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a b s t r a c t

In order to establish a production plan, an open-pit mine is partitioned into a three-dimensional array of

blocks. The order in which blocks are extracted and processed has a dramatic impact on the economic value

of the exploitation. Since realistic models have millions of blocks and constraints, the combinatorial optimiza-

tion problem of finding the extraction sequence that maximizes the profit is computationally intractable. In

this work, we present a procedure, based on innovative aggregation and disaggregation heuristics, that al-

lows us to get feasible and nearly optimal solutions. The method was tested on the public reference library

MineLib and improved the best known results in the literature in 9 of the 11 instances of the library. More-

over, the overall procedure is very scalable, which makes it a promising tool for large size problems.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.
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. Introduction

The mining industry is a very relevant economic sector. In Chile,

here this research has been carried out, copper exports account for

bout 62.5 percent of the total exports and represent a 12 percent of

he GDP (Cochilco, 2013).

Mines can be either open-pit or underground, the actual deci-

ion depending on different economic and technical considerations.

n this paper we focus on open-pit mines, in which mineral is ex-

racted by digging from the surface. Open-pit mines are preferred to

nderground mines because they can reach higher production levels,

nd have smaller operational costs. However, most of the time, it is

ecessary to remove material with poor or none ore content (waste)

n order to have access to economically profitable material.

The actual value of a mine strongly depends on the order in which

he material is extracted and processed. In order to define what

ortions of the terrain must be mined at different moments during

he life-time of the mine, the planning horizon is discretized into

ime-periods (or time-slots). In turn, the terrain is divided into reg-

lar blocks, which are arranged in a 3-dimensional array. For each
∗ Corresponding author. Tel.: +56 223037335.
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lock, estimations on the ore content, density and other relevant

ttributes are constructed by using geostatistical methods. A block

odel, namely, the set of all blocks and their attributes, is the main in-

ut to the mine planning process. Using this information, it is possible

o build a block scheduling, which specifies an extraction time-period

or each block. The final value of a mine is therefore determined by

he block model and the block scheduling.

The feasibility of a block scheduling for the open-pit method de-

ends on accessibility and extraction constraints. First, before extract-

ng one block, all the blocks above it must have been extracted. More-

ver, stability of the walls must be ensured. This is expressed in terms

f slope angles that must be satisfied at each moment. All these con-

traints are translated into precedences between blocks. On the other

and, there are certain capacity constraints, as well as other limita-

ions, that are inherent to the process. The amount of material to be

ransported and processed at each period is subject to upper bounds

iven by transportation and plant capacity, respectively, which are

sually expressed either in tons or hours. Further on, processed mate-

ial must satisfy some blending constraints as well. The efficiency (or

ven feasibility) of the plant process depends on the attributes of the

ombination of blocks that are processed at a given period. For exam-

le, it may not be feasible to process alone a block with a high content

f a certain pollutant (say arsenic), even it has a very high ore grade.

ixing it with another block (even a low ore-grade one) and pro-

essing them simultaneously may be possible because the blending
EURO) within the International Federation of Operational Research Societies (IFORS).
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provides an acceptable amount of the pollutant. Blending constraints

can be either upper or lower bounds and apply to certain attributes

of the blocks to be processed. Finally, the decision of how to process

a block may depend on different parameters. Indeed, it is quite com-

mon for a mine to have more than one processing possibility (con-

sidering a block as waste and sending it to a waste pile is already

one possibility). Depending on the final process or destination of the

block, the net profit perceived by the mine is different, as are the

blending constraints that apply to the process and the resource re-

quired to achieve this processing (different plant capacities, for ex-

ample).

In this work, we propose and test a new numerical method to de-

termine the block scheduling that maximizes the net present value

for the exploitation of an open-pit mine. Our proposal is based on a

combination of two approaches, that allow us to reduce the size of

the problem and make it computationally tractable. The procedure

aggregates blocks, uses integer programming techniques to solve in-

crementally the aggregated problem and produces solutions for the

original instance in an innovative fashion. Using this methodology,

we are able to provide nearly optimal solutions for some realistic-size

problems that are otherwise numerically inaccessible.

The procedure was proved on the instances of the public reference

library named MineLib (Espinoza, Goycoolea, Moreno, & Newman,

2013), which has three different types of open-pit mine planning

problems for which good feasible solutions have been reported: the

ultimate pit limit problem and two variants of open-pit production

scheduling problems, for fictional cases, but also for real-life mine

(for example, the instances KD, P4HD, W23 and McLaughlin corre-

spond to actual copper and gold mines located in North America). We

focus on the Constrained Pit Limit Problem (CPIT), which consists of

the maximization of the net present value (NPV) of the exploitation

over the time horizon, subject to precedence and operational con-

straints. The results obtained by our procedure improve nine out of

the eleven instances available in the MineLib library. Moreover, the

remaining two cases are within a gap of 0.2 percent of the optimum

solution.

The paper is organized as follows: In Section 2 we provide a brief

summary of the most relevant (and best-known) approaches found

in the literature. Section 3 contains all the details concerning the

modeling, notation and problem statement. The description of our

methodological proposal, as well as the different heuristics in-

volved, are presented in Section 4. All the implementation details,

and the numerical results obtained are given and commented in

Section 5. Finally, Section 6 contains some concluding remarks and

perspectives.

2. Related work

A very general formulation, due to Johnson (1968), presents the

block scheduling problem under slope, capacity and blending con-

straints (the last ones given by ranges of the processed ore grade)

within a multi-destination setting, i.e., the optimization model de-

cides what is the best process to apply to a given block. Unfortunately,

at the time of its publication, the model was too complex to be solved

in realistic case studies.

As an alternative to the work of Lerchs and Grossman (1965) pro-

posed a very simplified version of the problem in which block des-

tinations are fixed in advance, slope constraints are considered, but

capacity or blending constraints are not. In this case, the problem re-

duces to selecting a subset of blocks such that the contained value is

maximized while the precedence constraint induced by the slope an-

gles are held. This problem is known as the ultimate or final pit prob-

lem. Lerchs and Grossman presented an efficient (polynomial) algo-

rithm for solving the ultimate pit problem, and showed that reducing

the economic value of any given block makes the optimal solution of

the ultimate pit problem to shrink, in the sense that, if the values of
he blocks decrease, the new solution is a subset of the original one.

herefore, it is possible to produce nested pits and, by trial and error,

onstruct block schedules that satisfy other constraints like capacity.

resent-day commercial software, like Gemcom (2011), is based on

hese facts.

As it turns out, while the model proposed by Johnson (and oth-

rs) has always been regarded as superior in terms of the value it

an add to a mining plan, it has been only recently that new devel-

pments (especially in algorithms) have allowed to solve or approx-

mate this kind of models. Indeed, a main motivation of this work is

o contribute to transform the theoretical superiority of these math-

matical models into a practical one.

Picard (1976) showed that the ultimate pit problem is equivalent

o the maximum closure problem in which, given a directed graph

= (V, A) with weight function w defined over the nodes, one looks

or a subset of nodes U ⊂ V such that
∑

u∈U w(u) is maximal but

∈ U, (u, v) ∈ A ⇒ v ∈ U . The maximum closure problem, in turn, can

e reduced to the min cut problem (for more details see Nemhauser &

olsey, 1988). Using this fact, Hochbaum and Chen (2000) proposes

o attack the ultimate pit problem by means of existing efficient algo-

ithms for the min cut problem.

Caccetta and Hill (2003) use a customized version of the branch-

nd-bound algorithm to solve problems up to a few hundreds of

housands of blocks under blending and capacity constraints. Their

ethod can be used only for upper bounds. Bley, Boland, Fricke, and

royland (2010) use a similar model but incorporating additional cuts

ased on the capacity constraints that strengthen the formulation of

he problem, in the sense that the value of the linear relaxation pro-

ides a tighter bound. They test this approach on small instances (up

o 500 blocks and 10 time-periods) on which they show very interest-

ng improvements in the computational time. Unfortunately, it is not

lear how to scale the technique for larger instances, as the number

f cuts may explode very quickly. A closely related strategy is used by

ricke (2006), in order to find inequalities that improve various inte-

er formulations of the same model. Gaupp (2008) reduces the size of

he problem by deriving minimum and maximum extraction periods

or each block, from the capacity constraints, and eliminating some of

he variables. The method then applies Lagrangian relaxation to solve

he problem.

The next two papers address the problem under consideration,

ut considering only upper bounds on resources consumption con-

traints: First, Amaya et al. (2009) starting from an initial feasible so-

ution and then iteratively fix parts of the incumbent solution and

e-optimize the complement. At each iteration, this defines an inte-

er programming sub-problem that is solved exactly. They are able

o solve instances of up to 4 million blocks and 15 time periods in 4

ours. In turn, Lamghari, Dimitrakopoulos, and Ferland (2014) use a

ybrid method based on linear programming and variable neighbor-

ood descent. The authors introduce a two-phase solution method:

n the first one, they solve a series of linear programming problems

o generate an initial solution. In the second phase, a variable neigh-

orhood descent procedure is applied to improve the solution. The

ethod is tested on some benchmark instances from the literature

some of MineLib), showing new best-known solutions for almost

ll of the instances, when compared to the solutions reported in

amghari et al. (2014) and Espinoza et al. (2013). Indeed, only in two

f these instances the solutions obtained have a larger gap, but this is

till at much 0.2 percent.

Following Picard and Hochbaum ideas, Chicoisne, Espinoza, Goy-

oolea, Moreno, and Rubio (2012) and Bienstock and Zuckerberg

2010) address a problem which is very close to the one considered

n this paper. However, they use Lagrangian relaxation on all but the

recedence constraints (in this case the problem reduces to the ul-

imate pit problem). Using this approach, Chicoisne et al. focus on

he case where there exists only one destination and one capacity

onstraint per period, and develop a customized algorithm (CMA) for
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Table 1

Main notation used in the article.

Symbol Meaning

B Set of blocks

i, j Blocks (elements of B)

s, t Time-periods

T Time horizon (number of time-periods)

T Set of time-periods

A Set of precedence arcs

R Set of resources

vi Economic value (net profit) of block i

ρ Discount factor (depends on discount rate)

a(i, r) Consumption of resource r by block i

C−
rt Lower bound on resource r at time-period t

C+
rt Upper bound on resource r at time-period t
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A

he linear relaxation and a procedure (based upon topological sort-

ng) to obtain an integer feasible solutions from it. They report good

olutions for the problem in large instances (over one million blocks).

oreover, Espinoza et al. (2013) published a library of standardized

nstances, named MineLib, for which they apply the above tech-

iques and obtain very good results as well. Respectively, Bienstock

nd Zuckerberg consider all types of constraints, but focus on the res-

lution of the linear relaxation only, and report very good improve-

ents in resolution time with respect to the standard LP solvers.

Other work which is close to ours is due to Cullenbine, Wood,

nd Newman (2011). They propose a heuristic using Lagrangian re-

axation on capacity constraints (lower and upper bounds) plus a slid-

ng window strategy in which extraction variables for late periods are

elaxed while variables corresponding to early periods are fixed in-

rementally. They work on a slightly different problem in which the

ottom of the pit must contain at least two adjacent blocks, and re-

ort improvements in the execution time with respect to standard

olvers. A recent work of Lambert and Newman (2014) employs a tai-

ored Lagrangian relaxation, which uses information obtained while

enerating the initial solution to select a dualization scheme for the

esource constraints. They report solutions for models having up to

5,000 blocks and 10 time-periods at 36,000 seconds, with an opti-

ality gap of 6 percent in the largest case.

Another approach to tackle large-scale problems is based on ag-

regation procedures. Dagdelen and Johnson (1986), Dagdelen and

kaike (1999) and Ramazan, Dagdelen, and Johnson (2005) work

n a model with fixed cut-off grades, upper and lower bounds for

lending, but only upper bounds for the capacity. They aggregate

locks into what they call fundamental trees (subsets that have posi-

ive value, respect slope constraints and are minimal in some sense)

nd present a relatively small case study (less than 15,000 blocks).

oland, Dumitrescu, Froyland, and Gleixner (2009) propose a differ-

nt procedure, in which they aggregate blocks into what they call

ins. The extraction of individual blocks is controlled with continu-

us variables, but binary variables are used at the bin level to impose

lope constraints. They are able to solve instances of about 100,000

locks.

Approaches not based in linear programming include genetic al-

orithms and tabu search. Zhang (2006) uses Genetic algorithm com-

ined with a block aggregation technique based on topological sort

o reduce of number of variables in the model. The method simul-

aneously determines an ultimate pit and an optimal block extrac-

ion schedule that maximizes the net present value by specifying

hether a block should be extracted and where it should be sent

waste dump or processing plant), subject to a number of constraints

ncluding maximum wall slope, as well as mining and processing ca-

acities. By this approach, Zhang concludes that the computational

ime can be effectively reduced without compromising optimality.

he method was implemented and tested against BHP-Billiton’s ex-

sting industrial benchmark achieved by the commercial optimizer

LOG CPLEX (CPLEX, 2013). According to Amankwah (2011), the na-

ure of the constraints poses a major difficulty in the use of genetic al-

orithms to solve the mine planning problem. Newman, Rubio, Caro,

eintraub, and Eurek (2010) point out that Zhang does not assess the

ractical consequences of aggregation and does not provide a disag-

regation procedure. In turn, Tabesh and Askari-Nasab (2011) pro-

ose an algorithm that aggregates blocks into mining units and uses

abu search to calibrate the number of final units. The resulting prob-

em is then solved using standard integer programming algorithms.

he aggregation technique is interesting, because it is based on a

imilarity index that considers attributes like rock type, ore grades

nd the distance between the blocks. The tabu search procedure is

hen used to further aggregate the blocks, while trying to balance

he resulting loss of selectivity. The procedure is tested on 5 differ-

nt instances (with up to 20,000 blocks), which show a variety of re-

ults where improvements in the objective function value (NPV) and
omputational time are not completely consistent. The authors indi-

ate that further research is required.

A completely different approach, suggested by Matheron (1975),

ses continuous models to describe the problem. The pits are de-

cribed by profiles, which are functions that determine the current

urface of the pit. Block attributes are modeled as density functions,

hose integrals have to be either maximized or kept within certain

anges. This approach was followed by Alvarez, Amaya, Griewank, and

trogies (2011), showing existence of solutions under some hypothe-

es on the mass density function.

Additional reviews of operations research in mining can be found

n Osanloo, Gholamnejad, and Karimi (2008) for models and algo-

ithms and Newman et al. (2010) for mining in general.

. Modeling, notation and problem statement

We consider a set B of blocks and set N = |B|. We denote the

locks with indices i, j ∈ B, unless otherwise stated. Similarly, we

onsider T ∈ N time-periods and denote individual time-periods with

, t = 1, 2, . . . , T . The number T is called the time horizon. The set of

ime-periods is denoted by T = {1, 2, . . . , T}.

Slope (precedence) constraints are encoded as a set of arcs A ⊂
× B: (i, j) ∈ A means that block j has to be extracted before block

. We say, in this case, that block j is a predecessor of block i, which

s a successor of j. Notice that arc (i, j) goes from the successor to the

redecessor.

In this work we address a simplified version of the problem in

hich the decision of the destination of the block is done before-

and. Therefore, the net profit (which can be negative) of process-

ng block i is already known and noted as vi ∈ R. The discounted net

rofit of processing block i at time-period t is ρtvi ∈ R, with dis-

ount factor ρ = 1
1+dr

, where dr represents the discount rate. We

efine a set of resources R, and a(i, r) ∈ R as the quantity of re-

ource r ∈ R used when block i ∈ B is processed. For each time-

eriod t, lower and upper bounds on the consumption of resource

is given by the quantities C−
rt ∈ {−∞} ∪ R and C+

rt ∈ {+∞} ∪ R,

espectively.

Each block is processed in the same time-period in which it is ex-

racted from the mine (that is, we do not allow to stock material for

uture processing). As usual in these models, we assume that extrac-

ion, handling and processing of a block is done within a time-period

ength. While the modeling can be easily extended to the general

ase, the heuristics presented in this article do not always work in

he case in which blending constraints apply, therefore, we assume

here are no such constraints. Table 1 summarizes the notation.

A block scheduling is a function τ : B → {1, 2, . . . , T,∞} where

(i) is the time-period in which block i is extracted, hence, a block

cheduling must satisfy the precedence constraints, that is, if (i, j) ∈
then τ (i) ≥ τ (j). If τ is a block scheduling then the sets P = τ−1(1)
1
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and Pt = Pt−1 ∪ τ−1(t) for t > 1 are called pits. We observe that Pt ⊂
Pt+1 and say that the pits are nested.

The open-pit block scheduling problem is defined on the following

variables. For each i ∈ B, t ∈ T:

xit =
{

1 if˜block˜i˜is extracted by time-period˜t,

0 otherwise.

The interpretation of variable xit is by time-period, that is xit = 1 if

and only if block i has been extracted (and processed) at some period

s with 1 ≤ s ≤ t. It is useful to introduce the following auxiliary vari-

ables for i ∈ B: �xi1 = xi1, and �xit = xit − xi,t−1 for t = 2, 3, . . . , T .

We have xit = ∑t
s=1 �xis and �xit = 1 if, and only if, block i is ex-

tracted exactly at time-period t.

The mathematical program we address is the following:

(OPBSP) max

T∑
t=1

N∑
i=1

ρtvi�xit (1)

xit ≤ x jt (∀(i, j) ∈ A)(∀t ∈ T) (2)

�xit ≥ 0 (∀i ∈ B)(∀t ∈ T) (3)

∑
i∈B

a(i, r)�xit ≤ C+
rt (∀r ∈ R)(∀t ∈ T) (4)

∑
i∈B

a(i, r)�xit ≥ C−
rt (∀r ∈ R)(t ∈ T) (5)

xit ∈ {0, 1} (∀i ∈ B)(∀t ∈ T) (6)

Expression (1) presents the objective function, which is the dis-

counted value of extracted blocks over the time horizon T. In turn, (2)

corresponds to the precedence constraints given by the slope angle

and (3) means that blocks can be extracted only once. Moreover, (4)

and (5) state the maximum and minimum resource consumption in

each time-period, respectively. Finally, (6) states that all the variables

assume binary values.

For a block model B, precedence arcs A, block values V = (vi)i∈B
and attribute matrix A = (a(i, r))i∈B,r∈R, we will use the notation

OPBSP(B,A,V, A, T, ρ,C+,C−) to denote an instance of the open-pit

block scheduling problem for a certain time horizon T, discount

factor ρ , and resource limit matrices C+ = (C+
r,t)r∈R,t∈T and C− =

(C−
r,t)r∈R,t∈T. We will omit some of the parameters if they are clear

from the context.

It is important to emphasize that we present the model with lower

bounds on operational resource capacities (5) to keep the model

consistent with CPIT. However, all of the instances published in

MineLib have these bounds equal to zero.

4. Block Aggregation Algorithm

We present now the Block Aggregation Algorithm to approximately

solve the open-pit block scheduling problem, when the original in-

stance of OPBSP cannot be solved directly.

The procedure first aggregates blocks, then it solves incrementally

the aggregated problem (using integer programming techniques) and

finally, it produces feasible solutions for the original instance. The al-

gorithm has two stages: a forward stage, where the procedure tries to

solve the problem using a simplified block model (obtained by the re-

blocking procedure described in Section 4.1.2); and a backward stage,

in which the solution from the forward stage is used to fix some vari-

ables in the original problem. Fig. 1 outlines the procedure.

Although block aggregation appears to be simple, the reverse step

(the forming of a block scheduling for the original disaggregated

model) is not so straightforward. In fact, it is challenging in terms

of implementation.
.1. The forward stage

The goal of the forward stage is to reduce the number of variables

y means of block aggregation. The stage can be described as follows:

0. Set currentInstance ← (B,A,V, A, T, ρ,C+,C−)
1. SOLVE OPBSP(currentInstance). (See Section 4.1.1)

2. If step 1 found a feasible solution,then go to backward stage

(see Section 4.2).

3. else REBLOCK (see Section 4.1.2) to produce a new instance

currentInstance ← (BR,AR,V(BR), A(BR), T, ρ,C+,C−).

and go to step 1.

This recursive procedure is very flexible: it can use any subroutine

o SOLVE the instance of the problem in step 1, and to REBLOCK the

odel in step 3. In the following, we will describe the procedures

sed in our case studies (Section 5) which proved to be very effective.

.1.1. Solving OPBSP(B,A,V, A, T, ρ,C+,C−).

The standard approach of solving directly the IP formulation is

ighly unpractical for large-scale problems. Since the number of

locks is considerably larger than the number of periods, a reduction

n the number of time-periods can have a great impact in reducing

he overall number of variables and constraints. We propose the fol-

owing:

Incremental Heuristic (HInc): This heuristic tries to solve the

roblem incrementally: it considers only fewer time-periods (which

e call sliding time window or just time window). Then, the heuristic

olves and removes the scheduled blocks in the current time win-

ow. The process is repeated with the remaining blocks and time-

eriods, adjusting the constraints accordingly and moving the time

indow until the horizon planning is completed. In order to fix ideas,

he simplest approach is to consider the time window as only one

ime-period and then solve the problem period by period.

More precisely, HInc considers an instance of the open-pit block

cheduling problem OPBSP(B,A,V, A, T, ρ,C+,C−). Given B ⊂ B,

efine:

• A(B) = A ∩ (B × B),
• V(B) = (vi)i∈B, and
• A(B) = (a(i, r))i∈B,r∈R

Suppose that OPBSP(T) cannot be solved, but OPBSP(T ′) can, for
′ < T. For simplicity, we describe the heuristic when T/T ′ = n ∈ N.

hus, let also C+
k

and C−
k

be the maximum and minimum resource lim-

ts for time-periods (k − 1)T ′ + 1, . . . , kT ′, with 1 ≤ k ≤ n. The heuris-

ic then works as follows:

1. Set n = T/T ′, k = 1, P0 = ∅.

2. While k ≤ n:

(a) Set Bk = B \ Pk−1.

(b) Solve OPBSP(Bk,A(Bk),V(Bk), A(Bk), T ′, ρ′,C+
k

,C−
k
).

(c) Let �k = ⋃kT ′
s=(k−1)T ′+1 τ−1(s) be the set of extracted blocks

and set Pk = Pk−1 ∪ �k.

(d) k ← k + 1.

3. Return the block scheduling τ given by τ(i) = t0 if i ∈ Pt0
for

some t0, or τ = ∞ if there is no t such that i ∈ Pt.

otice that τ is well-defined as the sets P1, P2, . . . , Pn are nested.

Fig. 2 illustrates how the block scheduling is generated, with a

ime-horizon of T = 3 and a time window T ′ = 1: in the first time-

eriod, the extracted blocks are the set P1. Then these blocks are re-

oved and the procedure is repeated for the second period. During

he second period, the extracted blocks correspond to the set P2�P1.

inally, the process is repeated for the third and last period.

Although this procedure does not necessarily produce optimal re-

ults (see Example 1), it can give a significant improvement in prac-

ice, as we describe in Section 5.
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Fig. 1. Diagram of iterations for the block aggregation heuristic.

Fig. 2. A graphic example of incremental heuristic HInc with T ′ = 1 and T = 3.

Fig. 3. A small 2-D mine example.
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xample 1. The small 2-dimensional mine displayed in Fig. 3 is to

e exploited in a 5-period time horizon. Each number represents the

conomic value of the corresponding block. For simplicity we assume

hat each block has an unit tonnage, the capacity per time-period is

lso one unit (hence exactly one block can be extracted in each time-

eriod), and there is no discount rate.

We index the blocks by integer coordinates as in a matrix, so the

op-left block is identified with coordinates (1, 1) and the bottom-

ight block has coordinates (2, 4). If the slope angle is 45°, block (x,

) has predecessors (x − 1, y − 1), (x − 1, y) and (x − 1, y + 1) if x = 2

when such blocks exist) and no predecessors if x = 1.

The optimal scheduling is to extract blocks (1, 1), (1, 2), (1, 3), (1,

) in any order during the first four periods, and then to extract block

2, 3) at period 5. The corresponding value is NPV = 1 + ( − 1) + ( −
) + ( − 1) + 10 = 8. However, the incremental heuristic (T ′ = 1) will

elect block (1, 1) at the first iteration, and no blocks afterwards. The

alue of this solution is 1, which is suboptimal.
.1.2. Reblocking

In this step, we do not reduce the number of time-periods, but we

educe the number of blocks by aggregating (or reblocking) them into

arger units. The motivation comes from the fact that while a block

odel consists of thousands to millions of blocks, the decision of ex-

racting a specific block at a certain time-period may be too atomic.

We consider a procedurereblock that takes a block model B and

roduces a new one, say B̃, so that the number of blocks in the new

odel is small compared to the original block model. The idea is that
˜ keeps certain properties of the original one, then solving OPBSP
n B̃ can be used to produce solutions for the original model. This is

one using the following:

Block aggregation heuristic (HReb): Let us introduce some no-

ation first. We consider that reblock : B → 2B thus Im(reblock) is

partition of B. We identify Im(reblock) as a new block model BR,

o that each block in BR has the same set of attributes of the blocks

n the original block model. We will use notation iR, jR to refer to el-

ments of BR in order to prevent any confusion with blocks of the

riginal model. Finally, we will also assume that A is also translated

nto AR in a “compatible” way that allows us to use a scheduling in
R to construct a scheduling in B respecting the slope constraints.

Note that reblock is defined in a very general way. It may depend

n geometric arguments (distances between blocks, for example) or

lock characteristics (lithology and ore grades). In this work, we con-

ider geometric aspects, defining how many blocks i ∈ B are included

n each aggregated block iR ∈ BR. Considering that each block is iden-

ified by coordinates (x, y, z), each aggregated block iR = (xR
i
, yR

i
, zR

i
)

ill be composed by the nR × nR × nR original blocks with coordinates

xR
i

nR + jx, yR
i

nR + jy, zR
i

nR + jz), with jx, jy, jz ∈ {0, · · · , nR − 1}. An

xample (only in 2 dimensions for clarity) can be seen in Fig. 4.

.2. The backward stage

This is the most important part, since it allows us to obtain a

cheduling for the original block model starting from the aggregated

odel solution. We assume that the problem was solved in the for-

ard stage for the instance

PBSP(BR,AR,V(BR), A(BR), T, ρ,C+,C−),

o we have a block scheduling τ R for the reblocked model and we

ant to produce a solution for the original instance. This involves the

ollowing steps:

1. Partition BR into ∂B and B̊ where ∂B is the set of aggregated

blocks in the borders, which are those with neighboring blocks

extracted at a different time period, and B̊ is the complement.

2. Fix the extracting period for the original blocks that corre-

spond to elements of B̊ ⊂ BR, i.e. the set of blocks such that all

direct predecessors and successors are extracted at the same

time-period. This is, iR ∈ B̊ if and only if the set of aggregated

iR ∈ BR satisfies that
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Fig. 4. Example of the block aggregation heuristic.(a) Original block model. (b) The aggregated model. (c) The scheduling problem is solved. (d) The extraction period is fixed for

the Inner blocks. (e) The Border blocks are left for solving at the original scale. (f) The final solution is made.
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(a) ∀(iR, jR) ∈ AR, τ R(iR) = τ R( jR)
(b) ∀( jR, iR) ∈ AR, τ R(iR) = τ R( jR).

Then if iR = reblock(i), we will assume that block i ∈ B is ex-

tracted at time-period τ R(iR).

Add the constraints xit = 0 for t < τ R(iR) and xit = 1 for t ≥
τ R(iR), for any i ∈ B such that reblock(i) ∈ B̊.

3. For the original blocks i that correspond to elements of

∂B, compute the following bounds, considering that jR =
reblock( j):

(a) t−(i) = max{τ R( jR) : (i, j) ∈ A, jR ∈ ∂B}
(b) t+(i) = min{τ R( jR) : ( j, i) ∈ A, jR ∈ ∂B}
Add the constraints xit = 0 for t < t−(i) and xit = 1 for t >

t+(i), for any i ∈ B such that reblock(i) ∈ ∂B.

4. Adjust capacities as:

(a) ∂C+
rt = C+

rt − ∑
i∈It

a(i, r), (∀r ∈ R)(∀t ∈ T), where It = {i ∈
B̊ : τ R(iR) = t}
(b) ∂C−
rt = max{C−

rt − ∑
i∈It

a(i, r), 0}, (∀r ∈ R)(∀t ∈ T), where

It = {i ∈ B̊ : τ R(iR) = t}
5. Solve OPBSP(B,A,V, A, T, ρ, ∂C+, ∂C−) under the additional

constraints.

n illustration of this heuristic in a 2D-example can be found in Fig. 4,

n which individual blocks in B (a) are aggregated into big blocks con-

aining 9 of them (nR = 3). While the original block model has 315

locks, the reblocked model contains only 35 blocks (b). The problem

s then solved over these 35 blocks (c) and we set the blocks at the

nner part (denoted B̊) of each period (d). The original blocks corre-

ponding to these aggregated blocks are removed from the original

odel, the capacities are updated and the problem is solved for the

emaining blocks (e). Finally, all the blocks are scheduled by mixing

he solutions (f).
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It is important to note that the heuristic proposed is myopic. Thus,

t cannot guarantee that a feasible solution will be found, if exists. If

n auxiliary problem becomes infeasible in the backward stage, it will

e necessary to extend T′ in order to try to find feasibility.

. Implementation and results

In this section we discuss some specific details regarding the

mplementation of the Block Aggregation Algorithm introduced in

ection 4. We also present the best known results obtained for the

eference dataset MineLib. The idea is to illustrate how the differ-

nt heuristics scale when the size and number of blocks change. We

ill see that a relevant feature of this approach is the ability to solve

arge problems.

.1. Software and hardware

In order to implement the different algorithms, we used the

ineLink library developed at Delphos Mine Planning Laboratory

t Universidad de Chile (Delphos, 2013), which implements data

tructures to store the block model, precedence arcs and reblocking

outines. The library is written in C++, but there also exists a wrap-

er to use it from Python, a general-purpose free available scripting

anguage, version 2.7. Within this library, the BOS2® module imple-

ents the mathematical model and the heuristics described earlier.

he module uses the GUROBI® (Gurobi Optimization Inc., 2013) ver-

ion 5.6.3 for mixed integer linear optimization. Execution of the code

as done on an Intel Core i5-3570 machine with 16 gigabyte running

buntu version 12.10. This machine has 4 processors that run at 3.40

igahertz.

.2. Datasets and pre-existing solutions

The case studies were obtained from MineLib, a library of pub-

icly available test problem instances for open-pit mining. The dataset

an be found at http://mansci-web.uai.cl/minelib/. These instances

ome from real-world mining projects and simulated data. For each

nstance, the database contains the block model, precedence rela-

ions, additional constraints and parameters needed to formulate the

ptimization problem. A description of the instances (time-horizon,

umber of blocks, precedence arcs, variables and constraints) can be

ound in Table 2. For more details on MineLib see Espinoza et al.

2013).

We compare against pre-existing solutions for these instances

hat have been published in Espinoza et al. (2013) and Lamghari et al.

2014).

We briefly describe the algorithms involved in these two refer-

nces.

In Espinoza et al. (2013), the results were obtained by creating

rank of blocks, constructing a block-by-block sequence and then

ollowing this sequence up to saturate the capacities per period as

ollows:

1. Firstly, a solution x to the integrality relaxation of the problem

is obtained.

2. For each (possibly partially) extracted block, one computes

Q(i) = ∑T
t=1 t�xit + (T + 1)(1 − xiT ). The values Q(i) can be

interpreted as expected times of extraction.

3. A block-by-block sequence is produced by extracting the

blocks from the surface in increasing values of Q(i) while re-

specting the precedence constraints.

4. Finally, the block sequence is used to construct a block sched-

ule by filling each time period with blocks as long as the ca-

pacity constraints allow it.

In Lamghari et al. (2014), they present two ideas. A method to

roduce an initial solution, and a method to improve this solution
ased on a type of local search algorithm called Variable Neighbor-

ood Descent(VND) introduced in Hansen and Mladenović (2001) to

pproach what they call the Mine Production Scheduling Problem

MPSP), which corresponds to the CPIT, but with no lower bounds

or the capacity constraints.

Using the VND method on the solutions provided in MineLib,

hey are able to improve 4 of the 11 cases. Additional 4 cases are im-

roved by using their method to produce the starting solution and

hen applying VND.

Finally, notice that an upper bound to the value of any feasible so-

ution of the problem can be obtained by relaxing the integrality con-

traints of the variables. These upper bounds are reported in Espinoza

t al. (2013).

.3. Results

We tested the aggregation heuristic in all of the CPIT instances

f MineLib. In all of them, the problem was solved using one for-

ard stage and its corresponding backward stage. Table 3 shows the

nstances obtained in the forward and backward stages.

For all of the instances, forward stage was implemented using

Inc and HReb. HInc was set to start with a sliding time window
′ = 1 period (see Section 4.1.1). If no feasible solution was found,

he sliding window was increased in one period until a feasible so-

ution was achieved. The reblocking was implemented with HReb as

escribed in Section 4.1.2. The backward stage was implemented as

xplained in Section 4.2.

Finally, the complete procedure will be denoted as HInc+HReb.

Table 4 shows the results for the MineLib instances. For each

ase we report:

1. LP upper bound value, obtained by relaxing the integrality con-

straints on the variables, as reported in Espinoza et al. (2013).

This is used to compute the GAPs of the feasible solutions.

2. Source, indicating the paper in which the current best solution

was reported: “LDF14” corresponds to Lamghari et al. (2014)

and “EGMN13” to Espinoza et al. (2013).

3. GAP, the integrality GAP between the currently best known so-

lution and the LP upper bound.

4. Value, the value of the solution obtained using our heuristic.

5. GAP, the integrality GAP between the solution obtained by the

heuristic and the LP upper bound.

6. Time, the solution time of the heuristic. The time reported is

the real time (also known as wall-clock time) and it includes

all the pre-processing steps (precedence computations, Final-

Pit when needed).

The MineLib instances for the CPIT problem do not have lower

ounds on the operational resource constraints (they are equal to

ero and the coefficients of these constraints are positive). Then, it

s possible to apply a pre-processing, using a well known result such

hat any block schedule will be inside the final pit outline (Caccetta

Hill, 2003). Indeed, most of the instances in MineLib are already

olutions for the Final Pit. For the remaining instances (Marvin, SM2,

23 and McLaughlin), the pre-processing considered first to solve

he Final Pit problem. Then, only the blocks in the final pit were given

s the input for the heuristics. Thus, the problem size was consider-

bly reduced.

.4. Discussion

The aggregation heuristic HInc+HReb was able to find feasible

olutions for all of the problems in the MineLib dataset. Even more,

ur heuristic obtained the best known feasible solutions in all of

he instances, except for two instances (P4HD and SM2). Still, in

oth cases our heuristic reported solutions with GAP of at most 0.2

ercent.

http://mansci-web.uai.cl/minelib/
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Table 2

Summary of problem instances available in MineLib (Espinoza et al., 2013). Columns indi-

cate time-horizon, number of blocks, precedence arcs, number of variables and constraints.

Instance name T Blocks Prec. arcs Vars. Constr.

Newman1 6 1060 3922 6360 10,294

Zuck small 20 9400 145,640 188,000 333,680

KD 12 14,153 219,778 169,836 389,626

Zuck medium 15 29,277 1,271,207 439,155 1,710,392

P4HD 10 40,947 738,609 409,470 1,148,099

Marvin 20 53,271 650,631 1,065,420 1,716,091

W23 12 74,260 764,786 891,120 1,655,942

Zuck large 30 96,821 1,053,105 2,904,630 3,957,795

SM2 30 99,014 96,642 2,970,420 3,067,122

McLaughlin lim 15 112,687 3,035,483 1,690,305 4,725,803

McLaughlin 20 2,140,342 73,143,770 42,806,840 115,950,630

Table 3

Summary of forward (HInc+HReb) and backward stages, for each instance available in MineLib. “Forward stage” corre-

sponds to the problem settings after aggregation. “Backward stage” corresponds to the remaining original blocks after solving

the “Forward stage” (see Sections 4.1 and 4.2 for more details).

Instance Forward stage Backward stage

name Blocks Prec. arcs Vars. Constr. Blocks Prec. arcs Vars. Constr.

Newman1 242 745 1452 2209 862 3052 5172 8236

Zuck small 1494 89,270 29,880 119,190 9193 139,345 183,860 323,245

KD 2239 27,949 26,868 54,829 10,666 143,168 127,992 271,172

Zuck medium 4280 209,526 64,200 273,756 29,277 1,271,207 439,155 1,710,392

P4HD 6133 188,363 61,330 249,713 32,134 509,243 321,340 830,603

Marvin 1360 25,529 27,200 52,769 8336 82,788 166,720 249,548

W23 7638 82,416 91,656 174,108 41,998 395,517 503,976 899,529

Zuck large 13,949 101,260 418,470 519,790 78,696 739,247 2,360,880 3,100,187

SM2 3516 3272 105,480 108,812 18,278 17,445 548,340 565,845

McLaughlin lim 16,531 512,165 247,965 760,145 76,491 1,583,404 1,147,365 2,730,784

McLaughlin 16,315 505,101 326,300 831,421 73,948 1,512,652 1,478,960 2,991,632

Table 4

Comparison between pre-existing results and the ones obtained using the HInc+HReb heuristic.

Instance LP upper bound Current best results HInc+HReb results

Source GAP [ percent] Value (dollars) GAP [ percent] Time [seconds]

Newman 24,486,184 LDF14 1.68 24,173,521 1.28 3

Zuck small 854,182,396 LDF14 1.80 846,850,343 0.86 913

KD 409,498,555 EGMN13 3.09 408,718,363 0.19 45

Zuck medium 710,641,410 LDF14 8.08 669,191,136 5.83 16,304

P4HD 247,415,730 LDF14 0.19 246,917,483 0.20 159

Marvin 863,916,131 LDF14 1.87 856,191,778 0.89 771

W23 400,653,199 LDF14 1.06 398,457,833 0.55 395

Zuck large 57,389,094 LDF14 0.56 57,253,697 0.24 1825

SM2 1,648,051,083 LDF14 0.04 1,646,784,822 0.08 30

McLaughin lim 1,078,979,501 EGMN13 0.52 1,078,261,873 0.07 852

McLaughin 1,079,024,268 EGMN13 0.53 1,078,378,642 0.06 1229
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MineLib does not provide information about block size and

precedence type for the instances Zuck small, Zuck medium
and Zuck large. Thus, it was difficult to find out the right prece-

dence model for the aggregated instances (However, the feasibil-

ity of the solution was verified with respect to the original prece-

dence relationships). This explains in part why the forward stage

was not as effective as expected compared to all the remaining in-

stances: the problem size was not reduced as expected. For exam-

ple, in Zuck medium, the number of blocks in the backward stage

is still 99 percent with respect to the original number of blocks.

This explains that the relative gap is the highest of the instances

considered.

Apart from Zuck small, Zuck medium and Zuck large
(block size and precedences are not clear), the forward stage con-

siderably reduced the size of the problem. For example, in KD, the

backward stage has 26 percent fewer blocks and 32 percent fewer

constraints than the original problem. Even more, in 3 out of

4 of the instances pre-solved with Final-Pit (Marvin, SM2 and
cLaughlin), the reduction in size was more than 80 percent (vari-

bles and constraints in the backward stage compared to the original

roblem). In the remaining instance, W23, the reduction was around

3 percent.

Due to the successful reduction in the size of the problem, the

roblem was solved in a reasonable time. Except Zuck medium,

hich needed less than 5 hours, all of the instances were solved in

ess than 30 minutes wall-clock time. (see hardware specifications in

ection 5.1.)

. Conclusions and further work

We have presented a number of heuristics to tackle the open-pit

lock scheduling problem. Our approach is based mainly on the re-

uction of the problem to be solved, that is, the size of the binary

inear formulation.

The heuristics were applied to MineLib, a library of publicly

vailable test problem instances. For nine of the eleven instances in
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he library, the gap obtained between the solution reported by our

euristic and the linear relaxation was lower than the gap currently

nown in the literature. While other references do not provide ex-

cution times for comparison, we consider that our running times

re reasonable for application purposes. Further on, these can be im-

roved for example by trying different levels of aggregation simulta-

eously on several computers, therefore reducing forward stage run-

ing time.

Furthermore, we believe that the approach described is very scal-

ble in terms of problem size. Moreover, our approach is compatible

ith other algorithms described in the literature, so it can be easily

ombined to benefit other approaches, as well as extensions of the

euristics.

Regarding the combination with other approaches, the most

romising is the one presented in Chicoisne et al. (2012): an

Reb+CMA (Critical Multiplier Algorithm). This approach seems in-

eresting, because it is not difficult to implement. Another approach,

ore difficult to code because of solver limitations, is the Bienstock

nd Zuckerberg (2010) algorithm within the branching procedure.

There are also several possible extensions. One could be using

ore than one time-period at each iteration of the incremental

euristic. Another is to introduce information about the future when

roducing incremental solutions. For example using Lagrangian

elaxation like in Cullenbine et al. (2011) or Lambert and Newman

2014).
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