Crystal structure of 4,4'-(disulfanediyl)dibutanoic acid-4,4'-bipyridine (1/1)

Ana María Atria, Maria Teresa Garland and Ricardo Baggio

Acta Cryst. (2014). E70, 157-160

IUCr Journals

 CRYSTALLOGRAPHY JOURNALS ONLINEThis open-access article is distributed under the terms of the Creative Commons Attribution Licence http://creativecommons.org/licenses/by/2.0/uk/legalcode, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Received 24 July 2014
Accepted 14 August 2014

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; hydrogen-bonding disposition; co-crystal

CCDC reference: 1019479
Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of 4,4'-(disulfanediyl)dibutanoic acid-4,4'-bipyridine (1/1)

Ana María Atria, ${ }^{\text {a* }}$ Maria Teresa Garland ${ }^{\text {b }}$ and Ricardo Baggio ${ }^{\text {c }}$

${ }^{\text {a }}$ Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago, Chile, ${ }^{\text {b }}$ Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago de Chile, Chile, and ${ }^{\text {c }}$ Departamento de Física, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina. *Correspondence e-mail: aatria@ciq.uchile.cl

4,4'-(Disulfanediyl)dibutanoic acid (dtba) and 4, 4^{\prime}-bipyridine ($4,4^{\prime}$-bpy) crystallize in an $1: 1$ ratio, leading to the title co-crystal with composition $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~S}_{2} \cdot \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}$. A distinctive feature of the crystal structure is the geometry of the dtba moiety, which appears to be stretched [with a 9.98 (1) \AA span between outermost carbons] and acts as an hydrogen-bonding connector, forming linear chains along [$\overline{2} 11$] with the $4,4^{\prime}$-bpy moiety by way of $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions. The influence of the molecular shape on the hydrogen-bonding pattern is analysed by comparing the title compound and two other 4,4'-bpy co-crystals with closely related molecules of similar formulation but different geometry, showing the way in which this correlates with the packing arrangement.

1. Chemical context

The object of the present study, the 4,4'-(disulfanediyl)dibutanoic acid molecule $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{~S}_{2}$ (dtba), consists of a tenmembered $\mathrm{C}\left(\mathrm{H}_{2}\right)_{4} \mathrm{~S}_{2} \mathrm{C}\left(\mathrm{H}_{2}\right)_{4}$ chain setting apart the carboxylic acid groups at each end. This suggests that the molecule may be a good candidate for a 'spacer' in the design of compounds with metal-organic framework (MOF) structures, provided that the molecule connects the metal centres in an 'extended' fashion. However, the 'solid-state shape' of molecules such as dtba is not directly discernible from first principles, as the chain includes many $s p^{3}$ carbon atoms, which may possibly lead to twisted linkages.

In addition, dtba is a rather uncommon ligand. The Cambridge Structure Database (Version 5.4, including June 2014 upgrades; Allen, 2002) does not at present include any entry whatsoever with the molecule, either in its coordinating or free forms, for which any direct evidence of its shape is available. We have been trying for a while to coordinate the acid to some transition metals; however, so far we have been unsuccessful. During one of these numerous attempts, a cocrystal of dtba with $4,4^{\prime}$-bipyridine ($4,4^{\prime}$-bpy), $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}$, was obtained instead. This serendipitous synthesis ended up being unique, since all subsequent attempts to obtain crystals with dtba ligand(s) in a more orthodox way have proved ineffective. We thus present herein the structural analysis of the $4,4^{\prime}$ bpy:dtba 1:1 co-crystal, $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~S}_{2} \cdot \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}$ (I), which to our knowledge is the first crystal structure to be reported surveying the dtba group.

Figure 1
Top: the asymmetric unit of (I), showing the $\mathrm{H}-\mathrm{O} \cdots \mathrm{N}$ linkages as dashed lines. Displacement ellipsoids are drawn at the 40% probability level. Bottom: the least-squares superposition of one dtba molecule and its $C 2$ image, showing the pseudo-symmetry in its central core.

2. Structural commentary

Fig. 1 (top) presents an ellipsoid plot of the asymmetric unit of (I). The 'topological' (non-crystallographic) symmetry of the dtba molecule with a twofold rotation axis located at the center of the $\mathrm{S} 1-\mathrm{S} 2$ bond is obvious from inspection, and it is somehow reflected in the bond-length sequence, presented in Table 1 (corresponding bonds are presented in the same line). In fact, the pseudo-symmetry goes a bit further: the group presents a non-crystallographic $C_{2 v}$ symmetry involving the molecular core ($\mathrm{C} 2-\mathrm{C} 7$), which is reflected in the central torsion angles, viz. those involving S atoms (Table 1). Fig. 1 (bottom) shows the least-squares fit of this core and its $C_{2 v^{-}}$ related image, with deviations falling in the tight range $0.011-$ $0.015 \AA$. The outermost parts of the molecule (the carboxylic functions at the ends) deviate significantly from this trend, probably as a result of the strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ interactions with neighbouring $4,4^{\prime}$-bpy molecules (see discussion below), a fact also reflected in the torsion angles involved (last two lines in Table 1). The double bonds in the -COOH groups are nondelocalized, with the $\mathrm{C}-\mathrm{O}(\mathrm{H})$ bonds being distinctly longer than the $\mathrm{C}=\mathrm{O}$ bonds (Table 1).

In spite of the unavoidable twisting due to the individual $s p^{3}$ carbon atoms in the chain, the molecule can be considered to be stretched, with a C1 C. 8 span of 9.98 (1) \AA and the terminal OH groups being almost anti-parallel to each other, subtending an angle of $175.5(1)^{\circ}$. Thus, at least in the present

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right)$.

$\mathrm{C} 1 A-\mathrm{C} 2 A$	$1.513(3)$	$\mathrm{C} 8 A-\mathrm{C} 7 A$	$1.497(3)$
$\mathrm{C} 2 A-\mathrm{C} 3 A$	$1.487(4)$	$\mathrm{C} 7 A-\mathrm{C} 6 A$	1.507 (3)
$\mathrm{C} 3 A-\mathrm{C} 4 A$	$1.522(3)$	$\mathrm{C} 6 A-\mathrm{C} 5 A$	$1.522(3)$
$\mathrm{C} 4 A-\mathrm{S} 1 A$	$1.811(3)$	$\mathrm{S} 2 A-\mathrm{C} 5 A$	$1.805(3)$
$\mathrm{C} 1 A-\mathrm{O} 1 A$	$1.309(3)$	$\mathrm{O} 3 A-\mathrm{C} 8 A$	$1.325(3)$
$\mathrm{C} 1 A-\mathrm{O} 2 A$	$1.198(3)$	$\mathrm{O} 4 A-\mathrm{C} 8 A$	$1.197(3)$
$\mathrm{S} 1 A-\mathrm{S} 2 A$	$2.0369(14)$		
$\mathrm{C} 2 A-\mathrm{C} 3 A-\mathrm{C} 4 A-\mathrm{S} 1 A$	$-66.2(3)$	$\mathrm{S} 2 A-\mathrm{C} 5 A-\mathrm{C} 6 A-\mathrm{C} 7 A-67.6$ (2)	
$\mathrm{C} 3 A-\mathrm{C} 4 A-\mathrm{S} 1 A-\mathrm{S} 2 A$	$-68.2(2)$	$\mathrm{S} 1 A-\mathrm{S} 2 A-\mathrm{C} 5 A-\mathrm{C} 6 A-67.67(19)$	
$\mathrm{O} 2 A-\mathrm{C} 1 A-\mathrm{C} 2 A-\mathrm{C} 3 A-28.2(4)$	$\mathrm{C} 6 A-\mathrm{C} 7 A-\mathrm{C} 8 A-\mathrm{O} 4 A$	$4.3(4)$	
$\mathrm{C} 1 A-\mathrm{C} 2 A-\mathrm{C} 3 A-\mathrm{C} 4 A-165.0(2)$	$\mathrm{C} 5 A-\mathrm{C} 6 A-\mathrm{C} 7 A-\mathrm{C} 8 A$	$178.3(2)$	

Table 2
Hydrogen-bond geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 A-\mathrm{H} 1 A \cdots \mathrm{~N} 1 B$	$0.85(1)$	$1.83(1)$	$2.661(3)$	$163(3)$
O3 $A-\mathrm{H} 3 A \cdots \mathrm{~N} 2 B^{\mathrm{i}}$	$0.86(1)$	$1.80(1)$	$2.637(3)$	$162(3)$
$\mathrm{C} 9 B-\mathrm{H} 9 B \cdots \mathrm{O} 4 A^{\text {ii }}$	0.93	2.49	$3.404(3)$	167

Symmetry codes: (i) $x+2, y-1, z-1$; (ii) $-x+2,-y,-z+1$.
structure, the molecule can be considered as a potentially adequate spacer for MOF construction.

The $4,4^{\prime}$-bpy molecule, in turn, is basically featureless, with slightly non-planar pyridine rings [maximum deviations from the least-squares planes: $\mathrm{C} 2 B 0.005$ (3), $\mathrm{N} 2 B: 0.005$ (3) $\AA]$, rotated to each other by $4.54(13)^{\circ}$.

3. Supramolecular features

There are only two strong hydrogen-bond donors (the dtba carboxylic acid OH functions) and two hydrogen-bond acceptors (the pyridine N atoms of $4,4^{\prime}-\mathrm{bpy}$) present, defining the supramolecular organization (first two entries in Table 2) in the form of linear chains running along [211] (Fig. 2) with graph-set descriptor $C_{2}^{2}(22)$ (for graph-set nomenclature, see Bernstein et al., 1995). Neighbouring chains, in turn, are connected into strips along [001] by a (notably weaker) C$\mathrm{H} \cdots \mathrm{O}$ contact involving the pyridyl $\mathrm{C} 9 A-\mathrm{H} 9 A$ group and one of the two non-protonated carboxylato O atoms (third entry in Table 2, shown as nearly vertical broken lines in Fig. 2), giving rise to $R_{4}^{4}(16)$ centrosymmetric loops. The chains run parallel to each other, with no obvious second-order interactions linking them, either of the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \pi$ or $\pi-\pi$ types. There is, however, a different type of contact present, namely a $\mathrm{C}-\mathrm{O} \cdots \pi$ contact involving the nonprotonated O atom $\left[\mathrm{C} 1 A-\mathrm{O} 2 A \cdots C g^{\mathrm{i}}\right.$ where $C g 1$ is the centroid of atoms $\mathrm{N} 1 A, \mathrm{C} 1 A-\mathrm{C} 5 A$, symmetry code (i): $1-x$, $1-y, 1-z$, with $\mathrm{O} 2 A \cdots C g 1^{\mathrm{i}}=3.619$ (3) \AA; $\mathrm{O} 2 A \cdots C g 1^{\mathrm{i}}, \pi$: 165.25°], which helps in connecting the strips together into a three-dimensional supramolecular structure (drawn in double dashed lines in Fig. 3). Thus, all potentially expected actors for the supramolecular building (OH, O and N functionalities) end up fulfilling a relevant role in the overall organization.

Figure 2
A packing view of (I), showing the slabs formed by neighbouring chains connected by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts (shown as dashed lines).

Figure 3
Packing view of (I) at right angles to the view in Fig. 2, showing the slabs in projection (one of them has been hightlighted). Single dashed lines denote the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ bonds. The $\mathrm{C}-\mathrm{O} \cdots \pi$ contacts linking the slabs into a three-dimensional structure are shown as double dashed lines.

4. Database survey

A brief search of the CSD confirmed that 4,4'-bpy:dicarboxylic acid adducts are rather frequent; among the most populated families, the one derived from alkanes/alkenes ranks on top.

Many of these present 'extended' molecular shapes, generating chain structures with similar $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ synthons as in (I). Among these, alkane-types are relevant to the present discussion as they are made up of $s p^{3} \mathrm{C}$ atoms. There are cases with $n=5$ (glutaric acid) and $n=6$ (adipic acid; Pedireddi et al., 1998), $n=7$ (heptane-1,7-dioic acid; Braga et al., 2008) and $n=10$ (sebacic acid; Yu et al., 2006).

However, examples of adducts with thiodicarboxilyc acids are notably more rare and only two reported co-crystals of the sort can be found in the literature. These involve thiodicarboxilyc acids closely related to dtba (see scheme below): thiodiglycolic acid (tdga) and thiodipropionic acid (tdpa), viz. 4,4'-bpy:tdga and 4,4'-bpy:tdpa (Pedireddi et al., 1998). Surprisingly, in these structures the linkers behave in a different way from dtba. Fig. 4 (left) shows the geometry of the three molecules under discussion, while Fig. 4 (right) presents the packing arrangements they give rise to.

In the first case, (tdga co-crystal) the molecule is shaped like a horseshoe, and the terminal OH functions end up being
(tdga)
(tdpa)

(dtba)

Figure 4
The three different molecular shapes for tdga, tdpa and dtba, and the packing arrangements they give rise to, as described in the text.

Table 3
Experimental details.

Crystal data

Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
No. of restraints
H -atom treatment
$\Delta \rho_{\max }, \Delta \rho_{\min }\left(\mathrm{e} \AA^{-3}\right)$
$\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~S}_{2} \cdot \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}$
394.49

Triclinic, $P \overline{1}$
297
5.154 (3), 11.124 (7), 17.256 (11)
79.096 (10), 87.126 (10),
85.030 (12)
967.3 (10)

2
Mo $K \alpha$
0.30
$0.23 \times 0.14 \times 0.11$

Bruker SMART CCD area detector
Multi-scan (SADABS; Sheldrick, 2008a)
0.94, 0.98

8306, 4185, 2376
0.031
0.656
$0.048,0.131,0.91$
4185
243
2
H atoms treated by a mixture of independent and constrained refinement
$0.26,-0.16$

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2002), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008b) and PLATON (Spek, 2009).
almost parallel, subtending an angle of $12.5(1)^{\circ}$ to each other. The $4,4^{\prime}$-bpy aggregation motifs with this particular geometry give rise to isolated closed dimers as shown in Fig. 4 (upper right).

The tdpa molecule presents a shape somehow similar to, but noticeably more open than tdga, with $\mathrm{H}-\mathrm{O} \cdots \mathrm{O}-\mathrm{H}$ bonds almost at a right angle to each other [97.1 (1) ${ }^{\circ}$]. The resulting packing mimics this molecular geometry, in a tight herringbone pattern (Fig. 4, mid-right). Finally, and as already discussed, the present dtba co-crystal displays a fully stretched geometry $\left[\mathrm{H}-\mathrm{O} \cdots \mathrm{O}-\mathrm{H}: 175.5(1)^{\circ}\right]$ and the basic packing unit is a linear chain.

From this analysis it can be concluded (at least for this type of terminal dicarboxilic acids) that the relative angular
disposition of the outermost OH groups are relevant in defining the expected general aspect of the packing. In this context, dtba could be considered a potentially useful spacer for MOF construction, and further work to obtain transitionmetal complexes with this ligand is in progress.

5. Synthesis and crystallization

The reported $4,4^{\prime}$-bpy:dtba co-crystal was obtained serendipitously from an unsuccessful synthesis of a holmium complex, prepared from an $\mathrm{Ho}_{2} \mathrm{O}_{3}$:dtba:4,4-bpy solution (in a 1:2:1 ratio), dissolved in a mixture of water (200 ml) and ethanol $(20 \mathrm{ml})$. After a few days of slow evaporation at room temperature, colourless block-like crystals were obtained.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were originally found in a difference Fourier map, but treated differently in refinement: $\mathrm{C}-\mathrm{H} \mathrm{H}$ atoms were repositioned in their expected positions and thereafter allowed to ride with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ (host) $\left(d=0.93 \AA\right.$ for $\mathrm{C}-\mathrm{H}_{\text {aromatic }}$ and $d=0.97 \AA$ for $\mathrm{C}-\mathrm{H}_{\text {methylene }}$), while OH H atoms were refined with a restrained distance of 0.85 (1) \AA.

Acknowledgements

The authors acknowledge FONDECYT project No. 1110154.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Braga, D., Palladino, G., Polito, M., Rubini, K., Grepioni, F., Chierotti, M. R. \& Gobetto, R. (2008). Chem. Eur. J. 14, 10149-10159.

Bruker (2001). SMART. Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Bruker (2002). SAINT. Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Pedireddi, V. R., Chatterjee, S., Ranganathan, A. \& Rao, C. N. R. (1998). Tetrahedron, 54, 9457-9474.

Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Yu, B., Wang, X.-Q., Wang, R.-J., Shen, G.-Q. \& Shen, D.-Z. (2006). Acta Cryst. E62, o2757-o2758.

supporting information

Acta Cryst. (2014). E70, 157-160 [doi:10.1107/S1600536814018558]

Crystal structure of 4,4'-(disulfanediyl)dibutanoic acid-4,4'-bipyridine (1/1)

Ana María Atria, Maria Teresa Garland and Ricardo Baggio

Computing details

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97
(Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication:
SHELXTL (Sheldrick, 2008b) and PLATON (Spek, 2009).

4,4'-(Disulfanediyl)dibutanoic acid-4,4'-bipyridine (1/1)

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~S}_{2} \cdot \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}$
$M_{r}=394.49$
Triclinic, $P \overline{1}$
$a=5.154$ (3) \AA
$b=11.124$ (7) \AA
$c=17.256(11) \AA$
$\alpha=79.096(10)^{\circ}$
$\beta=87.126(10)^{\circ}$
$\gamma=85.030(12)^{\circ}$
$V=967.3(10) \AA^{3}$

Data collection

Bruker SMART CCD area detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
CCD rotation images, thin slices scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
$T_{\text {min }}=0.94, T_{\text {max }}=0.98$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.131$
$S=0.91$
4185 reflections
243 parameters
2 restraints
$Z=2$
$F(000)=416$
$D_{\mathrm{x}}=1.354 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1445 reflections
$\theta=2.4-21.1^{\circ}$
$\mu=0.30 \mathrm{~mm}^{-1}$
$T=297 \mathrm{~K}$
Block, colourless
$0.23 \times 0.14 \times 0.11 \mathrm{~mm}$

8306 measured reflections
4185 independent reflections
2376 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=27.8^{\circ}, \theta_{\text {min }}=1.2^{\circ}$
$h=-6 \rightarrow 6$
$k=-14 \rightarrow 14$
$l=-22 \rightarrow 22$

Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0623 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.26$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.16$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
S1A	1.04515 (14)	-0.04804 (7)	0.29204 (4)	0.0744 (3)
S2A	0.87636 (14)	0.02612 (6)	0.18771 (4)	0.0673 (2)
O1A	0.7237 (4)	0.23802 (19)	0.51914 (11)	0.0781 (6)
H1A	0.627 (5)	0.292 (2)	0.5388 (16)	0.105 (11)*
O2A	0.4101 (4)	0.26892 (19)	0.43314 (12)	0.0884 (7)
O3A	1.4882 (4)	-0.16886 (17)	-0.02741 (11)	0.0745 (6)
H3A	1.596 (5)	-0.222 (2)	-0.0447 (18)	0.127 (13)*
O4A	1.4099 (4)	-0.32979 (16)	0.06596 (10)	0.0775 (6)
C1A	0.6119 (6)	0.2170 (2)	0.45711 (15)	0.0640 (7)
C2A	0.7747 (6)	0.1205 (3)	0.42096 (16)	0.0794 (9)
H2AA	0.9044	0.1604	0.3846	0.095*
H2AB	0.8663	0.0643	0.4625	0.095*
C3A	0.6193 (6)	0.0492 (3)	0.37810 (16)	0.0738 (8)
H3AA	0.5658	0.1007	0.3287	0.089*
H3AB	0.4630	0.0276	0.4095	0.089*
C4A	0.7675 (6)	-0.0675 (2)	0.36052 (15)	0.0735 (8)
H4AA	0.6464	-0.1145	0.3398	0.088*
H4AB	0.8274	-0.1162	0.4100	0.088*
C5A	0.7684 (5)	-0.1061 (2)	0.15574 (15)	0.0623 (7)
H5AA	0.6608	-0.1495	0.1978	0.075*
H5AB	0.6594	-0.0777	0.1106	0.075*
C6A	0.9844 (5)	-0.1966 (2)	0.13303 (14)	0.0586 (6)
H6AA	1.1029	-0.2205	0.1762	0.070*
H6AB	0.9088	-0.2698	0.1247	0.070*
C7A	1.1351 (5)	-0.1431 (2)	0.05930 (13)	0.0550 (6)
H7AA	1.0154	-0.1211	0.0163	0.066*
H7AB	1.2036	-0.0682	0.0675	0.066*
C8A	1.3562 (5)	-0.2257 (2)	0.03466 (13)	0.0549 (6)
N1B	0.4619 (4)	0.38299 (19)	0.60732 (12)	0.0634 (6)
N2B	-0.2001 (4)	0.69792 (17)	0.89024 (12)	0.0619 (6)
C1B	0.2496 (6)	0.4565 (3)	0.58974 (15)	0.0752 (8)
H1B	0.1860	0.4652	0.5393	0.090*
C2B	0.1163 (5)	0.5213 (2)	0.64262 (14)	0.0657 (7)
H2B	-0.0307	0.5732	0.6270	0.079*
C3B	0.2016 (4)	0.50899 (19)	0.71826 (12)	0.0482 (6)
C4B	0.4247 (5)	0.4314 (2)	0.73679 (13)	0.0568 (6)
H4B	0.4919	0.4201	0.7869	0.068*
C5B	0.5455 (5)	0.3712 (2)	0.68026 (14)	0.0631 (7)
H5B	0.6942	0.3194	0.6939	0.076*

supporting information

C6B	$-0.2730(5)$	$0.7174(2)$	$0.81551(15)$	$0.0655(7)$
H6B	-0.4152	0.7733	0.8012	0.079^{*}
C7B	$-0.1501(5)$	$0.6598(2)$	$0.75835(14)$	$0.0578(6)$
H7B	-0.2093	0.6767	0.7071	0.069^{*}
C8B	$0.0639(4)$	$0.57597(19)$	$0.77791(13)$	$0.0477(6)$
C9B	$0.1404(5)$	$0.5567(2)$	$0.85557(13)$	$0.0577(6)$
H9B	0.2827	0.5019	0.8715	0.069^{*}
C10B	$0.0063(5)$	$0.6186(2)$	$0.90922(14)$	$0.0633(7)$
H10B	0.0622	0.6045	0.9608	0.076^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1A	$0.0605(5)$	$0.0877(5)$	$0.0845(5)$	$0.0148(4)$	$-0.0181(4)$	$-0.0456(4)$
S2A	$0.0779(5)$	$0.0572(4)$	$0.0685(4)$	$0.0008(3)$	$0.0026(4)$	$-0.0206(3)$
O1A	$0.0807(14)$	$0.0935(14)$	$0.0625(11)$	$0.0290(11)$	$-0.0102(10)$	$-0.0350(11)$
O2A	$0.0810(15)$	$0.1039(15)$	$0.0861(14)$	$0.0257(12)$	$-0.0253(12)$	$-0.0411(12)$
O3A	$0.0912(15)$	$0.0658(11)$	$0.0640(11)$	$0.0144(10)$	$0.0107(10)$	$-0.0185(10)$
O4A	$0.0936(15)$	$0.0618(11)$	$0.0692(12)$	$0.0252(10)$	$-0.0073(10)$	$-0.0048(9)$
C1A	$0.0731(19)$	$0.0640(16)$	$0.0546(15)$	$0.0076(14)$	$0.0012(14)$	$-0.0173(13)$
C2A	$0.079(2)$	$0.0869(19)$	$0.0806(19)$	$0.0143(16)$	$-0.0110(16)$	$-0.0441(17)$
C3A	$0.075(2)$	$0.0852(19)$	$0.0631(16)$	$0.0072(15)$	$-0.0015(14)$	$-0.0248(15)$
C4A	$0.094(2)$	$0.0654(16)$	$0.0629(16)$	$0.0057(15)$	$-0.0097(15)$	$-0.0197(14)$
C5A	$0.0628(17)$	$0.0658(15)$	$0.0616(15)$	$-0.0032(13)$	$-0.0026(13)$	$-0.0207(13)$
C6A	$0.0675(18)$	$0.0527(13)$	$0.0574(14)$	$-0.0010(12)$	$-0.0042(13)$	$-0.0154(12)$
C7A	$0.0591(16)$	$0.0546(13)$	$0.0504(13)$	$0.0096(12)$	$-0.0096(11)$	$-0.0114(11)$
C8A	$0.0617(16)$	$0.0589(15)$	$0.0463(13)$	$0.0086(12)$	$-0.0143(12)$	$-0.0183(12)$
N1B	$0.0697(15)$	$0.0664(13)$	$0.0553(12)$	$0.0062(11)$	$0.0018(11)$	$-0.0208(11)$
N2B	$0.0729(15)$	$0.0546(12)$	$0.0586(12)$	$-0.0003(11)$	$0.0096(11)$	$-0.0164(10)$
C1B	$0.076(2)$	$0.101(2)$	$0.0514(15)$	$0.0174(17)$	$-0.0120(14)$	$-0.0279(15)$
C2B	$0.0632(17)$	$0.0813(18)$	$0.0520(14)$	$0.0174(14)$	$-0.0094(12)$	$-0.0191(13)$
C3B	$0.0533(15)$	$0.0453(12)$	$0.0456(12)$	$-0.0007(11)$	$-0.0001(11)$	$-0.0089(10)$
C4B	$0.0652(17)$	$0.0558(14)$	$0.0483(13)$	$0.0105(12)$	$-0.0059(12)$	$-0.0125(11)$
C5B	$0.0687(18)$	$0.0602(15)$	$0.0582(15)$	$0.0149(13)$	$-0.0047(13)$	$-0.0136(13)$
C6B	$0.0674(18)$	$0.0630(15)$	$0.0646(16)$	$0.0115(13)$	$-0.0004(14)$	$-0.0158(13)$
C7B	$0.0579(16)$	$0.0642(15)$	$0.0508(13)$	$0.0078(12)$	$-0.0047(12)$	$-0.0140(12)$
C8B	$0.0522(14)$	$0.0415(11)$	$0.0491(12)$	$-0.0021(10)$	$0.0021(11)$	$-0.0092(10)$
C9B	$0.0715(18)$	$0.0498(13)$	$0.0504(13)$	$0.0080(12)$	$-0.0070(12)$	$-0.0103(11)$
C10B	$0.086(2)$	$0.0576(14)$	$0.0460(13)$	$0.0022(14)$	$-0.0018(13)$	$-0.0129(12)$

Geometric parameters ($\bar{A},{ }^{\circ}$)

$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	$1.513(3)$	$\mathrm{C} 6 \mathrm{~A}-\mathrm{H} 6 \mathrm{AB}$	0.9700
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	$1.487(4)$	$\mathrm{C} 7 \mathrm{~A}-\mathrm{H} 7 \mathrm{AA}$	0.9700
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	$1.522(3)$	$\mathrm{C} 7 \mathrm{~A}-\mathrm{H} 7 \mathrm{AB}$	0.9700
$\mathrm{C} 4 \mathrm{~A}-\mathrm{S} 1 \mathrm{~A}$	$1.811(3)$	$\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$	$1.320(3)$
$\mathrm{C} 1 \mathrm{~A}-\mathrm{O} 1 \mathrm{~A}$	$1.309(3)$	$\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}$	$1.330(3)$
$\mathrm{C} 1 \mathrm{~A}-\mathrm{O} 2 \mathrm{~A}$	$1.198(3)$	$\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}$	$1.334(3)$

S1A-S2A	2.0369 (14)	N2B-C10B	1.334 (3)
C8A-C7A	1.497 (3)	C1B-C2B	1.388 (3)
C7A-C6A	1.507 (3)	C1B-H1B	0.9300
C6A-C5A	1.522 (3)	C2B-C3B	1.377 (3)
S2A-C5A	1.805 (3)	C2B-H2B	0.9300
O3A-C8A	1.325 (3)	C3B-C4B	1.389 (3)
O4A-C8A	1.197 (3)	C3B-C8B	1.498 (3)
O1A-H1A	0.851 (10)	C4B-C5B	1.379 (3)
O3A-H3A	0.863 (10)	C4B-H4B	0.9300
$\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{AA}$	0.9700	C5B-H5B	0.9300
$\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{AB}$	0.9700	C6B-C7B	1.375 (3)
C3A-H3AA	0.9700	C6B-H6B	0.9300
$\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{AB}$	0.9700	C7B-C8B	1.393 (3)
C4A-H4AA	0.9700	C7B-H7B	0.9300
C4A-H4AB	0.9700	C8B-C9B	1.388 (3)
C5A-H5AA	0.9700	C9B-C10B	1.380 (3)
C5A-H5AB	0.9700	C9B-H9B	0.9300
C6A-H6AA	0.9700	C10B-H10B	0.9300
C4A-S1A-S2A	102.70 (10)	C6A-C7A-H7AA	108.5
C5A-S2A-S1A	102.95 (9)	C8A-C7A-H7AB	108.5
C1A-O1A-H1A	109 (2)	C6A-C7A-H7AB	108.5
C8A-O3A-H3A	108 (2)	H7AA-C7A-H7AB	107.5
$\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{O} 1 \mathrm{~A}$	123.6 (2)	O4A-C8A-O3A	123.4 (2)
$\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	126.0 (3)	O4A-C8A-C7A	125.4 (2)
$\mathrm{O} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	110.4 (2)	O3A-C8A-C7A	111.2 (2)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	113.4 (2)	C1B-N1B-C5B	116.8 (2)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{AA}$	108.9	C6B-N2B-C10B	117.1 (2)
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{AA}$	108.9	N1B-C1B-C2B	123.4 (2)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{AB}$	108.9	N1B-C1B-H1B	118.3
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{AB}$	108.9	$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{H} 1 \mathrm{~B}$	118.3
H2AA-C2A-H2AB	107.7	$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$	120.0 (2)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	113.2 (2)	$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B}$	120.0
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{AA}$	108.9	C1B-C2B-H2B	120.0
C4A-C3A-H3AA	108.9	$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	116.6 (2)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{AB}$	108.9	$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 8 \mathrm{~B}$	122.2 (2)
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{AB}$	108.9	C4B-C3B-C8B	121.2 (2)
H3AA - C3A-H3AB	107.8	C5B-C4B-C3B	119.4 (2)
C3A-C4A-S1A	116.6 (2)	C5B-C4B-H4B	120.3
C3A-C4A-H4AA	108.1	C3B-C4B-H4B	120.3
S1A-C4A-H4AA	108.1	N1B-C5B-C4B	123.8 (2)
C3A-C4A-H4AB	108.1	N1B-C5B-H5B	118.1
S $1 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{H} 4 \mathrm{AB}$	108.1	C4B-C5B-H5B	118.1
H4AA - $\mathrm{C} 4 \mathrm{~A}-\mathrm{H} 4 \mathrm{AB}$	107.3	$\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}$	123.8 (2)
C6A-C5A-S2A	115.37 (18)	$\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{H} 6 \mathrm{~B}$	118.1
C6A-C5A-H5AA	108.4	C7B-C6B-H6B	118.1
S2A-C5A-H5AA	108.4	C6B-C7B-C8B	119.4 (2)
C6A-C5A-H5AB	108.4	$\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}-\mathrm{H} 7 \mathrm{~B}$	120.3

S2A-C5A-H5AB	108.4	C8B-C7B-H7B	120.3
H5AA-C5A-H5AB	107.5	C9B-C8B-C7B	$116.6(2)$
C7A-C6A-C5A	$112.23(19)$	C9B-C8B-C3B	$121.9(2)$
C7A-C6A-H6AA	109.2	C7B-C8B-C3B	$121.5(2)$
C5A-C6A-H6AA	109.2	C10B-C9B-C8B	$120.3(2)$
C7A-C6A-H6AB	109.2	C10B-C9B-H9B	119.9
C5A-C6A-H6AB	109.2	N2B-C9B-H9B	119.9
H6AA-C6A-H6AB	107.9	N2B-C10B-H10B	$122.8(2)$
C8A-C7A-C6A	C9B-C10B-H10B	118.6	
C8A-C7A-H7AA	108.5		118.6
		C1B-N1B-C5B-C4B	$-0.4(4)$
C2A-C3A-C4A-S1A	$-66.2(3)$	C3B-C4B-C5B-N1B	$0.3(4)$
C3A-C4A-S1A-CS2A	$-68.2(2)$	N2B-C6B-C7B-C8B	$0.8(4)$
O2A-C1A-C2A-C3A	$-28.2(4)$	C6B-C7B-C8B-C9B	$-0.2(4)$
C1A-C2A-C3A-C4A	$-165.0(2)$	C6B-C7B-C8B-C3B	$-0.4(4)$
S2A-C5A-C6A-C7A	$-67.6(2)$	C2B-C3B-C8B-C9B	$178.8(2)$
S1A-S2A-C5A-C6A	$-67.67(19)$	C4B-C3B-C8B-C9B	$175.5(3)$
C6A-C7A-C8A-O4A	$4.3(4)$	C2B-C3B-C8B-C7B	$-3.9(4)$
C5A-C6A-C7A-C8A	$178.3(2)$	C4B-C3B-C8B-C7B	$175.9(2)$
C6A-C7A-C8A-O3A	$-175.9(2)$	C7B-C8B-C9B-C10B	$0.3(4)$
C5B-N1B-C1B-C2B	$0.9(5)$	C3B-C8B-C9B-C10B	$-179.0(2)$
N1B-C1B-C2B-C3B	$-1.2(5)$	C6B-N2B-C10B-C9B	$-0.9(4)$
C1B-C2B-C3B-C4B	$1.0(4)$	C8B-C9B-C10B-N2B	$0.4(4)$
C1B-C2B-C3B-C8B	$-179.5(2)$	O1A-C1A-C2A-C3A	$152.4(3)$
C2B-C3B-C4B-C5B	$-0.5(4)$	$179.9(2)$	

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 A-\mathrm{H} 1 A \cdots \mathrm{~N} 1 B$	$0.85(1)$	$1.83(1)$	$2.661(3)$	$163(3)$
$\mathrm{O} 3 A-\mathrm{H} 3 A \cdots \mathrm{~N} 2 B^{\mathrm{i}}$	$0.86(1)$	$1.80(1)$	$2.637(3)$	$162(3)$
$\mathrm{C} 9 B — \mathrm{H} 9 B \cdots \mathrm{O} 4 A^{\mathrm{ii}}$	0.93	2.49	$3.404(3)$	167

Symmetry codes: (i) $x+2, y-1, z-1$; (ii) $-x+2,-y,-z+1$.

