una interfaz
basada en archivos de texto de alto nivel que permite el uso casi indistinto entre uno u otro,
caracterı́stica que le da otorga una mayor flexibilidad y simpleza. La realización de distintas pruebas
numéricas y comparaciones con la literatura y otras referencias, permitieron verificar el apropiado
funcionamiento de los métodos y mostrar distintas caracterı́sticas de éstos. En particular, para DD se
constató la superioridad Newton-Raphson (NRM) sobre Gummel, y de el esquema de estabilización
de Schaffeter-Gummel (SG) sobre Aguas Arriba. Para MC, se desarrollaron distintas técnicas para
que el método fuese coherente con la malla no estructurada y topologı́as generalizadas. Además, se
compararon DD y MC, mostrando sus diferencias en congruencia con la literatura.

El modelo de DD implementado es resuelto usando Volumenes Finitos y el método de NRM,
que otorga buenas caracterı́sticas de convergencia. Para la estabilización, se utilizó la discretización
de SG. Modelos básicos de movilidad, heterojunturas y condiciones de borde, fueron incluidos para
extender la versatilidad del método y establecer ideas para futuras mejoras.

El método de Monte Carlo implementado en esta instancia, incluye fuentes básicas de
dispersión y utiliza bandas analı́ticas esféricas o elı́pticas con no-parabolicidad para electrones.
En cambio, para huecos, sólo simples modelos parabólicos e isotrópicos fueron considerados.

Finalmente, fueron señaladas las limitaciones más relevantes del programa y los posibles
modelos para paliarlas. Esto, junto con el resto del trabajo, se espera que se constituyan como
bases para futuros desarrollos y mejoras.

iii

iv

Summary
Computational simulations are an important fast and inexpensive resource that helps in

the design stage and to understand the semiconductor devices operation. For this reason, many
commercial and open-source simulation tools has been created. Nevertheless, many research
centres and universities have chosen to develop their own software. This helps to maintain the
code and have more control and understanding of the simulated phenomena. In the same vein, the
present work has the main goal of developing simulation tools for semiconductor materials and
devices with focus on the two dimensional problem. It must have enough flexibility for practical
design purposes and educative usages in order to be the basis for future works.

To achieve the aforementioned objective, two classical simulations’ models were
implemented: Drift-Diffusion and Monte Carlo (which solves the Boltzmann transport equation).
Those models have differences in accuracy, capabilities, and computational costs. With them, a
wide range of devices and necessities can be covered. For both, an unstructured Voronoi mesh was
used, for which a generation algorithm is presented that is based on Delaunay triangulation. This
allows the description of different topologies.

Both models were implemented in a single program written in MATLAB. A text-based high-
level interface allows the almost indistinct use of either method. This feature gives the program
greater flexibility and simplicity. Different numerical tests and comparisons with literature and
other references were conducted. These allowed to verify the proper functioning of the methods
and to show their various features. In particular, for DD the superiority of Newton-Raphson method
(NRM) over Gummel, and the Schafetter-Gummel (SG) stabilization scheme of over Upwind
was established. For MC, several techniques to make the method coherent with non-structured
meshes and generalized topologies were proven. Also, DD and MC were compared, showing their
differences in congruence with the literature.

The final implemented Drift-Diffusion model is solved using Finite Volume method with the
NRM technique which gives excellent convergence qualities. The SG discretization was used for
stabilization. Other basic model of mobility, heterojunctions, and proper boundary conditions were
included to extend the versatility of the method and give ideas for future improvements.

The Monte Carlo method implemented in this work includes the basic sources of scattering,
elliptical (or spherical) non-parabolic analytical band for electrons, and simple parabolic and
isotropic models for holes.

Finally, the most relevant limitations of the program and models to palliate them were pointed.
This, together with the rest of the work are expected to be the basis for future developments and
improvements.

v

vi

Agradecimientos
Este trabajo fue parcialmente financiado desde marzo de 2013 por la beca de Magı́ster

Nacional Complementaria del PFCHA de CONICYT folio 221320614, junto con la Facultad de
Ciencias Fı́sicas y Matemáticas de la Universidad de Chile.

Quiero agradecer la gran paciencia y guia de mi profesor Marcos Dı́az. No sólo me
acompañó en el desarrollo de mi tesis, sino que también en diversos cursos y proyectos en los
que trabajé. También le agradezco al profesor Axel Osses por su siempre buena disposición y a sus
alumnos José Méndez y Carlos Román, cuyos aportes fueron invaluables. Igualmente, al profesor
Patricio Mena, por permitirme trabajar con él y por su continuo apoyo y preocupación. También a
Ángel Abusleme, por su desinteresada ayuda.

Otros pilares fundamentales fueron mis amigos, a los que no puedo dejar de agradecer. A
los que me acompañaron desde el colegio, a los de sección, a los de eléctrica y al Divino, a los
de Suchai y a toda la gente valerosa que ha estado durante este proceso. Me regalaron escucha,
palabras y buena onda, regalos que no olvidaré.

Quiero agradecer especialmente a mi papá, mamá, hermano y hermana. Sus consejos,
preocupación y apoyo incondicional marcaron la diferencia. Gracias también a mis cuñados, mis
suegros y el resto de mi familia, que siempre me acogieron y alentaron.

Gracias a la Mafe, por existir.

vii

Table Of Contents

1 Introduction 1

1.1 Objectives . 3

1.1.1 General Objectives . 3

1.1.2 Specific Objectives . 3

1.2 Thesis Outline . 3

1.3 Semi-classical Simulation . 4

1.3.1 Historical Development . 4

1.3.2 Semiconductor Fundamentals . 6

1.3.3 Carrier Distributions and Doping . 10

1.3.4 Boltzmann Transport Equation . 17

1.3.5 Drift-Diffusion Model . 17

2 A Finite-Volume Based Drift-Diffusion Solver 20

2.1 About Numerical Methods . 20

2.2 Mesh Description . 27

2.2.1 Mesh Generation . 29

2.2.2 Edge Treatment . 30

2.2.3 Mesh Generation Algorithm . 32

2.3 The Finite Volume Scheme . 33

2.3.1 Generic Finite Volume Discretizations . 33

2.3.2 The Iterative Solvers . 39

viii

2.3.3 Boundary Conditions . 48

2.3.4 Mobility and Recombination . 52

2.3.5 Generation and Recombination . 53

2.3.6 Scaling . 54

2.3.7 Thermal Equilibrium Solution . 55

3 Monte Carlo Simulation 58

3.1 The Ensemble Monte Carlo Method for Devices 60

3.2 Energy Band and Effective Mass . 62

3.3 The Drift Process . 65

3.4 Free Flight Time and Self-Scattering . 69

3.5 Scattering Selection . 71

3.6 Fermi’s Golden Rule and Carrier Scattering . 72

3.7 Scattering Mechanism . 73

3.7.1 Ionized Impurity Scattering . 73

3.7.2 Acoustic Phonon Scattering . 74

3.7.3 Non-polar Optical Phonon . 75

3.7.4 Polar Optical Phonon Scattering . 76

3.8 Particle Initialization . 77

3.9 Mesh Coupling and Search Structure . 78

3.9.1 Particle Search Structure . 80

3.10 Gathering Output Quantities . 81

4 Software Outline and Results 83

4.1 Numerical Analysis of the Finite Volume Schemes 83

4.1.1 Scharfetter-Gummel and Upwind Comparison 84

4.1.2 Newton-Raphson and Gummel Methods 88

4.1.3 Drift-Diffusion High-Field Mobility Validation 89

ix

4.1.4 Thermionic Emission Model Test . 90

4.2 Monte Carlo Bulk Validation . 91

4.3 Device Test Simulation . 94

4.3.1 Simple N-n-N diode . 94

4.3.2 About Self-Scattering Reduction . 95

4.3.3 About Search Structure . 96

4.3.4 Comparison of Drift-Diffusion and Monte Carlo in a Simple MOSFET . . 97

4.4 Meshing Features . 101

4.5 Program Outline, Features, and Limitations . 102

4.5.1 Software Capabilities and Limitation of the Software 105

5 Conclusions and Future Work 109

Bibliography 111

Appendix A Some Default Parameters I

Appendix B Geometry Generating Function IV

x

List Of Figures

1.1 The zinc (diamond) crystal structure. Figure from [123] 8

1.2 One-dimensional square potential representation of a crystal 8

1.3 Representation of the E − k relation for allowed states from the Kroning-Penny
model. The central bounded region is the first Brillouin zone. Figure from [104] . . 9

1.4 Brillouin zone for a three-dimensional zinc crystal structure. Figure from [128] . . 10

1.5 Energy band structure for Si (left) and GaAs (right). Eg is the band gap. Figure
from [128]. 11

1.6 Energy band diagram, density of states, Fermi-Dirac distribution and n, p
concentrations for a) intrinsic b) n-type and c) p-type semiconductors. Figure from
[128]. 13

1.7 Energy band diagram. a) Diagram of [88]. b) Diagram used in this work with E0 = 0
and only for abrupt heterojunctions. 15

2.1 Example of central difference performance for convective problems (figure from
[136]). Left: good approximation for velocity 0.1m/s. Right: bad approximation
with oscillation for velocity 2.5m/s . 20

2.2 Area under the curve as example of the division of the problem. 21

2.3 Example of how a domain can be divided using a rectangular grid 21

2.4 Example of linear basis functions for the 1D case. 24

2.5 Simple control volume (right) based on a square mesh (left). 25

2.6 Some definitions for FVM. a) Outward vector ν and edges σ . b) Measurements
of area mK , neighbour distance dKL, edge length mσ , and directional derivative
approximation. 26

2.7 a) Simple MESFET structure b) and a triangular mesh for that geometry. 28

2.8 A minimal example of an admissible mesh. 29

xi

2.9 Example of Delaunay-Voronoi duality. a) A Delaunay triangulation, b) the
corresponding circumcircles, c) a Voronoi cell, and d) the whole Voronoi mesh
(with the original Delaunay triangulation). 30

2.10 Modification of a) a triangle that has their circumcenter in other region, b) the
subdivision of that triangle, and b) the final Voronoi cell. 31

2.11 a) A polygon in homojunction interfaces and b) a polygon and sub-polygon in
heterojunctions. 31

2.12 General mesh generation algorithm. 32

2.13 a) Integration over a control volume that is equivalent to b) the integration over the
boundaries of the volume due to Divergence Theorem 35

2.14 Gummel iteration for the steady-state DD problem. 40

2.15 Basic Newton-Raphson’s method. 42

2.16 Newton-Raphson’s method for the time dependent problem. 46

2.17 Simple Schottky contacts band diagrams for a) n and b) p types. 50

3.1 Basic Monte Carlo simulation diagram and a graphic representation of the particle
flight. 59

3.2 General Ensemble Monte Carlo algorithm for devices. 61

3.3 Conduction and valence bands used in this work. 63

3.4 Edge collision detection where a straight trajectory is used showing that it works
for a) the case when straight line and parabolic trajectories intersect the edge and
fails for b) the case when only parabolic trajectory does not intersect a segment. . . 66

3.5 Edge reflection method where energy and parallel wave vector are conserved. . . . 67

3.6 Representation of total and self-scattering relation. 70

3.7 Examples of energy subdivisions with different constant scattering rates. 70

3.8 a) Point p inside a triangle formed by three Voronoi centers. b) Amount of p
assigned to vertex a that is proportional to the highlighted area 79

3.9 Cases for search structure square grid a) totally contained and b) intersecting with
many polygons. 80

4.1 Square p-n diode structure as a simple test case. 84

4.2 Densities calculated using Gummel with upwind for a) electron c) holes and
Scharfetter-Gummel for b) electrons d) holes. 85

xii

4.3 1D demonstration of false diffusion with zero bias using Gummel and upwind
scheme. a) electron and b) holes densities. c) electrons d) holes densities using
a finer mesh. 86

4.4 1D simulation with no false diffusion and zero bias using SG scheme. a) electron
and b) holes densities. 86

4.5 a) Upwind and SG current vs dV. b) Upwind and SG drift current estimates vs dV. . 87

4.6 2D zero bias electron density using a) upwind b) SG and for 0.7 [V] inverse bias
using c) upwind and d) SG. 87

4.7 Evidence of divergence using Gummel with 1.1dt a) electron density after 200
iterations b) Convergence evolution. And using NRM in equivalent figures in c)
and d) respectively. 89

4.8 Comparison of constant and high-field mobility models with measurements of [32]
for a) electrons and b) holes. 90

4.9 a) Side view of the 2D band diagram at thermal equilibrium b) IV characteristic of
the simulated diode vs original results from [144]. 91

4.10 Comparison of MC simulations and measurements from [31] of velocity vs field
characteristic in Silicon. 92

4.11 Comparison of MC simulations with measurements from [23] of velocity vs field
characteristic in GaAs. a) Low field b) High field. 92

4.12 Simulation of velocity overshoot for several electric fields for a) Silicon and b)
GaAs. Overshoot compared to valley occupancy for c) Silicon and d) GaAs. 93

4.13 Comparison of MC simulation with measurements [7] of velocity overshoot in
GaAs for electric fields of a) 7 [kV/cm] and b) 12 [kV/cm]. 94

4.14 Comparison of the IV characteristic of the diode from [69] and MC simulations. . . 95

4.15 Self-Scattering reduction compared with common algorithm. The percentages are
the improvement of the SSR model with respect to the method without SSR. 95

4.16 Search structure discretization for a) normal spacing and b) fine spacing. 96

4.17 Structure of the simulated Silicon MOSFET. 97

4.18 Id vs Vds with Vg = 1[V]. Comparison of DD simulations with Sentaurus [127] as
reference for constant, doping dependent, and high-field mobility models. 98

4.19 Id vs Vds. Comparison of MC, DD simulations, and Sentaurus as reference [127]
(using transversal-field mobility dependence). 99

4.20 Id vs Vds. Comparison of MC and DD simulations for a MOSFET of channel length
of 75[nm]. 99

xiii

4.21 Electron velocity comparison in the channel of the 75[nm] MOSFET using MC and
DD. 100

4.22 Example of MOSFET electron a) density and b) x-velocity for each particle. 100

4.23 Example of a mesh generated for a FET-like structure with parametric edges and
local refinement. a) Triangular mesh and doping profile b) Voronoi mesh. 101

4.24 Example of a correction of edge triangles a) bad triangles b) corrected triangles. . . 101

4.25 Square mesh emulated by using thin region layers to show the capability to handle
square meshes. a) triangular mesh b) Voronoi mesh with rectangular form. 102

4.26 General flow diagram of the software. 103

4.27 Input Options file example. 104

B.1 Generated mesh example . IV

xiv

List Of Tables

2.1 Scaling factor from De Mari [90] and unity [116] 54

4.1 Summary of methods to be compared . 83

4.2 Comparison of two Search Structure sizes and brute force 97

A.1 Silicon parameters for Monte Carlo simulation. Masses in units of free electron
mass m0 . II

A.2 GaAs parameters for Monte Carlo simulation. Masses in units of free electron mass
m0 . III

xv

Abbreviations
BC Boundary Condition
BJT Bipolar Junction Transistor
BTE Boltzmann Transport Equation
CIC Cloud In Cell
DD Drift Diffusion
DDM Drift Diffusion Model
DGMOSFET Dual-Gate MOSFET
DT Delaunay Triangulation
FDM Finite Differences Method
FEM Finite Element Method
FET Field Effect Transistor
FGR Fermi’s Golden Gule
FVM Finite-Volume Method
GM Gummel Method
HDM Hydrodicamic Model
HEMT High Electron Mobility Transistor
II Impact Ionization
LHS Left-Hand Side
MC Monte Carlo (MCM Monte Carlo Method)
MESFET Metal-Semiconductor Field Effect Transistor
MOSFET Metal Oxide Field Effect Transistor
NEGF Non-Equilibrium Green’s Functions
NGP Nearest Grid Point
NRM Newton-Raphson method
PDE Partial Differential Equation
RHS Right-Hand Side
SE Schrödringer Equation
SG Scharfetter-Gummel
SOI Semiconductor On Insulator
SRH Shockley-Read-Hall
SSR Self-Scattering Reduction
TDSE Time Dependant Schrödinger Equation
VM Voronoi Mesh

xvi

Chapter 1

Introduction

It is of general knowledge the accelerated changes of the world and society during the 20th
century. It is also undeniable the paramount role of electronics since it has been present in almost
all aspects of modern life. The most important components of electronics are the semiconductor
devices, built on materials with properties different from conductors and isolators, which have been
the cornerstone, for many years now, of radios, televisions, personal computers and smartphones,
satellites, modern automation and industrial processes, many types of vehicles, medical diagnostic
devices, and all kinds of scientific equipment. These are only some examples of semiconductor
applications that highlight its great importance.

It is the work and creativity of some people that have made semiconducting materials such
a remarkable piece in the daily live. Moreover, every day new usages appear for electronics.
Great efforts have been put into increasing the production of semiconductor devices [3], the
world’s dependence on them does not seem to stop, which imposes the necessity to continue its
development and research to face new challenges. To achieve this goal, theoretical studies of the
fundamental physics, analytical models, and experimental exploration involving costly fabrication
can be used. Due to the complexity of modern devices and their phenomena, the existing models are
extremely difficult to solve analytically, as was done in the first half of 1900s, making imperative
the use of the calculation power of computers to solve them. This gives birth to computer aided
simulation tools, which are, by far, a less expensive and much more flexible research method than
laboratory experiments. All important variables and parameters, can be manipulated to analyze
many different operation conditions with relatively low effort, to get a deeper understanding before
the manufacturing process.

Although the commercialization of semiconductor devices started in the first years of the 20th
century [54], the real massification began with the invention of the junction transistor in Bell
Labs [119]. Since then, an amazing diversity of devices were developed, with different shapes,
materials, doping, and electrical properties. This makes desirable that the simulation tools be
general enough to deal with a great variety of scenarios. Therefore, a proper framework should
be used with the possibility of choosing different models to treat the phenomena of interest. Under
this philosophy, many semiconductor simulation software have been created [122][127][39][1] and
used for commercial applications or research purposes. For licensing issues many of those software
cannot be modified neither be inspected at an implementation level. This makes impossible the

1

correction of errors and hinders the understanding of the fundamental processes that seem to run in
a black box. Therefore, there are great limitations if the user wants to add functionalities, which is a
common requirement when other existing models must be used or new ones have been developed.
Although there are open-source tools, most of them have limited functionalities or are projects that
have been abandoned and, because of this, there is no general acceptance of any of these tools.

The above-mentioned ideas and the desire of gain a deeper knowledge, have been the motor
behind this work focused on the development of simulation tools for semiconductor devices. This
is not intend to replace any other alternative but to be a handy resource to use in practical problems
and to explore the fundamental processes that govern semiconductor devices.

Although semiconductors have been studied for more than one hundred years, it does not exist
a unified model that describes completely all aspects of real processes. Example of practical usages
are the analytical models for the PN junction current, that are very simple but limited in accuracy.
On the other hand, the resolution of the Schrödinger equation could give very precise results and
a good insight of what happens at an atomic level but the application to non-trivial devices is very
difficult. It is clear that, when models are chosen, it is necessary to consider the precision and the
complexity of the physics and its implementation. It is also necessary to consider the computational
costs involved in its resolution with relatively generality for different devices.

Nowadays, there exists a branch of families of methods grouped by its nature but also by the
inevitable tradeoff between accuracy and usefulness [108]. The compact models, as those used for
SPICE simulations, are fast but need experimental calibration for each device. The Drift-Diffusion
models (DDM) have been the first line of study for many years but it has limitations in high field
applications. The Hydrodynamic models (HDM) works better in an extended range since it includes
equations for energy and temperature which also implies an increment in computational costs.
The DDM and HDM can be interpreted as simplifications of the Boltzmann Transport Equation
(BTE) being this, the most complete semi-classical model that accounts for non-local transient
phenomena but it must be solved with much slower techniques as the Monte Carlo (MC) method.
Another method that is very promising is the non-equilibrium Green’s functions (NEGF) [71][45],
a mathematical technique to solve the Schrödinger equation but is still prohibitively difficult to use
for general devices.

Looking for the creation of a general tool, in this work the Drift-Diffusion and Boltzmann
Transport Equation solutions were implemented. The former because is a well-studied, fast, and
still very used method. The latter was used because of the high accuracy that can be obtained with
nowadays computational power.

For the DDM solution, the numerical difficulties of the position dependent drift and diffusion
terms must be handled carefully. For this reason the Finite Volume method (FVM) has been
used. It consists of various mathematical techniques to approximate the derivatives and other
terms of DDM’s Partial Differential Equations (PDEs). For the required stability, the Schafetter-
Gummel scheme is implemented. For the BTE, the classical Monte Carlo method is used which
is a totally different approach from FVM since it does not try to solve directly any PDE but
simulates individual particles (electrons or holes) that behave according to the BTE to then gather
results. This thesis aims to the two dimensional problem, although many algorithms can be easily
extended to tree dimensions. The implementation was made in MATLAB [93] because of its
ease of use. It also includes many useful built-in functions for lineal system solution, triangular

2

mesh generation, plotting, among others. These, and its powerful debug mode, make MATLAB an
excellent development tool.

1.1 Objectives

1.1.1 General Objectives

To develop computer aided numerical simulation tools focused mainly on semiconductor
devices with general two dimensional structures, implementing widespread models with different
methods and covering then, the most used simulation techniques, with the purposes of practical and
educative usages which will serve as starting point for future extensions.

1.1.2 Specific Objectives

• To define a mesh generation algorithm to describe general two dimensional device topologies.

• To implement a Finite Volume method to solve the Drift-Diffusion model with proper
stabilization techniques for a wide range of operation conditions.

• To implement a Boltzmann Transport Equation solver based on the Monte Carlo method for
holes and electrons.

• To create a unified framework for the two implemented models.

• To validate the developed solvers.

1.2 Thesis Outline

This document is organized as follows. In the rest of this introductory chapter, a historical
development of semiconductor simulation is presented. Then, it is introduced some of the key
theoretical concepts to understand the physics behind them. The chapter finalizes with the
description of the Drift-Diffusion and Boltzmann Transport Equation models.

Chapter 2 describes how the Drift-Diffusion method is solved. It starts with the introduction
of the most common methods used for the equations describing the model (Partial Differential
Equations). The reason of why Finite Volume was chosen are given. Then, the mesh creation
method is defined followed by the details of the implemented scheme, the Newton-Raphson solver,
boundary conditions, and other models and numerical techniques concerning the implementation.

The way the Monte Carlo method is used to solve the Boltzmann Transport Equation is
presented in Chapter 3. An introductory outline is given, followed by the description of the energy
band models, the free flight process and its time. Details of the scattering selection and scattering
rate calculation by means of the Fermi’s Golden Rule are also presented. The mechanisms of

3

scattering considered in this work are then introduced to end the chapter with the description
the initial conditions and treatments of boundaries, mesh-particle coupling, and electric potential
calculation.

In Chapter 4 the results for the two models are analyzed, showing numerical characteristics
and comparing with experimental data. Finally, the conclusions and ideas for future work are given
in Chapter 5.

1.3 Semi-classical Simulation

1.3.1 Historical Development

In this section a brief historical description of the development of semiconductor simulation is
presented. The description is based on historical milestones with emphasis on the Drift-Diffusion
model and the Monte Carlo technique for the Boltzmann equation.

Although the semiconductor revolution started few decades ago, the first studies date back
to 1782 when Alessandro Volta used for the first time the term “materials of a semiconducting
nature” [30]. However, the first extended studies are attributed to Michael Faraday who in 1833
noticed, after observing various materials, that the conductivity properties of some of them had a
temperature relation inverse to the behaviuor of known metals [47]. Other important discoveries
were made in later years, like the photovoltaic effect in 1839 using electrolytes and using pure
solid materials in 1873. The first reported rectification behavior was in 1874 by Ferdinand using a
metallic probe over a semiconductor. In 1878 Edwin Herbert Hall discovered the Hall effect that
was fundamental for further material studies [86].

Big steps forward in the theory were made by Riecke in 1899 and Drude in 1890 when they
proposed that conductivity must be because of an “electron gas” and even the possibility of positive
carriers was raised. It was Koenigsberger who then stated that mobile carriers where due to electron
“dissociation” leaving positive ions behind, classifying all materials as conductors, isolators, and
“variable conductors” [30].

After the First World War, ground breaking ideas of quantum physics gave rise in 1925
to the work of Erwin Schrödinger and his famous equation, which is the base of today’s most
accepted description of all sort of quantum system including particles in semiconductors. In the
early 1930s, the Kroning-Penny model for periodic potentials was introduced together with Bloch’s
mathematical interpretation of Schrödinger equation in a crystal lattice, and the explanation of
many phenomenon (like the semiconductor-temperature relation) with the use of common terms
like “acceptor” or “donor” (among others) by Wilson in 1931 [139], known as the father of solid
state physics.

It was in the late 30s that appeared the first suitable and practical model, proposed by Schottky,
for the metal-semiconductor junction. However, the great expansion in the use and studies of
semiconductor devices was started by the creation in Bell labs of the first point-contact transistor
in 1947 by Bardeen and Brattain, and its detailed description and pn-junction explanation given
by William Schockley in 1949 [119]. The next year, Van Roosbroeck [133] presented the first full

4

model to describe the behavior of electrons and holes using Partial Differential Equations (PDEs),
known now as the Drift-Diffusion model (DDM).

For many years, semiconductor models where solved analytically with many restrictions in
different independent regions of a device. It was in 1964 that Gummel [60] presented an iterative
resolution method to solve the DDM self-consistently (which means solving for electrical potential
and densities in the same method). This technique is still used today. The extension to the resolution
model to two-dimensions using the Finite Difference method (FDM) was proposed by Slotboom
in 1969 [124] and in the same year Scharfetter and Gummel [113] presented the stabilization
technique for the one-dimensional problem. The first transient simulations were performed in
1971 [110] and 1975 [89]. That same year began the use of the Finite Element method (FEM)
[20]. Later in 1979, Adler [8] used a primitive form of the Finite Volume method (FVM) with
non-uniform meshes to solve the Poisson’s equation but it was probably Bank et al. in 1983 who
formally described the FVM which they called at first the “finite-differences box method”.

At the beginning of the 80s, all the basis for semiconductor simulation using DDM were
established. After that, it was still used as the main resource for device modeling for some
years. However, with the miniaturization and different usages, where high electrical field and
other quantum process began gaining attention, the DDM was not able to accurate describe all
the phenomenology. It was then that models like the Hydrodynamic family (HDM), developed
in previous years [24][125][44], and the Monte Carlo approach started being more used thanks
to the increasing computational resources. Nevertheless, improvements of the DDM have kept
appearing from the beginning of the model. Examples of those efforts are the inclusion of high
field effects in mobility models [34] [21] [143][85], heterojunctions [91] including the Thermionic
Emission [70][59] and tunneling [144], non-constant temperature equations [116]. A totally
different approach is the inclusion of quantum models into the DDM. This approach, known as
the density gradient model or Quantum Drift-Diffusion model, has gained importance since 1989
[11][12].

Despite its lack of accuracy for many of ultra small devices, the relative low “cost” of the DDM
makes it useful for a variety of modern applications [137][13][22][94]. Numerical studies are still
being conducted for stabilization, convergence [36][35][37] or for speed improvements [96][83],
among others.

The history of the Boltzmann Transport Equation (BTE) for semiconductors is more recent
than the DDM. Although it has its origins in 1872 when Ludwig Boltzmann presented it in his
works about thermodynamics [28] (much before quantum mechanics foundations), its intrinsic
difficulty kept researchers away for many years. A real practical solution appeared only in 1966
when Kurosawa employed the Monte Carlo method to study transport in semiconductors [53].
In later years remarkable works were achieved, like the introduction of self-scattering by Rees
[109], increasing dramatically the efficiency of the method, and Fawcett et al. [48] demonstrating
that MC gives the solution of the BTE. First works for two dimensional devices were carried
out in 1974 [68], and ellipsoidal valleys and non-parabolicity were first accounted by Jacoboni
in 1975 [73]. In 1981, full-band method was first introduced [118][129] but in the 80s, Monte
Carlo calculations were still a difficult task for computational limitation, so Hydrodynamic models
were preferred to study transport beyond equilibrium [53]. In 1988, experimental and numerical
results using MC showed what seemed to be the effect of the overshoot in velocity [81]. The
exponential computer improvements in early 90s led to the more frequent inclusion of full-band

5

MC [81][50][65]. Moreover, many experimental and modeling works where conducted to correct
parameters for electron-phonon interaction and impact ionization [52]. In the last decade, similar
to the DDM, there have been many works regarding other quantum techniques for MC [140] like
the ones based on Wigner corrections [138][107] or effective potential [49].

1.3.2 Semiconductor Fundamentals

Here a general description of some of the important concepts on the semiconductor-device
physics is presented. It is not the aim to be self-contained in terms of theoretical background, this
section is only intended to be a remainder of some of the relevant aspects. The reader is encouraged
to use the extended literature to clarify any doubts. An excellent and easy way to follow introduction
in quantum mechanics is given by Griffith [58]. For solid-state physics, good resources are the book
of Kittel [77], Ashcroft and Mermin [14], and for semiconductor physics and devices Sze [128],
Pierret [104], Neamen [100] and Streetman [126].

The Schrödinger equation

The Planck’s idea of energy quantization and Einstein work suggesting that light is formed
by individual particles, gave birth also to a basic proportional relation between energy, E, and
frequency, ν , written as

E = hν , (1.1)

and called the Planck-Einstein relation, where h is the Planck’s constant. Later, de Broglie claimed
that particles had also a wave nature, known today as the wave-particle duality, with a wavelength
of

λ =
h
p

(1.2)

where p is the particle’s momentum. Thus, relating p to the wave vector k as

p = h̄k (1.3)

with h̄ = h/2π the reduced Planck’s constant.

For this reason Schrödinger worked in an expression to describe the wave behavior of particles
giving birth to the time-dependent Schrödinger equation which is

ih̄
∂Ψ(xxx, t)

∂ t
= HΨ(xxx, t), (1.4)

6

where Ψ(xxx, t) is the particle’s wave function and H , the Hamiltonian, is a linear operator acting on
space that describes the total energy. If the system has a potential U(xxx, t) then H is

H =− h̄2

2m
∇

2 +U(xxx, t). (1.5)

Another common expression for stationary problems is the time-dependent Schrödinger equation
(SE in this work) derived from (1.4) [58] and reads

EΨ(xxx, t) = HΨ(xxx, t) (1.6)

where E is the energy of the state Ψ.

The interpretation of wave function is a statistical one where

∫
Ω

Ψ
∗
Ψdxxx (1.7)

is the probability of finding the particle represented by Ψ in the region Ω at time t. Since Ψ is the
solution of (1.4), it is clear that depends on the particle mass and the potential energy.

Due to the uncertainty given by probabilities and the wave nature of Ψ, the uncertainty
principle says the more precisely is determined the particle’s (or wave in this context) position,
the less precisely its momentum can be known, or

σxσp ≥
h̄
2

(1.8)

with σx and σp the standard deviations in x and p measurements respectively

Periodic Potential and Band Concept

If an electron is placed in a non-periodic and non-uniform potential like the case of the
commonly used quantum well, the Schrödinger equation (1.6) can easily be solved [100] imposing
the proper boundary conditions. Using separation of variables Ψ(xxx, t) = ψ(xxx)ϕ(t) one can obtain
solutions of the form

ψ(x) = ake±ikx (1.9)

and a parabolic relation between energy and wave vector (E− k relation)

E(k) = Ek =
h̄2k2

2m0
(1.10)

7

with m0 the free-electron mass.

To make a similar analysis in semiconductor materials and then understand the movements
of particles it is necessary to know first about the medium where they exist. In semiconductors,
depending on the type, different crystal structures are formed. One example is showed in figure 1.1
[123] where spheres represent atoms and lines are bonds. Assuming uniformity of the structure, that
basic cell is repeated over the whole material sample creating a periodic grid with also a periodic
electrostatic potential due to the atom’s charge.

Figure 1.1: The zinc (diamond) crystal structure. Figure from [123]

A one-dimensional simplification of the lattice is a chain of atoms. Since each ion core in the
chain generates an attractive field for electrons according to Coulomb’s law, it can be modeled by
a repeated quantum well as the one on figure 1.2 with a periodicity of a+b and barriers of height
U0. This scenario makes it feasible to use the Bloch’s theorem that states that if there is a periodical
potential such as

U(x) =U(x+(a+b)) (1.11)

Figure 1.2: One-dimensional square potential representation of a crystal

then, the solution of the SE has the same periodicity of the crystal structure with the form

ψk(xxx) = uk(xxx)eikkk·xxx. (1.12)

Imposing the boundary conditions the final solution of the SE can be found easily in a 1D
periodic model, known as the Kroning-Penny model [104]. The energies corresponding to the

8

wavefunction can be obtained from

−α2 +β 2

2αβ
sin(αa)sin(βb)+ cos(αa)cos(βb) = cos(k(a+b)) (1.13)

where β 2 = 2m(U0−E)/h̄2 and α2 = 2mE/h̄2. It is important to notice that the values of the right
hand side range from −1 to 1 since it is just a cosine but the left hand side can have greater values
with an oscillatory behavior (since it contains a sine and a cosine). One of the more remarkable
results of this model is that electrons cannot have an arbitrary energy value because both sides
of (1.13) must be equal which cannot be in all the cases. Therefore, there exist bands of allowed
energies and band gaps of forbidden states as it is show in figure 1.3 [104] where energy E is
plotted against wave vector k as solid lines segments for valid E − k solutions of (1.13). This
segments form the bands 1 to 4 in this example. The other important result of the model is that
any value of k multiple of 2π/(a+ b), with (a+ b) the periodicity of the lattice, has no effect
on the allowed energies. Thus, the E − k relation is well depicted for any value of k in a range
[−π/(a+ b),π/(a+ b)] . This range of k or region in the wave vector space, is called the first
Brillouin zone where the whole E − k relation can be represented as the dotted lines that range
shows in figure 1.3.

Figure 1.3: Representation of the E− k relation for allowed states from the Kroning-Penny model. The central bounded region is the first Brillouin
zone. Figure from [104]

The results of the Kroning-Penny models show that there is an infinite number of bands but
it is important to notice that electrons usually have a finite energy, in fact, they tend to occupy the
band with lower energies being the limiting case at 0K.

For the three-dimensional case, the E−k relation is much more complex. The Brillouin zone is
also a 3D region in the k space as shown in figure 1.4 where ki are the wave vectors in the directions

9

i = xxx,yyy,zzz and the other symbols are high symmetry directions and points. Γ is the point [000] in k
space, while X = [100] and L = [111].

Figure 1.4: Brillouin zone for a three-dimensional zinc crystal structure. Figure from [128]

To obtain the energy band for real semiconductor materials, unlike the Kroning-Penny model,
numerical methods like the kkk ·ppp or pseudopotential method must be used. Results of these are shown
in figure 1.5, called an energy band structure which is energy levels plotted against a path in the
k space from L directions to Γ and then to X in this example. Here it can also be appreciated the
valence band Ev, the conduction band Ec, and the energy gap Eg. In the GaAs plot a lower valley in
Γ is present, but there are also two other valleys higherin energy present in L and X . In the valence
band, three bands are present centered in Γ, the heavy hole, light hole, and split-off band, where
the first two are the higher ones, present also in Si. It is clear that there is not a simple parabolic
relation between E and k but it is common to use anyway that simple approximations that fit band
minima and maxima, especially for the Drift-Diffusion model, but with an effective mass m∗ (see
next subsection),

E(kkk) = Ek =
h̄2k2

2m∗
. (1.14)

1.3.3 Carrier Distributions and Doping

To describe the carrier’s behavior it is important to take into account its probability
distributions which is given by the Fermi-Dirac statistics. It states that the probability that an energy
level E is occupied is given by

f (E) =
1

1+ e
E−EF

kBT

(1.15)

where T is the temperature, kB the Boltzmann constant, and EF the Fermi level, which can be
considered as the energy or state with a 50% of chance of being occupied at thermal equilibrium

10

Figure 1.5: Energy band structure for Si (left) and GaAs (right). Eg is the band gap. Figure from [128].

(condition without external forces) and a given time. When E − EF � kBT the Fermi-Dirac
expression can be approximated by the Boltzmann statistic

f (E)≈ e−
E−EF

kBT . (1.16)

To know the density of electrons n in the conduction band, the density of states N(E) must be
known. Then, the calculation is made by integrating upwards from the conduction band Ec as

n =
∫

∞

Ec

N(E) f (E)dE, (1.17)

where N(E) is density of states. Since f (E) is known, a form to calculate N(E) is necessary. An
analytical expression can be obtained if a parabolic band, like (1.14), and isotropy are assumed
[100]. Solving (1.17), if Nc is the conduction band effective density of states, the density of
electrons at the conduction band (which have an energy Ec) in equilibrium can be expressed using
the Boltzmann statistics as

n0 = Nc f (Ec) = Nce−
Ec−EF

KbT . (1.18)

For holes, the vacancies in the valence band, the expression is obtained by an analogue
procedure but using (1− f (E)) instead of f (E) (it is the absence of electrons), integrating over

11

the valence-band, and using the proper N(E). Then, if Nv is the valence-band effective density of
states, the hole concentration in equilibrium is

p0 = Nve−
Ev−EF

KbT . (1.19)

It is common to define the intrinsic Fermi energy Ei as the energy at which n0 = p0 in an
intrinsic semiconductor (one that does not have any impurity) as

n0 = p0⇒ Nce−
Ec−EF

KbT = Nve−
Ev−EF

KbT ⇒ EF = Ei =
1
2
(Ec +Ev)+

1
2

KbT ln
(

Nv

Nc

)
. (1.20)

Since the energy gap Eg is defined by

Eg = Ec−Ev. (1.21)

Ei can also be written as

Ei = Ec−
Eg

2
+

KbT
2

ln
(

Nv

Nc

)
. (1.22)

Another useful definition is the intrinsic carrier density ni,

ni = n0 = p0 = (NcNv)
1/2e−

Eg
2KbT (1.23)

where (1.20) was used in (1.18) or (1.19).

Figure 1.6 a), summarizes many of the important concepts for semiconductors, where an
energy band diagram shows the conduction and valence band with equal number of electrons
and holes. This is the case for intrinsic semiconductors, where the Fermi energy (same as Ei) is
approximately at the middle of the band gap.

To control the conductivity of semiconductor materials and create most devices, impurities in
the crystal lattice are introduced. This procedure is called doping. When these impurities have an
extra electron in the valence band than the majority atoms in the crystal, these electrons do not
form bonds and can easily be used in the conduction band. This kind of impurities is called donors.
On the other hand, if the impurity lacks of an electron, is called acceptor because electrons of
other atoms can easily jump to fill this lack. Looking at the band diagram of figure 1.6b and c, the
inclusion of impurities also adds energy states at ED for donors where electrons can easily jump to
Ec, and EA for acceptors to where electrons can jump from Ev. It should be noticed that the Fermi
energy EF is also displaced because of the non-equal density of electrons or holes and has no longer
the same value of Ei. Not all the impurities are ionized due to thermal energy. Instead, if Na and Nd

12

Figure 1.6: Energy band diagram, density of states, Fermi-Dirac distribution and n, p concentrations for a) intrinsic b) n-type and c) p-type
semiconductors. Figure from [128].

are the doping concentrations of acceptors and donors, the concentration of ionized impurities are
[128]

N−a =
Na

1+gae
EA−EF

kBT

(1.24)

N+
d =

Nd

1+gde−
ED−EF

kBT

(1.25)

where gd and ga are donor and acceptor energy’s degeneration degree, usually 2 and 4 respectively.

If two semiconductors with different Fermi energy were put together, for example an n-type
and a p-type, by definition the system would be out of equilibrium, which is the case also when
external forces were applied. To describe this situation, it is common to define quasi-Fermi levels
EFn and EF p (for electrons and holes) to define a quasi-equilibrium in the conduction and valence

13

band, respectively. Therefore, (1.18) and (1.19) can be rewritten as

n = Nce−
Ec−EFn

KbT (1.26)

p = Nve−
Ev−EF p

KbT . (1.27)

Common expressions similar to (1.26) and (1.27), but as functions of ni and Ei, can be derived as
follows. From (1.26), and multiplying by 1 = ni/ni

n =
ni

ni
Nce−

Ec−EFn
KbT (1.28)

⇒ n =
ni

(NcNv)1/2e−
Eg

2KbT

Nce−
Ec−EFn

KbT = ni

(
Nc

Nv

)1/2

e
EFn−Ec+Eg/2

KbT . (1.29)

From (1.20) and (1.21)

−Ec +
1
2

Eg =−Ei +
1
2

KbT ln
(

Nv

Nc

)
(1.30)

using this in (1.29)

⇒ n = ni

(
Nc

Nv

)1/2

e
EFn−Ec+Eg/2

KbT = ni

(
Nc

Nv

)1/2

e
EFn−Ei+

1
2 KbT ln(Nv

Nc)
KbT (1.31)

and finally, using exponential and logarithm properties,

⇒ n = ni

(
Nc

Nv

)1/2(Nv

Nc

)1/2

e
EFn−Ei

KbT = nie
EFn−Ei

KbT . (1.32)

Similarly for holes

⇒ p = nie
Ei−EF p

KbT (1.33)

Band Diagram Description

The band diagram, introduced in figure 1.6, is a very useful tool to explain the basic operation
of many devices. It plots the different energies and magnitudes as Ec, Ev, and the vacuum level EL

14

among against position in space. Due to its importance in the theory and calculation magnitudes
(especially for DDM) is necessary to use proper references and relations in the band diagram.

In contrast to other works, in this thesis the results of [88] and [92] are used. They suggest that,
in general, the intrinsic energy Ei(x) is not parallel to the electric potential ψ(x) and, therefore,
it is incorrect to assume them to be equivalent when there are inhomogeneous materials (or
heterostructures). The adopted band description is the one of [88] and is depicted in figure 1.7a
where E0 is a reference constant level, and χ(x) the electron affinity (energy necessary to take an
electron from the conduction band to the vacuum level).

Figure 1.7: Energy band diagram. a) Diagram of [88]. b) Diagram used in this work with E0 = 0 and only for abrupt heterojunctions.

In this thesis, the reference energy is assumed to be E0 = 0, equal to the thermal equilibrium
Fermi energy. Moreover, heterostructures are limited to the abrupt type as shown in figure 1.7b.
From the diagram, the relation of the conduction band and the potential is

Ec =−χ−qψ, (1.34)

from where expressions related to ψ can also be derived from the equations given in section 1.3.3.

Motion and Effective Mass

The effective mass is another important concept that can be explained with figure 1.3 where
the parabolic free electron E − k relation of equation (1.10) is represented by a dotted parabola.
The curvature is determined by the factors of the form h̄/(2m), in particular by the mass m, where
changing its value would represent a change in the slope of the parabola at any point. For the case
of the electron in a periodic potential it can be seen that the slope varies. This suggests that the
particle behaves as it would havea different mass which is called effective mass and is defined by
[77]

1
m∗

=
1
h̄2 ∇kEk. (1.35)

15

Notice that the effective mass can also be a tensor with the form.

(
1

m∗

)
ab

=
1
h̄2

∂ 2Ek

∂ka∂kb
(1.36)

where a and b are orthogonal directions. This new mass also is a way to relate quantum behavior
to Newtonian mechanics by allowing a description of the motion of particles in a very similar way.
Starting from the definition of velocity for wave packets vg = dω/dt (with ω the angular frequency)
and from the equation (1.1), the group velocity is

vvvg =
1
h̄

dE
dk

or vvvg =
1
h̄

∇kE. (1.37)

If an external force F is assumed to affect the particles in the lattice, it can be shown that it generates
a change in wave vector according to [77]

F = h̄
dk
dt

. (1.38)

Then, from (1.37) and using (1.38),

dvg

dt
=

1
h̄

d2E
dkdt

=
1
h̄2

d2E
dk2 h̄

dk
dt

=

(
1
h̄2

d2E
dk2

)
F (1.39)

where the effective mass m∗ of (1.35) can be used to rewrite (1.39) as

F = m∗
dvg

dt
. (1.40)

For the case of hole transport, the expressions are the same, but the effective mass has opposite
sign.

Whilst in a perfect unperturbed crystal electrons would accelerate according to the above given
expressions, in real material this is not the case. Electrons (and holes) can be scattered changing its
direction and energy (which implies possible changes in the band they occupy). A large number of
mechanisms exist [71] [97] but not all are of relevance in every case. In this work the focus is put
only on some of the most common mechanisms.

The most intuitive process of dispersion is called charged impurity scattering that occurs when
electrons travelling in the crystal are affected by the electrostatic field of ionized impurities. This
is the product of a coulombic interaction generally screened by the effect of other charges and is
classically modeled by the Conwell-Weisskopf approach or the Brooks-Herring approach [132].

The other important dispersion mechanism used in this work is called phonon scattering
which has its origin in the always present lattice thermal vibrations at temperatures above 0K.
These oscillations, like photons of light, can be treated as quantum particles called phonon with its

16

own wave vector q and frequency ωq. The vibrations of the atoms can be classified in acoustic,
when atoms moves in phase, and optical, when they moves against each other. Moreover, the
oscillation can be named as transversal if it occurs perpendicular to the direction of propagation,
and as longitudinal if it is in the same direction. Besides these classifications of the nature of
the oscillations, there are some other classifications regarding the effect they produce. In crystals
with polar bonds, the displacement of the atoms causes a perturbation in the electric field between
atoms that can scatter carriers. These processes are termed piezoelectric (for acoustic phonon)
and polar optical scattering. This work focuses on acoustic, polar and non-polar optical scattering
mechanisms.

1.3.4 Boltzmann Transport Equation

In the semi-classical framework the Boltzmann Transport Equation (BTE) is considered the
best way to describe the evolution of a set of particles or carriers out of equilibrium. This is
achieved obtaining the distribution function f (xxx,ppp, t) which is time, t, position, xxx, and momentum,
ppp, dependent. It gives the probability of finding the carriers at these states. All the main macroscopic
quantities can be evaluated from this distribution function. If the expression p = h̄k between the
momentum and the wave vector kkk is used (then ∇p = ∇k/h̄), the BTE can be written as [74],

∂ f
∂ t

+
FFF
h̄
·∇k f +vvv ·∇r f =

∂ f
∂ t

∣∣∣∣
coll

(1.41)

where FFF is the external force and vvv the group velocity. The right side term or collision term accounts
for the rate of change of f due to perturbations such as scattering events. Although this equation was
introduced by Boltzmann for the description of a classical gas before the theory of semiconductor
physics was developed, the behavior of carrier inside their respective bands can be easily compared
to a gas. Considering additionally the fact the BTE can be derived from the quantum mechanics
physics [78], this model, inherited from thermodynamics, becomes an excellent tool to describe the
behavior of carriers in solid state materials.

Due to the high dimensionality of the BTE and the extra complexity given by the collision
term, the solution of the equation is not simple and analytical solutions exist only for restricted
cases [87]. That is why numerical solutions based on particles are preferred, where the classical
approach is to use Monte Carlo simulations. This has been formally proven [48][87] to be a method
to solve the BTE and will be discussed thoroughly in chapter 3.

1.3.5 Drift-Diffusion Model

The widely used and studied Drift-Diffusion model (DDM) can be attributed to Van
Roosbroeck (1950) [133]. The DDM can be derived from the Boltzmann Transport Equation (plus
Poisson equation) by using direct methods or the zeroth and first moments of the Moments Method
[25]. In all cases, some assumptions must be done which also determine the limitations of the
model. Some of these assumptions are slow temporal evolution, small (negligible) magnetic

17

force, weak electrical field, parabolic band structure, constant lattice temperature, soft spatial
material variations and non-degenerated case (Boltzmann statistic).

The model is composed by the Poisson equation and the so called continuity equations for
negative charges or electrons (n or e) and the positive ones or holes (p or h) stated as (for electrons),

∂n(xxx, t)
∂ t

− 1
q

divJJJn(xxx, t) =−Un(xxx, t) (1.42)

where xxx is the position (space variable) and t is the time1. q is the elementary charge, n is the density
of electrons (p in case of holes), JJJ is the electron current and U the generation-recombination net
rate.

The expression for U varies depending on selected model. J in DDM has a more standard form
which is (for n),

JJJn =−qnµnEEEn +qDn∇n (1.43)

where µ is the carrier mobility, D the diffusion constant (which also depends on the chosen model),
and EEEn is the driving electrical field for electrons which, for a simple homostructure with constant
temperature, is related to ψ , the electrostatic potential, by EEEn = −∇ψ . Finally the DDM also
includes the Poisson equation,

−div(ε∇ψ) = q(p−n+N−D −N+
A) (1.44)

where ε is the dielectric permittivity and N−D , N+
A are the ionized donor and acceptor impurities

concentrations (the net value C = N−D −N+
A is also used). Finally, the whole (for both species)

DDM is expressed as,

−div(ε∇ψ) = q(p−n+C) (1.45a)
∂n
∂ t
− 1

q
divJJJn =−Un (1.45b)

∂ p
∂ t

+
1
q

divJJJp =−Up (1.45c)

JJJn =−qµnn∇ψ +qDn∇n (1.45d)
JJJp =−qµp p∇ψ−qDp∇p (1.45e)

with C = N−D −N+
A . It is usual to present the DDM in its reduced form which is obtained simply

replacing the current expression in the continuity equations.

1These variables will be excluded for simplicity in most of this document

18

−div(ε∇ψ) = q(p−n+C) (1.46a)
∂n
∂ t

+div(µnn∇ψ)−div(Dn∇n) =−Un (1.46b)

∂ p
∂ t
−div(µp p∇ψ)−div(Dp∇p) =−Up. (1.46c)

Although much simpler than the BTE, the Drift-Diffusion model have to be treated and solved
meticulously. In this work this is done by subdividing the space domain and using the Finite Volume
Method and other techniques that are discussed in depth in chapter 2.

19

Chapter 2

A Finite-Volume Based Drift-Diffusion
Solver

2.1 About Numerical Methods

Since the Drift-Diffusion Model is, from a mathematical point of view, a set of partial
differential equations or PDEs (in particular a convection-diffusion like problem) typical ways of
solving other type of equations cannot be used. Instead, Finite Difference Method (FDM), Finite
Element Method (FEM) and Finite Volume Method (FVM) are some of the common numerical
techniques that can treat the difficulties presented by PDEs. Here, a brief description of the methods
is given without many of the mathematical formalisms to understand its main differences and why
FVM is finally used in this work (although not necessarily the best). One important remark about
the problem is that the simplest numerical schemes as the FDM central differences (it will be
introduced later) often fail and yield wrong solutions. This is shown as oscillatory behavior or
sometimes called “wiggles” like the example on figure 2.1 where the velocity dependence can be
appreciated. To avoid this problem one of the most common approaches is the family of the so
called upwind schemes based on [42] or other schemes that produce similar corrective effects. This
correction must be included in any good semiconductor simulator.

Figure 2.1: Example of central difference performance for convective problems (figure from [136]). Left: good approximation for velocity 0.1m/s.
Right: bad approximation with oscillation for velocity 2.5m/s

20

The three methods mentioned above share the same idea. Given a bounded domain Ω, in which
the equations must be solved, it is divided in smaller pieces and the problem or an approximation
(or instances of it) is solved in each piece. This same idea is the intuitive approach to get an
approximation of the area under a curve like the one in figure 2.2 where the areas calculated are the
ones of the rectangles.

Figure 2.2: Area under the curve as example of the division of the problem.

This same idea of division of the problem applied for PDEs is illustrated in figure 2.3. Here, a
rectangular domain is subdivided using small rectangles that form a grid or mesh. Then, the PDE
is solved in each subdomain ΩK for u(xxxK). In the rightmost image of figure 2.3 the original PDE
is replaced by another simpler expression that locally approximates the solution. All of these are
called a discretization because a continuous problem and domain is treated and solved for discrete
values.

Figure 2.3: Example of how a domain can be divided using a rectangular grid

The three mentioned methods differ in how the subdivision is made and in the way that the
original problem is approximated in each small piece of the domain. After that process what is
usually obtained is a set of linear equations that form a linear system of the form AAAuuu = FFF , with
uuu = (u1,u2...,un), that can often be solved by inverting matrices. Although distinct from each other,
in some cases, especially 1D problems, the methods yield the same or similar linear system and,
therefore, could share their numerical properties.

To help in understanding the methods and its differences, a simple PDE problem will be useful.
Suppose that the equation that is to be solved is

21

div(∇u(xxx)) = f (xxx) xxx ∈Ω (2.1)
u(xxx) = g xxx ∈ ∂Ω (2.2)

with ∂Ω the boundary of Ω and g the value of u in ∂Ω. This is what is called a boundary condition
(BC) which is always necessary to solve a PDE but meanwhile will not be taken account.

The Finite Difference Method

The creation of the FDM is commonly attributed to Courant, Friedrich and Lewy and their
paper of 1928 [5] [41] and it is the oldest of the three mentioned methods. It makes use of what are
called finite differences that can be used to approximate derivatives. For example

• Forward difference

d f (x)
dx
≈ f (x+h)− f (x)

h
(2.3)

• Central difference

d f (x)
dx
≈ f (x+h/2)− f (x−h/2)

h
(2.4)

Where it can be seen that when the limit h→ 0 is used in the above expressions the definition of the
derivative is recovered. The same concept can be applied to higher order derivatives. For example

• 2nd order central difference

d2 f (x)
dx2 ≈ f (x+h)−2 f (x)+ f (x−h)

h2 (2.5)

The FDM apply these tools to convert a PDE like (2.1) to linear expressions by writing it in
component notation as (using xxx = (x,y))

∂ 2u(x,y)
∂x2 +

∂ 2u(x,y)
∂y2 = f (x,y). (2.6)

Where the 2nd order central difference can be used to approximate the derivatives,

u(x+h,y)−2u(x,y)+u(x−h,y)
h2 +

u(x,y+h)−2u(x,y)+u(x,y−h)
h2 = f (x,y). (2.7)

22

The previous expression is a linear approximation of the original PDE. To make it accurate, the
value of h should be small which can be achieved with the kind of division of figure 2.3. Here,
for each point xK of the mesh, the equation (2.7) can be applied assuming that h is the distance
between two neighbor points (in the x and y direction). To make the schemes comparable, the
equation (2.7) can be written for each point using an alternative representation where u(x,y) = uK ,
u(x+ h,y) = uL1, u(x,y+ h) = uL2, u(x− h,y) = uL3, u(x,y− h) = uL4, f (x,y) = fK and h = dKL
for this regular mesh. Then, the scheme would be

uL1−2uK +uL3

d2
KL

+
uL2−2uK +uL4

d2
KL

= fK. (2.8)

It is important to notice that although in this example the distance between two neighbors
was assumed constant, making this variable will not change anything in of the procedure. What
is really necessary is that neighbor points must be aligned in the Cartesian orthogonal directions.
This is because finite differences (that are 1D approximations) work along each component for this
method. This limits the kind of mesh that can be used with FDM to only rectangular ones (o lines
in 1D) allowing only some kinds of refinements.

The Finite Element Method

The Finite Element method (FEM) is a completely different approach from FDM or FVM
(which are similar to each other). FEM needs a stronger mathematical knowledge to work with,
which is one of the reason for looking for alternatives. Here, a simplified example is presented with
a few theoretical remarks that are not fundamental in the explanation. Its origins in engineering
problem were in the mid 1950s but its main ideas arose years before [5]. The method states that to
in order to find the solution of a problem, for example (2.1), an approximate solution of the weak
formulation of the problem must be found. This can be done with appropriated basis functions
w j. To give an example of this the PDE of (2.1) must be written in its weak form doing what is
described in the next paragraphs.

Given any smooth function w such that w = 0 in ∂Ω, the original equation is multiplied by w
and integrated over Ω

∫
Ω

div(∇u)wdxxx =
∫

Ω

f wdxxx (2.9)

⇒−
∫

Ω

∇u ·∇wdxxx =
∫

Ω

f wdxxx (2.10)

where the Green identities and the fact that w vanishes in the boundary were used. Equation (2.10)
is the weak formulation of (2.1). The FEM tries to find the solution u for all w in certain space (the
same as u but with w = 0 in ∂Ω). This is why w is called a test or trial function. The next step is to
discretize (2.10) for which a set of basis functions NK are chosen such that

NJ(xxxK) =

{
1 J = K
0 J 6= K (2.11)

23

with K and J are the indices of the mesh points. In the Galerkin formulation NJ are in fact the basis
of the space of the test function. Using NJ the unknown u of the original problem can be written as

u = ∑
J

uJNJ (2.12)

where uJ is the value of u at J point. If this form of u is replaced in the weak formulation (2.10)
and w is replaced by NK (since NK is basis of w in the Galerkin formulation), an equation for each
mesh point can be obtained (one for each K) of the form

−
∫

Ω

∇

(
∑
J

uJNJ

)
·∇NKdxxx =

∫
Ω

f NKdxxx (2.13)

⇒−∑
K

uJ

(∫
Ω

∇NJ ·∇NKdxxx
)
=
∫

Ω

f NKdxxx f or each K (2.14)

where uJ are the unknown of the new linear system. To proceed with the method it is necessary to
know an explicit form of NJ that meets the needs of (2.11) for example a set of linear functions like
figure 2.4 (for one dimension). For the case of a regular mesh, shown in figure 2.3, it can be easily
demonstrated that the final discretization for each K has the same form of (2.8). In general, it is
well known that every Galerkin formulation yields discretized equations of the form of a central-
difference Finite Difference scheme and this is why also share the same problems like spurious
oscillations in the semiconductor’s case. Because the selection of the basis functions is symmetric
in the Galerkin formulation (as shown in figure 2.4) no upwind effect can be achieved because of
the requirement of giving more weight to the upstream nodal or mesh points is not satisfied. This is
why many tools like FreeFEM++ [63] (which use Galerkin formulation) present limitations for the
semiconductor problem. Many ways to extend the capabilities of FEM for this and others problems
have been proposed. The Petrov-Galerkin family of formulation is one example and follows the
idea of use weighted basis functions or the Discontinuous Galerkin schemes which is a mixture
with Finite Volumes [46].

Figure 2.4: Example of linear basis functions for the 1D case.

It is important to remark that in the FEM formulation restriction over the shape of the elements
were not imposed like in the FDM. In general unstructured meshes, like triangular ones, can be used
in the FEM framework.

24

The Finite Volume Method

The FVM is the chosen numerical method in this work. It is based in the division of the domain
in what are called control cells or control volumes (the word volume is used even for domain
dimensions different from 3). Integration is made over these cells and commonly the divergence
theorem is used to convert the expressions to surface integrals. The method can be illustrated by
using the example of figure 2.3 with a rectangular mesh. Here, the control volumes ΩK are like the
one of figure 2.5 where the dotted lines form boxes which are the control volumes. They form a
cell K with domain ΩK with its center xK and its boundary ∂ΩK .

Figure 2.5: Simple control volume (right) based on a square mesh (left).

To solve the problem using FVM the equation is integrated over each control cell

div(∇u(xxx)) = f (xxx)
∣∣∣∣∫ dV , (2.15)

leading to

⇒
∫

div(∇u(xxx))dV =
∫

f (xxx)dV. (2.16)

Then, the divergence theorem can be used to transform the volume integral to a surface integral (a
line integral in 2D case). This is what is done to the left hand side in eq. (2.17),

⇒
∫

∇u(xxx) ·νds =
∫

f (xxx)dV (2.17)

where ν is the outward normal vector of the domain. It must be noticed that the surface integral
needs to be evaluated for each cell edge, that is for example, at the four edges that form ∂ΩK in
figure 2.5. Thus, calling νi and σi the four normal vector and the four edges (as illustrated in figure
2.6a), the surface integral of eq. (2.17) can be separated in

⇒
∫

∇u(xxx) ·νds =
∫

σ1

∇u(xxx) ·ν1ds+
∫

σ2

∇u(xxx) ·ν2ds+
∫

σ3

∇u(xxx) ·ν3ds+
∫

σ4

∇u(xxx) ·ν4ds (2.18)

25

⇒
∫

∇u(xxx) ·νds =
4

∑
i=1

∫
σi

∇u(xxx) ·νids =
∫

f (xxx)dV. (2.19)

Figure 2.6: Some definitions for FVM. a) Outward vector ν and edges σ . b) Measurements of area mK , neighbour distance dKL, edge length mσ , and
directional derivative approximation.

Until this point only exact theorem and properties have been used but now ∇u(xxx) · νi =
∂u(xxx)/∂νi (the derivative of u(xxx) in the νi direction) and f (xxx) must be evaluated and integrated
over the edge. The quantities of figure 2.6b will be useful for the next step, where for the cell K the
measure of its volume is mK , the distance between two neighbor centers is dKLi and the length of
the edge σi is mσ .

The first approximation that can be made to simplify (2.19) is to assume that the f (xxx) (on
its right hand side) is constant over the whole volume K with a value fK . Notice that when the
cell is very small this is a very good approximation (since all the points of K are very close to
each other). A similar approximation can be made for ∂u(xxx)/∂νi = ∂u/∂νi. Remembering that∫ b

a Cdx =C
∫ b

a 1dx =C(a−b), the expressions are reduced to

⇒
∫

f (xxx)dV ≈ fK

∫
1dV = fKmK (2.20)

and

⇒
4

∑
i=1

∫
σi

∂u
∂νi

ds≈
4

∑
i=1

∂u
∂νi

∫
σi

1ds =
4

∑
i=1

∂u
∂νi

mσ i. (2.21)

To approximate the directional derivative the forward difference can be used as is shown in figure
2.6b. Then, the above expression becomes

⇒
4

∑
i=1

∂u
∂νi

mσ i ≈
4

∑
i=1

u(xxxL)−u(xxxK)

dKLi
mσ i. (2.22)

26

Finally, replacing (2.22) and (2.20) on (2.19) it yields

∫
∇u(xxx) ·νds =

∫
f (xxx)dV ⇒

4

∑
i=1

∂u
∂νi

mσ i = fKmK. (2.23)

The FVM method has been used to transform a PDE into a linear equation. Repeating the same
procedure for all control volumes and a similar one to treat the boundary conditions a linear system
of equations can be created. It is important to remark some difference with the others methods. In
this example a rectangular grid was used and in fact, in this case, the final system of equations that
is obtained is analogue to the one created by FDM. Nevertheless, FVM is not limited to only this
kind of mesh. In fact, the only not obvious restriction of the mesh used in the example was when
the directional derivative at the edges was approximated directly by the forward difference. This
implies that the outward normal νi must be aligned with xxxLi and xxxK . This flexibility and the more
intuitive representation makes FVM an excellent method to work with.

2.2 Mesh Description

Many numerical problems that aim to understand physical phenomena are restricted to real-
space regions such as the water flow in a pipe, stress in a beam, or electric potential in a
semiconductor device. It is then necessary to describe these domains in a way that numerical
calculations are feasible. In the section 2.1 the idea of mesh or grid was introduced but it must
be extended to properly satisfy the modern simulation’s needs.

All domain description should consider the existence of external boundaries that limit the
physical region of study. Also, it should account for internal interfaces that delimits, for example,
differences on properties of interest within the domain. In semiconductor devices, external
boundaries are (depending on the model) semiconductor-air and semiconductor-electrical contact,
among others. Junctions between two semiconductors and abrupt changes in doping concentrations
are common examples of internal boundaries. These limits can always be approximated by lines
or faces and their intersections that together form a basic geometry as in figure 2.7a, which is the
starting point to create a mesh. This is a subdivision of the domain (now defined by the basic
geometry) into smaller regions that can also be described by a set of points, lines (or faces), and the
relations between them (see figure 2.7b). Although the device topology can be well described by
the basic geometry or the mesh, the different attributes of the domain is what makes it physically
interesting. A good description of the device is finished when all the properties, the mesh, and the
geometry are related and treated as a whole.

27

(a) (b)

Figure 2.7: a) Simple MESFET structure b) and a triangular mesh for that geometry.

Despite the fact that most semiconductor devices have only orthogonal characteristics due
to manufacturing technologies and simplicity goals [128], there exist some devices with non-
orthogonal geometries that rectangular structured meshes cannot fit properly without very fine
refinements (see figure 2.7a). Although there exist local refinement techniques for this type of
meshes [105], unstructured triangular meshes are a better choice because they can naturally fit
complex topologies. This is done with a reasonable level of refinement, and they have been well
studied and can be generated by many software [106][115][130]. For this reason this kind of mesh
was preferred in this work as a basis for the Finite Volume mesh. Before continue is useful to first
define what an admissible mesh for FVM is. This will help to formally describe the numerical
scheme and understand the selection process of the mesh.

Definition 1 (Admissible Mesh) The triplet (T ,E ,P) are a mesh in Ω if

• T is a finite set of non-empty polygonal control volumes K ⊆ Ω , convex, bounded and
disjoint interiors.

• E is the set of edges of all volumes K ∈T , with EK the set of edges of K.

• P is the set of centers of each volume K ∈T . The center of the volume K is denoted xK .

The sets T ,E ,P are such that:

1.
⋃

K∈T K = Ω.

2. Given K,L ∈T , K 6= L, only one of the following properties is met:

a) K∩L = /0

b) K∩L = σKL ∈ EK ∩EL. In which case K and L are neighbors.

c) K∩L = x for some x ∈Ω

If in addition K,L∈T are neighbors and met xKxL⊥σKL it is said that (T ,E ,P) is an admissible
mesh.

28

Figure 2.8 is a minimal example of the described mesh. Although FVM can be implemented
using most types of meshes, there are differences volume centers and edges are non-orthogonal (i.e.
when they are not admissible meshes). The process of calculating flows through every cell edge,
a basic step of FVM, implies projecting quantities to get normal components respect to volumes
interfaces. To keep simplicity of the method, the easiest way to deal with these flows is to work
on a FVM mesh with the orthogonality feature. The so called Voronoi mesh or diagram (VM) in
definition 2 meets this requirement and can be partially described by definition 1 of admissible
mesh. This idea, the unstructured characteristic that allows general geometry description, and its
simple method of creation (see section 2.2.1) are the main reasons for choosing Voronoi mesh as
the spatial discretization used in this work.

Figure 2.8: A minimal example of an admissible mesh.

Definition 2 (Voronoi diagram) The Voronoi diagram or Voronoi mesh in Ω is the set T of
control volumes K ⊆Ω such that

K = {xxx ∈Ω|d(xxx,K)≤ d(xxx,L)∧∀K,L ∈T ∧K 6= L}

with d the measure of distance. In other words, the Voronoi diagram is the set of control volumes K
formed by all the points that are closer to itself that to any other control volume.

2.2.1 Mesh Generation

The implemented generation method of Voronoi meshes uses the duality between VM and
Delaunay triangulations (DT) [147]. This is a triangulation such that the circumcircle associated to
any triangle of the mesh does not contain any other vertex of the triangulation in its interior. The

29

duality states that a VM cell center is a vertex A of the DT and the vertices of the VM cell are the
circumcenters related to all triangles formed by A, as shown in figure 2.9. Many of the existing
meshing tools, including the ones used here (MATLAB’s PDE toolbox [130]), implement DT but
not VM. Therefore, the mentioned duality to create the VM can be used to take advantage of the
mesher framework.

A general outline of mesh generation is depicted in figure 2.9 where a) starting from a
Delaunay mesh (given by MATLAB’s initmesh() function), b) the circumcenter position of each
triangle is found. Then, c) considering just one triangle vertex (which is a Voronoi cell center) and
all the triangles formed by that vertex (for example, the shaded triangles in fig 2.9c), the boundary
of that cell is created by all the edges formed by the circumcenters of two neighboring triangles.
Finally, d), repeating this for each cell, the whole VM is formed.

Figure 2.9: Example of Delaunay-Voronoi duality. a) A Delaunay triangulation, b) the corresponding circumcircles, c) a Voronoi cell, and d) the
whole Voronoi mesh (with the original Delaunay triangulation).

The example of figure 2.9 shows the existence of obtuse triangles which necessarily have
their circumcenter outside of themselves. Although not ideal, this behavior is permitted for inner
polygons and is presented in a small percentage (thanks to Delaunay mesh generators) with no
noticeable impact in results.

2.2.2 Edge Treatment

There are some important remarks on the Voronoi mesh used in this work that concern
primarily to edges treatment. First, it is important to say that the domain Ω can be composed
by regions or sub-domains and it can have inner boundaries between these regions (see figure
2.7a). How the mesh matches outer edges is shown in the example of figure 2.10. To keep the

30

orthogonality between two neighbors in external edge no circumcenter must be in the other side of
its generating triangle. This means no obtuse triangle can have its larger side as part of the edge.
A way to accomplish this is to add a new triangle vertex in the middle of the larger side of that
triangle forming a two new triangles (and later a new Voronoi cell) as in figure 2.10b. The next
step has nothing to do with the Voronoi-Delaunay duality. Nevertheless, it is needed to form the
Voronoi polygon since there is lack of outer triangles and obviously outer circumcenters to work as
Voronoi vertex. By adding as vertex a point at the external edge in the middle point between two
neighbors, the new edge is, then, orthogonal to the boundary, as shown in figure 2.10c. Following
the same figure, the final logical step to close the control volume is to add the polygon center itself
as a polygon vertex.

Figure 2.10: Modification of a) a triangle that has their circumcenter in other region, b) the subdivision of that triangle, and b) the final Voronoi cell.

For the case of inner interfaces the treatment of obtuse triangles is the same described for
external edges until the second step of figure 2.10. This means that no actual Voronoi vertices are
added to form the whole control volume because there exist the necessary triangles at the other side
of the edge (it is an inner interface) as shown in figure 2.11a.

Figure 2.11: a) A polygon in homojunction interfaces and b) a polygon and sub-polygon in heterojunctions.

In many cases, such as abrupt heterojunction structures, control volumes laying in edges
cannot be treated as a whole because of the difference in attributes of each region. In fact, the
variables to be calculated with FVM can have two values at each side of the boundary. This
is the case of the carriers densities n and p in the Drift-Diffusion problem which is a useful
approach when implementing models as thermionic emission [59]. In this work the double-valued
approach is implemented without the explicit construction of separated polygons at the interface
but considering the existence of sub-polygons that re-use the geometric definitions of the main
polygon as shown in figure 2.11b. This makes necessary a special treatment of sub-polygons but
with almost negligible computational cost because the quantity of polygons at heterointerfaces is
always much smaller than the inner ones.

31

2.2.3 Mesh Generation Algorithm

Given the main remarks about the finite volume mesh, the algorithm for the mesh generation is
described in figure 2.12. The inputs of the algorithm are the geometry edges definitions in a suitable
form to work with MATLAB’s initmesh function, the boundary type (related to the kind of boundary
condition for contacts, heterojunctions, etc.) of each edge, and some refinement parameters. With
this information, initmesh() and refinemesh() are used to create the Delaunay triangulation and local
refinements (with the longest-side refinement algorithm [130]). Circumcenters are located with
circumcentersRegion() marking all triangles with circumcenters outside its region. Those triangles
are then bisected and a Delaunay algorithm (based on MATLAB’s delaunayn() function) is used
to form the new triangulation. The procedure is repeated until no circumcenters exist outside its
triangle’s region. This gives the final Delaunay triangulation used in the next step to generate
the Voronoi vertices from circumcenters, corresponding to inner control volume cells. For cells
in external boundaries, also the vertex for closure is added (as described in section 2.2.2). Finally,
additional calculations of attributes are performed, such as various distances and cell measurements
(i.e. area of the cells since are 2D).

Figure 2.12: General mesh generation algorithm.

32

Many steps of auxiliary data generation, sorting indices, and labeling were omitted. Details of
the algorithm described above and others geometrical magnitudes and data structures generated by
the mesh library can be found in the source code.

2.3 The Finite Volume Scheme

The Drift-Diffusion model, which is essentially based on convection-diffusion equations,
inherits many of the numerical issues that must be solved to get accurate results. The main difficulty
is due to the strong influence that the drift term can have respect to the diffusion. This leads to
oscillations and unrealistic data when classical derivative discretization are used [103][6], such as
central differences. In fluid dynamic problems the classical approach to solve this complication
is based on the upwind scheme [42]. This has been used to build many numerical solutions over
the years and convergence and stability had been thoroughly studied using FVM [36][35][37].
However, this method shows numerical problems that will be discussed later. Other scheme widely
used in the semiconductor problem is the Scharfetter-Gummel discretization (SG) [113] which was
first intended to treat the 1D case but it also has been extended to higher dimensions [113][117].

Besides the discretization scheme, a method to solve the DD set of equations must be
considered. Since all variables (ψ , n and p) are not independent but coupled through the model,
and their magnitudes vary in wide and different ranges (which also means wide range of the
computed terms of the equations) a simple linearization and inversion of matrix cannot be in general
successfully performed to get the unknowns. For this reason iterative procedures are commonly
used that approximate the final solution by solving many times the same problem for intermediate
states. The two most popular approaches that consider the mentioned difficulties are the so called
Gummel iteration [60] and Newton-Raphson method (NRM) [116]. The first treats the variables
as not coupled solving each equation independently and updating the values to use in the next
iteration. The NRM makes use of the Taylor series derived from the set of equations to successively
approximate the solution. This last method solves all the equations at once so it requires larger
matrices, more memory, and more computing time in each iteration. Fortunately, for nowadays
computers this is not a big limitation as in the past.

In the software developed in this work, a 2D Finite Volume scheme was implemented that
makes use of the Newton-Raphson method and the Scharfetter-Gummel discretization in a Voronoi
diagram. Moreover, numerical comparisons with other methods are presented. To understand the
details of the schemes first it is necessary to know how to discretize the different terms using
the FVM in the mesh. In section 2.1 an introductory example of the application of the FVM was
presented for a simple mesh but now in section 2.3.1 a more complete and formal description of
the method, and other possible discretizations, are presented.

2.3.1 Generic Finite Volume Discretizations

Consider a generic problem that represents all the relevant terms of the DDM in a simplified
form. With this, the derived expressions can be used directly on the DDM but could also be applied
to other PDEs. Suppose that the next system must be discretized,

33

−div(c∇u)+div(aaau)+bu = f Ω (2.24a)

u = gD
∂ΩD (2.24b)

∂u
∂ν

= gN
∂ΩN (2.24c)

where Ω ⊆ Rd , d = 1,2.., is an open bounded domain, ∂Ω the edge of Ω such that ∂Ω =
∂ΩD ∪ ∂ΩD with ∂ΩD and ∂ΩD the edge segments where Dirichlet and Neumann conditions
are respectively defined, and ννν the outward normal direction to the edge. In the semiconductor
problem, Dirichlet conditions are commonly used to describe Ohmic contacts while homogeneous
(∂u/∂ν = 0) Neumann boundary are used to represent semiconductor-vacuum interfaces. Other
BC are possible, for example, a situation where the term −div(c∇u) + div(aaau) is known in the
boundary which would simplify equation (2.24). This, and other forms and their specifications will
be described in later subsections. In principle all terms in (2.24) depend on the position. Moreover,
they are scalar or vector fields and must be treated as such unless a simplification is made.

The discretized terms are presented using the definitions and notations of the mesh from
section 2.2. It shall be noticed that the discretization procedure is similar for all terms and also
to the one described in section 2.1. Therefore, detailed explanations are given only once.

Approximation for −div(c∇u)

The expression −div(c∇u) appears, for example, in the Poisson equation as −div(ε∇ψ) or as
the diffusion term in the continuity equation. Notice that if c = 1 then div(c∇u) = ∆u (the Laplace
operator). The first step in the FVM, as stated in section 2.1, is to subdivide the domain Ω in control
volumes K and integrate over this volume as exemplified in figure 2.13a . This corresponds to the
left-hand side in the following equation

∫
K
−div(c∇u)dV =−

∫
∂K

c∇u ·νννdS =−
∫

∂K
c

∂u
∂ν

dS =− ∑
σ∈EK

cσ

∫
σ

∂u
∂ν

dS≈− ∑
σ∈EK

cσ FKσ .

(2.25)

In the first equality the Divergence Theorem was used to transform the left-hand side to an
integral over the surface ∂K of K, with ννν the outwards normal of ∂K as in figure 2.13b. In the third
equality the fact that the boundary of the volume K is formed by a finite number of edges σ was
used to divide the integral in a summation of smaller integrals over those straight edges. The term
cσ is c assumed constant in σ and FK,σ is defined by

FKσ =


md−1(σ)

dKL
(uL−uK) σ ∈Ω∩EK ∩EL

md−1(σ)
dKσ

(gD
σ −uK) σ ∈ E D

K
md−1(σ)gN

σ σ ∈ E N
K

(2.26)

34

Figure 2.13: a) Integration over a control volume that is equivalent to b) the integration over the boundaries of the volume due to Divergence Theorem

where dKL is the distance between the centers of K and L (‖xxxK,xxxL‖), dKσ the distance between
the center of K and the edge σ as shown in fig. 2.8. md(w) is the d dimensional Lebesgue
measure of w (with d = 1,2,3. This would be the measure of length, area and volume respectively).
E D

K = EK ∩∂ΩD and E N
K = EK ∩∂ΩN . gσ is the mean value of g over σ defined by:

gσ =
1

md−1(σ)

∫
σ

gdS. (2.27)

The expression 2.26 is valid for any dimension and admissible mesh, similar to the one defined
in section 2.2. This work focuses on 2D meshes with edge cells defined as in figure 2.10 (where
the cell center is in the edge). Therefore, the notation will be simplified from now on writing m(σ)
as the length of the edge segment σ and m(K) the area of the control volume K because d = 2 was
assumed. This gives,

FKσ =

{
m(σ)
dKL

(uL−uK) σ ∈Ω∩EK ∩EL

m(σ)gN
σ σ ∈ E N

K
(2.28)

Notice that the Dirichlet boundary was excluded because there is no need to use a Finite
Volume approximation in an edge cell. This is because since the variable to resolve is uK , its
approximated value can be estimated by uK = gD

E D
K

(the mean value of the Dirichlet condition
over the entire set of Dirichlet edges of K). Moreover, uK can be approximated by even simpler
expressions. This treatment is valid for all further derivations. With the above, the new simplified
approximation is

∫
K
−div(c∇u)dxxx≈− ∑

σ∈EK

cσ FKσ K|E D
K = /0 (2.29a)

u≈ uK = gD
E D

K
K|E D

K 6= /0 (2.29b)

where K|E D
K = /0 tells that the equation (2.29a) is valid for K such that its set E D

K of edges is empty.
This means all the inner cells and the edge cells that only have a Neumann boundary condition. The

35

equation (2.29b) for the case in which K has a Dirichlet boundary was written for completeness.
This it is not an approximation of−div(c∇u) but an estimated value of the unknown so no equation
must be solved in that case. For simplicity in the next derivations the Dirichlet case is omitted.

One last important remark is that the expressions derived above for a polygon K, can also be
applied to sub-polygons considering them as if they were a normal polygon with special boundary
conditions that will be addressed in later sections.

Approximation for bu

Assuming b constant in the volume K, which is a good approximation if K is sufficiently small,
and integrating as in the previous case we obtain

∫
K

budxxx = b
∫

K
udxxx≈ bm(K)uK K|E D

K = /0 (2.30a)

where using the same argument as for b, the integration of
∫

K u was approximated by a value of u
inside K (i.e. the center value uK) times the measure of K (i.e. m(K)).

Approximation for f

Analogous to the previous case, the approximation for f is

∫
K

f dxxx = m(K)
1

m(K)

∫
K

f dx = m(K) f K K|E D
K = /0 (2.31a)

where the Dirichlet equation was not written because, as has been mentioned, there is no need to
solve an equation in that case. Therefore, there is no need to approximate f in that control volume.
Since f can also depend on other variables besides space, a numerical integration over each cell can
be computationally expensive. When the mesh is fine with respect to the variations of f in space
(i.e. the cell measures are small) an approximation of the mean value is

f K =
1

m(K)

∫
K

f dxxx≈ f (xK) = fK. (2.32)

Approximation for div(aaau) and the Diffusion and Drift −div(c∇u)+div(aaau) coupling

The discretization of a convective term div(aaau) is the most crucial one in the DDM. Methods
that work well when the convection term is not important, can fail when it has great influence. For
convection dominated problems, system matrix loses its properties, leading to spurious oscillations

36

as mentioned in section 2.1 when the convective/di f f usive ratio (known as the Peclet number Pe)
is high [55].

For a discretization scheme to be robust in all cases, some conditions should be met. One
of this is conservativeness, meaning that fluxes crossing between neighbor cells must be equal in
both directions ensuring the conservation of the quantities. The boundedness criteria is needed to
maintain solution values bounded in the absence of the source term (f in (2.24)). This criteria can
be met by diagonally dominated matrices and is needed to avoid non-physical solutions as negative
densities. The transportiveness property describes the fact that the solution of one cell depends on
their neighbors in an unequal way. This relation is dominated by the Peclet number that, when is
large, it is recognized that the upstream cells (cell in the direction where the flow comes from) have
more influence than the downstream ones.

Most typical discretizations like central, forward, and backward difference violates the
boundedness criteria and does not consider transportiveness [136]. This makes necessary the use
of other approaches. In this work two of them, that are usually called stabilization technique
(because they elimination of oscillation), are analyzed. First, the upwind method that treats solely
the convective term div(aaau) and then the Scharfetter-Gummel (SG) method that is a scheme for
the diffusion and drift terms, −div(c∇u)+ div(aaau). Both schemes fulfill the three conditions of
conservativeness, boundedness, and transportiveness.

The upwind scheme used here is the same as the one shown in [36][35] for the FVM. Doing a
similar procedure than that for the previous terms,

∫
K

div(aaau)dxxx =
∫

∂K
aaa ·νννudS = ∑

σ∈EK

∫
σ

aaa ·νννK,σ udS≈ ∑
σ∈EK

aK,σ uσ ,+ K|E D
K = /0 (2.33)

where
aK,σ =

∫
σ

aaa ·νννK,σ dS (2.34)

and

uσ ,+ =

{
uK si aK,σ ≥ 0 y σ ∈Ω∩EK ∩EL
uL si aK,σ < 0 y σ ∈Ω∩EK ∩EL.

(2.35)

Notice that there is a conditional selection of uσ ,+ that depends on the sign of a term that comes
from the velocity. Descriptively, the estimation of uσ ,+, which is the value of u at the edge σ

that separates K from its neighbor L, is not the mean value (uK + uL)/2 (an intuitive answer).
Instead, it is chosen between uσ ,+ = uK or uσ ,+ = uL depending on where the flow comes from.
This consideration is obviously an attempt to include transportiveness, but also produces diagonally
dominant matrices and is consistent to calculate the flow in both directions.

The upwind schemes have proven to be better than a mean value selection and has received
some attention in the semiconductor problem in the last decade [36][37][38] using FVM.
Despite this, it is a first order scheme and inherits the numerical diffusion problem which is an
approximation error of the convective term that has the form of a false diffusion proportional
dependent on the mesh spacing (see section 4). This is one of the reasons for which in this work
the well-known Scharfetter-Gummel scheme is used.

37

The SG discretization proposed in [113] is based on solving analytically the current equations
(1.45d) and (1.45e) for the 1D case. With the notation used so far, div(J) can be defined as

div(JJJ) = div(c∇u)−div(aaau) (2.36)

where an expression can be identified with the form of a current JJJ,

JJJ = c∇u−aaau. (2.37)

If c = µ(xxx) and aaa = D(xxx)∇ψ(xxx), the 1D case of JJJ is

J(x) = D(x)
du(x)

dx
−µ(x)u(x)

dψ(x)
dx

. (2.38)

This change of notation was made in order to match the DDM. Assuming J(x) = JKL, D(x) =
D, and µ(x) = µ as constant values along the segment between xK and xL (constant piecewise
when considering many cells), and ψ(x) linear in the same interval (∂ψ/∂x = ψx = const) the
above equation can be solved using integrating factor as follows

JKL = D
du(x)

dx
−µu(x)ψx | · e−

µ

D ψx(x−xK) (2.39)

⇒ JKLe−
µ

D ψx(x−xK) =

(
D

du(x)
dx
−µu(x)ψx

)
e−

µ

D ψx(x−xK) (2.40)

⇒ JKLe−
µ

D ψx(x−xK) = D
d
dx

(
u(x)e−

µ

D ψx(x−xK)
)

|
∫ xL

xK

dx (2.41)

⇒ JKL

∫ xL

xK

e−
µ

D ψx(x−xK)dx = D
∫ xL

xK

d
dx

(
u(x)e−

µ

D ψx(x−xK)
)

dx (2.42)

⇒−JKL
D

µψx

(
e−

µ

D ψx(xL−xK)−1
)
= DuLe−

µ

D ψx(xL−xK)−DuK (2.43)

⇒ JKL =
µψx

e−
µ

D ψx(xL−xK)−1
uK +

µψx

e
µ

D ψx(xL−xK)−1
uL. (2.44)

Going back to the original test problem (2.24) it can be noticed that what must be discretized is
−div(J) (from (2.36)). Using the FVM framework this is easily approximated by

∫
K
−div(JJJ)dxxx =−

∫
∂K

JJJ ·νdS =− ∑
σ∈EK

∫
σ

JJJ ·νdS≈− ∑
σ∈EK

m(σ)Jσ (2.45)

where the approximation is made when the flow J going out the volume K through σ (last integral)
is estimated by a value Jσ normal to σ times the edge length.

38

The implementation of the Scharfetter-Gummel scheme is made by noticing that, since
Voronoi diagram is used, the line between two neighbor centers xxxK and xxxL is orthogonal to the
control volume edge (i.e. xxxKxxxL ⊥ σKL). Then, if the line between each neighbor is considered a 1D
space, the task of estimating the flow through σ is a one dimensional problem and then the SG
scheme can be applied between neighbors. This means that Jσ in 2.45 can be approximated by JKL
in 2.44 leading to

∫
K
−div(JJJ)dxxx≈− ∑

σ∈EK

m(σ)Jσ =

− ∑
σ∈EK

m(σ)

[
µσ ψσ

e−
µσ
Dσ

ψσ dKL(σ)−1
uK +

µσ ψσ

e
µσ
Dσ

ψσ dKL(σ)−1
uL(σ)

]
K|E D

K = /0 (2.46)

where Dσ , µσ , and ψσ are estimations of D, µ , and ∇ψ ·νσ (νσ the normal to σ).

The SG method is a type of exponential fitting [26] scheme that although in principle is
different form the upwind technique, shares some properties as the ability to account for the
directionality of the flow. In fact, if the influence of the convection term is very large, the limiting
case for JKL in (2.44) is

lim
ψx→∞

JKL =

{
µ

DψxuL i f ψx > 0
µ

DψxuK i f ψx < 0
(2.47)

which has the same form as the upwind scheme (with aK,σ = ψx). On the other hand, for ψx→ 0,
only the diffusion term is recovered

lim
ψx→0

JKL =
µ

D
uL−uK

xL− xK
. (2.48)

Then, for the general case it is expected that the presence of a diffusive term and a sort of upwind
effect. Although the convergence of the SG and upwind schemes used here have been proven
[18][35], it is shown with numerical experiments (see section 4) that SG gives better results.

2.3.2 The Iterative Solvers

Besides the discretization of the different terms of the DDM, it is necessary to address the
problem of how the complete system is solved. For this, the Gummel or the Newton-Raphson
method can be used. The former is only superficially described since it requires direct application
of the given discretization techniques. On the other hand, the Newton-Raphson method involves
the Jacobian of the system and a more complex usage of the discretization. Then, since both have
much in common, a thoroughly description of the Newton-Raphson method used for the DDM is a
better way to show a complete scheme.

39

The Gummel Iterative Method

The Gummel iteration or Gummel method (GM) [60] is one of the oldest and most used ways
to solve the DDM because it is very simple and has good convergence when certain mathematical
constraints are achieved. Its first application to the steady-state problem makes use of the physical
fact that after a sufficiently large time a system should damp any transient behavior to achieve the
desired state. Additionally, it uses the approximation that states that at time t f = ∆t + t0, with ∆t a
very small increment, any macroscopic physical system state must remain close to the initial state
at t0. A very simple decoupled iteration procedure can be derived from these ideas which is the GM
for the steady-state problem that is presented in the figure 2.14. Here, it is assumed that a linear
system can be created from the DDM with the mesh and discretizations of the previous sections.

The method starts with an initial state ψ0, n0, p0 (the electrostatic potential and densities of
electrons and holes) and a time step small enough to capture the desired problem physics and
precision andto ensure convergence. After that, the solution of the problem is simple as solving the
Poisson equation for ψi assuming n = ni−1 and p = pi−1. This means that n and p are treated as
known values from the previous iteration, and with this, all dependent quantities derived from the
variables are also calculated from the previous values. The same is done to solve the electron
continuity equation for n (assuming ψ and p known) and the hole continuity equation for p
(assuming ψ and n known). The process is repeated iteratively until convergence is reached. This
is summarized in figure 2.14.

Figure 2.14: Gummel iteration for the steady-state DD problem.

The method has the advantage that no Jacobians are used and that each linear system (from

40

each equation) can be solved independently allowing the use of smaller matrices. However, it has
the problem that is stable only for very restrictive time step criteria [134], defined by the dielectric
relaxation time

tdr =
ε

qCµ
(2.49)

where C and µ are the maximum doping density and mobility respectively. Then, the time step ∆t
between iterations cannot be larger than tdr. There is also a stability criteria for the mesh spacing
∆h (in the Finite Differences mesh), that cannot be larger than the Debye length

LD =

√
εkBT
q2C

. (2.50)

In the practical Finite Volume implementation, the mesh criteria can be violated and still produce
good results. This is not the case for the time restriction which makes this method very slow when
long time is needed to calculate the steady-state.

Newton-Raphson and Finite-Volume for Drift-Diffusion

The Newton-Raphson method (NRM) described by Isaac Newton [98] has the purpose of
finding the roots of a function. It uses the first terms of the Taylor series of function f around a
point u0. A Taylor expansion representation of f (u0 +δu) can be written as

f (u0 +δu) = f (u0)+ f ′(u0)δu+
1
2

f ′′(u0)δu2 + ... (2.51)

which is an infinite series where the higher-order terms have progressively less influence. In fact,
for a δu≈ 0 (a small deviation from u0),

f ′(u0)δu >>
1
2

f ′′(u0)δu2. (2.52)

Following this and assuming that x0 +δx is the true root of f such that

f (u0 +δu) = 0≈ f (u0)+ f ′(u0)δu (2.53)

where just the first two terms of the right side of (2.51) have been used. Rearranging terms an
expression for δu, it can be found,

⇒− f (u0)≈ f ′(u0)δu⇒ δu≈− f (u0)

f ′(u0)
. (2.54)

41

The above discussion gives the tools to create an iterative procedure to find a root of f which
is the NRM. Since many approximations were used, u0 +δu is not an exact root but is closer than
u0 to a true solution. Repeating this many times the method takes the form:

u j+1 = u j +δu j (2.55)

with

δu j =− f (u j)

f ′(u j)
(2.56)

where u j is assumed, known from previous calculations and δu j is the unknown. For an increasing
j convergence is progressively reached (or δu→ 0) and the iteration can be terminated when δu is
sufficiently close to zero. j will be known as the index of the Newton-Raphson’s iteration or loop
which is presented in the diagram of figure 2.15.

Figure 2.15: Basic Newton-Raphson’s method.

To obtain the final Finite Volume scheme it is necessary to apply the NRM to the Drift-
Diffusion model. To do so, it is important to notice that the NRM starts with an homogeneous
equation or set of equations (see equation (2.53)). To implement this the DDM (1.46) can be written
in its residual form as

42

−div(ε∇ψ)−q(p−n+C) = 0 = fψ(ψ,n, p) (2.57a)
∂n
∂ t

+div(µnn∇ψ)−div(Dn∇n)+Un = 0 = fn(ψ,n, p) (2.57b)

∂ p
∂ t
−div(µp p∇ψ)−div(Dp∇p)+Up = 0 = fp(ψ,n, p). (2.57c)

Here, three functions, fψ , fn and fp, were defined and the NRM could be applied independently to
each considering one variable. However, to take advantage of the method, the entire system should
be treated as one function FFF =

[
fψ , fn, fp

]t with one three-dimensional variable uuu = [ψ,n, p]t , and
its small variation δuuu = [δψ,δn,δ p]t . For this matrix form, the derivative of f is now the Jacobian
JJJ of FFF so the equivalent of (2.56) is (rearranging terms)

JJJδxxx =−FFF (2.58)

or 
∂ fψ (ψ,n,p)

∂ψ

∂ fψ (ψ,n,p)
∂n

∂ fψ (ψ,n,p)
∂ p

∂ fn(ψ,n,p)
∂ψ

∂ fn(ψ,n,p)
∂n

∂ fn(ψ,n,p)
∂ p

∂ fp(ψ,n,p)
∂ψ

∂ fp(ψ,n,p)
∂n

∂ fp(ψ,n,p)
∂ p


 δψ

δn
δ p

=−

 fψ(ψ,n, p)
fn(ψ,n, p)
fp(ψ,n, p)

 . (2.59)

The sub-indices j where omitted for simplicity. In (2.59) it is clear that the different partial
derivatives must be defined. These are in fact operators and can be derived for example as

∂ fψ(ψ,n, p)
∂ψ

= lim
h→0

fψ(ψ +h,n, p)− fψ(ψ,n, p)
h

(2.60)

= lim
h→0

(−div(ε∇(ψ +h))− p+n−C)− (−div(ε∇ψ)− p+n−C)

h
(2.61)

= lim
h→0

−div(ε∇h)
h

=−div(ε∇(·)) (2.62)

where the linearity of the divergence and gradient where used. Applying the same methodology,
the elements of the Jacobian are (repeating the previous one for completeness)

43

∂ fψ(ψ,n, p)
∂ψ

=−div(ε∇(·)) (2.63a)

∂ fψ(ψ,n, p)
∂n

= 1 (2.63b)

∂ fψ(ψ,n, p)
∂ p

= 1 (2.63c)

∂ fn(ψ,n, p)
∂ψ

= div(µnn∇(·)) (2.63d)

∂ fn(ψ,n, p)
∂n

=
1
∂ t
−div(µn∇(·))+div(Dn(·)∇ψ) (2.63e)

∂ fn(ψ,n, p)
∂ p

= 0 (2.63f)

∂ fp(ψ,n, p)
∂ψ

=−div(µp p∇(·)) (2.63g)

∂ fp(ψ,n, p)
∂n

= 0 (2.63h)

∂ fp(ψ,n, p)
∂ p

=
1
∂ t
−div(µp∇(·))−div(Dp(·)∇ψ). (2.63i)

One must take into account that the expressions (2.63) only have mathematical meaning and utility
when they are used with an operand. However, for numerical calculations, discretizations of these
terms can be used to create, for instance, the Jacobian matrix.

Until now, some basic tools to use the NRM in the DDM have been given but the final
scheme is not yet clear. To achieve the goal of performing accurate transient and steady-state
simulations the temporal evolution must be properly treated. For this work, the implicit method
for the time-dependent system is used because it has been proven that it has better stability than the
explicit method. This allows larger time steps, which is useful for steady-state, and faster transient
simulations (although they are less accurate). To do so, first an equivalent residual form like (2.57)
must be written using the implicit scheme as

fψ(ψ
i,ni, pi) :=−div(ε∇ψ

i)−q(pi−ni +C) = 0 (2.64a)

fn(ψ
i,ni, pi) :=

ni−ni−1

dt
+div(µnni

∇ψ
i)−div(Dn∇ni)+Un = 0 (2.64b)

fp(ψ
i,ni, pi) :=

pi− pi−1

dt
−div(µp pi

∇ψ
i)−div(Dp∇pi)+Up = 0, (2.64c)

where dt = ti− t(i−1) is the size of the time step and the index i is the temporal index. Remember
that the time discretization is done by dividing the time interval of interest [t0, t f] in many smaller
steps [t0, t1, t2..., t f] and solving the problem (i.e. obtaining the values) at those discrete times ti. In
the system (2.64) the terms with index i like ψ i−1, ni−1 and pi−1 are the values of the respective
variables at time ti−1. These values are not true variables for the system since they are assumed as

44

known. The variables of the system that must be solved are those variables for the current time step
ti which are ψ i, ni and pi. This is why the functions fu of (2.64) have as variables only (ψ i,ni, pi). In
other words, the Newton-Raphson method will be used to obtain an approximation of the variables
at time ti for each i > 0.

The application of the NRM to (2.64) is the same used in (2.57). In fact, the matrix form is the
same as (2.59) but with new indices i,


∂ fψ (ψ i j,ni j,pi j)

∂ψ i
∂ fψ (ψ i j,ni j,pi j)

∂ni
∂ fψ (ψ i j,ni j,pi j)

∂ pi

∂ fn(ψ i j,ni j,pi j)
∂ψ i

∂ fn(ψ i j,ni j,pi j)
∂ni

∂ fn(ψ i j,ni j,pi j)
∂ pi

∂ fp(ψ
i j,ni j,pi j)

∂ψ i
∂ fp(ψ

i j,ni j,pi j)

∂ni
∂ fp(ψ

i j,ni j,pi j)

∂ pi


 δψ i j

δni j

δ pi j

=−

 fψ(ψ
i j,ni j, pi j)

fn(ψ
i j,ni j, pi j)

fp(ψ
i j,ni j, pi j)

 (2.65)

where besides the temporal index i the j index was also added, which comes from the Newton-
Raphson iteration. The matrix expression (2.65) is necessary to calculate [δψ i j,δni j,δ pi j]t which
can be read as the j-th small increment of the Newton-Raphson loop to find the solution at time
step i+1. Then, to get the solution at each time step a new Newton-Raphson loop must be used. It
is important to notice that for the NRM the variables are δui j and not ui j which in fact are known
values used to get u(i+1). The reason for which the Jacobian elements are now written such that
the derivatives are respect to the variables ui is to be emphasize that the ui−1 are treated as known
values and not variables. Thus, the derivatives ∂ui−1/∂ui are in fact zero. Then, the calculations
of the Jacobian elements are the same as (2.63) but using dt instead of ∂ t. A flow diagram of the
method is shown in figure 2.16 where it can be seen how the NR’s loop is nested in the loop that
increments i, which is the time step. Moreover, it must be noticed how in every moment the value
of ui j is the best current approximation of the time step i. For the DDM δui j is calculated using
(2.65).

The next step to complete the scheme is to discretize (2.65) using the mesh and the expressions
presented in section 2.3.1. First, (2.65) is converted back into a system of equations,

−div(ε∇δψ
i j)−δ pi j +δni j =− fψ(ψ

i j,ni j, pi j) (2.66a)

δni j

dt
−div(Dn∇δni j)+div(µnδni j

∇ψ
i j)+div(µnni j

∇δψ
i j) =− fn(ψ

i j,ni j, pi j) (2.66b)

δ pi j

dt
−div(Dp∇δ pi j)−div(µpδ pi j

∇ψ
i j)−div(µp pi j

∇δψ
i j) =− fp(ψ

i j,ni j, pi j). (2.66c)

Recalling that in the NRM the variables are the small variations δu between iterations, the right
hand sides of (2.66) are assumed known and just the left hand sides contain the variables. Despite
this, both sides must be discretized either for just evaluation (right hand side or RHS) or calculation
of operators (left hand side or LHS) and can be done using an upwind or Scharfetter-Gummel
scheme. It is important to use a unique method in both sides of (2.66). Since SG is the chosen
discretization for this work, the explicit discretization will be derived using this scheme.

Assuming a domain Ω partitioned using the mesh described in 2.2, the first step is to integrate
(2.66) over Ω and, therefore, over each control volume ΩK or simply K so the approximations of

45

Figure 2.16: Newton-Raphson’s method for the time dependent problem.

section 2.3.1 can be used. Then, the RHS of (2.66a) (from Poisson equation) defined in (2.64a) can
be discretized in an analogous fashion as function f of section 2.3.1. It must be identify that the
left most terms has the form f = qn,qp,qC since they are not variables but known values in the
NRM. Then, the approximations (2.31) and (2.32) can be used. The right-most term of (2.64a) has
the form −div(c∇u) if ε is assumed to be constant, so the approximations (2.26) with (2.28) can
be used. Then, the FV expression of − fψ for NRM will be

− fψ(ψ
i j,ni j, pi j)≈ ∑

σ∈EK

εσ F i j
ψKσ

+qm(K)(pi j
K−ni j

K +Ci j
K) K|E D

K = /0 (2.67)

F i j
ψKσ

=

{
m(σ)
dKL

(ψ
i j
L −ψ

i j
K) σ ∈Ω∩EK ∩EL

m(σ)gN
ψσ σ ∈ E N

K
(2.68)

The LHS of (2.66a) has exactly the same general form of the RHS but with the difference that
now depends on variables instead of known terms. The correct approximation of the left-most term
is not f but bu (of the generic FV approximations) with b = 1 and u = δn,δ p, which in this work

46

has the exactly same form of the approximation of f . The final expression is written as

−div(ε∇δψ
i j)−δ pi j +δni j ≈− ∑

σ∈EK

εσ F i j
δψKσ

+m(K)(−δ pi j
K +δni j

K) K|E D
K = /0 (2.69)

with F the same of (2.68) but now with δψ . Both the LHS (2.69) and the RHS (2.67)
approximations give the final FV expression for (2.64a) that will be given later.

For the FV approximations of the corresponding continuity equations of the NRM (2.66b)
and (2.66c), since they are equal in form, only the first will be derived step by step. First, the fn
(the RHS of (2.66b)) defined by (2.64b) must be split into its basic expressions. The terms U i

n and
(ni j− n(i−1) j)/dt can be both treated as known so expression (2.31) is used. For the convection-
diffusion terms, div(µnni j∇ψ i j)−div(Dn∇ni j), it must be noticed that they have the same form of
(2.36) used as the start point for the Scharfetter-Gummel approximation (2.46) so this expression
could be used. Then, the approximation of − fn is

− fn(ψ
i j,ni j, pi j)≈−m(K)

ni j−n(i−1) j

dt

− ∑
σ∈EK

m(σ)

[
µnσ ψσ

e−
µnσ
Dnσ

ψσ dKL(σ)−1
ni j

K +
µnσ ψσ

e
µnσ
Dnσ

ψσ dKL(σ)−1
ni j

L(σ)

]
−m(K)Un K|E D

K = /0 (2.70)

with ψσ approximated by the forward difference in the outward direction of the edge σ

ψσ =
ψ

i j
L −ψ

i j
K

dKL(σ)
. (2.71)

For the LHS of (2.66b) a way to apply the SG scheme must be found such that the terms are
already arranged properly. The second and third terms can be interpreted as the divergence of a
small current of the form −div(δJ) = −div(Dn∇δni j)+ div(µnδni j∇ψ i j) and then the same SG
scheme (2.46) can be used to approximate this small current. The first term has the form bu with
b = 1/dt so (2.30) is used. The last term is similar to −div(c∇u) with u = δψ i j and c = ni j since
only δu variables are in fact unknowns so (2.25) can be used. Finally, the complete LHS of (2.66b)
can be approximated by

δni j

dt
−div(Dn∇δni j)+div(µnδni j

∇ψ
i j)+div(µnni j

∇δψ
i j)≈ m(K)

δni j

dt

− ∑
σ∈EK

m(σ)

[
µnσ ψσ

e−
µnσ
Dnσ

ψσ dKL(σ)−1
δni j

K +
µnσ ψσ

e
µnσ
Dnσ

ψσ dKL(σ)−1
δni j

L(σ)

]
+ ∑

σ∈EK

µnσ ni j
σ F i j

δψK,σ K|E D
K = /0

(2.72)

47

with ψσ the same as (2.71) and F i j
δψK,σ defined by (2.68). With (2.72) and (2.70), the LHS and

the RHS of (2.66b), the whole FV approximation for the electron current equation of the NRM is
given. For the case of holes the same expressions are used, being the main difference the signs of
the different terms. The final discretization of the system (2.66) is (including the electron analogous
hole current approximation)

− ∑
σ∈EK

F i j
δψK,σ +m(K)(−δ pi j

K +δni j
K) = ∑

σ∈EK

F i j
ψK,σ +qm(K)(pi j

K−ni j
K +Ci j

K) (2.73a)

m(K)
δni j

dt
− ∑

σ∈EK

m(σ)

[
µnσ ψσ

e−
µnσ

Dnσ
ψσ dKL(σ)−1

δni j
K +

µnσ ψσ

e
µnσ

Dnσ
ψσ dKL(σ)−1

δni j
L(σ)

]
+ ∑

σ∈EK

F i j
δψK,σ =

−m(K)
ni j−n(i−1) j

dt
− ∑

σ∈EK

m(σ)

[
µnσ ψσ

e−
µnσ

Dnσ
ψσ dKL(σ)−1

ni j
K +

µnσ ψσ

e
µnσ

Dnσ
ψσ dKL(σ)−1

ni j
L(σ)

]
−m(K)Un (2.73b)

m(K)
δ pi j

dt
− ∑

σ∈EK

m(σ)

[
µpσ ψσ

e−
µpσ

Dpσ
ψσ dKL(σ)−1

δ pi j
K +

µpσ ψσ

e
µpσ

Dpσ
ψσ dKL(σ)−1

δ pi j
L(σ)

]
+ ∑

σ∈EK

F i j
δψK,σ =

−m(K)
pi j− p(i−1) j

dt
− ∑

σ∈EK

m(σ)

[
µpσ ψσ

e−
µpσ

Dpσ
ψσ dKL(σ)−1

pi j
K +

µpσ ψσ

e
µpσ

Dpσ
ψσ dKL(σ)−1

pi j
L(σ)

]
−m(K)Up (2.73c)

All for K|E D
K = /0.

The general Finite Volume method using Scharfetter-Gummel and the Newton-Raphson
technique has been given, where the boundary conditions are addressed later. The scheme presented
here can handle large time steps and abrupt changes in the applied voltage which makes it
an excellent alternative to simulate many scenarios. It should be noticed that the form of the
expressions in (2.66) can also be used in an uncoupled way if all δ terms are omitted and each
linear system is solved for one variable (as described for the Gummel method).

2.3.3 Boundary Conditions

In order to perform a full simulation, the internal physics of the devices must be described.
This was done in the previous subsection. Furthermore, how the external conditions are imposed
must be taken into account. This is done by the proper definition of boundary conditions (BC).
They must be numerically coherent with the discretization and also physically correct. Here, some
of the main boundary conditions are presented.

Ohmic contacts

This is one of the simplest boundary conditions and is based on the assumption that around
contact charge neutrality is preserved. This means that equation (1.44) equals zero. Solving it for

48

particle concentration a Dirichlet BC at ohmic contacts for n and p are

n =
1
2

(
C+

√
C2 +4ni

)
(2.74a)

p =
1
2

(
−C+

√
C2 +4ni

)
(2.74b)

where (p−n+C) = 0 and np = ni were used. Employing the same arguments a Dirichlet BC can
also be derived for the electrostatic potential at ohmic contacts which is

ψ =Va−
KbT

q
ln

 C
2ni

+

√(
C

2ni

)2

+1

+
χ

q
+

Eg

2q
− KbT

2q
ln
(

Nv

Nc

)
. (2.75)

This expression is congruent with the definition Ec =−χ−qψ (equation (1.34)) and makes explicit
that Ei and ψ are not parallel, as mentioned in section 1.3.3. Ohmic contacts are an idealization
of metal-semiconductor contacts that have negligible resistance. This is achieved by reducing the
barrier height or its width [128][121]. As mentioned in previous sections, since mesh cells centers
lie at the boundaries, the imposition of Dirichlet BC is as simple as replacing the value of the
unknown by the given expressions.

Neumann boundary

This is a type of artificial boundary that represents external edges of the device that are not
contacts. Here, carriers are not allowed to spontaneously exit the device which means a no-flow
restriction is imposed. Moreover, no external fields are present so tangential to the edge potential
gradient is zero (homogeneous Neumann BC). The BC are then

JJJn ·ννν = 0 (2.76a)
JJJp ·ννν = 0 (2.76b)
∇νψ = 0 (2.76c)

where ν is the outward normal to the edge vector.

Schottky contact

These kind of contacts are formed by metal-semiconductor junctions that are modeled by
the Schottky-Mott theory [114]. From figure 2.17 (Schottky contacts in equilibrium), it should
be noticed that the work function of the semiconductor, ΦS, correspond to the potential in

49

Ec = −χ − qψ . Furthermore, since continuity in the vacuum level is assumed at the interface,
then, the resulting is a Dirichlet boundary condition for the potential with the form

ψ =−ΦM

q
+Va (2.77)

where Va is the applied potential and ΦM the work function of the metal (note that at the metal
χ ≈Φ).

Figure 2.17: Simple Schottky contacts band diagrams for a) n and b) p types.

For implementation of the BC for the variables n and p, the thermionic emission theory is
used. A condition for the current is imposed by [116]

JJJn ·ννν = qvn(n−nB) (2.78a)
JJJp ·ννν =−qvp(p− pB) (2.78b)

where vn and vp are the thermionic emission velocities and nB, pB the equilibrium densities given
by

nB = Nce−
qΦB
KbT (2.79a)

pB = Nve
−Eg+qΦB

KbT . (2.79b)

Since the expression (2.78) is a normal current through the contact, it can be directly applied as an
approximation of current in equation (2.45).

Thermionic emission at heterojunctions

When two semiconductor material with different band energies are put together a discontinuity
in the energy bands is present (as in figure 1.7b). To model the current through that discontinuity,

50

the thermionic emission model of [144] can be used. Then, the currents from a material 1 to a
material 2 are (if ∆Ec = Ec2−Ex1 > 0 and ∆Ev = Ev2−Ev1 < 0)

Jn =−qvn1n1e−
∆Ec
KbT +qvn2n2 (2.80)

Jp = qvp1 p1e−
∆Ev
KbT −qvp2 p2 (2.81)

where vn and vp are the thermionic emission velocities and the sub-indices 1 and 2 refer to quantities
in material 1 and 2. When this model is necessary, the sub-polygons and double value approach
described in 2.2.2 must be used. The continuity of the potential in this implementation makes
unnecessary a BC for ψ . Notice that even when a expression for the current was given, the value of
n or p are unknowns. Then, they must be solved using FVM in the NRM.

Thin oxide gate contact

When metal (or poly contact) and an oxide (or other insulator) are used as contacts like the
gate of common MOSFETs, a special boundary is formed. This boundary can be represented
physically with a simplified model that works properly for thin oxides [116]. The model is derived
first considering the boundary condition between the insulator and the semiconductor as

εs
∂ψ

∂ν
− εi

∂ψ

∂ν
= Qint , (2.82)

where εs and εi are the permittivities in the semiconductor and insulator, Qint the interface charges
and ν the normal direction of the boundary. Since the insulator is thin, the derivative of the second
term of the LHS can be approximated by a lineal potential drop leading to

εs
∂ψ

∂ν
− εi

VG−ψ

di
= Qint , (2.83)

where VG is the potential at the contact and di is the insulator thickness. For the same reasons of the
Schottky contact case, VG =−ΦM/q+Va.

This type of boundary conditions is a lineally mixed one called Robin’s B.C. and the way this
is implemented in the FVM is as follows. First, the integration over a cell at the edge is performed

∫
K
−div(ε∇ψ) =−

∫
∂K

ε∇ψ ·ννν =−
∫

∂K
ε

∂ψ

∂ν
=− ∑

σ∈EK

∫
σ

ε
∂ψ

∂ν
. (2.84)

The usual application of FVM has been made so far and then the last terms can be replaced by
well-known approximations but here a difference can be made. The edge σ that corresponds to

51

the semiconductor-insulator interface can be treated differently since ε∂ψ/∂ν can be derived from
(2.83) and is in fact

εs
∂ψ

∂ν
= εi

VG−ψ

di
+Qint . (2.85)

2.3.4 Mobility and Recombination

The carrier mobility (related to the diffusion by the Einstein relation) is one of the most
important quantities in the Drift-Diffusion system. It governs the current equation modeling, in
a macroscopic way, the scattering process that dominates the carrier flow. Because of this, many
different expressions for mobility have been developed over the years [102]. In this first version of
the software, only a few important ones are implemented, but they allow to increase the validity of
the DDM.

Excluding the constant µ model, the simplest but useful model that accounts for the lattice
temperature is given by [116]

µ
L = µ

L
300

(
T

300K

)α

(2.86)

where µL
300 is a reference value of µL at 300K and α a fitting parameter. Using expression (2.86)

of µL, one of the first and most used mobility models proposed by [34], that depends on the carrier
impurity concentration, can be extended to include this thermal dependence as [102]

µ = µ
min +

µL−µmin

1+
(

C
Cre f

)α0
(2.87)

with

µ
min =

{
µmin

300
(T

300K

)α1 T ≥ 200K
µmin

300
(2

3

)α1 (T
200K

)α2 T < 200K
(2.88)

Cre f =Cre f
300

(
T

300K

)α3

(2.89)

α0 = α
300
(

T
300K

)α4

(2.90)

where C is the total carrier impurity concentration and other values, as µmin
300 , Cre f

300, and α300 are
fitting parameters of the model given in [102] for many materials and both types of carriers.

52

The models presented above are constant per region if uniform doping is considered and do
not depend on the perceived electric field and, therefore, are called low field mobilities. To account
for saturation velocity reached in the presence of high fields, a model dependent on electric field
parallel to the flow E ‖, is implemented [32],

µ
high =

µ low[
1+
(

µ lowEEE‖
vsat

)αsat] 1
αsat

(2.91)

where µ low is any of the low field mobility models, αsat is a fitting parameter (usually 2 for electrons
and 1 for holes), and vsat the saturation velocity that can be modeled as

vsat = vsat
300

(
T

300K

)β

(2.92)

with vsat
300 the saturation velocity measured at 300K and β a proper parameter. Again, the high field

mobility can be used for electrons and holes.

The high field mobility model depends on the electric field that is calculated using the electric
potential. However, it is necessary to know the flow direction since its parallel field is required. This
means that the model depends on unknown variables ψ , n, and p, which implies that for calculations
using the NRM, this dependency should be included in the computation of the Jacobian elements
of (2.59). Nevertheless, the inclusion of this idea involves many additional terms that in practice (at
least in this implementation) worsen the convergence. To overcome this problem, the mobility is
calculated in each Newton-Raphson loop before building the matrices and used as constant which
gives better results.

2.3.5 Generation and Recombination

Only one recombination model was implemented in this first version of the software as a “proof
of concept”. It is the most important (when relevant) process of generation and recombination and
is described by the Shockley-Read-Hall (SRH) theory [120][61]. When dopants are added to a
semiconductor, they introduce additional levels of energy, called recombination centers, within the
energy band gap as explained in section 1.3.3. Electrons in the conduction band (or holes) are
captured by one of those centers, and then, the electron passes to the valence band (or conduction
band), while the energy differences are scattered as phonons. The SRH term is

RSRH =
np−n0 p0

τp(n+nl)+ τn(p+ pl)
(2.93)

53

where

nl = n0e
Et−EF

kBT , (2.94)

pl = p0e
EF−Et

kBT , (2.95)

Et is the energy level of the trap and τn, τp the carrier lifetimes. The implementation of this model,
like for high-field mobility, is calculated in an uncoupled way in each iteration of the NRM.

2.3.6 Scaling

In the drift diffusion equation, quantities are often different from each other by several orders
of magnitude. An example of this are the carrier densities with values easily over 1020 m−3,
while the mesh spacing is in the range of nanometers (10−12 m). Different operations in the
Drift-Diffusion discretizations and its solution method can result in computational problems like
numerical overflow or underflow. A common practice to avoid these problems is to scale some
of the magnitudes to less extended ranges. De Mari [90] proposed a coherent scaling method that
keeps the form of the DDM that it is still used today although there are more ways to do this [116].
In table 2.1 the scaled magnitudes and their values are listed.

Magnitude Factor Value Value
De Mari Unity

ψ Vs Vt Vth
n, p,C Cs Cs = ni Cs =Cmax
x Ls DL Ls = 10−4 cm
µn,µp µs Ds/Vs µs = 1000 cm2V−1s−1

Dn,Dp Ds Ds = 1cm2s−1 µsVs
JJJn,JJJp Js qDsCs/Ls qVsµsCs/Ls
R Rs DsCs/L2

s VsµsCs/L2
s

t Ts L2
s/Ds L2

s/(Vsµs)

Table 2.1: Scaling factor from De Mari [90] and unity [116]

If h is the magnitude to be scaled and Hs the factor, the scaling has the form h = Hsh̃, with h̃
the already scaled magnitude, while the derivative has the form

∂ n

∂hn =
1

Hn
s

∂ n

∂ h̃n
. (2.96)

The same applies for the divergence and Laplacian. If the procedure of scaling is used in each term
of the DDM (1.45), the scaled model is written as

54

−d̃iv
(

λ
2
∇̃ψ̃

)
= p̃− ñ+C̃ (2.97a)

∂ ñ
∂ t̃
− d̃ivJ̃JJn =−Ũn (2.97b)

∂ p̃
∂ t̃

+ d̃ivJ̃JJp =−Ũp (2.97c)

J̃JJn =−ñµ̃n∇̃ψ̃ + µ̃n∇̃ñ (2.97d)

J̃JJp =−p̃µ̃p∇̃ψ̃− µ̃p∇̃p̃ (2.97e)

where λ 2 is defined by

λ
2 =

εVs

qL2
sCs

. (2.98)

Since the form of (2.97) is similar to the original model, the treatment and discretization can
be the same. If at the beginning of an algorithm the equations are scaled, at the end of the same, the
scaling procedure must be inverted to recover the original values.

2.3.7 Thermal Equilibrium Solution

To work with iterative methods in semiconductors, an initial guess close to the real solution as
starting point is usually required. The thermal equilibrium (no external forces) solution is a good
alternative since it can be efficiently calculated. The expressions derived here follow the idea of
[134] but considering the general band structure of section 1.3.3.

In thermal equilibrium, by definition, the Fermi energy is constant and unique in the whole
device which applies also for the quasi-Fermi energies. Under this condition, the DDM can be
greatly simplified by using the Boltzmann statistic repeated here, where

n = Nce
En−Ec

kBT (2.99)

p = Nve
Ev−Ep

kBT (2.100)

are the expression for electrons and holes. With Nc and Nv the effective density of states, Ec and
Ev the energies at the edges of the conduction and valence bands, En and Ep the quasi-Fermi
energies related to φn and φp by φn = −En/q and φp = −Ep/q. As stated, the quasi-Fermi levels
are constant so φ = φn = φp (although in this work they are defined as zero). When Ec =−χ−qψ

and Ev =−χ−Eg−qψ , (2.99) and (2.100) can be rewritten as

n = N∗c e
ψ−φn

Vt (2.101)

55

p = N∗v e
φp−ψ

Vt (2.102)

with

N∗c = Nce
χ−E0

qVt (2.103)

N∗v = Nve
E0−χ−Eg

qVt . (2.104)

Using (2.101) and (2.102) in Poisson’s equation yields

⇒−div
(

ε

q
∇ψ

)
= N∗v e

φ−ψ

Vt −N∗c e
ψ−φ

Vt +C. (2.105)

Equation (2.105) can be solved for ψ with the proper non-linear solver. An alternative is to linearize
the exponential terms considering ψ = δψ + ψ0 with ψ0 a value close to ψ and δψ a small
difference. Replacing this ψ in 2.105,

−div
(

ε

q
∇δψ +ψ0

)
= N∗v e

φ−(δψ+ψ0)
Vt −N∗c e

(δψ+ψ0)−φ

Vt +C. (2.106)

Using the approximation of the exponential e±δx ≈ 1±δx for small δx

⇒−div
(

ε

q
∇δψ +ψ0

)
= N∗v e

φ−ψ0
Vt (1−δψ)−N∗c e

ψ0−φ

Vt (1+δψ)+C. (2.107)

Then, going backward and using δψ = ψ−ψ0

⇒−div
(

ε

q
∇ψ

)
= N∗v e

φ−ψ0
Vt (1−ψ +ψ0)−N∗c e

ψ0−φ

Vt (1+ψ−ψ0)+C (2.108)

which can be rearranged in

⇒−div
(

ε

q
∇ψ

)
+

(
N∗v e

φ−ψ0
Vt +N∗c e

ψ0−φ

Vt

)
ψ

=

(
N∗v e

φ−ψ0
Vt +N∗c e

ψ0−φ

Vt

)
ψ0 +N∗v e

φ−ψ0
Vt −N∗c e

ψ0−φ

Vt +C. (2.109)

Analyzing equation (2.109), it can be seen that the unknown variable ψ (in the LHS) only
depends on mesh known parameters and also on ψ0 which is a value close to ψ . To get the solution
ψ , a linear system can be obtained using the presented Finite Volume discretization terms, and then,
the system can be solved using the following iterative method [134].

56

i) ψ0 is initialized with any value

ii) ψ is calculated from the discretized version of (2.109)

iii) If convergence is met (|ψ−ψ0| < tolerance) the method ends. If not, ψ0 ← ψ and the
procedure starting from ii) is repeated.

When the solution is found, ψ can be used to calculate the electron and hole densities from (2.101)
and (2.102)

57

Chapter 3

Monte Carlo Simulation

To find the solution of the BTE using Monte Carlo method it is necessary to express equation
(1.41) in a more useful way for semiconductor description. The external force in the BTE is the
driving force of carriers. It is represented by the Lorentz force FFF = q(EEE +vvv×BBB) [97] but in this
work the magnetic field BBB is not considered. Hence, F is due exclusively to the electric field EEE as

FFF = qEEE. (3.1)

Moreover, using the expression of velocity given by (1.37), the BTE can be rewritten as

∂ f
∂ t

+
qEEE
h̄
·∇k f +

1
h̄

∇kEk ·∇r f =
∂ f
∂ t

∣∣∣∣
coll

. (3.2)

The right hand side, which is the collision term, can be represented by the rapid changes in carrier
states that scatter them in and out of kkk [72]

∂ f
∂ t

∣∣∣∣
coll

=
Ω

(2π)3

∫ [
f (kkk′)S(kkk′,kkk)(1− f (kkk))− f (kkk)S(kkk,kkk′)(1− f (kkk′))

]
dkkk′ (3.3)

with S(kkk,kkk′) the transition rate from kkk to kkk′ per unit of time and Ω the domain volume. The term
(1− f (kkk)) accounts for the Pauli’s exclusion principle since for a kkk′ to kkk transition the final state
must be unoccupied. However in this thesis, the effects of a great degeneracy in collision rates
are neglected and then (1− f (kkk)) ≈ 1 is assumed although there are many methods that include
this phenomenon [146]. Equations (3.2) and (3.3) represent a temporal variation of the distribution
function of the carriers. An electrical field generates a change in wave vector (related to momentum
and speed) according to (1.38) and a velocity, depending on ∇kEk, generates a change in position.
Other processes (eq. (3.3)) take place changing the wave vector in an random way.

It is clear the influence of classical electromagnetic models in the described effect of the
electric field EEE, that can be imposed or calculated using the Poisson’s equation. On the other hand,
quantum physics are included in the other two terms. This is because the band structure Ek is

58

derived from the quantum mechanics description of the lattice-carrier interaction and calculations
of rates of scattering in the collision term, which are performed using Fermi’s Golden Rule.

The general idea of the MC method can be explained with the use of figure 3.1. It should
be noticed the similarity of the following with the description of the BTE given so far, being
almost an analogy. This is the reason for which the method works. Imagine that figure 3.1 depicts
a semiconductor region of study where a constant electrical field EEE is present (which could be
the case of a bulk semiconductor or a small control volume where EEE can be approximated by a
constant value). The black lines represent the trajectory of a particle, for example, an electron.
The MC method simulates the particle, giving it an initial state (position and wave vector). Then,
according to the second term of (3.2), the particle is accelerated to the right. It is moved following
the third term of (3.2) in a classic and deterministic manner describing a curve trajectory (black
lines) over a time that is called a free flight process. After certain free flight time, t f f , (randomly
selected with a physics based method) with its corresponding displacement, a collision or scattering
process is simulated (represented by stars). This changes the direction and/or kinetic energy of the
particle depending on the type of scattering process. The time t f f depends on the scattering rate
implied in the collision term of (3.2), being in average, shorter when the scattering process has
a high rate of occurrence and vice versa. Both, the time t f f and the scattering process, and also
the final state (related to the change in direction and energy) are chosen randomly according to
the physical models. The MC method repeats this simple process several times which is similar to
follow a particle over time while it moves and collides with obstacles within the crystal lattice.

Figure 3.1: Basic Monte Carlo simulation diagram and a graphic representation of the particle flight.

Following only one particle for a long time is what is known as the single-particle approach.
However, more information can be gathered following a large number of particles at the same
time, called the ensemble Monte Carlo approach. It has been demonstrated [48][87] that taking all
particles as a collection, they obey a distribution function f which is in fact the solution of the
Boltzmann Transport Equation (3.2).

As mentioned, the figure 3.1 is a simplified manner of treating a small region or bulk
semiconductor. However, for the simulation of devices, where many many particles are followed,
some changes must be done. First of all, due to the large quantity of electrons or holes within

59

devices, especially in highly doped regions, the cost of following the trajectories of all of them
is almost prohibitive even for today’s computers. For this reason, what is usually really simulated
by the MC method is a collection of super-particles, each one representing a large number Ncpp
of real carriers. The terms particle or super-particle are used almost instinctively for convenience.
Moreover, for device simulation, it is necessary to take into account the different kinds of interfaces
and electrical contacts. Furthermore, the electric field can vary within the device and should be
calculated periodically over time in a self-consistent way using the Poisson’s equation which also
involves a methodology to estimate the electrical charge density. How all of these concepts are
included in form the ensemble MC algorithm for devices is introduced in the next section, giving
later specific details of each aspect. Although the explanations are focused on devices, all the ideas
that do not involve device’s boundaries or field adjusting are also valid for bulk simulation.

3.1 The Ensemble Monte Carlo Method for Devices

To simulate the carriers as particles in semiconductor devices using the Monte Carlo method,
many steps must be carried out that are depicted in the diagram of figure 3.2. Here, a time-dependent
evolution of a system of N particles over a time t is represented, where the time step for adjusting
the field and other quantities is ∆t. The quantity N can vary because carriers are allowed to leave
and enter the device.

In the first step, as for the Drift-Diffusion solver, the device structure must be described in a
proper way. Since in this work a unified framework is developed, the same Voronoi mesh presented
in section 2.2 is used allowing to use the same generation libraries and functions in the Mesh step.

After that, many parameters are defined. Of great importance are the scattering rate
calculations (for different energies, bands, etc.) that are stored in look-up tables for later use. Then,
in Initialization, a suitable number of particles is initialized giving them an initial position and wave
vector (state), that must beaccording to the device structure, among other parameters to simplify
the tracking.

The ensemble Monte Carlo motion of particles is performed using the ideas presented at the
beginning of this chapter. All particles are followed during drift and scattering processes for a time
∆t before continuing with the next step (Injection) to end with a field update (Poisson) every ∆t.
For each one of the particles, the Drift process is performed where free flights are carried due
to their velocities and the electric field associated to the mesh, taken into account the physics of
the band structure and the device’s boundaries (and their conditions). The Drift routine lasts at
most δ t but can be stopped after a shorter time ts that is randomly calculated according to the
scattering rates (computed in Parameters). If this happens, it means that a scattering process took
place so Scattering is executed and a new Drift must be realized for the remaining time (δ t = δ t−ts)
repeating the process until no ts < δ t is obtained. The Scattering step is where a random type of
dispersion mechanism is selected according to the pre calculated scattering rates and the change in
wave vector and energy is performed.

After the tracking of all particles during ∆t is performed, the Injection step is carried out. In this
step particles are injected into the device through ohmic contacts (input current) to keep the charge
neutrality near them. Moreover, particles that reach the contacts in the Drift step are eliminated

60

Figure 3.2: General Ensemble Monte Carlo algorithm for devices.

(output current). After that, the value N of particles in the devices is updated and the charge density
can be calculated (Charge Density step) assigning particles to the mesh at the cells where they are
(although other methods can be used). With this, it is possible to calculate the new electrostatic
potential by solving the Poisson’s equation (Poisson step). For this, the same Poisson solver based
on Finite Volume described for solve Drift-Diffusion model is used. Finally, the algorithm stops
if a stopping criterion is met (like convergence or elapsed time). Otherwise, a new instant of time
t = t +∆t is simulated starting from the ensemble MC.

Similarly to the DDM, for MC there also exist stability criteria. The mesh spacing criterion is
the same of the DDM. For the case of the time step, the stability is governed by the plasma [67]

61

frequency given by

ω =

√
q2n
εm∗

(3.4)

with n the carrier density, m∗ the mass, and ε the permittivity. The time step chosen for MC should
be smaller than 1/ω since plasma oscillations are always present. They can even be appreciated in
macro magnitudes as current through contacts [97].

3.2 Energy Band and Effective Mass

Although the basic Drift-Diffusion models assume a single parabolic relation between E and
k for the derivation of the model and parameters calculations, the Monte Carlo method can easily
include more complex bands that give better accuracy to the solution. In this work only simple
analytical expressions for bands are used. This approach is much faster than full-band numerical
description [65], although it is less precise specially for high energies.

As described in section 1.3.2, energy bands can be approximated by parabolic relations
between E and k as in (1.14), but a better model including a non-parabolic behavior was proposed
by [4] and studied by [40][73]. It is written as

E(1+αE) = γ(E) =
h̄2k2

2m∗
= γ(kkk) (3.5)

where α is the non-parabolicity factor which is usually adjusted to experimental data and is on the
order of α = 0.5 for silicon although analytical models have been proposed [74]. An expression for
E can be found by solving (3.5):

Ek =

√
1+4αγ(k)−1

2α
. (3.6)

In real experiments, anisotropic behavior is observed when the electric field is applied in
different directions [73][74] suggesting that due the non-symmetry on all crystal axis, the effective
masses values are not the same for every axis. For electron transport, besides the spherical
(isotropic), ellipsoidal energy surfaces are considered with the form

γ(E) =
h̄2

2

(
k2

l
ml

+
k2

t
mt

)
(3.7)

where subscript l is the longitudinal direction referred to long direction of the ellipsoid and t is the
transversal direction of the same reference system. The transversal component is also commonly
expressed by two orthogonal axis t1 and t2. Notice that if ml = mt = m∗ is the same as considering
a spherical model like (3.5).

62

In this work, it is assumed that the Γ valley (if activated) has a spherical form whereas LX
and X valleys can be elliptical where the corresponding longitudinal directions are respectively
l = [111] and l = [100] (i.e. in Cartesian coordinates l = i, t1 = j, and t2 = z). For the case of hole
transport, in most semiconductor materials the three bands (heavy-hole, light-hole, and split-off
band) are centered at Γ (like in figure 1.5) but they have more complex energy surfaces modeled
commonly as “wrapped spheres” [97][74]. However, in this work simplified spherical models are
used as in [142] which is much simpler although less accurate. The conduction and valence bands
are shown in figure 3.3.

Figure 3.3: Conduction and valence bands used in this work.

Because of the inclusion of elliptical bands many calculations become more complex than for
the case when using spherical models. To simplify calculations, an excellent technique proposed
by Herring and Vogt [64][71] allows to treat those elliptical bands as they were isotropic. The
Herring-Vogt transformation is

kkk∗ = Tkkk, (3.8)

where kkk is the wave vector to work with ellipsoidal models and kkk∗ with spherical ones. The
transformation matrix TTT is given by

TTT =


(

m∗d
ml

)1/2
0 0

0
(

m∗d
mt

)1/2
0

0 0
(

m∗d
mt

)1/2

 (3.9)

63

where m∗d = (m∗l m∗2t)1/3 is the effective mass for density of state calculations. Using the Herring-
Vogt transformation the elliptical representation of expression (3.7) produces

γ(E) =
h̄2k∗2

2m∗d
. (3.10)

In expression (3.9) it is assumed that the longitudinal direction of the elliptical band is aligned
with the x-direction. This is the case for two of the equivalent band [100] of the X-valley. For the
other directions of X and L valleys a rotated or transformed version of (3.9) should be used. The
general expression of T can be defined as

TTT =MMM0RRRB (3.11)

where MMM0 is the same as (3.9) (which is respect to direction [100]) and RRRB is the rotation matrix
from direction [100] to the band direction BBB. If the unit vectors of the laboratory frame are
(iii, jjj,kkk) and the analogous in the band directions are (i′i′i′, j′j′j′,k′k′k′) (for example, i′i′i′ = (1,1,1)/

√
3,

j′j′j′ = (−1,1,0)/
√

2,k′k′k′) = (−1,−1,2)/
√

6 in the [111] direction of L-valley), RB is defined as

RB =

 i′i′i′ · iii i′i′i′ · jjj i′i′i′ ·kkk
j′j′j′ · iii j′j′j′ · jjj j′j′j′ ·kkk
k′k′k′ · iii k′k′k′ · jjj k′k′k′ ·kkk

 . (3.12)

Then, the relation between energy and wave vector is

γ(E) =
h̄2

2m∗d
kkkTRRRT

BMMMT
0 MMM0RRRBkkk. (3.13)

The consideration of this general form is crucial in processes such as free-flights and boundary
reflections, specially when they are not aligned with the band axes.

With the bands model properly defined, the density of states can be calculated from [128][132]

N(Ek) =
(2m∗)3/2

4π2h̄3

√
γ(Ek)

dγ(Ek)

dEk
(3.14)

where the effective mass if m∗d . Replacing γ(Ek) for the parabolic form

N(Ek) =
(2m∗)3/2

4π2h̄3

√
Ek (3.15)

while if non-parabolicity is included it is written as

N(Ek) =
(2m∗)3/2

4π2h̄3

√
Ek(1+αEk)(1+2αEk). (3.16)

64

3.3 The Drift Process

As it has been said in this chapter, the carrier movement in the Monte Carlo method is treated
as if they were classical particles under the influence of an external force according to the equations
of section 1.3.3. The difference it that, as in many numerical simulations, the time progression must
be discretized as all time-dependent equations. The following description applies to both electrons
and holes just with different signs representing that holes moves in the positive direction of the
electrical field whereas electrons do the opposite. If dt is a free flight time (or fraction), using
(1.38) and (3.1), the change dkkk in wave vector kkk of a particle immersed in a field EEE during dt is

dkkk =
qEEE
h̄

dt. (3.17)

Then, if kkk and kkk′ are the initial and final wave vector, they are related to each other by the equation

kkk′ = kkk+dkkk. (3.18)

For the calculation of space displacement, drrr, the common equation for constant linear
acceleration is used

rrr′ = rrr+
vvv+vvv′

2
dt (3.19)

where rrr and vvv are initial position and velocity, whereas rrr′ and vvv′ the respective final values after dt.
For the calculations of velocities, the expression (1.37) is used, which for non-parabolic relation
has the form

v =
h̄k

m∗
√

1+4αγ(k)
. (3.20)

Here the assumption of constant acceleration during dt that gave rise to equation (3.19) was used.
This is an approximation of the real process and its stability is not ensured but is good enough for
semiconductor simulation and better than many other more complex methods [82].

Until now, a general treatment of particle motion has been given, which applies to both
bulk and device simulations. The main difference between both of them is that devices are
more complex, presenting non-constant fields and interfaces that must be handled properly. Since
movements are usually short (because of small dt), a sufficiently good approximation is to assume
constant fields during dt but this is addressed in a later section. The explanation of edge treatment
is given below.

All devices edges have their own boundary conditions representing the different types of
interfaces. Examples are ohmic contact or Neumann BC, that modify the behavior of particles when
they collide with edges or are near them. To detect these collisions, the algorithm implemented
is a little different than the commonly used [132] since the program must handle general device

65

structures. The method starts with an initial position rrr and a possible movement of the particle is
calculated using equation (3.19) to get a candidate of the final position rrr f . Considering the line
between rrr and rrr f as a simplified particle trajectory as in figure 3.4a, where the black line is an edge,
the collision detection can easily be performed by a method to check if two lines intersect. This is
possible since all edges in the mesh structure are defined by two vertices in 2D (see section 2.2). The
process is repeated for all edges in the boundaries. If refined mesh is used, many small segments
are needed to describe interfaces which would slow down the method. Because of this, a simplified
mesh structure is used that is generated as an intermediate process in the mesh generation. This
simplified mesh reduces significantly the number of edge describing straight boundaries. Moreover,
assuming that there are many internal regions in the devices, each with its own boundary edges, and
that it is known which is the region where the particle is, the described collision detection method
should be performed only between the particle trajectory and that region’s edges.

Figure 3.4: Edge collision detection where a straight trajectory is used showing that it works for a) the case when straight line and parabolic
trajectories intersect the edge and fails for b) the case when only parabolic trajectory does not intersect a segment.

If the particle collides any edge, the point of intersection is calculated using the “real” particle
trajectory. For this, edges are represented by its linear equation, whereas the trajectory of the
particle is the expression (3.19) and both equations must be satisfied by the intersection point rrri
at a given time ti as in figure 3.4a. Due to the curved movement the case of figure 3.4b, although
very infrequent, can also be produced. Here the edge is such that the straight line intersects the edge
but no the trajectory. To handle this situation, the possible flight is performed again from rrr but until
time ti to then repeat the method for a new dt = dt− ti starting at point rrr = rrri (the field used should
be the initial one). Once the edge detection is performed giving positive results, different treatment
for each edge type must be done. The details are explained in the following.

Edge Reflection

As in the case of the Drift-Diffusion model, the condition of zero flow is imposed to external
edges that are not conducting contacts. This means that particles are not supposed to leave the
devices through those boundaries but they are reflected back into the devices. To achieve this, the
energy before and after the collision must be the same and the parallel-to-the-edge component of
the wave vector is also preserved. In other words

Ek be f ore−EB−Ek a f ter = 0 (3.21)

66

and

k‖be f ore = k‖a f ter. (3.22)

Candidates for final energy and wave vector are calculated using that condition but also
assuming that the final energy is equal to the energy E f that the particle would have if there were
no edge as shown in figure 3.5.

Figure 3.5: Edge reflection method where energy and parallel wave vector are conserved.

Heterojunction

If the junction of two different materials is encountered by a particle after a free flight, a
special treatment must be given due to the discontinuity in the conduction and valence bands
(abrupt heterojunction). The explanation will be given for electrons only since for holes the idea is
analogous. Consider a particle in a material a with conduction band energy Eca and reaching the
interface with another material b with Ecb, the energy barrier is EB = Ecb−Eca. According to [141],
the transmission of particles must satisfy the condition that the energy of the system and tangential
(to the interface) momentum must be preserved. In other words

Eka−EB−Ekb = 0 (3.23)

and

kkka‖ = kkkb‖ (3.24)

where Eka and Ekb are the total kinetic energies of the particle just before and after crossing the
interface, whereas kkka‖ and kkkb‖ are the parallel wave vectors (just before and after). Furthermore, the
transmission is only possible if [97]

EB ≤ Eka⊥ (3.25)

where Eka⊥ is the kinetic energy due to perpendicular to the edge wave vector. On the other hand,
if the condition (3.25) is not met, the particle is reflected as described in section 3.3.

67

Gate oxide contact

Gate oxide contacts are modeled by denyingthe flow of particles through them. Therefore, the
treatment of this kind of boundary is the same as that described for reflecting edges whereas the
electrostatic potential is calculated by the Poisson equation as described in section 2 for the DDM.

Ohmic contact

The ohmic contact model used in this work is the one used classically [134][132] (although
other models exist [57]). Ohmic contacts by definition are such that they can inject or absorb
necessary particles to maintain the charge neutrality near those contacts. For this, the considered
region near the contact are the mesh cells that are at the ohmic edge. Particles in each cell K are
counted and the total charge QK they represent is calculated and compared to the equilibrium charge
Qeq. If QK < Qeq, a number of particles proportional to the difference Qeq−QK is injected in K
until equilibrium is achieved. On the other hand if QK > Qeq, particles are absorbed by the contact.
Both of these processes must be accounted for current flow calculations.

The injection of particles implies the initialization with a new state. Each new particle is placed
randomly inside the cell K, whereas the energy follows a Maxwell-Boltzmann distribution using the
method described in section 3.8 with the difference that the initial particle movement is restricted
to go inside the device. To achieve this, the random initialization of the φ angle is limited to 180◦

changing (3.66a) to

φ = πr1. (3.26)

Then, since φ is the azimuthal angle, the wave vector would point only to the half space with
positive y, where the x axis is the division. This only would work if the contact edge were lying in
the x axis, therefore, for edges with orientation of α degrees with respect to the x axis, the wave
vector is rotated by α ensuring that the particle is injected inwards the device.

Schottky contact

For the Monte Carlo method, Schottky contacts are not truly implemented since no models
for thermionic or field emission are included. Nevertheless, some kinds of metal-semiconductor
junctions can be simulated when they are not supposed to inject charges as in the case of
gate Schottky contacts in MESFET [16][76][17]. Then, this kind of contacts can be modeled
by absorbing all particles that reach them while the bands are calculated using the potential as
described in section 2.

68

3.4 Free Flight Time and Self-Scattering

To choose the duration of the free flight time, the incidence of the collisional term of the BTE
(3.3) must be considered. If P(t) is the probability density of occurrence of a collision process at
time t, the random sampling methods [72] state that the free flight time t f can be sampled using
uniformly distributed random numbers r ∈U(0,1) as

∫ t f

0
P(t)dt = r. (3.27)

To evaluate the integral of (3.27) a proper knowledge of P(t) is needed. For semiconductors P(t) is
given by [132]

P(t) =WT (Ek)e−
∫ t

0 WT (E(k(t)))dt (3.28)

where WT is the total scattering rate defined as the summation of all the rates Wi of the considered
dispersion mechanisms and reads

WT (Ek) = ∑
i=1

Wi(Ek). (3.29)

Notice that scattering rates W are also functions of kkk, then in this work W (Ek) or W (kkk) will be
used depending on the context. Considering that in general Wi can be known but are not simple
functions of Ek, the computation of (3.28) and then t f using (3.27), although possible, is a very
time consuming task when it must be done thousands of times. A solution for this problem was
presented by Rees [109] who introduced an additional and artificial scattering mechanism called
self-scattering with its own rate of occurrence W0(Ek). This mechanism when happens does not
change the state of the particle. Furthermore, its value ,W0, is such that if introduced in (3.29), the
new total scattering rate WT = Γ is constant over an energy range of interest. This is depicted in
figure 3.6 where W0 is given by

W0(Ek) = Γ−
m

∑
i=1

Wi(Ek) EA ≤ Ek ≤ EB. (3.30)

Using self-scattering, the expression (3.28) can be simplified to

P(t) = Γe−Γt (3.31)

which can be used to solve easily expression (3.27) to get t f as

t f =
1
Γ

ln(r) (3.32)

69

Figure 3.6: Representation of total and self-scattering relation.

Then, if the global time of the occurrence of the last scattering process is t0, the next one occurs at
ts = t0+ t f . It can be noticed that the inclusion of self-scattering also makes the total scattering rate
Γ a much larger value than the original for almost all the range of interest (see figure 3.6). Looking
at (3.32) this produces the generated free-flight times to be less in general, meaning that shorter free
flights take place and that collision or diffusion processes occurs more frequently than before. This
new scenario is equivalent to the original only if those new additional collisions are self-scattering
that does not affectthe state of the particles and, therefore, do not change the system.

Although self-scattering allows efficient calculations of t f , it is clear that it may occur many
times before a real scattering mechanism. If the evaluation of each self-scattering is costly enough
it can be considered as an undesirable process when efficiency is required. To improve the
performance of the technique several self-scattering reduction methods have been proposed where
smaller constant Γ [66] [112] [95] or analytical approximations of the same [79] are used. All
methods add different degrees of complexity that must be small compared to the reduction of self-
scattering in each implementation to make it worth the effort. As a first approximation in this work
the well-known piecewise constant Γ method by Sangiorgi et al [112] is studied (also well explained
in [75]).

Figure 3.7: Examples of energy subdivisions with different constant scattering rates.

The method considers that the phase-space domain is partitioned into subdivisions Λi with one

70

total scattering rate Γi for each one that should be smaller than the original Γ in order to reduce
the self-scattering. Examples of energy subdivisions are shown in figure 3.7. If at the beginning
(time t0) the particle is in the i(0) subdivision, and t j is the time at which a particle passes from the
subdivision i(j−1) to i(j) during a free flight process, the scattering time can be sampled using r
(uniform random number) from [112]

ts = t j +
1

Γi(j)

(
−ln(r)−

j

∑
k=1

Γi(k)(tk− tk−1)

)
t j ≤ ts ≤ t j+1 (3.33)

which means that the time when a scattering process occurs is when that expression of ts fulfills
the condition t j ≤ ts ≤ t j+1. An implementation of this technique could be done considering a
partitioned space using Voronoi control volume, but since t j is the time at which subdivisions’
interfaces are crossed, calculating it for general cell shapes would be very costly. The same would
apply if the subdivision in energy interval were too fine. In this work only heterointerfaces were
considered as space subdivision interface while the energy steps are constantsand in a customizable
quantity (5 to 35 are typically good values).

The method to calculate ts here is implemented in the drift routine. First, a uniform random
number r is generated and used over the whole algorithm. Then, a possible free flight is performed
over a time dt starting from t0, checking if any relevant process took place during dt. These relevant
processes are, besides changes in energy due to external force, the ones that could change the
subdivision Λi. Examples are crossing a heterojunction or some method of reflection that could
change the energy (among others). If any of these processes happen, the time of occurrence is
calculated to get the effective (possible) free flight time dt0 ≤ dt lapsed before the event. On the
other hand, if the free-flight is performed over dt without important interruptions the effective
(possible) time would be dt0 = dt. It is important in this stage to understand that t j = t0 +dt0 is a
possible candidate for t j but another check must be carried out to know if an energy subdivision
limit was crossed before this t j. This is done easily if there is an analytical relation between the
energy path during dt0 and the time t, which is the case for the analytical band models used here. In
fact, during dt0 this last check could tell that many subdivision crossing occur, and for the definition
of t j, all of these must be numbered sequentially as t j=n,n+1...,m. Finally for all intervals of t j, the
expression (3.33) must be evaluated stopping the algorithm if the condition is fulfilled and saving
the flight results until ts or, if the condition is not satisfied, until the end of dt0.

Besides the subdivisions on energy and material, there also exist divisions between bands
(for electrons and holes). However, they were not mentioned here because in the drift process no
mechanism to change the energy band were considered and, then no calculation of t j is needed.

3.5 Scattering Selection

After the free flight process is carried out and the selection of the scattering time was made
according to section 3.4, one of the many scattering mechanisms must be chosen to then execute the
proper dispersion. The selection must be relative and proportional to the probabilities of occurrence
of each mechanism dependent upon the carrier’s energy. To accomplish this, a roulette wheel

71

selection is used, similar to the ones described in [132] or [87] but accounting for the total scattering
rate Γs of the corresponding subdivision where the particle is

l−1

∑
i=0

Wi(Ek)≤ rΓs ≤
l

∑
i=0

Wi(Ek) (3.34)

where r is a uniform random number U(0,1), and 0 ≤ i ≤ m with m the number of scattering
process taken into account (the index 0 is the self-scattering).

Since this selection process is done many times, a good alternative, when possible (which is
always the case in this implementation), is to discretize the energy range of interest and save the
scattering rates Wi in look-up tables for each carrier type (electron and holes), band, and energy
step. This is done once at the beginning of the program.

3.6 Fermi’s Golden Rule and Carrier Scattering

Until now, in many of the algorithms and expressions presented in the previous sections it has
been assumed that the scattering rates Wi(kkk) of different mechanisms are known. As mentioned,
W (kkk) is the rate at which a particle in the state kkk scatters per unit of time. This involves a change in
the state itself, therefore, W must consider all possible final states kkk′. If the transition rate S(kkk,kkk′)
is defined as the probability per unit of time of transition from kkk to kkk′, the scattering rate W (kkk) can
be defined as

W (kkk) = ∑
k′

S(kkk,kkk′) (3.35)

which is the summation of S(kkk,kkk′) over all possible kkk′. Moreover, it is usually expressed in integral
form when there are many choices of kkk′ densely distributed (∑k′ → Ω

(2π)3

∫
dkkk′) as

W (kkk) =
Ω

(2π)3

∫
S(kkk,kkk′)dkkk′ (3.36)

where Ω is the space volume in consideration. For the calculation of S(kkk,kkk′) in this work it is used
the well know Fermi’s golden rule (FGR) that states that [87][132]

S(kkk,kkk′) =
2π

h̄
|H ′k′k|

2
δ (Ek′−Ek∓ h̄ω) (3.37)

where δ is the Dirac delta function, accounting for instantaneous, or very rapid, state changes, h̄ω

represent an increase (minus sign) or decrease (plus sign) in energy, and H ′k′k is matrix element of
the scattering mechanism defined by

H ′k′k =Uk′−kI(kkk,kkk′). (3.38)

72

I is the overlap integral written as

I(kkk,kkk′) =
∫

Ω

u∗k′(xxx)uk(xxx)dxxx. (3.39)

For simple nearly parabolic conduction bands this overlap integral is approximated to the unit,
whereas for the valence band I(kkk,kkk′)≈ 1/2 [132]. The quantity Uk′−k is given by

Uk′−k =
∫

Ω

e−ikkk′·xxxH ′(xxx, t)eikkk·xxxdxxx (3.40)

where H ′(xxx, t) is the perturbing potential of the scattering mechanism that disturbs the
equilibrium Hamiltonian of the system. The Fermi’s golden rule makes use of the Perturbation
Theory [58] and the assumption that H ′ slightly perturbs the system.

3.7 Scattering Mechanism

In this section, the different scattering mechanisms used in this work are presented. The
scattering rates (necessary for calculation of flight time and selection of mechanism) are presented
but their derivation (based on the FGR) are omitted here, although it is recommendable to know
how expressions are calculated for which [97][72][87][132][62][123] are excellent references.
Moreover, angular dependencies and after-scattering state conditions are given.

3.7.1 Ionized Impurity Scattering

When dopants or impurities are present and are ionized by thermal energy, they generate a non-
zero Coulombic force in the regions near them. This produces a perturbation in the carriers that pass
close to this field where the more the time they spendin the field, the greater the interaction. This
is more relevant for carriers with low kinetic energy. Furthermore, due to the presence of other
carriers, this field is screened. Traditionally there exist many popular approaches [72] but for this
work the so-called Brooks-Herring approach is used. From this model, the perturbing potential has
the form

H ′(rrr) =
Ze

4πεr
e−qDr (3.41)

where Z is the charge of the impurity, e electronic charge, and 1/qD the screening length which is
the Debye length. Using this expression, the FGR, and the assumption that it is an elastic process
(no exchange of energy), the scattering rate can be found to be [132]

W (k) =
2πNIZ2q4

h̄ε2 N(Ek)
1

q2
D(4k2 +q2

D)
(3.42)

73

where NI is the impurity concentration and N(Ek) the density of states. Considering non-parabolic
bands

W (k) =
(2m∗)3/2NIZ2q4

2π h̄4
ε2

s

√
Ek(1+αEk)(1+2αEk)

1
q2

D(4k2 +q2
D)

. (3.43)

The nature of the ionized impurity interaction with carriers, makes the scattering process an
anisotropic one. This means that after the interaction, the angle θ formed by the original wave
vector k and the final one k′ (which is the polar angle if k is the reference direction) does not
have a uniform distribution. Small deviations are more probable for high energies. To account for
this, cos(θ) can be calculated in a non-uniform way using a random number r ∈U(0,1) and the
expression [74]

cos(θ) = 1− 2r

1+(1− r)
(

2k
qD

)2 (3.44)

whereas the azimuthal angle φ can be chosen randomly with other number r following

φ = 2πr. (3.45)

For the case of holes, the simplest model is used where the scattering rate is the same as
equation (3.42) with and additional 1/2 factor due to the valence band approximation [142]. The
angle φ is chosen according to (3.45), whereas for the polar angle, the rejection technique [72] is
used with the probabilities

G(θ) =
1+3cos2(θ)

4
(3.46)

3.7.2 Acoustic Phonon Scattering

The acoustic phonon scattering is due to the carrier interaction with low frequency lattice
vibration or phonons of acoustic nature. Its analysis can be very challenging so a simplified
approach based on the Deformation Potential Theory of Bardeen and Shockley [19] is used. In
this theory the perturbation potential has the form

H ′(rrr, t) = Ξd∇u(rrr, t) (3.47)

where Ξd is the deformation potential and u(r, t) the summation over all acoustic oscillation modes.
Then, the transition rate is given from the FGR by [132]

S(kkk,kkk′) =
πΞ2

dq2

ρωqΩ

(
nq +

1
2
∓ 1

2

)
δ (k′−k∓q)δ (Ek′−Ek∓ h̄ωq) (3.48)

74

where q is the wave vector of the phonon, ρ the mass density of the material, ωq the phonon
frequency, Ω an integration volume, and nq the number of phonons with state q. The ∓ sign
accounts for emission (release of energy to the lattice) and absorption process respectively. If is
assumed that h̄ωq� kBT , an elastic process can be considered (h̄ωq ≈ 0), and also nq ≈ nq +1 ≈
kbT/(h̄ωq). The acoustic phonon scattering rate can be then calculated and reads

W (k) =
2πΞ2

dkbT
h̄cL

N(Ek) (3.49)

which for non-parabolic bands is

W (k) =
Ξ2

dkbTL(2m∗)3/2

2π h̄4cL

√
Ek(1+αEk)(1+2αEk). (3.50)

This kind of scattering is assumed to be isotropic. Then, the selection of the after scattering
state can be done by choosing a new wave vector’s direction randomly using, for φ , equation (3.45)
while for θ , considering a number r ∈U(0,1),

cos(θ) = 1−2r. (3.51)

For acoustic scattering of holes, the expression (3.49) times 1/2 is used [142]. For the after-
scattering state, the angle φ is selected by (3.45). The rejection technique is used to the polar angle
using as distribution [142]

G(θ) =
3
4

sin2(θ) (3.52)

for interband transitions and

G(θ) =
1+3cos2(θ)

4
(3.53)

for intraband transitions.

3.7.3 Non-polar Optical Phonon

For the treatment of non-polar optical phonons, like for the acoustic case, a deformation
potential can be used of the form

H ′(rrr, t) = Dou(rrr, t) (3.54)

75

with Do the optical deformation potential. Since optical phonons have in general higher frequencies
than their acoustic counterpart, the elastic approximation cannot be used. Under this assumption
the scattering rate is [87][72]

W (k) =
πD2

o
ρωo

(
no +

1
2
∓ 1

2

)
N(Ek± h̄ωo) (3.55)

with ωo the optical phonon frequency and no the number of phonons. Using non-parabolic densities
W reads

W (k) =
(2m∗)3/2D2

o

4π h̄3
ρωo

(
no +

1
2
∓ 1

2

)√
(Ek± h̄ωo)(1+α(Ek± h̄ωo))(1+2α(Ek± h̄ωo)). (3.56)

Due to the presence of more than one band that contributes to the transport in some materials,
they must be considered in scattering calculations, where carrier-phonon interaction can lead to a
transition between bands. For intervalley processes, a similar expression is used by replacing Do by
Di j, ωo by ωi j, and no by ni j. These quantities correspond to the intervalley deformation potential,
phonon frequency, and number of phonons involved in the transition from valley i to valley j (three
valleys are used here for electrons). Moreover, the change in potential energy between valleys
∆Ei j = E j − Ei and the available number of destination valleys Z j must be taken into account
leading to the scattering rate (for non-parabolic bands)

W (k) =
(2m∗)3/2D2

i jZ j

4π h̄3
ρωi j

(
ni j +

1
2
∓ 1

2

)√
(Ek± h̄ωi j−∆Ei j)(1+α(Ek± h̄ωi j−∆Ei j)) (3.57)

× (1+2α(Ek± h̄ωi j−∆Ei j)).

For the case of holes, the expression similar to (3.55) times 1/2 is used. The process is assumed
to be isotropic as stated in [142], and then, the angles φ and θ can be chosen randomly.

3.7.4 Polar Optical Phonon Scattering

The dispersion mechanism due to polar optical phonons is an important inelastic process
present in most compound semiconductor materials of interest. The scattering rate used here is
the one for parabolic valley and is given by [71]

W (k) =
m∗1/2ωoq2

4π h̄εp(2Ek)1/2

(
no +

1
2
∓ 1

2

)
ln

(
E1/2

k +E1/2
k′

|E1/2
k −E1/2

k′ |

)
(3.58)

76

with 1/εp = 1/ε∞ + 1/εs, ε∞ the high frequency permittivity of the material and εs the low
frequency one (or simply ε). The inclusion of non-parabolicity is done by [48]

W (k) =
m∗1/2ωoq2

4π h̄εp(Ek (1+αEk))1/2

(
no +

1
2
∓ 1

2

)
(3.59)

× ln

 (Ek (1+αEk))
1/2 +(Ek′ (1+αEk′))

1/2∣∣∣(Ek (1+αEk))
1/2− (Ek′ (1+αEk′))

1/2
∣∣∣
(1+2αEk′) .

Non-polar optical processes have anisotropic characteristics. This implies that the angle θ

of dispersion is also anisotropic. An analytical expression to get cos(θ) from a random number
r ∈U(0,1) is given by [132]

cos(θ) =
1+ f − (1+2 f)r

f
(3.60)

with

f =
2(EkEk′)

1/2

(E1/2
k −E1/2

k′)2
. (3.61)

This kind of scattering process is very complex for holes and is omitted as usual [72].

3.8 Particle Initialization

Although self-consistent MC simulation are robust enough to get a steady-state solution
regardless of initial conditions, a more efficient way to start the MC algorithm is to initialize
particles with a state distribution close to reality. This is more important for the case of initializing
particles that are being injected trough contacts.

The initialization of position of the particles does not matter for bulk simulations (since
no spatial structure is considered). For device simulations, the position is based on the thermal
equilibrium density of carriers, that is calculated by solving only the Poisson’s equation as
described in section 2.3.7. Then, given an approximated initial number of particles to simulate
Ninit (that is a input parameter), the number of particles npK positioned randomly inside a cell K is

npK =

⌊
nKm(K)

Ncpp
+

1
2

⌋
(3.62)

where bc is the floor function, nK the thermal equilibrium calculated density, and Ncpp the number

77

of carriers (holes or electrons) per particle. The later can be obtained from

Ncpp =
NcTot

Ninit
(3.63)

with NcTot the total number of carriers (of one type) present in the devices. In thermal equilibrium
it is computed by integrating the density over the whole domain. In the case of heterojunctions, the
sub-polygons of K (described in section 2.2.2) are considered in equation (3.62).

The calculation of the initial wave vector k is done imposing a mean kinetic energy of 3/2kBT
[99] due only to thermal movements. This follows a Maxwell-Boltzmann distribution that can be
sampled with a random number r ∈U(0,1) [135] such that

Ek =
3
2

kBT
q

ln(r). (3.64)

Using this and the E− k relation (3.10), the norm of wave vector ‖k‖ can be easily computed
to then calculate a random distribution of k according to [132]

kx = ‖k‖sin(θ)cos(φ) (3.65a)
ky = ‖k‖sin(θ)sin(φ) (3.65b)
kz = ‖k‖cos(θ) (3.65c)

where θ and φ are the polar and azimuthal angles respect to z axis that are calculated using two
random numbers r1,r2 U(0,1) following

φ = 2πr1 (3.66a)
cos(θ) = 1−2r2 (3.66b)

sin(θ) =
√

1− cos2(θ). (3.66c)

3.9 Mesh Coupling and Search Structure

As it was mentioned in the introduction of this chapter, the interaction of particles through
electrical forces is considered by calculating the electrical field after solving the Poisson’s equation.
As described in chapter 2, to achieve this it is necessary to work with an estimation of the electron
(or hole) density at each mesh point. For particle simulation, this means the assignation of the
particles’ charge to the mesh. In the software developed here, two of the most famous methods
for doing this are implemented, the Nearest Grid Point (NGP) and Cloud In Cell (CIC) [67].
Although the ideas are the same, the use of Voronoi meshes involves some modifications, with the

78

impossibility of reducing self-forces to zero as for structured grids [80][9]. However, in practice,
the effects of these forces can be neglected in many cases especially for non-zero field regions.

The NGP technique is very intuitive, since each particle’s charge is assigned to the nearest
cell center (considering the position of the particle). This, by the definition of the Voronoi diagram,
means that each particle in the control volume is assigned to the corresponding cell center. Then,
the charge density of the cell K is given by

QK =
1

m(K) ∑
p∈K

qNcpp (3.67)

where p are the particles inside the cell K, m(K) the measurement of K (the area in 2D), and Ncpp
the number of carriers per particle. This method has the advantage of its simplicity which makes it
faster.

A better approximation that gives smoother results and reduces errors [72] is the CIC method.
This assigns particles’ charge to more than one mesh point in a way proportional to the distance
of surrounding cells. To apply this method in a Voronoi mesh, the technique of [56] is used, where
the duality with Delaunay triangulation is harnessed. Each particle positioned inside a triangle is
assigned proportionally to the three vertex (or three Voronoi cells centers). Considering the three
new triangles formed with the original vertices and the particle’s position, as show in figure 3.8a,
the charge corresponding to a vertex is proportional to the normalized area of the triangle formed
without the vertex itself (see figure 3.8b) or

Qpa = qNcpp
A4pbc

A4abc
(3.68)

where Qpa is the charge fraction of the particle at position p assigned to vertex a and A4 are
the areas of the respective triangles. It is useful to notice for the implementation that the fraction
A4pbc/A4abc is in fact the barycentric coordinate of p respect to vertex a.

Figure 3.8: a) Point p inside a triangle formed by three Voronoi centers. b) Amount of p assigned to vertex a that is proportional to the highlighted
area

79

3.9.1 Particle Search Structure

Many of the processes described in sections of this chapter involve a known position of the
simulated particles. After initialization, the absolute location r = (x,y,z) is always known because
it is saved as part of the state of each particle, but the position respect to the mesh (i.e. the cell
in which the particle is) is always necessary for charge and force calculations. In unstructured
meshes, as the one used in this work, this can be a computationally expensive task if brute force is
used. For example, getting the nearest mesh point to the particle by computing the distance of the
particle with all cell centers. To address this issue, a uniform square grid is used to subdivide the
whole space with a mesh spacing ∆h such that the diagonal of the squares (largest dimension of
any square) is smaller than the smallest cell of the mesh. In this case, two important situations are
possible for each square (figure 3.9).

a) It is totally contained in a Voronoi cell (figure 3.9a).

b) It intersects with two or more cells (figure 3.9b).

Figure 3.9: Cases for search structure square grid a) totally contained and b) intersecting with many polygons.

Cases when the whole square is outside the domain is not considered, and when it is partially
outside is accounted in one of the two afore mentioned cases.

A N×M matrix SS (search structure) is created. The value of SS(i, j) is the index or ID of the
cell where the square (i, j) is contained for the case a), while for the case b), SS(i, j) is the “pointer”
to a list Lc of all cells the square (i, j) intersects with. Given the described search structure, the
algorithm to find in which cell is a particle is as follows.

• Find the square indices (i, j) where the particle is. This indices are given by

i =
⌊ x

∆h

⌋
+1 (3.69a)

j =
⌊ y

∆h

⌋
+1. (3.69b)

• Use SS(i, j) and get the resulting cell K if in case a), ending the method. Otherwise, get the
list Lc.

80

• Use brute force to find in which cell Lc the particle is.

In a unfavorable case, Lc refers to 6 or less cells which allows a much better scenario than
calculating by brute force the nearest grid point using all (several hundreds) cells. The same method
can be used to find in which triangle a particle is.

This method makes the charge assignment task several times faster than other methods, but
it requires large amounts of memory because the large size of the array SS if the mesh is fine.
Although this is not a big problem in modern computers, another solution could be using ideas
similar to quadtrees.

3.10 Gathering Output Quantities

In MC simulations many of the important output results are considered part of the state of
simulated particles and are tracked in every moment. These are the individual positions (which
implies the material and its properties), wave vector, and band where they are (and with this, the
effective mass). Using those parameters other important quantities, like the kinetic energy using
(3.6) or the velocity from (3.20), can be easily calculated for every particle.

It is also useful to know the value of different quantities associated with the mesh in form
of densities or mean values. The former is what was done for the density-of-charge calculations
described in section 3.9 where in (3.67), qNcpp can be replaced by the quantity of interest. For the
mean value calculation, a similar expression can be used

〈w〉K =
1

N p(K) ∑
p∈K

wp (3.70)

where wp is the value of the particle p and N p(K) the number of particles in K.

For the calculation of the current through contact C, the accumulated net charge crossing it is
calculated according to [97][135]

Q(t) = q(nout(t)−nin(t))+
∫

δC
εEEE ·ννν (3.71)

where nout(t) and nin(t) are the number of carriers going out and in through the contact, ν is the
unitary outward vector pointing normal to the contact, EEE the electric field that is integrated over the
contact surface. This last term accounts for the displacement current due to variable EEE. The current
at time t is then computed as

I(t) =
dQ(t)

dt
≈ ∆Q

∆t
(3.72)

where ∆Q is the variation of Q(t) in a time interval of ∆t. In other words, the current is the slope of
the plot Q(t) vs t.

81

Since the time step is usually very small and due to the random processes involved in the
MC method, all computed quantities are usually very noisy. A way to reduce this issue is using
a large number of particles, but also, using several time steps (a window of time) to average the
instantaneous values calculated with the afore mentioned expressions.

82

Chapter 4

Software Outline and Results

In this section, some numerical results are presented with the aim of demonstrating the proper
functioning of the implemented models and techniques that were described in the thesis. Analysis
of numerical tests and comparisons with simple devices are given. Here, a general picture of the
implemented software structure is shown highlighting part of the features and limitations, outlining
how its capabilities can be extended.

4.1 Numerical Analysis of the Finite Volume Schemes

When the Finite Volume scheme was presented in section 2.3, the differences between the
upwind and Scharfetter-Gummel schemes, and also between Gummel and Newton-Raphson solvers
were introduced. In the following, these differences are highlighted with numerical tests. The
different techniques are summarized in table 4.1. In other simulations after these comparisons
where performed, Scharfetter-Gummel and Newton-Raphson methods were used as default.

Method name Description Experiment
Upwind scheme Discretization scheme for numerical

stabilization based on [36]. It treats only
the drift term. See section 2.3.1

It is compared with SG in
section 4.1.1 where Gummel
is mainly used as solver.

Schaffeter-Gummel
(SG) scheme

Discretization scheme for numerical
stabilization based on [113]. It treats the
drift and diffusion terms as a whole. See
section 2.3.1

It is compared with Upwind
in section 4.1.1. Do not
confuse SG with Gummel.

Gummel solver Iterative procedure to solve the DD
system in a uncoupled way (each
equation separately). See section 2.3.2

It is compared with Newton-
Raphson in section 4.1.2

Newton-Raphson
(NRM) solver

Iterative procedure to solve the DD
system in a coupled way using Jacobian
of the whole system. See section 2.3.2

It is compared with Gummel
in section 4.1.2

Table 4.1: Summary of methods to be compared

83

4.1.1 Scharfetter-Gummel and Upwind Comparison

To show the differences between SG and upwind schemes from the point of view of practical
effects, a simple test case is used. It consists of a two-dimensional square p-n silicon diode as show
in figure 4.1. The top and bottom thick lines represent ohmic contacts whereas the p region is a
square with edges of a half of the device. The larger edge is 2 µm. A uniform doping of 1016 cm−3

is assumed for both regions.

Figure 4.1: Square p-n diode structure as a simple test case.

Figure 4.2 shows the resulting n and p densities when applying an abrupt forward bias of
0.7V at the beginning of the simulation. The Gummel decoupled iterative method was used with
the proper time step limit given by the dielectric relaxation time, 4.52×10−13 s for this case [134].
The constant mobility model and no recombination were used. The similarity of the shapes of
the curves using both upwind and SG schemes, and the fact they kept stable for 5000 iterations,
suggest stability and convergence of the solution under these circumstances. However, if the curves
are looked more carefully it can be noticed a slightly greater value in the upwind case.

To better understand the difference between the schemes, a simpler 1D diode with similar
characteristics was used with both methods1 to discard any 2D source of error like crosswind
effects [145]. This time, the applied bias was zero obtaining the densities shown in figure 4.3.
The lower curves of fig. 4.3a and 4.3b are the electron and holes solutions (respectively) in thermal
equilibrium. This was calculated using the problem described in section 2.3.7 which is the desired
solution when zero bias is imposed as boundary condition. The other curves present in those figures
are the evolution of the actual solutions every 10 iterations to a maximum of 620. It can be seen that
they deviate from the equilibrium solution and converge to a value of about 1×108 to 1×109 cm−3

where they are minority carriers. This is about 4 or 5 orders of magnitude of difference with the
expected value. This is obviously an unwanted behavior of the upwind scheme. It can be seen that
is dependent on the mesh spacing since, when finer mesh was used in fig. 4.3c and 4.3d, the error
was reduced but it was still many times the real solution.

The reason of this problem is probably what is called numerical diffusion that is a known
effect of the upwind scheme. It consists, as the name suggest, in an additional diffusion that is not
physically represented by the equations but appears in simulations because of the expected error
of any approximate method. In many fields of study this is ignored because it is not noticeable in
all cases. In the semiconductor problem, the issue is accentuated because of the extreme numerical

11D is not formally supported by the software

84

(a) (b)

(c) (d)

Figure 4.2: Densities calculated using Gummel with upwind for a) electron c) holes and Scharfetter-Gummel for b) electrons d) holes.

scenarios, where the magnitudes of carrier densities in one or other region of the same device differ
by several orders of magnitude. A relatively small numerical diffusion where carriers are majority
is a large one in the region where they are minority.

A similar test was performed using the SG scheme. The results are presented in figure 4.4.
Here, the same quantities of curves are plotted but they overlap each other, including the thermal
equilibrium solution. This is the expected behavior that the upwind scheme was not able to
reproduce.

The reason of this good fitting is the variable preponderance of convection and diffusion given
by the SG scheme, that is in fact non linear as it is in the upwind scheme as is depicted in the
following. In figure 4.5a, current vs increments in potential dV (dimensionless scaled magnitudes)
are calculated using typical Silicon parameters and expressions (2.46) for SG whereas for the
upwind current (2.33) plus (2.29) were used. Negative diffusion was used (∇n < 0) so a positive
drift current exist. It can be seen that for zero potential gradient both schemes give the same value
dominated by diffusion as the limit (2.48) predicted. When the dV is a negative value, the drift and
diffusion current are opposite, but the upwind schemes yield a higher current than SG. In figure 4.5

85

(a) (b)

(c) (d)

Figure 4.3: 1D demonstration of false diffusion with zero bias using Gummel and upwind scheme. a) electron and b) holes densities. c) electrons d)
holes densities using a finer mesh.

(a) (b)

Figure 4.4: 1D simulation with no false diffusion and zero bias using SG scheme. a) electron and b) holes densities.

b) there are estimates of the drift currents. The smaller (in magnitude) drift current of the upwind
scheme, confirms the greater importance given to the diffusion. This excess of diffusion flow in
practice cannot be countered by the drift current resulting in the reported false numerical diffusion.

In figure 4.6a and 4.6b, only electron densities are presented for upwind and SG under zero
bias condition but for the 2D case. This confirms the numerical false flows in higher dimensions. In

86

(a) (b)

Figure 4.5: a) Upwind and SG current vs dV. b) Upwind and SG drift current estimates vs dV.

figure 4.6c and 4.6b, an inverse bias of−0.7V was applied, showing for the upwind case that, even
in this circumstances, the minority density is over the equilibrium level. On the other hand, the SG
shows a valley near the depletion zone being this the expected behavior for inverse bias [128].

(a) (b)

(c) (d)

Figure 4.6: 2D zero bias electron density using a) upwind b) SG and for 0.7 [V] inverse bias using c) upwind and d) SG.

It is important to notice that the SG scheme fulfills the maximum principle even with inverse
bias and close to zero density values. This is not possible with common numerical schemes such
as backward, forward, or central difference [136]. Moreover, the popular Finite Element methods,
as described in section 2.1, present the same problem, although there are stabilization techniques

87

[27][55].

Finally, while it is true that the upwind scheme has been formally proven to be a method to
solve the DDM, in practice noticeable errors exist in the semiconductor problem. Only prohibitively
small mesh spacing would give better results. On the other hand, the SG scheme behaves as
expected in several scenarios.

4.1.2 Newton-Raphson and Gummel Methods

In the popular semiconductor simulation literature, little information is given about
the differences between Newton-Raphson and the Gummel method and their characteristics
[134][116]. For example, it is common that the criteria for mesh spacing and time step are
mentioned but not analyzed. Regarding spatial spacing, it has been shown in the 2D simulations
to compare SG and upwind, that convergence still exists, even when the medium distance between
neighbor cells was about ∼ 100nm while the extrinsic Debye length was ∼ 40nm. This was tested
with both Gummel and Newton-Raphson methods for simulation like the ones in figure 4.2 or 4.6
giving the same results (reason why NRM solutions were not shown). This “relaxed” criteria makes
possible to use fewer mesh points and make calculations faster. For more complex devices, it could
be necessary to reduce the mesh spacing to achieve convergence. Moreover, with the use of finer
mesh more precise results are obtained due to the reduction of intrinsic scheme approximation
errors.

About the time step restriction, great differences between Gummel and NRM can be found.
For example, in figure 4.2 using Gummel, a time step given by the dielectric relaxation time dt
was used. If a value of 1.1dt is set instead, only after 200 iterations the divergence becomes clear
as shown in figure 4.7a where an unexpected shape and large values are presented. In figure 4.7b
the evolution of the norm of the residual is presented for the same simulation with oscillatory
behavior showing no-convergence between iterations. In fact, a divergent trend is appreciated
(notice logarithmic scale) since the residual increases its value over time. The same results, using
NRM are shown in figure 4.7c and 4.7d where stable density and asymptotic behavior of the residual
is evident. The NRM was proven to converge even with infinite time step. With this setup, the
simulation until time 5000dt, as in figure 4.2, can be achieved in few steps.

Another capability found for the NRM over Gummel is that the convergence can be reached
even for much greater voltage steps and more complex devices. Although, it is common the
necessity of using small voltage increments (small perturbations) in each iteration, small time steps,
and/or small mesh sizes in each iteration. Those techniques of reduction of mesh and time steps are
very useful to achieve convergence also with Gummel and even with central-differences schemes.
This could yield good results for simple problems with small perturbations (for example solar cells
[10]). However with the aim of a general simulator, it is recommended to use Newton-Raphson
with Scharfetter-Gummel.

88

(a) (b)

(c) (d)

Figure 4.7: Evidence of divergence using Gummel with 1.1dt a) electron density after 200 iterations b) Convergence evolution. And using NRM in
equivalent figures in c) and d) respectively.

4.1.3 Drift-Diffusion High-Field Mobility Validation

As mentioned in section 2.3.4, it is recommended to use the high-field mobility model for
devices with large electric field. The implementation of eq. (2.91) was made without including the
model explicitly in the Jacobian of the NRM. Some results to prove that this is a good approach
are shown in figure 4.8. The simulation was performed in a square block of side 3um with two
opposite ohmic contacts. Then, any applied bias generates a uniform electric field. The DD solver
was used with constant (low field) mobility and the high-field model. The good agreement with
measurements for holes and electrons validates the method. Moreover, a large great difference when
compared with constant mobility is notorious even at a few kV/cm of field. Then, a non-constant
model is of great importance for most devices.

To achieve better accuracy, the high-field models add computational effort. Compared with
the constant model, it requires three times as much time. This is because in each Newton iteration
the effective force is calculated. This involves gradient computations and update of the mobility.
Moreover, being decoupled from the Jacobian, more iterations are required to achieve convergence.
Moreover, the error between iterations is never smaller than in the case of constant mobility but it
is sufficient to achieve good results.

89

(a)

(b)

Figure 4.8: Comparison of constant and high-field mobility models with measurements of [32] for a) electrons and b) holes.

4.1.4 Thermionic Emission Model Test

For the implementation of a heterojunction model, multi-valued points and proper energy band
description were needed. To test this, and the thermionic emission model, a comparison with the
simulations of [144] where carried out. The simulated device was a GaAs/AlGaAs heterodiode
with mole fraction of x = 0.25. The total length was 1 µm (same as width) with the interface in
the middle. The GaAs impurity concentration was 1015 cm−3. Other parameters were the same of
[144].

Figure 4.9a shows a side view of the 2D band diagram at thermal equilibrium. The expected
discontinuities in the bands are present in the same position because of the double-valued vertex
implementation. Figure 4.9b shows a good agreement with the simulations from [144] for various
doping concentrations of the AlGaAs region. Further improvements of the model can be made with
the inclusion of tunneling effect. Although this is not done in the present work, it is discussed in
[144] for future works. Here, it is shown that tunneling effect is relevant in reverse bias condition
for medium and large voltages (i.e. above 0.4 V for a device like the already described). For forward
and low reverse conditions the model implemented in this work is accurate enough.

90

(a)

(b)

Figure 4.9: a) Side view of the 2D band diagram at thermal equilibrium b) IV characteristic of the simulated diode vs original results from [144].

4.2 Monte Carlo Bulk Validation

In order to validate the kernel of the Monte Carlo algorithm and its implementation, bulk
numerical tests were performed. These simulations consist on imposing an electric field in a region
without boundaries (assumed infinite) and with certain fixed number of super particles that are
followed until a defined time. The results were compared with experimental data from the literature.
The simulation on silicon was performed at 77 and 300K, with 10000 super particles in a bulk
material with low doping (i.e. less than 1014 cm). Acoustic and three g and f optical phonon were
included (see section 3.7). Elliptical and non-parabolic bands are considered.

Figure 4.10 shows the drift velocity of electrons versus applied field in the [100] direction. In

91

Figure 4.10: Comparison of MC simulations and measurements from [31] of velocity vs field characteristic in Silicon.

general, it can be appreciated the good agreement of simulation with experimental data from [31]
for both temperatures. The parameters used are those reported in the appendix A. The discrepancies
appreciated at low fields at 77K can be attributed to the use of analytical bands [50].

(a) (b)

Figure 4.11: Comparison of MC simulations with measurements from [23] of velocity vs field characteristic in GaAs. a) Low field b) High field.

Similar bulk simulations for GaAs at 300K is shown in Figure 4.11. All three Γ, L, and
X valleys were considered in spherical bands with non-parabolicity included in both drift and
scattering calculations for acoustic and polar phonons. The experimental data was taken from [23].
The peak in velocity at low fields is attributed to the consideration of two (or three) main valleys. In
this case, carriers start to jump to L that has a much higher mass. Most parameters were compiled
from [51] except for the energy bands differences and non-parabolicity that were taken from [84]
(tables with used values in appendix A). Both data sets were generated with the same parameters
covering a wide range of operation.

As mentioned along this work, one of the strong points of the MC method is the capability
of representing transient phenomena. The most important is the velocity overshoot. To show this
phenomenon, figure 4.12a and 4.12b show the numerical experiments of velocity versus time at

92

different applied fields, for both Silicon and GaAs. It can be seen that when the carriers are first
accelerated they reach a peak of velocity that decrease over time until it reaches the steady state
value. Figures 4.12c and 4.12d show also the evolution of the level of occupancy of valleys. In the
case of GaAs, similar to the steady state explanation, the overshoot shows a direct relation with
the transition from Γ to L. For Silicon, only the X valley was considered with elliptical equivalent
valleys. It can be noticed that the occupancy of the longitudinal (with respect to the applied field)
and transverse valleys do not change in concordance with the overshoot. This is because in Silicon,
the overshoot phenomenon is dominated by the lack of scattering events at low energies. Then, the
velocity can reach values over the saturation velocity. This occurs until particles gain more energy
and scattering rate increases.

(a) (b)

(c) (d)

Figure 4.12: Simulation of velocity overshoot for several electric fields for a) Silicon and b) GaAs. Overshoot compared to valley occupancy for c)
Silicon and d) GaAs.

It is very difficult to find experimental data of the isolated overshoot phenomenon in the
literature. Works like [7] have managed to indirectly measure it for GaAs. The measurements were
performed in a metal-intrinsic-n devices by irradiating the 1 µm intrinsic region with a laser pulse.
To emulate this situation, a simple intrinsic-n diode was simulated with a doping of 1×1014 cm−3.
Here, in contrast with previous bulk calculations, a device was simulated considering boundaries
and different regions (intrinsic and n-type). The length of the n region was 0.2 µm and the thickness
of the material, 0.15 µm. Two parallel ohmic contacts were used in the external face of each region.

93

A proper voltage was applied in the ohmic contacts with the value required to match the desired field
in the intrinsic region. The generation of carriers in the intrinsic region was done in an exponential
way according to the absorption coefficient at the energy of the laser pulse (α = 1× 106 m).
Moreover, the carriers were generated uniformly over time during a duration of the pulse of 200ps.
The overshoot effect of the measured data and the simulated velocity due to electrons and holes is
shown in figure 4.13. When particles leave the intrinsic region, they are not considered for velocity
calculations. This way the soft decay in velocity is emulated as described in [7]. A good agreement
is achieved validating the test.

(a) (b)

Figure 4.13: Comparison of MC simulation with measurements [7] of velocity overshoot in GaAs for electric fields of a) 7 [kV/cm] and b) 12 [kV/cm].

4.3 Device Test Simulation

4.3.1 Simple N-n-N diode

A classical example to test the Monte Carlo method is to simulate a n− i−n diode. It comprises
an intrinsic central region and two n doped regions at each side. This is sufficient to show many of
the MC capabilities and results. In [69], a similar device made of GaAs was built and measured. The
structure is analogue to a n+−n−n+ diode where the n and n+ regions have a length of 0.24 µm
and 0.32 µm respectively. The simulated width was 0.2 µm (although for the symmetry this is
not relevant). The dopings are n = 2× 1021 m−3 and n+ = 5× 1023 m−3 but at 77K incomplete
ionization should be taken into account. Considering Ge and Si as the impurities, the effective
ionized densities are approximately n = 1.5×1021 m−3 and n+ = 0.7×1023 m−3.

Using that information and the implemented MC method, the current characteristic of the diode
was calculated. For each bias point an independent simulation was performed with approximately
20000 particles. Using a time step of 2fs and 2500 cycles was more than enough to achieve the
steady state. The same bands and scattering mechanism than in the bulk validation where used
(although due to the low fields the X valley was no populated). The results are presented in figure
4.14 and compared with measurements. A good agreement with the available data (up to 0.4V) can
be appreciated.. The discrepancies can be due to the usage of abrupt doping which in practice is

94

Figure 4.14: Comparison of the IV characteristic of the diode from [69] and MC simulations.

difficult to achieve. Furthermore, the inelasticity of acoustic scattering (not considered here) can
be important for low temperatures [48]. This can be a source of energy loss, reducing velocity and
current.

4.3.2 About Self-Scattering Reduction

Self-Scattering reduction (SSR) described in section 3.4 aims to improve the efficiency of the
MC method which is intrinsically slow. To show this a N−n−N diode, similar to the one presented
in of the previous sections, was used. It has been found that the effect depends on the time step used.
A comparison of the time of execution per iteration versus the time step is presented in figure 4.15.
Therefore, the lower the curve, the better is the performance.

Figure 4.15: Self-Scattering reduction compared with common algorithm. The percentages are the improvement of the SSR model with respect to
the method without SSR.

The results show that the implemented SSR method represents a effective improvement for
time steps higher than about 0.6fs. The reason of this behaviour is the relation between the time
step and the free-flight time generated with equations (3.30) or (3.33). The SSR chooses always
(in average) a larger or equal free-flight time than the traditional method. This implies that when

95

the time step is large, fewer drift calculations are needed to reach the end of the iteration. This
is translated in less computational effort and an improvement in the efficiency. On the other
hand, when the time step is small, the free-flight is interrupted by the end of the iteration more
frequently. This implies the continuation of the drift process in the next iteration and, therefore, the
recalculation of the more expensive SSR method.

For all the simulations presented here, the time step used was such that SSR was always a better
choice. Nevertheless, when doping densities are high (about 2×1025 m−3 for GaAs or 1×1026 m−3

for Silicon) time steps need to be small because of stability issues [67]. In these cases the traditional
method should be preferred over SSR.

Any improvement on the SSR method or on its implementation would mean better
performance with small time steps. Examples for this is the idea of [95]. Here, the subdivisions
of energy used in SSR are not constant but optimized at the beginning of the method.

4.3.3 About Search Structure

Due to the large number of particles in the MC method, any calculation with them involves
considerable computational time. The location of particles is an example of this. This is the reason
because the idea of section 3.9.1 was implemented.

(a) (b)

Figure 4.16: Search structure discretization for a) normal spacing and b) fine spacing.

Figure 4.16a shows a zoomed region of the N−n−N diode. The irregular Voronoi mesh and
the generated square discretizaton are present. The dotted squares are those inside one cell, and
therefore, particles inside them belong to that cell. The other squares are in two or more cells and
further calculation is needed when a particle is inside them. In figure 4.16b the same Voronoi mesh
but a finer search structure is present. Since the divided (continuous) squares cover a smaller area,
the particle is expected to spend less time in them.

Table 4.2 shows a comparison of both square discretizations (normal and fine) and the use of
brute force for finding particles. The simulation times are the total time of the N−n−N simulation
relative the normal-size search structure. The results were averaged using three runs.

First, the creation times of the structures are pretty expensive relative to the 2s Voronoi mesh

96

Method Creation time [s] Data size [MB] Execution time
(relative to SS normal)

Search structure. normal spacing 4.8 1.1 1
Search structure. fine spacing 17.1 3.3 0.989
Brute force – – 1.221

Table 4.2: Comparison of two Search Structure sizes and brute force

generation. Furthermore, they increase quadratically with the inverse of the spacing. The same is
true for the size of the stored data which is small for today’s storage capabilities. Although much
finer, the improvement in execution time is only reduced by about 1%. The main reason for this is
that large amount of data must be given as argument, reducing the efficiency. Even when the brute
force method uses parallel and efficient MATLAB’s functions, this is a much slower alternative
(22% slower). This is very significant considering that MC simulations may last several hours or
days.

4.3.4 Comparison of Drift-Diffusion and Monte Carlo in a Simple MOSFET

In order to test additional features of the developed tool and to compare DDM and MC, a
simulation of a simple MOSFET is presented. The initial device structure is shown in figure 4.17
where Silicon material is assumed in all regions. The relative permittivity of the oxide is 3.9 (similar
to that for SiO2) and the work function in the gate is 4.05eV. The other contacts are assumed to be
ohmic and the lattice temperature is 300K.

Figure 4.17: Structure of the simulated Silicon MOSFET.

Simulations with a bias of Vg = 1V2 are presented in figure 4.18. Three mobility models,
constant, doping dependent, and high-field (plus doping dependent) are compared. A similar device
structure was simulated using Sentaurus Device [127]. Excellent agreement is appreciated for the

2Source and body potentials are assumed to be zero Volts for all simulations. Moreover, because of this, subscripts
referencing body and source are omitted.

97

three models. Moreover, these results are a proof of the gate boundary condition described in section
2.3.3. This affirmation is because Sentaurus solves the Poisson’s equation in the oxide region which
is a method more accurate to model the gate. Nevertheless, large regions of oxide as in SOI devices
are not well modelled by the current program.

Figure 4.18: Id vs Vds with Vg = 1[V]. Comparison of DD simulations with Sentaurus [127] as reference for constant, doping dependent, and high-field
mobility models.

The same MOSFET device and bias conditions were simulated using the MC method. Only
electrons were included using 60000 super particles. The time step was 4fs and the same bands
and scattering processes as in section 4.2 were used. The results are shown in figure 4.19 for
Vg = 0.2V and Vg = 1V. The DD simulation is the same of figure 4.18 (for Vg = 1V) including
doping dependent and high-field mobility. In the whole range of simulation, a large over-estimation
of current in the DD model is seen respect to the MC results with differences greater than 25%.
Sentaurus simulations are also presented, but with the inclusion of an extra model besides doping
dependent and high-field mobilities. This model is the dependence of the transverse-to-current field
which is important in MOSFET devices. This kind of models was not included in this work and
one of the many alternatives [102] should be included in future. It can be seen that with this model,
a good agreement is achieved between MC and the Drift-Diffusion model (of Sentaurus). This is
the expected behaviour due to relatively large channel length (0.2 µm) where overshoot effects are
not important.

To show the effect of the overshoot, a MOSFET of channel length 0.075 µm was simulated.
Besides this parameter, all other characteristics were the same as in figure 4.17. The bias conditions
were the same for the gate but the maximum Vds was 0.75V. This way, the electric field in the
channel is similar to that of the previous case. The results are shown in figure 4.20 where only the
calculations of the implemented DDM and MC are shown. The first aspect that should be noticed
is that both currents increase respect to the larger device. Secondly, the apparent better agreement
between the models is only a proof of the overshoot. To understand this it must be noticed that for
larger devices the current was over-estimated by DDM. Now, it is under-estimated showing that
when the channel shrinks, the current given by the MC model increases relatively more than the
one given by DDM.

98

Figure 4.19: Id vs Vds. Comparison of MC, DD simulations, and Sentaurus as reference [127] (using transversal-field mobility dependence).

Figure 4.20: Id vs Vds. Comparison of MC and DD simulations for a MOSFET of channel length of 75[nm].

To make more evident the differences, figure 4.21 shows the electron channel velocities
calculated using DD and MC methods. To obtain this parameter, the velocities of particles near
the gate (along the channel in the x direction) were averaged (and smoothed to reduce noise due
to random processes in MC). In the DDM calculations, a mean of the velocity in a region near the
gate was computed. Here it can be appreciated that the velocity of the DDM reaches a limit near
the 1×105 m/s which is the saturation velocity imposed by the high-field mobility model. On the
other hand, MC simulation gives velocities over this saturation value. This is only possible due to
the overshoot in velocity that is present only for a small time (and distance), that now, is comparable
to the channel length.

Besides de physical results, the other big differences between the models was the execution
time of each one. Whereas the DD simulations of figure 4.20 took about 8 minutes, the MC
execution time was more than 13 hours. Given this, DD simulations look like a better alternative

99

Figure 4.21: Electron velocity comparison in the channel of the 75[nm] MOSFET using MC and DD.

for big devices. Moreover, it can be used for fast approximations in smaller devices where errors
must be kept in mind.

A final important remark that must always be considered is that MC is a stochastic method.
This necessarily means the inclusion of random noise in all the results. Just as an example, figure
4.22a shows the electron density of the simulated MOSFET where the basic shape of the device can
be distinguished. The noise in this curve is an undesirable property of the MC method. This is also
present in many other possible results (i.e. current and velocity calculations). These, together with
the efficiency, are the major problems of the MC method. On the other hand, the method allows
access to quantities of individual particles. An example of this, using the same MOSFET, is shown
in figure 4.22b. Each point is a particle placed in the device (regions are also plotted) and the heigh
is the x-velocity. Many other individual parameters can be calculated, as energies, band population,
or how much heat is transferred from particle to lattice. All these advantages make the MC method
a good tool for deeper analysis.

(a) (b)

Figure 4.22: Example of MOSFET electron a) density and b) x-velocity for each particle.

100

4.4 Meshing Features

(a) (b)

Figure 4.23: Example of a mesh generated for a FET-like structure with parametric edges and local refinement. a) Triangular mesh and doping profile
b) Voronoi mesh.

As described in section 2.2.1, the meshing algorithm is based on an initial triangulation given
by MATLAB’s initmesh(). Therefore, a proper geometry description must be given to that function.
In this implementation a geometry function following the rules of [2] is automatically created using
simple instruction to describe each region and edge. This can be implemented using an algorithm
based on initial and final points for straight edges or a parametric function for curves allowing to
simulate structures as those in the example in figures 4.23a and 4.23b (the generating function is
explained in the appendix B). The right is the associated Voronoi mesh. If carefully analyzed, all
intersection between edges of Voronoi cells and boundaries (external or the curved internal ones)
are orthogonal. This is a result of the edge treatment described in section 2.2.2. Figure 4.24 shows
the corner of the generated mesh before and after the correction.

(a) (b)

Figure 4.24: Example of a correction of edge triangles a) bad triangles b) corrected triangles.

101

A final remark of the meshing algorithm is that, although not implemented, it admits
rectangular non-regular meshes. The only requirement is that the initial generated mesh is formed
by right triangles. To emulate this situation, two thin layers can be created by initmesh() giving as
result the aligned right triangles of figure 4.25a. Figure 4.25b is the corresponding Voronoi mesh
with rectangular control volumes. All algorithms of the software work as usual since they are blind
to the shape of the cells. For ultra-thin layer devices it should be necessary to use rectangular
meshes since any other unstructured alternative would generate too many cells in some points near
the thin layer.

(a) (b)

Figure 4.25: Square mesh emulated by using thin region layers to show the capability to handle square meshes. a) triangular mesh b) Voronoi mesh
with rectangular form.

4.5 Program Outline, Features, and Limitations

One of the aims of this work was to create a software with sufficiently generality to be used
for a wide range of devices, and as a starting point for future developments. This was accomplished
by joining together the Drift-Diffusion and Monte Carlo models (and some of its variations) under
the same framework. In figure 4.26, the structure of the program is presented. The similarity to the
one presented in section 3 is evident. This is because the software was built over this initial idea.

The requirement of high-level usability of this software is met with the help of two input
files. The first is the geometry file, that is basically the mesh structure, boundary definitions, and
doping profile (as described in section 4.4). The second is the Options file. This is a plain-text
with JSON format [43] and an additional comment feature. Figure 4.27 shows an example of it,
where each important line has a comment preceded by \\. The file options are grouped under tag
names as “Simulation” or “Device”. For example, the option Simulation.method equal 2 means
a MC simulation for electrons only. This will be performed using a geometry description of the
device given by the file Device.Mesh.fromFunction and applying a bias of 0.75V at the contact ID
5 (Simulation.bias.Contact finalValue and ID respectively). In Materials.Si the scattering processes
considered in the simulation are g3, f3 and acoustic phonons while impurity scattering is disabled.
The same simulation can be performed using the Drift-Diffusion method simply by changing the
value of Simulation.method to option 6. The doping dependent mobility model can be activated by
uncommenting Materials.Si.MobilityDopingDep.

This kind of input file (plus all the omitted variables) makes it easy to perform different

102

Figure 4.26: General flow diagram of the software.

simulations with minimum effort and test interdependently each implemented model. Furthermore,
this could be the basis for a future graphical user interface, which could be a front-end with the
same options that simply writes the JSON file. Then the software can be used as always.

Referencing to figure 4.26, once the input files are defined (mesh and options), the first major
step is to check the syntax of the Options file and gather all information to store it in memory
variables. This is done by an input file parser that works with predefined options and that must be
modified (at code level) to add any new one. Here, several important flags like the simulation type
to be performed (MC for device, ensemble MC, and DD) are set to determine the control flow.

The configuration and geometry block of figure 4.26 is where the given mesh function is
executed and then all additional variables that depend on the geometry are initialized. Moreover,
recycling the mesh from previous simulations is allowed. Here, in the case of bulk MC simulations
(which do not need a mesh), simple initializations such as defining a mesh of one cell are done.

103

{

//This is a input data file. It uses JSON format plus comment.

//comments like this one using //.

"Simulation":{//Simulation options and parameters

"dt" : 5e-15,//time step for the simulation [s]

"itmax": 500,//Maximun timestep iterations

"method": 2,//1:MCD 2:MCDe 3:MCDh 4:EMCe 6:DDf

//old simulation as initial guess

//"InitialGuessFile" : "oldSolution.mat",

"Bias":{

"Contact":{

"ID" : 5, //contact ID (not the name)

"finalValue" : 0.75//[V] applied voltage

}

}

},

"Device":{//Device definition

"tem": 300,//Lattice temperature [K]

"initialNumberElectronParticles": 15000,

"Mesh": {

"fromFunction": "meshFuncExample"

}

},

"Materials":{//additional material options

"Si":{

"On_Off" : 1,//Activating material

//"MobilityDopingDep": 1,//Dop. dependant mobility (DD option)

"Xvalley": 1,//activating X valley for Si

"Xelliptical": 1,//activating elliptical model for band X

"eInterXg3": 1, //g3 inter valley phonon scattering

"eInterXf3": 1, //f3 inter valley phonon scattering

"eAcPhoX" : 1, //acoustic phonon scattering

"eIonImpX": 0 //impurity scattering

}

}

}

Figure 4.27: Input Options file example.

104

This helps to maintain coherence over the different simulation types to use the same code.

The parameters block is where the majority of physical magnitudes, derived quantities, and
models constants are defined for each material. Examples are effective masses, parameters for
high mobility models (DDM), scattering rate look-up tables, and total scattering rates for each
subdomain.

The initialization algorithm is implemented as described in section 3.8. It includes the code for
the thermal equilibrium solution, which is necessary only for DDM, and the particle initialization
according to that distribution. A very useful option to initialize from a previous simulation is also
available (the option Simulation.InitialGuessFile which is commented in the example shown in
figure 4.27).

In the main loop of the program is where all the relevant calculations are performed. First, if
the simulation involves particles (MC for bulk or device), the ensemble MC algorithm described in
section 3.1 is executed for electrons and/or holes. With this, the injection/deletion of particles and
charge density calculations are performed. The same ensemble MC functions are used for bulk or
device, with the only difference that all boundary concerns presented in section 3.3 are ignored for
the former.

In the next block, the FV solver is called always excepts for bulk simulations. The first step
here is to update the boundary conditions of the applied bias if necessary (according to section
2.3.3). When simulations are only electrons and/or holes as particles, no continuity equations must
be solved. In this situation only the Poisson equation is needed which is solved without NRM. The
used discretization is the same as in equation (2.73) but considering (δψ,δn,δ p) = 0. When at
least one carrier type must be solved using the FV solver, the corresponding expressions of (2.73)
are used while the other carrier type can be ignored or treated as known in the Poisson equation
when MC is used to simulate it.

The Newthon-Raphson block for the full DDM case is presented in figure 4.26. Here all the
model updates (such as high field mobility) are included, which should be performed to achieve
self-consistency.

The next step is where results are gathered if needed. Finally, stop criteria like convergence or
number of iteration are checked to determine if the simulation continues or ends.

4.5.1 Software Capabilities and Limitation of the Software

General capabilities

With the methods and software presented in this thesis, a wide range of devices can be studied.
Popular examples of these are rectifiers or PIN and Schottky diodes. Moreover, various families
of three-terminal devices can be studied, such as bipolar junctions transistors (BJTs), thyristors,
or simpler unijunction transistors. Many field effect devices are also supported. These includes
junctions FETs, MESFETS, MOSEFTS, and DGMOSFETS as was shown in the numerical
examples.

105

Given the current implementation, several regions inside a device can be simulated, with many
boundary conditions. Moreover, non-uniform doping profiles are supported. Although only the
parameters of Silicon and GaAs were extensively defined, the inclusion of other materials is easy.
All of these features makes the structure definition very versatile, and with this, many variations
and new devices can be simulated.

When studying a device, the aim of the simulation should always be clear in order to choose the
proper model. This in fact gives more degrees of flexibility to the software. Simpler results can be
obtained quickly using DDM or more time can be invested with MC to get deeper results. Examples
of these are energy and temperature distributions, band population, and transient phenomena.

Important limitations

Despite the afore mentioned flexibility, there are still many devices that cannot be properly
modelled by the current software. This is because there exist limitations due to the physical models
and also related to the technical implementation. In the following, these limitations are clarified
and some references are given with the aim of facilitating further developments.

Bias Constraints It has been mentioned that large voltage (and field) variations create
instability in the DD solver. For steady state calculations, it was shown that a workaround is to
vary the voltage in steps. But when transient is important, in some situations, especially in power
devices simulations, the present software is likely to fail.

Mesh spacing and doping with DD The mesh spacing criteria was shown to be a flexible
constraint. However, instabilities can still be found if the criteria is not fulfilled, especially when
variable boundaries conditions like oxide gates are present. This makes it difficult to simulate
devices likes MOSFETs with a very high doping respect to the their size, since too many mesh cells
would be needed. The software is then incapable of simulating, for example, devices with doping
over 5× 1019 cm−3 and area over 7000nm2, or doping of 5× 1016 and dimensions over 10 µm.
These are only reference values since the complexity of the topology, electric fields, material, and
other factors are also important.

Mesh spacing and doping with MC For the MC case, there are also technical difficulties
regarding size and doping. When high doping is present, and relatively low number of super
particles are simulated, each super particle would represent a large amount of charge. Since particles
positions are randomly distributed, noise in the charge density is always present. Under this
situation the Poisson solver yields also noisy results, generating sometimes oscillations in current
and other characteristics. Then, an accurate simulation is limited by the doping, dimensions, and the
amount of charges that can be simulated. Errors can be appreciated when each particles represents
more than 1×105 unitary charges.

Thin layers Other of the limitations is due to the large amount of mesh cells necessary in
the simulation of very thin layers described before. Although using regular mesh could help, this is

106

not implemented by default. Until now, this makes impossible the simulation of heterodevices like
HEMTs or many high speed transistors.

Short devices with DD There are also limitations due to the models implemented in the
Drift-Diffusion and Monte Carlo solvers. Many phenomena present in different semiconductor
devices were not addressed in this work. Thus, the software is not able (without tuning procedures)
to give accurate results for those devices. An example of this is the overshoot that is not accounted
for in the DDM as shown in section 4.3.4. Then, the DDM will fail to predict the devices for
channels shorter than 0.25−0.20 µm [111][15] in Silicon or even more than 1 µm for GaAs.

Heterodevices Other devices that are not well modeled are heterodevices with highly doped
regions and large bias conditions, where tunneling more important than thermionic emission. The
tunneling process is due to the wave nature of the particles, where it must be determined, with
certain probability, whether a carrier can cross a barrier or not. For the DDM, techniques like
[144] have been proposed, where the probability should be calculated depending on the form of
the conduction band. This should be done in each step to be self-consistent in the block Update
Models of figure 4.26. For the MC model, in [97] a description of how to calculate the probability
is presented. This should be included in the drift process when collisions with heterojunctions are
detected.

In other heterodevices, thin layers forming quantum wells are exploited. To accurately simulate
these, the carriers should be treated as a 2D gas. This implies that all scattering rates should be
recalculated and special treatment of the conduction is needed. Additionally, special transitions
between layers should be considered. In [131] and [132] excellent descriptions of this phenomena
are given.

Impact Ionization Avalanche diodes and transistors are other family of devices that cannot
be simulated. This is because they are based on impact ionization or II. This is the process
when carriers with sufficient energy hit an electron in the valence band generating a electron-
hole pair. In MC, this can be easily included as a new scattering mechanism with the simple form
Γ = PII(E −Eth)

2. The energy of the final particles should be equal to E −Eth. The PII and Eth
are parameters commonly calculated empirically and published in various works [51][33]. In the
case of the DDM, since the energy of a single particle is not known, popular models [116] use the
electric field in a generation parameter. Similarly to high-field mobility, this could be included in
the Update Models block.

Energy-wave vector relation in MC For the current MC implementation, there also exist
intrinsic limitations because of the model. Since the bands are only approximated by a simple
analytical form, they are accurate only for less than 0.5 eV of energy [81] for electrons in Silicon.
In devices where higher carrier energies are reached, a full-band representation of the band structure
should be used. The energy-wave vector relations are stored numerically in tables. With this,
although the idea of the MC method is the same, the detailed implementation is deeply modified.
This makes the simulation a much slower process. Good resources to start with are reference
[65][29][75].

107

Additional scattering mechanism Other phenomena that are not considered in the MC
method can be incorporated with similar scattering mechanisms like the ones already implemented.
Examples are alloy scattering, piezoelectric, and neutral impurities among others [97][72]. For
the case of carrier-carrier scattering, a major modifications should be implemented. Besides the
scattering probability, tracking of the particles and relative distance between them should be
calculated. Another block after the ensemble MC algorithm should be included in figure 4.26. Due
to the large number of particles, this is a slow method. This is why it is often omitted although is
a relevant process when densities over 1×1018 cm−3 are presented. Extended details can be found
in [72][101].

Other missing models There are other limitations with simpler solutions. Examples are the
simulation of photo devices that would need an adequate generation method dependent on the light
absorption for both DDM and MC. Moreover, semiconductor on insulator devices (SOI) are not
well approximated since no oxide material is implemented. This could be included (with some
work) using a simpler version of the Poisson equation which is needed for dielectrics.

108

Chapter 5

Conclusions and Future Work

In this thesis, the semiconductor simulation problem was addressed for which a computational
program was developed and presented. The work focused on two popular models and very different
techniques, the Drift-Diffusion and Monte Carlo models. The Drift-Diffusion model was solved
using a 2D Finite Volume scheme for devices and the Boltzmann equation using Monte Carlo
for bulk materials and devices. Despite their dissimilarity, both were implemented under the
same framework that uses high-level input files. They make the software easy and attractive
to use. Additionally, the capability of studying of devices with different degrees of complexity
and orientations gives to the program great generality. To achieve this, the current software has
more than 17000 lines of useful MATLAB code and several thousands more were used in the
development stage.

The Finite Volume method implemented was chosen over other popular PDE solvers because
of two reasons. First, the ability to work with unstructured meshes and second, because it is easy
enough to work with and to add stabilization techniques. For the mesh, with the initial aid of
José Méndez and Carlos Román from the Department of Mathematical Engineering, a 2D algorithm
for the creation of Voronoi meshes from given Delaunay triangulation was created. It includes
a convenient treatment of boundaries and interfaces where double valued points are admitted.
The same method can also work with rectangular triangulation to give a square mesh (although
these kinds of meshes are not yet implemented). For the convection-diffusion term of the DDM,
two stabilization techniques were implemented and tested. The Scharfetter-Gummel stabilization
method showed more realistic results than the upwind schemes since the latter present noticeable
false diffusion for the semiconductor problem.

For a stable solution over a wide range of operation conditions, the Newton-Raphson method
for solving iteratively the equation system was used. For a correct behavior with the stabilization
technique, the SG scheme was applied to the system itself and to its Jacobian. Moreover, thermionic
emission and mobility models, that are field-dependent, could be implemented in a self-consistent
way.

The implemented Monte Carlo algorithm incorporates many of the important scattering
mechanisms for common materials. These are due to ionized impurity, polar optical phonons,
and deformation potential optical and acoustic scatterings. Three valleys for electrons with non-
parabolicity were implemented (for drift and scattering rate calculations). The hole bands are the

109

degenerated light and heavy ones but the simplest isotropic shapes are assumed. The MC method
was implemented to work with the same unstructured and general mesh of the FVM. Then, several
associated problems had to be addressed. A ray crossing method was implemented to determine
when edge collisions occur. Energy conservation is imposed in a similar way than that is done
classically for heterojunctions. Moreover, for particle-mesh coupling and field issues, a fast search
structure and method were created. To improve the speed (slightly), a self-scattering reduction idea
from the literature was implemented where precise instants of time of changes in energy were
needed.

Further work is always needed when physical phenomena are simulated. In this thesis, many
non-implemented models and techniques where outlined in section 4.5 to facilitate and orientate
future developments. Nevertheless, these are only popular choices and alternatives that should be
considered. Other possible steps to improve the software are:

• To improve the efficiency of the algorithms and their implementations.

• To clean and debug the code.

• To document the software with in-code comments and stand-alone documents.

• To analyzed the option of implementing the program in a more efficient language. Along the
same line, the parallelization of the code is an interesting idea, especially for the Monte Carlo
method.

• To create a graphic user interface.

• To create 3D versions of the methods. For this, the majority of the 2D techniques can be
easily extended.

• To add more simulation features like the frequency analysis. Since the Drift-Diffusion and
Monte Carlo algorithms implemented here recreate the time evolution of a device, one
alternative is to use Fourier analysis.

110

Bibliography

[1] Archimedes. http://www.gnu.org/software/archimedes/. [2015-02-09].

[2] Create Geometry Using a Geometry Function. http://www.mathworks.com/help/pde/

ug/create-geometry-using-a-geometry-function.html. [2015-06-12].

[3] International Technology Roadmap for Semiconductors. http://www.itrs.net/about.

html. [2015-02-09].

[4] Band structure of indium antimonide. Journal of Physics and Chemistry of Solids, 1(4):249
– 261, 1957.

[5] From finite differences to finite elements: A short history of numerical analysis of partial
differential equations. Journal of Computational and Applied Mathematics, 128(1–2):1 –
54, 2001. Numerical Analysis 2000. Vol. VII: Partial Differential Equations.

[6] Multigrid method for solving convection-diffusion problems with dominant convection.
Journal of Computational and Applied Mathematics, 226(1):77 – 83, 2009.

[7] M. Abe, S. Madhavi, Y. Shimada, Y. Otsuka, K. Hirakawa, and K. Tomizawa. Transient
carrier velocities in bulk gaas: Quantitative comparison between terahertz data and ensemble
monte carlo calculations. Applied Physics Letters, 81(4):679–681, 2002.

[8] M.S. Adler. A method for achieving and choosing variable density grids in finite difference
formulation and the importance of degeneracy and band narrowing in device modelling.
Proc. NASCODE 1 Conf. Dubling, pages 3–30, 1979.

[9] M. Aldegunde, Natalia Seoane, A.J. Garcı́a-Loureiro, and K. Kalna. Reduction of the
self-forces in monte carlo simulations of semiconductor devices on unstructured meshes.
Computer Physics Communications, 181(1):24 – 34, 2010.

[10] P. Altermatt. Models for numerical device simulations of crystalline silicon solar cells—a
review. Journal of Computational Electronics, 10(3):314–330, 2011.

[11] M. Ancona. Diffusion-drift modeling of strong inversion layers. COMPEL, (6):11–18, 1987.

[12] M. Ancona and G. Iafrate. Quantum correction of the equation of state of an electron gass
in a semiconductor. Physical Review B, (39):9536–9540, 1989.

111

http://www.gnu.org/software/archimedes/
http://www.mathworks.com/help/pde/ug/create-geometry-using-a-geometry-function.html
http://www.mathworks.com/help/pde/ug/create-geometry-using-a-geometry-function.html
http://www.itrs.net/about.html
http://www.itrs.net/about.html

[13] P. Andrei, J.P. Zheng, M. Hendrickson, and E.J. Plichta. A physics-based drift-diffusion
approach to model Li-air batteries with organic electrolyte. Solid-State and Integrated
Circuit Technology (ICSICT), 2010 10th IEEE International Conference on, pages 2016–
2018, 2010.

[14] N.W. Ashcroft and N.D. Mermin. Solid State Physics. HRW international editions. Holt,
Rinehart and Winston, 1976.

[15] F. Assaderaghi, P.K. Kop, and Chenming Hu. Observation of velocity overshoot in silicon
inversion layers. Electron Device Letters, IEEE, 14(10):484–486, Oct 1993.

[16] Yuji Awano, Kazutaka Tomizawa, and Nobuo Hashizume. Principles of operation of short-
channel gallium arsenide field-effect transistor determined by Monte Carlo method. Electron
Devices, IEEE Transactions on, 31(4):448–452, Apr 1984.

[17] S Babiker, A Asenov, N Cameron, and SP Beaumont. Simple approach to include external
resistances in the Monte Carlo simulation of MESFETs and HEMTs. IEEE Transactions on
Electron Devices, 43(11):2032–2034, 1996.

[18] Randolph E Bank, WM Coughran Jr, and Lawrence C Cowsar. The finite volume Scharfetter-
Gummel method for steady convection diffusion equations. Computing and Visualization in
Science, 1(3):123–136, 1998.

[19] J. Bardeen and W. Shockley. Deformation Potentials and Mobilities in Non-Polar Crystals.
Phys. Rev., 80:72–80, Oct 1950.

[20] J.J. Barnes and R.J. Lomax. Transient 2-dimensional simulation of a submicrometre gate-
length MESFET . Electronics Letters, (11):591–521, 1975.

[21] J.J. Barnes, R.J. Lomax, and G.I. Haddad. Finite-element simulation of GaAs MESFET’s
with lateral doping profiles and submicron gates. Electron Devices, IEEE Transactions on,
23(9):1042–1048, Sep 1976.

[22] B. Benbakhti, A. Martinez, K. Kalna, G. Hellings, G. Eneman, K. De Meyer, and M. Meuris.
Simulation Study of Performance for a 20-nm Gate Length In 0.53 Ga 0.47 As Implant Free
Quantum Well MOSFET. Nanotechnology, IEEE Transactions on, (11):808–817, 2012.

[23] J. S. Blakemore. Semiconducting and other major properties of gallium arsenide. Journal of
Applied Physics, 53(10):R123–R181, 1982.

[24] K. Blotekjaer. Transport equations for electrons in two-valley semiconductors. Electron
Devices, IEEE Transactions on, (17):38–47, 1970.

[25] K.F. Brennan. The Physics of Semiconductors: With Applications to Optoelectronic Devices.
Cambridge University Press, 1999.

[26] Franco Brezzi, Luisa Donatella Marini, and Paola Pietra. Two-dimensional exponential
fitting and applications to drift-diffusion models. SIAM Journal on Numerical Analysis,
26(6):1342–1355, 1989.

112

[27] Alexander N Brooks and Thomas JR Hughes. Streamline upwind/Petrov-Galerkin
formulations for convection dominated flows with particular emphasis on the incompressible
Navier-Stokes equations. Computer methods in applied mechanics and engineering,
32(1):199–259, 1982.

[28] J.Z. Buchwald and R. Fox. The Oxford Handbook of the History of Physics. Oxford
Handbooks in Physics. OUP Oxford, 2013.

[29] F.M. Bufler. Full-band Monte Carlo Simulation of Electrons and Holes in Strained Si and
SiGe. Utz, Wiss., 1998.

[30] G. Buschs. Early history of the physics and chemistry of semiconductors-from doubts to fact
in a hundred years. European Journal of Physics, (10):254–264, 1989.

[31] C. Canali, C. Jacoboni, F. Nava, G. Ottaviani, and A. Alberigi-Quaranta. Electron drift
velocity in silicon. Phys. Rev. B, 12:2265–2284, Sep 1975.

[32] C. Canali, G. Majni, R. Minder, and G. Ottaviani. Electron and hole drift velocity
measurements in silicon and their empirical relation to electric field and temperature.
Electron Devices, IEEE Transactions on, 22(11):1045–1047, Nov 1975.

[33] E. Cartier, M. V. Fischetti, E. A. Eklund, and F. R. McFeely. Impact ionization in silicon.
Applied Physics Letters, 62(25):3339–3341, 1993.

[34] D.M. Caughey and R.E. Thomas. Carrier mobilities in silicon empirically related to doping
and field. Proceedings of the IEEE, 55(12):2192–2193, Dec 1967.

[35] C. Chainais-Hillairet, J. Liu, and Y. Peng. Finite volume scheme for multi-dimensional drift-
diffusion equations and convergence analysis. Math. Model. Numer. Anal, (37):319–338,
2003.

[36] C. Chainais-Hillairet and Y. Peng. Convergence of a finite-volume scheme for the drift–
diffusion equations in 1D. IMA J Numer Anal, (23):81–108, 2003.

[37] C. Chainais-Hillairet and Y. Peng. Finite Volue Approximation for Degenerate Drift-
Diffusion System in Several Space Dimensions. Math. Mod. Meth. Appl. Sci., (14):461–481,
2004.

[38] C. Chen, W. Liu, and D. Lu. Upwind finite volume element methods for one-dimensional
semiconductor device. Journal of Systems Science and Complexity, (24):1007–1019, 2011.

[39] Cogenda. Genius Device Simulator User Guide. Cogenda.

[40] E. M. Conwell and M. O. Vassell. High-Field Transport in n- Type GaAs. Phys. Rev.,
166:797–821, Feb 1968.

[41] R. Courant, K. Friedrichs, and H. Lewy. Über die partiellen Differenzengleichungen der
mathematischen Physik. Mathematische Annalen, 100:32–74, 1928.

[42] Richard Courant, Eugene Isaacson, and Mina Rees. On the solution of nonlinear
hyperbolic differential equations by finite differences. Communications on Pure and Applied
Mathematics, 5(3):243–255, 1952.

113

[43] Douglas Crockford. JavaScript Object Notation, 2015.

[44] W.R. Curtice and Yong-Hoon Yun. A temperature model for the GaAs MESFET. Electron
Devices, IEEE Transactions on, (28):954–962, 1981.

[45] Supriyo Datta. Nanoscale device modeling: the green’s function method. Superlattices and
Microstructures, 28(4):253 – 278, 2000.

[46] J. Donea and A. Huerta. Finite Element Methods for Flow Problems. Finite Element Methods
for Flow Problems. John Wiley & Sons, 2003.

[47] M. Faraday. On a new law of electric conduction. 1st edition, 1833.

[48] W. Fawcett, A.D. Boardman, and S. Swain. Monte Carlo determination of electron transport
properties in gallium arsenide. Journal of Physics and Chemistry of Solids, 31(9):1963 –
1990, 1970.

[49] D.K. Ferry, R. Akis, and D. Vasileska. Quantum effects in MOSFETs: use of an effective
potential in 3D Monte Carlo simulation of ultra-short channel devices. In Electron Devices
Meeting, 2000. IEDM ’00. Technical Digest. International, pages 287–290, Dec 2000.

[50] Massimo V. Fischetti and Steven E. Laux. Monte Carlo analysis of electron transport in
small semiconductor devices including band-structure and space-charge effects. Phys. Rev.
B, 38:9721–9745, 1988.

[51] M.V. Fischetti and S.E. Laux. Monte Carlo simulation of transport in technologically
significant semiconductors of the diamond and zinc-blende structures. II. Submicrometer
MOSFET’s. Electron Devices, IEEE Transactions on, 38(3):650–660, 1991.

[52] M.V. Fischetti and S.E. Laux. Monte Carlo Simulation of Electron Transport in Si: The First
20 Years. In Solid State Device Research Conference, 1996. ESSDERC ’96. Proceedings of
the 26th European, pages 813–820, Sept 1996.

[53] M.V. Fischetti, S.E. Laux, P.M. Solomon, and A. Kumar. Thirty Years of Monte Carlo
Simulations of Electronic Transport in Semiconductors: Their Relevance to Science and
Mainstream VLSI Technology. Journal of Computational Electronics, 3(3-4):287–293,
2004.

[54] Alan E. Flowers. Crystal and Solid Contact Rectifiers. Phys. Rev. (Series I), 29:445–460,
Nov 1909.

[55] Thomas-Peter Fries and Hermann G Matthies. A review of Petrov–Galerkin stabilization
approaches and an extension to meshfree methods. Technische Universitat Braunschweig,
Brunswick, 2004.

[56] Nikolaos A. Gatsonis and Anton Spirkin. A three-dimensional electrostatic particle-in-cell
methodology on unstructured Delaunay–Voronoi grids. Journal of Computational Physics,
228(10):3742 – 3761, 2009.

[57] Tomás González and Daniel Pardo. Physical models of ohmic contact for Monte Carlo
device simulation. Solid-State Electronics, 39(4):555–562, 1996.

114

[58] D.J. Griffiths. Introduction to quantum mechanics. Pearson Prentice Hall, 2005.

[59] M. Grupen, K. Hess, and G. Song. Simulation of Transport over Heterojunctions. Simulation
of Semiconductor Devices and Process, 4:303–310, 1991.

[60] H. K. Gummel. A self-consistent iterative scheme for one-dimensional steady state transistor
calculations. Electron Devices, IEEE Transactions on, (11):455–465, 1964.

[61] R. N. Hall. Electron-Hole Recombination in Germanium. Phys. Rev., 87:387–387, Jul 1952.

[62] C. Hamaguchi. Basic Semiconductor Physics. Springer-Verlag, 2009.

[63] F. Hecht. New development in FreeFem++. J. Numer. Math., 20(3-4):251–265, 2012.

[64] Conyers Herring and Erich Vogt. Transport and Deformation-Potential Theory for Many-
Valley Semiconductors with Anisotropic Scattering. Phys. Rev., 101:944–961, Feb 1956.

[65] Karl Hess. Monte Carlo device simulation: full band and beyond. Kluwer Academic
Publishers, 1991.

[66] R.W. Hockney and J.W. Eastwood. Computer Simulation Using Particles. Advanced book
program: Addison-Wesley. McGraw-Hill, 1981.

[67] R.W. Hockney and J.W. Eastwood. Computer Simulation Using Particles. CRC Press, 1988.

[68] R.W. Hockney, R.A. Warriner, and M. Reiser. Two-dimensional particle models in
semiconductor-device analysis. Electronics Letters, 10(23):484–486, November 1974.

[69] MA Hollis, LF Eastman, and CEC Wood. Measurement of J/V characteristics of a GaAs
submicron n+-n–n+ diode. Electronics Letters, 18(13):570–572, 1982.

[70] K. Horio and H. Yanai. Numerical modeling of heterojunctions including the thermionic
emission mechanism at the heterojunction interface. Electron Devices, IEEE Transactions
on, 37(4):1093–1098, Apr 1990.

[71] C. Jacoboni. Theory of Electron Transport in Semiconductors: A Pathway from Elementary
Physics to Nonequilibrium Green Functions. Springer series in solid-state sciences. Springer,
2010.

[72] C. Jacoboni and P. Lugli. The Monte Carlo Method for Semiconductor Device Simulation.
Computational Microelectronics. Springer, 1989.

[73] C. Jacoboni, R. Minder, and G. Majni. Effects of band non-parabolicity on electron drift
velocity in silicon above room temperature. Journal of Physics and Chemistry of Solids,
36(10):1129 – 1133, 1975.

[74] C. Jacoboni and L. Reggiani. The Monte Carlo method for the solution of charge transport
in semiconductors with applications to covalent materials. Rev. Mod. Phys., (53):645–705,
1983.

[75] C. Jungemann and B. Meinerzhagen. Hierarchical Device Simulation: The Monte-Carlo
Perspective. Computational Microelectronics. Springer Vienna, 2003.

115

[76] M.A. Khatibzadeh and R.J. Trew. A large-signal, analytic model for the GaAs MESFET.
Microwave Theory and Techniques, IEEE Transactions on, 36(2):231–238, Feb 1988.

[77] C. Kittel. Introduction to Solid State Physics. Wiley, 2004.

[78] W. Kohn and J. M. Luttinger. Quantum Theory of Electrical Transport Phenomena. Phys.
Rev., 108:590–611, Nov 1957.

[79] H. Kosina and S. Selberherr. A hybrid device simulator that combines Monte Carlo and
drift-diffusion analysis. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, 13(2):201–210, Feb 1994.

[80] S.E. Laux. On particle-mesh coupling in Monte Carlo semiconductor device simulation.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
15(10):1266–1277, Oct 1996.

[81] S.E. Laux and M.V. Fischetti. Monte-Carlo simulation of submicrometer Si n-MOSFETs at
77 and 300 K. Electron Device Letters, IEEE, 9(9):467–469, Sept 1988.

[82] StevenE. Laux and MassimoV. Fischetti. Numerical Aspects and Implementation of
theDamoclesMonte Carlo Device Simulation Program. In Karl Hess, editor, Monte Carlo
Device Simulation, volume 144 of The Springer International Series in Engineering and
Computer Science, pages 1–26. Springer US, 1991.

[83] Paul T Lin. Improving multigrid performance for unstructured mesh drift–diffusion
simulations on 147,000 cores. International Journal for Numerical Methods in Engineering,
91(9):971–989, 2012.

[84] M. A. Littlejohn, J. R. Hauser, and T. H. Glisson. Velocity-Field characteristics of GaAs
with Gc6 Lc6 Xc6 conduction-band ordering. Journal of Applied Physics, 48(11):4587–
4590, 1977.

[85] C. Lombardi, S. Manzini, A. Saporito, and M. Vanzi. A physically based mobility model for
numerical simulation of nonplanar devices. Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, 7(11):1164–1171, Nov 1988.

[86] L. Lukasiak and Aa Jakubowski. History of Semiconductors. Journal of Telecommunication
and Information Technology, pages 3–9, 2010.

[87] M. Lundstrom. Fundamentals of Carrier Transport. Cambridge books online. Cambridge
University Press, 2000.

[88] M.S. Lundstrom and R.J. Schuelke. Modeling semiconductor heterojunctions in equilibrium.
Solid-State Electronics, 25(8):683 – 691, 1982.

[89] .O Manck and W. and Engl. Two-Dimensional Computer Simulation for Switching a Bipolar
Transistor Out of Saturation. Electron Devices, IEEE Transactions on, (22):339–347, 1975.

[90] A. De Mari. An accurate numerical steady-state one-dimensional solution of the P-N
junction. Solid State Electronics, (11):33–58, 1968.

116

[91] A. Marshak and K. van Vliet. Electrical Current in Solid with positition-dependent band
structure. Solid-State Electron., (21):417–427, 1978.

[92] A.H. Marshak. On the inappropriate use of the intrinsic level as a measure of the electrostatic
potential in semiconductor devices. Electron Device Letters, IEEE, 6(3):128–129, Mar 1985.

[93] MATLAB. version 8.0.0 (R2010b). The MathWorks Inc., Natick, Massachusetts, 2012.

[94] Aurelio Mauri, Andrea Bortolossi, Giovanni Novielli, and Riccardo Sacco. 3D finite element
modeling and simulation of industrial semiconductor devices including impact ionization.
Journal of Mathematics in Industry, 5(1):1–18, 2015.

[95] J. M. Miranda. Influence of the minimization of self-scattering events on the Monte Carlo
simulation of carrier transport in III-V semiconductors. Semicond. Sci. Technol., 14(9):804–
808, 1999.

[96] R. Mirzavand, A. Abdipour, G. Moradi, and M. and Movahhedi. FDLTD method for the
physical simulation of microwave FET transistor. Electrical Engineering (ICEE), 2011 19th
Iranian Conference on, pages 1–4, 2011.

[97] C. Moglestue. Monte Carlo simulation of semiconductor devices. Chapman & Hall, 1993.

[98] J.M.D. Moreno and F.B. Trujillo. Introducción a los métodos numéricos para la resolución
de ecuaciones. Universidad de Cádiz, Servicio de Publicaciones, 1998.

[99] R. Nave. HyperPhysics: Molecular Kinetic Energy from the Boltzmann Distribution, 2014.

[100] D.A. Neamen. Semiconductor Physics And Devices: Basic Principles. McGraw-Hill, 2003.

[101] O. Olsen. Construction of a transport kernel for an ensemble Monte Carlo simulator. PhD
thesis, Norwegian University of Science and Technology, June 2009.

[102] V. Palankovski and R. Quay. Analysis and Simulation of Heterostructure Devices.
Computational Microelectronics. Springer Vienna, 2004.

[103] S. Patankar. Numerical Heat Transfer and Fluid Flow. Series in computational methods in
mechanics and thermal sciences. Taylor & Francis, 1980.

[104] R.F. Pierret. Advanced Semiconductor Fundamentals. Modular series on solid state devices.
Addison-Wesley Publishing Company, 1987.

[105] T. Plewa, T. Linde, and V.G. Weirs. Adaptive Mesh Refinement - Theory and Applications:
Proceedings of the Chicago Workshop on Adaptive Mesh Refinement Methods, Sept. 3-5,
2003. Lecture Notes in Computational Science and Engineering. Springer, 2005.

[106] CGAL Open Source Project. CGAL: Computational Geometry Algorithms Library, 2014.

[107] Damien Querlioz, Huu-Nha Nguyen, Jérôme Saint-Martin, Arnaud Bournel, Sylvie Galdin-
Retailleau, and Philippe Dollfus. Wigner-Boltzmann Monte Carlo approach to nanodevice
simulation: from quantum to semiclassical transport. Journal of Computational Electronics,
8(3-4):324–335, 2009.

117

[108] Umberto Ravaioli. Hierarchy of simulation approaches for hot carrier transport in deep
submicron devices. Semiconductor Science and Technology, 13(1):1, 1998.

[109] H.D. Rees. Calculation of distribution functions by exploiting the stability of the steady
state. Journal of physics and Chemistry of solids, 30(3):643 – 655, 1969.

[110] M. Reiser. Difference methods for the solution of the time-dependent semiconductor flow
equations. Electronics Letters, (7):353–355, 1971.

[111] G.A. Sai-Halasz, M.R. Wordeman, D.P. Kern, S. Rishton, and E. Ganin. High
transconductance and velocity overshoot in NMOS devices at the 0.1-µm gate-length level.
Electron Device Letters, IEEE, 9(9):464–466, Sept 1988.

[112] E. Sangiorgi, B. Ricco, and F. Venturi. MOS2: an efficient MOnte Carlo Simulator for MOS
devices. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
7(2):259–271, Feb 1988.

[113] D.L. Scharfetter and H.K. Gummel. Large-signal analysis of a silicon Read diode oscillator.
Electron Devices, IEEE Transactions on, 16(1):64–77, 1969.

[114] A. Schenk. Advanced Physical Models for Silicon Device Simulation. Computational
Microelectronics. Springer Vienna, 1998.

[115] R. Schneiders. Mesh Generation and Grid Generation: Software, 2014.

[116] S. Selberherr. Analysis and Simulation of Semiconductor Devices. Springer-Verlag, 1984.

[117] S. Selberherr, A. Schutz, and H.W. Potzl. MINIMOS - A Two-Dimensional MOS Transistor
Analyzer. Solid-State Circuits, IEEE Journal of, 15(4):605–615, Aug 1980.

[118] H. Shichijo and K. Hess. Band-structure-dependent transport and impact ionization in GaAs.
Phys. Rev. B, 23:4197–4207, Apr 1981.

[119] W. Shockley. The Theory of p-n Junctions in Semiconductors and p-n Junction Transistors.
Bell System Tech. J, (28):435–489, 1949.

[120] W. Shockley and W. T. Read. Statistics of the Recombinations of Holes and Electrons. Phys.
Rev., 87:835–842, Sep 1952.

[121] M. Shur. Physics of Semiconductor Devices. Prentice Hall series in solid state physical
electronics. Prentice-Hall, 1990.

[122] Silvaco. Atlas User’s Manual. Silvaco International.

[123] J. Singh. Electronic and Optoelectronic Properties of Semiconductor Structures. Cambridge
University Press, 2003.

[124] J.W. Slotboom. Iterative scheme for 1- and 2- dimensional d.c.-transistor simulation.
Electronics Letters, (5):677–678, 1969.

[125] R. Stratton. Semiconductor current-flow equations (diffusion and degeneracy). Electron
Devices, IEEE Transactions on, (19):1288–1292, 1972.

118

[126] B.G. Streetman and S. Banerjee. Solid State Electronic Devices. Prentice-Hall series in solid
state physical electronics. Pearson Prentice Hall, 2006.

[127] Synopsys. Sentaurus Device User Guide. Synopsys, Inc.

[128] S.M. Sze and M.K. Lee. Semiconductor Devices: Physics and Technology. Semiconductor
Devices, Physics and Technology. Wiley, 2012.

[129] J. Y. Tang and Karl Hess. Impact ionization of electrons in silicon (steady state). Journal of
Applied Physics, 54(9):5139–5144, 1983.

[130] Inc The MathWorks. Partial Differential Equation Toolbox, 2014.

[131] B.D. Tierney. Monte Carlo Studies of Electron Transport in Semiconductor Nanostructures.
PhD thesis, Arizona State University, December 2011.

[132] K. Tomizawa. Numerical Simulation of Submicron Semiconductor Devices. Electronic
Materials and Devices Library. Artech House, Incorporated, 1993.

[133] W. Van Roosbroeck. Theory of flow of electrons and holes in germanium and other
semiconductors. Bell System Tech. J, (29):560–607, 1950.

[134] D. Vasileska, S.M. Goodnick, and S. Goodnick. Computational Electronics. Synthesis
lectures on computational electromagnetics. Morgan & Claypool Publishers, 2006.

[135] D. Vasileska, S.M. Goodnick, and G. Klimeck. Computational Electronics: Semiclassical
and Quantum Device Modeling and Simulation. CRC Press, 2010.

[136] H.H.K. Versteeg and W. Malalasekera. An Introduction to Computational Fluid Dynamics:
The Finite Volume Method. Pearson Education Limited, 2007.

[137] Lan Wei, O. Mysore, and D. Antoniadis. Virtual-Source-Based Self-Consistent Current
and Charge FET Models: From Ballistic to Drift-Diffusion Velocity-Saturation Operation.
Electron Devices, IEEE Transactions on, (59):1263–1271, 2012.

[138] E. Wigner. On the Quantum Correction For Thermodynamic Equilibrium. Phys. Rev.,
40:749–759, Jun 1932.

[139] A. H. Wilson. The theory of electronic semiconductors. 1 edition, 1931.

[140] Brian Winstead, Hideaki Tsuchiya, and Umberto Ravaioli. Comparison of Quantum
Corrections for Monte Carlo Simulation. Journal of Computational Electronics, 1(1-2):201–
207, 2002.

[141] C WU and E YANG. Carrier transport across heterojunction interfaces. Solid-state
Electronics, 22:241–248, 1979.

[142] Toshishige Yamada and DK Ferry. Monte Carlo simulation of hole transport in strained Si
1- x Ge x. Solid-state electronics, 38(4):881–890, 1995.

[143] K. Yamaguchi. Field-dependent mobility model for two-dimensional numerical analysis of
MOSFET’s. Electron Devices, IEEE Transactions on, 26(7):1068–1074, Jul 1979.

119

[144] Kyounghoon Yang, Jack R East, and George I Haddad. Numerical modeling of
abrupt heterojunctions using a thermionic-field emission boundary condition. Solid-State
Electronics, 36(3):321–330, 1993.

[145] H. Yie and T. Zhimeng. Nonoscillatory streamline upwind formulations for drift-diffusion
equation. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, 12(10):1535–1541, Oct 1993.

[146] Mona Zebarjadi, Ceyhun Bulutay, Keivan Esfarjani, and Ali Shakouri. Monte Carlo
simulation of electron transport in degenerate and inhomogeneous semiconductors. Applied
Physics Letters, 90(9):–, 2007.

[147] O.C. Zienkiewicz, R.L. Taylor, and J.Z. Zhu. The Finite Element Method: Its Basis and
Fundamentals: Its Basis and Fundamentals. Elsevier Science, 2013.

120

Appendix A

Some Default Parameters

Besides the methods and techniques used in simulation, one fundamental issue are the
parameters values of those models. Some of the default constants and parameters implemented
in the software are presented here.

For Silicon material, the parameters for Monte Carlo simulations are presented in table A.1

For GaAs material, the parameters for Monte Carlo simulations are presented in table A.2

I

Name Value
Longitudinal effective mass [m0] 0.916
Transverse effective mass [m0] 0.196
Relative permittivity 11.7
Sound velocity [m/s] 9040
Density [kg/m3] 2329
Electron Affinity [eV] 4.05
Bandgap energy to X [eV] 1.12
Non-parabolicty factor [eV−1] 0.5
Acoustic deformation potential [eV] 9.0
Coupling constant for intervalley scattering [eV/m]

f1 1.5×109

f2 3.4×1010

f3 4×1010

g1 5×109

g2 8×109

g3 3×109

Phonon energies [eV]
f1 0.018
f2 0.043
f3 0.054
g1 0.012
g2 0.018
g3 0.06

Table A.1: Silicon parameters for Monte Carlo simulation. Masses in units of free electron mass m0

II

Name Value
Γ band effective mass [m0] 0.063
L band Longitudinal effective mass [m0] 1.538
L band Transverse effective mass [m0] 0.127
X band Longitudinal effective mass [m0] 1.987
X band Transverse effective mass [m0] 0.229
Relative permittivity (low and high frequency) 12.9,10.92
Sound velocity [m/s] 5240
Density [kg/m3] 5360
Electron Affinity [eV] 4.05
Bandgap energy to Γ [eV] 1.424
Bandgap energy to L [eV] 1.754
Bandgap energy to X [eV] 1.944
Non-parabolicty factor Γ [eV−1] 0.610
Non-parabolicty factor L [eV−1] 0.461
Non-parabolicty factor X [eV−1] 0.204
Acoustic deformation potential [eV] 5.0
Optical phonon energy [eV] 0.03536
Coupling constant for intervalley scattering [eV/m]
DΓL 5.25×1010

DΓX 5.58×1010

DLL 5.94×1010

DLX 5.01×1010

DXX 2.99×1010

Phonon energies [eV]
hωΓL 0.02269
hωΓX 0.02345
hωLL 0.02397
hωLX 0.02185
hωXX 0.02431

Table A.2: GaAs parameters for Monte Carlo simulation. Masses in units of free electron mass m0

III

Appendix B

Geometry Generating Function

Here, an example of the geometry generating function is presented. This file is where the
device to be simulated is defined. For this, a MATLAB’s function is used where only a few lines
should be modified to define edges, regions, doping, and refinement. These modifications are stored
in some variables (with fixed names) that are later used by the function. Here, only the section of
the file that can be modified is described. For this example, the topology used is similar to the one
of figure 4.1. A refinement at the regions interface is implemented. The result is shown in figure
B.1.

Figure B.1: Generated mesh example

The code that define the device in figure B.1 is presented in listing B.1. It starts with the header
and some global variables that are part of the main program. As comments, from line 23 to 39, there
is a sketch of the device where vertices, edges, and regions are named. In this case are required 9
vertices or points, 10 edges (where 2 are ohmic, 2 are internal homo-junctions, and 6 are Neumann
edges), and two regions.

Listing B.1: Part of and example of the geometry generating function

1 function [mesh] = meshFunc()

IV

2 %MESHFUNC Function to create the device mesh and doping profile
3
4 %%
5 global Si GaAs AlGaAs1 nMat
6 global inputDir outputDir
7
8 global boundaryOhmic boundaryReflective boundaryNone
9

10 global boundaryHetero boundaryGate
11
12 global methodSel DDf
13
14 global abruptNetDoping
15
16 %% %%
17 % This is the only block that should be modified by the user
18 % NOTE: Some names of variables should not be modified. These are marked
19 % with NOT MODIFY NAME
20 % NOTE: Pay attention to the "MUSTs"
21
22
23 % p1 1 p2 2 p3 3 p4 4 p5
24 %-------|--------------
25 % | | |
26 % | | |
27 % 8 | R1 |10 |
28 % | | |
29 % | Ptype | |
30 % | | |
31 % p8---------------- p9 | 5
32 % | 9 |
33 % | |
34 % | Ntype |
35 % | |
36 % 7 | R2 |
37 % | |
38 % p7................................p6
39 % 6
40
41 %Points that define the vertex of the device geometry (p = [x y];)
42 microm = 1e-6;%one micrometer in meters
43
44 sizeFactor = 2.0;
45
46 mf = microm*sizeFactor;
47
48 p1=[0 1]*mf;
49 p2=[0.25 1.0]*mf;
50 p3=[0.5 1.0]*mf;
51 p4=[0.75 1.0]*mf;
52 p5=[1.0 1.0]*mf;
53 p6=[1.0 0]*mf;
54 p7=[0 0]*mf;
55 p8=[0 0.5]*mf;
56 p9=[0.5 0.5]*mf;
57

V

58
59 %NumberOfRegions is the number of regions inside de device.
60 numberOfRegions = 2;
61
62
63 %IDs that identify the different regions of the device. A value 0
64 %should be asigned to the outside of the device. Integer sequential
65 %numbers from 1 to NumberOfRegions are asigned to the other regions
66 regionID OUT = 0;
67 regionID IN = 1:numberOfRegions;
68
69 % Edges are defined for example
70 %
71 % edges{i} = {[x1,y1],[x2,y2],Rl,Rr,BCID}
72 %
73 % Where the (x1,y1) and (x2,y2) are the coordinates of the first and
74 % second point that defines. Rl and Rr are the ID of the region to the
75 % left and to the right of the edge respectively where "left" and "right"
76 % takes account of the direction of the edges (from point 1 --> 2).
77 %
78 % NOTE: Region ID equal to zero MUST be asigned to the region outside the
79 % device.
80 %
81 % BC is an ID of the boundary condition, and is how electrical contacts
82 % are defined. BCID = 1 means edge without contact and BCID = 2 means
83 % ohmic contact.
84 %
85 % NOTE: All IDs MUST be integers greater than zero
86 % NOTE: Region ID order matters if abruptNetDoping is used. The doping
87 % value at the edge will be the doping of the region with smallest
88 % ID value (higher priority).
89
90 %edges: NOT MODIFY NAME
91
92
93 edges={{p1,p2,regionID OUT,regionID IN(1),boundaryOhmic};
94 {p2,p3,regionID OUT,regionID IN(1),boundaryReflective};
95 {p3,p4,regionID OUT,regionID IN(2),boundaryReflective};
96 {p4,p5,regionID OUT,regionID IN(2),boundaryReflective};
97 {p5,p6,regionID OUT,regionID IN(2),boundaryReflective};
98 {p6,p7,regionID OUT,regionID IN(2),boundaryOhmic};
99 {p7,p8,regionID OUT,regionID IN(2),boundaryReflective};

100 {p8,p1,regionID OUT,regionID IN(1),boundaryReflective};
101 {p8,p9,regionID IN(1),regionID IN(2),boundaryNone};
102 {p9,p3,regionID IN(1),regionID IN(2),boundaryNone}};
103
104 %%%%%%%%%%%%%%%%%%%%%%%%Mesh refinement %%%%%%%%%%%%%%%%%%%%%%%%%%
105
106 %refine: A Nx2 cell where the first row is the global refinement. The
107 % first component of this row is a numerical value that is the maximun
108 % length of the edges of the delaunay triangulation, if the value is 0
109 % means default values will be use (see initmesh). The other N-1 rows
110 % are local refinements where the first element of each row is a
111 % integer value that defined how many times the triangles in the local
112 % refinement are going to be splitted (to make smaller triangles) and
113 % the second component of each row is a string that defines the region

VI

114 % to be refined based on x and y component.
115 % refine example:
116 %
117 % refine={0.01'globalref';%second component doesn't matter
118 % 1,'abs(x-0.5)<0.05 & y>=0.55 | abs(y-0.5)<0.05 & x<=0.55'};
119 % NOTE: Local refinements reduce the mesh quality
120
121 %refine: NOT MODIFY NAME
122
123
124
125 refine = {0.08*mf,'GlobalRefinement';
126 1,['xor(x<=' num2str(p3(1)*1.1) ' & y>=' num2str(p8(2)*0.9)...
127 ',x<=' num2str(p3(1)*0.9) ' & y>=' num2str(p8(2)*1.1) ')'];
128 0,['x>=' num2str(p2(1))]};
129
130 %Material in each region. regionMaterial(i) is the material ID of the
131 %i-th region.
132 %NOTE: region of ID 0 doesn't have material
133 %NOTE: MUST assign a material to each region index
134
135 %regionMaterial: NOT MODIFY NAME
136 regionMaterial(regionID IN(1)) = Si;
137 regionMaterial(regionID IN(2)) = Si;
138
139 %Doping profiles of the device. Na and Nd acceptor and donor doping density
140 %one for each inner region (technicaly is a cell array of functions
141 %handlers).
142 % A constant doping profile for the region ID=2 could be defined as
143 % follows
144 %
145 % Dop = 1e22; %1x10ˆ16 [mˆ-3]
146 %
147 % Nd{2} = @(x,y) Dop; %the @(x,y) code should always be the same.
148 % Na{2} = @(x,y) 0;
149 % A graded doping could be write as follow
150 %
151 % Nd{1} = @(x,y) x*Dop;
152 % NOTE: MUST create at least the same amount of doping profiles than
153 % regions inside the device.
154 Dop1 = 1e22;
155 Dop2 = 1e22;
156
157 %C: NOT MODIFY NAME
158
159 Nd{regionID IN(1)} = @(x,y) 0;
160 Na{regionID IN(1)} = @(x,y) (1)*(Dop1);
161
162 Nd{regionID IN(2)} = @(x,y) (1)*(Dop2);
163 Na{regionID IN(2)} = @(x,y) 0;
164
165
166 % End of the only block that user should modify
167 %%
168 %% %%%%%%%%%%%%%%%%%Generating the mesh%%%%%%%%%%%%%%%%%%%%%%%
169

VII

170 .
171 .
172 .
173
174 end

In lines 48 to 56, the 9 vertices are defined with Cartesian coordinates as p1=[x y] (the variable
mf is a factor to work in micrometers because the default unitary length is in meters). In line 60, the
number of regions are set and used to define auxiliary variables in lines 66 and 67. These variables
tells that the zones outsize the devices have a region ID of value 0, whereas the two other regions
IDs are 1 and 2 (always sequential).

In lines 93 to 102, a variable called edges is defined using the points p1 to p9. This is a
MATLAB’s cell, which format is described in comments from line 71 to 83. The first entry of
edges is the segment from p1 to p2. As it is an external edge, the left region ID is 0 (stored
in regionID OUT) whereas the right one is 1 (stored in regionID IN(1)). Because it is an ohmic
contact, the Boundary Condition ID is set using the variable boundaryOhmic. All other edges
are defined in the same way, using boundaryReflective and boundaryNone for external Neumann
and internal homo-junction edges respectively. Notice that all definitions follows the sketch in
commented lines 23 to 39 where also the number of edges correspond to their position in the list.

The global and local refinements are defined in variable refine in line 125 (further explanation
are commented in lines 106 to 118). The entry 0.08*mf,’GlobalRefinement’ means that, in the whole
devices, the longest edge of a triangle of the mesh cannot be longer than 0.08*mf m. The second
entry in line 126 to 127 is a local refinement of the form refine{2}=1,Condition which means that
triangles that fulfils the Condition will be refined 1 time.

The definition of the type of material for each region is done in lines 136 and 137 where Silicon
material is set for both regions. Finally, the doping of region 1 and 2 are first set in variables in lines
154 and 155 (in m−3). These are then used of define the donor and acceptors levels in the variables
Nd and Na which are cells of function handles defined for coordinates x and y (see [93]).

Summarizing, the device definition is done by defining

• Vertices (lines 48 to 56)

• the number of regions (line 60)

• The edges following vertices, region, and boundary conditions (lines 93 to 102)

• Refinements (line 125 to 128)

• Material for each region (lines 136 to 137)

• And finally, doping in each region (lines 159 to 163)

This information is used by the meshing function to internally create the device’s data
structures.

VIII

IX

	Introduction
	Objectives
	General Objectives
	Specific Objectives

	Thesis Outline
	Semi-classical Simulation
	Historical Development
	Semiconductor Fundamentals
	Carrier Distributions and Doping
	Boltzmann Transport Equation
	Drift-Diffusion Model

	A Finite-Volume Based Drift-Diffusion Solver
	About Numerical Methods
	Mesh Description
	Mesh Generation
	Edge Treatment
	Mesh Generation Algorithm

	The Finite Volume Scheme
	Generic Finite Volume Discretizations
	The Iterative Solvers
	Boundary Conditions
	Mobility and Recombination
	Generation and Recombination
	Scaling
	Thermal Equilibrium Solution

	Monte Carlo Simulation
	The Ensemble Monte Carlo Method for Devices
	Energy Band and Effective Mass
	The Drift Process
	Free Flight Time and Self-Scattering
	Scattering Selection
	Fermi's Golden Rule and Carrier Scattering
	Scattering Mechanism
	Ionized Impurity Scattering
	Acoustic Phonon Scattering
	Non-polar Optical Phonon
	Polar Optical Phonon Scattering

	Particle Initialization
	Mesh Coupling and Search Structure
	Particle Search Structure

	Gathering Output Quantities

	Software Outline and Results
	Numerical Analysis of the Finite Volume Schemes
	Scharfetter-Gummel and Upwind Comparison
	Newton-Raphson and Gummel Methods
	Drift-Diffusion High-Field Mobility Validation
	Thermionic Emission Model Test

	Monte Carlo Bulk Validation
	Device Test Simulation
	Simple N-n-N diode
	About Self-Scattering Reduction
	About Search Structure
	Comparison of Drift-Diffusion and Monte Carlo in a Simple MOSFET

	Meshing Features
	Program Outline, Features, and Limitations
	Software Capabilities and Limitation of the Software

	Conclusions and Future Work
	Bibliography
	Appendix Some Default Parameters
	Appendix Geometry Generating Function

