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We exhibit difficulties of different sorts which appear when using the Mathisson-Papapetrou equations,
in particular in the description of highly relativistic particles presented in R. Plyatsko and M. Fenyk [Phys.
Rev. D 91, 064033 (2015)]. We compare some results of this theory and of the aforementioned work with
the ones obtained using a Lagrangian formulation for massive spinning particles and show that the issues
mentioned in the preceding sentence do not appear in the Lagrangian treatment.
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This comment addresses some statements which appear
in the article referred to in the title [1] which need
clarification.
The article in question compares results obtained using

two similar, but inequivalent, theories. In fact, [1] deals
with a third-order set of the equations derived by Mathisson
[2] and Papapetrou [3] (referred to as MPE in what follows)
which describes massive test spinning particles moving on
a background gravitational field. Matsyuk presents a
Lagrangian treatment to obtain a set of third-order MPE
[4]. Some of the results obtained in Ref. [1] are compared to
the ones obtained in [5] where a different Lagrangian
approach [referred to as the Lagrangian top theory (LTT)] is
conceived to describe massive test spinning particles (tops)
originally devised in the special relativistic framework by
Hanson and Regge [6] and extended to consider the motion
on gravitational fields using the general relativistic formal-
ism in [5,7–12]. Similar studies in a Lagrangian formalism
have been carried out in a quantum mechanical context
[13–15].
Some of these statements we comment upon refer to the

fact that there are solutions found in [5] which allow for
superluminal motion of tops. The claim made in [1] is that
this behavior is introduced spuriously by the inadequate
choice of a constraint (details follow below). Our comment
is based on problems arising from MPE concerning the
following facts: (i) the MPE implicitly postulate timelike
velocities, i.e., the statement that uμuμ − 1 ¼ 0 is essen-
tially hidden in the MPE even without using any constraint
at all, and (ii) the MPE do not predict that the Poincaré
Casimir functions mass PμPμ and spin SμνSμν are constants
of motion. These two difficulties have as a consequence
that some of the statements appearing in [1] have con-
sistency issues, as is explicitly proved below.

A brief summary of MPE and concepts seems in order to
present our comments. The MPE [2,3], which characterize
the motion of massive spinning test particles in the presence
of a given external gravitational field described in terms of
a metric tensor gμνðxαÞ, the Christoffel symbols connection
Γμ

νρðxαÞ and the Riemann curvature tensor Rμ
ναβðxγÞ,

are [1]

D
Ds

�
muμ þ uν

DSμν

Ds

�
¼ −

1

2
Rμ

ναβuνSαβ; ð1Þ

DSμν

Ds
þ uμuα

DSνα

Ds
− uνuα

DSμα

Ds
¼ 0; ð2Þ

where D=Ds is the s-parametrized covariant derivative and
s is the proper time of the spinning particle. The above
description is written in terms of position xμ, velocity uμ,
and an antisymmetric spin tensor Sμν. Due to the appear-
ance of the Riemann tensor in the right-hand side of (1) the
spinning particles do not follow geodesics, in general. Even
if no Lagrangian for the system has been defined, it is
customary to define the (noncanonical) momentum vector
Pμ by [1]

Pμ ¼ muμ þ uν
DSμν

Ds
: ð3Þ

Note that, due to the fact that spin is related to angular
velocity, the momentum so defined depends on second
derivatives of dynamical variables and therefore (1) is a
third-order differential equation. This is explicitly empha-
sized by Matsyuk in Ref. [4]. Also, this has been noticed in
Refs. [8,16]. Besides, we remind the reader that the MPE
were obtained as a limiting case of rotating fluids moving in
gravitational fields. It is worth remarking that the MPE (1)
and (2) as they stand are not reparametrization covariant.
This represents a clear difference with other relativistic
theories for classical particles. As is widely known, the
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relativistic spinless particle action and equations of motion
are reparametrization invariant and reparametrization
covariant, respectively. On the other hand, the LTT and
its corresponding equations of motion for massive spinning
particles [6,8] behave correctly under reparametrization.
The dynamical equations derived from LTT are different
from the MPE. They are [8]

DPμ

Dλ
¼ −

1

2
Rμ

ναβuνSαβ;

DSμν

Dλ
¼ Sμασαν − σμαSαν ¼ Pμuν − uμPν; ð4Þ

where D=Dλ is the λ-parametrized covariant derivative,
uμ ¼ dxμ=dλ, and Pμ ¼ ∂L=∂uμ is the conjugated momen-
tum vector obtained from the Lagrangian L. Note that λ is
an arbitrary parameter. Also the antisymmetric spin tensor
is Sμν ¼ ∂L=∂σμν, where σμν is the antisymmetric angular
velocity tensor. It is shown in Ref. [5] how to construct the
proper Lagrangian to obtain the one-particle theory for
spinning particles [note that Eqs. (4) are reparametrization
covariant]. Theories which describe the dynamics of
classical spinning massive particles (both MPE and the
ones defined in [6,8]) are usually written in terms of
variables whose number exceeds the one strictly needed
to describe their orientation. In fact, they are written in
terms of the six independent components of an orthonormal
tetrad eðαÞμ as introduced in [5,7–11] or, equivalently, by
the six parameters of a Lorentz transformation matrix as
originally done by Hanson and Regge in their spinning top
model [6]. Thereby, associated to the tetrad degrees of
freedom, it appears σμν ¼ eðαÞμDλeðαÞν and its canonically
conjugated antisymmetric tensor Sμν.
Although the MPE (1) and (2) and the LTT equations (4)

differ from one another (and produce different results),
both theories require that the six (Lorentz transformation
parameter) orientation degrees of freedom be constrained
in order to be reduced to three rotational degrees of
freedom only, to appropriately describe spin. Two types of
constraints have been suggested in the literature. The first
one, known as the Tulczyjew constraint [17], reads

PμSμν ¼ 0: ð5Þ
A second type, known as the Mathisson-Pirani constraint
[18], is suggested to be

uμSμν ¼ 0: ð6Þ
The two previous constraints give rise to different dynam-
ics for the particle. The Tulczyjew constraint (5) has been
used frequently in the literature to properly define the right
behavior of the spinning particle in the momentum rest
frame (see for example Refs. [19–22]). Also it is important
to point out that the Lagrangian formalism to obtain the
third-order MPE developed in Ref. [4] is constructed to
consider the Mathisson-Pirani constraint only.

The purpose of this comment is to show the severe
problems, mentioned in the beginning, that arise in the
MPE (1) and (2) [and that do not appear in the LTT (4)].
Recently, in Refs. [1,23], it was suggested that MPE
correctly describe a classical spinning particle and that
constraint (5) is not adequate to describe the spinning
particle dynamics at velocities close to the speed of light
[favoring constraint (6)], as the results derived from MPE
(using the Tulczyjew constraint) seem contrary to physical
intuition. The importance of the work developed in
Refs. [1,23] is to remark that it is not possible to indistinctly
use the two constraints (5) and (6), as they produce different
results.
However, we show in the following that there are several

limitations in the description of high velocity particles with
MPE, as well as some problematic issues with MPE. First,
let us focus on Eq. (2) for the evolution of the spin.
Contracting that equation with uμ we get the relation

uμ
DSμν

Ds
ð1 − uαuαÞ ¼ 0: ð7Þ

As uμDSμν=Ds ≠ 0, Eq. (2) implies

uμuμ ¼ 1 ð8Þ

(using the appropriate signature), and thus the MPE always
describe timelike particles. This also has been highlighted
by other authors working on MPE [4], where the timelike
behavior of the velocity is used in the theories.
Furthermore, the MPE imply the constraint uμDsuμ ¼ 0
by consistency. This last condition seems to have remained
unnoticed in Ref. [1]. This could appear as a desirable
feature of the MPE, because it is a direct consequence of the
MPE regardless of the constraint used. One may reasonably
state that uμuμ ¼ 1 is a constituent part of MPE. Therefore,
it is a result that is independent of the constraints (5) and
(6). This is an important conclusion derived from the heart
of MPE. In Ref. [1] an attempt to study the high-relativistic
velocity motion of the spin particle is made using the
Tulczyjew constraint (5). The authors of Ref. [1] claim to
find an exact solution of the MPE that has physical
inconsistencies as the velocity of the particle approaches
or is larger than the speed of light. However, as it was
simply shown in Eq. (7), the motion of the particle
described by the MPE is always restricted to be subluminal
in a consistent manner for any constraint. Therefore, the
conclusion of Ref. [1], that superluminal behavior is
obtained in the MPE when the Tulczyjew constraint (5)
is used, is incorrect. Another way to see this point is by
using the definition of the momentum (3) in the MPE.
Contracting it with Sαμ, we obtain

SαμPμ ¼ mSαμuμ þ Sαμuβ
DSμβ
Ds

: ð9Þ
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Now, using Eq. (2) in the right-hand side we obtain the
relation

SαμPμ ¼ mSαμuμ þ ðuνuνÞSαμðPμ −muμÞ; ð10Þ

which again implies a timelike behavior for the particle
velocity, uνuν ¼ 1.
Despite the previous analysis, we can also show that the

momentum definition (3) induces severe physical prob-
lems. Contracting (3) with uμ we obtain the relation

uμPμ ¼ muμuμ ¼ m; ð11Þ

where the second equality is due to the previous results (in
the framework of MPE). This is the mass definition
according to Ref. [1], and it has already been used in that
work without recognizing its origin in the timelike behavior
of the velocity. In Ref. [1], it also has been recognized that
m is a constant of motion when using the Mathisson-Pirani
constraint. On the other hand, we can also contract (3) with
Pμ to obtain

PμPμ ¼ m2 þ Pμuν
DSμν

Ds
¼ m2 −

D
Ds

ðPμuνÞSμν; ð12Þ

where we have used (11) and the fact that PμuνSμν ¼ 0 for
any choice of the constraint (5) or (6). Now, notice that it is
well known that a desirable feature of the physical
momentum should be that PμPμ is a constant of motion,
implying that the momentum vector remains timelike
along the motion in all frames and that the energy
density is positive [1,5,7–9,24]. Even more, in Ref. [1] it
is also recognized that under constraint (5), the MPE
should produce the constant of motion PμPμ. Here two
different problems emerge depending on what constraint is
used. If we use constraint (6), the above equation is
rewritten as

PμPμ ¼ m2 − Pμ
Duν
Ds

Sμν: ð13Þ

As m is constant under this constraint, and PμDsuνSμν ≠ 0
in general, PμPμ can hardly be a constant of motion when
using the Mathisson-Pirani constraint. On the contrary, if
we use constraint (5), m is no longer a constant of motion.
Its evolution can be found from Eq. (1) [using the
normalization of the velocity obtained from (2)] to be

Dm
Ds

¼ Duν
Ds

DðuμSνμÞ
Ds

: ð14Þ

Besides, under the Tulczyjew constraint (5), Eq. (12)
becomes

PμPμ ¼ m2 þ 1

2
Rμ

αβγuαSβγuνSμν; ð15Þ

where we have made use of Eq. (1) forDsPμ. It is clear that,
using the MPE with the Tulczyjew constraint (5), PμPμ is
not a constant of motion (which gives rise to a contradiction
with the results discussed in Ref. [1]) unless m fulfils
an extra constraint imposed by (14) to match exactly
the right-hand side of Eq. (15). In other words, PμPμ ¼
constant if

1

4

D
Ds

ðRμ
αβγuαSβγuνSνμÞ

¼Duν
Ds

DðuμSνμÞ
Ds

�
PαPα −

1

2
Rλ

αβγuαSβγuνSλν

�
1=2

ð16Þ

is always satisfied. This means that, under the Tulczyjew
constraint, the MPE (1) and (2) contain the extra constraint
(16) that it is not usually mentioned, and that every exact
solution of the MPE system should satisfy. It is very
unlikely that constraint (16) will be satisfied in general for
any metric.
As was discussed in Ref. [5], a correct formulation for the

dynamics of a spinning particle is obtained using a
Lagrangian treatment, and it gives rise to Eqs. (4). This
formulation has been studied extensively [6,8,9]. Without a
proper Lagrangian theory, a canonical momentum cannot be
appropriately defined. With a Lagrangian theory, the lack of
parallelism between velocity and momentum can be well
studied and understood (which is a usual behavior in
quantum theories). Of course, the momentum obtained
from the Lagrangian formalism is nothing similar to (3).
Interestingly enough, it has been shown in Ref. [5,8] that the
Tulczyjew constraint emerges naturally from theLTT.On the
other hand, the problems coming from constraint (6) have
also been recognized in Ref. [24], in favor of constraint (5).
Equations (13)–(16), which stem fromMPE, do not imply

(for any constraint) that the two Casimir functions of the
Poincaré group for massive spinning particles, namely the
mass m2 ≡ PμPμ and the spin SμνSμν=2, are constants of
motion. Any model which attempts to describe tops reason-
ably should imply that these quantities are always conserved
for a spinning particle moving on any curved background or
otherwise the particle would change its identity (mass) as a
consequence of its evolution in a (classical) dynamics
context. The Lagrangian treatment always implies that the
two Casimir functions are conserved, and in doing so, it
ensures that the momentum is always timelike.
The relation between momentum and velocity in LTT is

different from the one obtained in (3). The behavior of the
velocity can be calculated from Eqs. (4). After some
algebra, we obtain that

uμuμ ¼
�
1

m
uμPμ

�
2

−
1

2m2
Rν

sγδuμSμνusSγδ

þ 1

m2

Duμ
Dλ

PνSμν; ð17Þ
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and thus uμuμ could be lightlike or spacelike [compare with
(11)]. Notice that the last term vanishes for the Tulczyjew
constraint. Thereby, the velocity is not restricted to be
subluminal, and thus the Lagrangian theory could be the
appropriated description to study highly relativistic fer-
mions. However, the momentum maintains its desired
timelike behavior, as in any well-behaved relativistic theory
[Eq. (15) of theMPE implies that the momentum could have

a meaningless lightlike or spacelike nature]. It is important
to emphasize that superluminal behavior is not a new
phenomenon in theories describing spinning particles [25].
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