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Abstract

We consider a decision maker that holds multiple preferences si-
multaneously, each with different strengths described by a probability
distribution. Faced with a subset of available alternatives, the pref-
erences held by the individual can be in conflict. Choice results from
an aggregation of these preferences. We assume that the aggregation
method is monotonic: improvements in the position of alternative x
cannot displace x if it were originally the choice. We show that choices
made in this manner can be represented by context-dependent utility
functions that are monotonic with respect to a measure of the strength
of each alternative among those available. Using this representation
we show that any generic monotonic rule can generate an arbitrary
choice function as we vary the distribution of preferences. Domain
restrictions on the set of preferences (e.g. dual motivation models)
or consistency restrictions on the aggregator across choice sets reduce
the set of admissible behaviors. Applications to positive models of
individual decision making with context effects and social choice are
discussed.
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1 Introduction

We study a model of individual choice in which the decision maker holds mul-
tiple preferences simultaneously, each with different strengths described by
a probability distribution. Faced with a subset of available alternatives, the
preferences held by the individual can be in conflict. In our model, the po-
tential conflict between these preferences in each choice situation is resolved
by an aggregation rule. The model captures the idea that individuals may
hold conflicting motivations with different strengths and that the weight each
of these motivations receives may depend on the set of available alternatives.
This view is consistent with a wide class of modern psychological theories of
decision making.!

Formally, an aggregation rule is a map that assigns to each distribution
of preferences A a choice correspondence v(A). For any set of available al-
ternatives A, this choice correspondence describes the decision v(\)(A) C A
associated to the distribution A. We consider a family of aggregation rules
that satisfy an intuitive monotonicity property. Consider two decision-makers
DM; and DM, who have different distributions of preferences but aggregate
these preferences with the same rule. Suppose that DM, chooses an alterna-
tive a. Suppose that DM; has the same distribution of preferences as DM,
except for the fact that some of the weight on 7, one of the preferences held
by DMs, has been transferred to another preference n’ that ranks a higher
but preserves the order of all other alternatives. Monotonicity requires that
DM, must also choose a.

The paper has two main results. Theorem 1 provides a representation
theorem of aggregation rules that satisfy this monotonicity axiom and two
standard axioms, neutrality and continuity. We show that each monotonic
rule is represented by a choice-set-dependent utility function, ga(., ), that,
for each subset A, is equal to some monotonic function H4 of the cumula-
tive distributions that keep track of the proportion of preferences that rank
each alternative first, second, and so on, within A. These distributions are
induced by the distribution of preferences A and can be explicitly computed.
In sum, any monotonic rule v can be identified with a family {H 4} 4 of mono-
tonic functions and, vice versa, any collection of such functions produces a
monotonic rule.

Using this representation, Theorem 2 shows that in the absence of domain

!See our related paper Green and Hojman [2007, 2014] for further motivation.



restrictions on the set of allowable preferences or additional constraints on the
aggregation procedure, any generic monotonic aggregation rule can explain
any behavior as we vary the distribution of underlying preferences. There
are exceptional rules that do not reach all possible behaviors, but these rules
are rare in a sense that we describe.?

Domain restrictions are natural in many settings. For instance, recent
theoretical and empirical research in behavioral economics has considered
dual-motivation models of behavior for example behaviors explainable by
the interaction of two preferences -materialistic and altruistic, for example.
This is a form of domain restriction on the population. For models like these
we show that a much smaller class of behaviors can be rationalized. For
example, when there are three alternatives we show that a dual-preference
restriction of our model can explain menu effects such as the “compromise
effect” but not cyclic patterns of behavior. We also illustrate how adding
consistency restrictions on the aggregator across different choice sets reduces
the set of admissible behaviors.

This paper contributes to a growing theoretical literature that explains
irrational choice as the result of the interaction between multiple preferences
or rationales.®> Within this literature we distinguish three classes of models.
The first class is models such as that in this paper where a set of preferences
determines the choice and no distinction is made among the preferences.
They interact as voters would in a system with an anonymous voting proce-
dure.

The second class of models are "non-strategic, multiple-objective mod-

2As discussed in the sequel, the space of monotonic aggregation rules is infinite di-
mensional. The notion of genericity used in this paper is relative prevalence introduced
by Anderson and Zame [2001], a measure-theoretic generalization of "almost everywhere"
(Lebesgue) finite-dimensional Euclidean spaces. We adapt the techniques used by these
authors and Shannon [2006].

3Rationales may be incomplete binary relations that provide justifications or interact
with the preferences in various ways, in order to produce a decision different from what
the unconstrained preferences would have chosen.

4In addition to our earlier working paper Green-Hojman [2007], Ambrus-Rosen [2013]
and De Clippel-Eliaz [2012] are in this category. Ambrus-Rozen allow the cardinal rep-
resentations of preferences to play a role in the aggregation. Thus their model is more
inclusive, and also more informationally demanding than ours. On the other hand, De
Clippel-Eliaz restrict the number of explanatory preferences to two. This limits the be-
haviors that can be generated, but it offers more tightly determined welfare calculations
as a result.
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els". These models use multiple objectives but do not apply the multiple
objectives symmetrically or anonymously.® A seminal paper in this mold is
Kalai, Rubinstein and Spiegler [2002]. More recent papers include Manzini
and Mariotti [2007], Rubinstein and Salant [2007], Apesteguia and Ballester
[2013]|. The third type of model are "strategic, multiple-objective models"
that assume that the multiple objectives are players in a game. The outcome
of the game generates the observed choice of the decision maker. Models
of irrational choice in this category recognize the existence of multiple con-
flicting preferences and impose a specific strategic structure within which
these preferences interact. They take the nature of the multiple selves to
be exogenous rather than determining them endogenously from the choice
behavior.%

While we emphasize applications to individual decision-making, our paper
draws from and contributes to the social choice literature. The representa-
tion of monotonic rules we characterize (Theorem 1) significantly generalize
Young’s representation of scoring rules (Young, 1978). Scoring rules cor-
respond to the subset of monotonic rules characterized by a choice-set de-
pendent utility function that is linear in the distribution of preferences. Our
result showing that, in the absence of domain restrictions on the set distribu-
tions, a typical monotonic rule spans all choice functions (Theorem 2) relies
on measure-theoretic techniques introduced by Anderson and Zame [2001]
and Shannon [2006]. It greatly generalizes Saari [1989, 2001] who showed
that the full-spanning property holds for almost-every scoring rule.

5There are three types of papers in this category. One uses sequential procedures, or
protocols, to resolve the conflict among the preferences. For example, the alternatives may
be described by a list of attributes which could be considered in a fixed order to eliminate
or reorder the alternatives. In psychology, classic studies in this mode are Tversky [1972],
Shafir [1993], and Shafir, Simonson and Tversky [1993]. A second type of multiple objective
theory partitions the decision problems into groups, within each of which only one objective
is operational as in Kalai, Rubinstein, and Spiegler [2002] and Rubinstein-Salant [2007].
The third type of model uses a single objective function but multiple, context-dependent
constraints as in Sen [1993].

SImportant papers in the strategic mold include Strotz [1956], Schelling [1984], Gul-
Pessendorfer [2001], and Fudenberg-Levine [2006].



2 Monotonic Aggregation Rules

We are interested in characterizing the choice outcomes produced by a family
of rules that aggregates the multiple preferences held by a decision maker.
We start with the basic notation and assumptions. There is a finite set of
outcomes X. A subset A C X is called a choice situation and the domain of
choice situations is denoted by A. Unless noted otherwise, we assume that A
is the set of all non-empty subsets of X. The set of choice correspondences

is denoted by C*={c: A — A| ¢(A) C A}.

The decision maker we study is characterized by a distribution of prefer-
ences over X and and aggregation rule. The set of strict preferences over X
is denoted by II and the set of distributions over this set is the simplex A,
In what follows, m denotes a generic preference in Il while A and u designate
typical distributions of preferences in A, The scalar A\, € [0, 1] is the weight
that A assigns to 7. If we think of 7 as a motivation, A, can be interpreted as
the strength that A gives to motivation 7. Clearly, Ay > 0and > _; Ar = 1.

An aggregation rule v : A — C* assigns a choice correspondence v(\) €
C* to each distribution of preferences A. A decision maker is characterized by
a pair (A, v), consisting of a distribution of preferences and an aggregation
rule. We use v(A)(A) for the choice associated to a decision maker character-
ized by (A, v) when of available alternatives A. Our purpose is to provide a
complete characterization of aggregation rules satisfying three axioms: con-
tinuity, monotonicity, and neutrality.

2.1 Axioms

The key axiom explored in this paper is the monotonicity axiom, which we
introduce by means of an example.

Example 1 Suppose that X = {x,y,z}. For short, we use "abc" to desig-
nate the preference a = b > c. Consider two distributions of preferences A
and p that use the same aggregation rule v. The distribution \ puts weight
2/3 on preference m = xyz and 1/3 on preference ©' = zyx. The distribution
w puts weight 2/3 on w, 1/6 on ©" and 1/6 on 1" = yzx. The distribution
1 replaces some of the voters in A who have the preference @' by voters with

preference . Note that the relative order between y and z is the same for



7" and " but alternative y is "promoted” from second to first place. Mono-
tonicity says that if y is chosen by A then y should also be chosen by L.
Observe also that the relationship between A and p can be expressed by a
linear vector equation

2/3 1 0 0 2/3
1/6 | ={0 1/2 1/2] | 1/3
1/6 0 1/2 1/2 0

The elements of stochastic matrixz relating both distributions can be inter-
preted as mass transfer from one preference to another.

We introduce notation to express these ideas more formally. Given a € X
and m € TII, let m(a,m) C II be the set of preferences that preserve the
ranking of 7 for alternatives in X\{a} but rank a better than 7 does. That
is, m(a,m) = {p € Ulzny = zpyVzr € X,y € X\{a}}. Fix an arbitrary
population A € A" and suppose that preference 7 € II has positive measure
under A

Consider any transformation g of A such that the weight A(7) is redis-
tributed across preferences in m(a, 7). We define any such p as a monotonic
transformation of \ with respect to a. We next define M (a, \) € A to be
the set distributions that can be obtained from A by a sequence of monotonic
transformations with respect to a. As illustrated by the example above, the
set can be characterized by means of stochastic matrices describing the "tran-
sitions" from \. Indeed, let W(a) denote the set of I x IT stochastic matrices
such that for each W € W(a) we have that W(r,7’) € [0,1], W(m,7') =0
unless 7" € m(a,7), and ), .y W(m, ') = 1. The set of monotonic trans-
formations of A with respect to a is then

M(a,A) = {pe A" p=W'X\, WeW(a)}.

Axiom (Al) (Monotonicity) If a € v(\)(A) then a € v(p)(A) for all
e Ma,\).

Our second axiom is neutrality. It captures the idea that the labeling of
the alternatives does not affect the outcome.”

“In practice we may want to consider social or individual decision procedures that
discriminate between different alternatives. This might be natural if there exists a status
quo outcome. In section 5 we sketch how to extend the results of the paper relaxing the
neutrality assumption.



Axiom (A2) (Neutrality) Let o : X — X be any permutation of alterna-
twes and q, : 11 — 11 be the permutation induced by o on orderings of
X (o(a)gy(m)o(b) < anmb). If X and X are two distribution of voters
such that Ay, = Ax then v(A)(A) = v(\)(a(A)).

Neutrality places an intuitive restriction on how the aggregation rule de-
pends on the distribution A. Specifically, it can only depend on the rank
of an alternative or more precisely on the weights induced by A on prefer-
ences that rank the alternative in given position (among those available).
Formally, given a subset A, let |A| denote the cardinality of the set and
Niap={1,2,...,|A|} be the list of the possible ranks or positions of elements
in A. Let AM4l be the simplex on N\4. For each preference 7 € 1I, let
rank(a, A, ) be the rank of alternative a within A under preference 7. For
each alternative a € A, given the distribution of motivations A € A" we can
calculate the share of the population that rank that alternative at a given
position r € N4 across alternatives in A. Thus, for each alternative a, the
distribution A induces a distribution over the set of ranks N4 :

wN= ) (1)

mrank(a,A,m)=r
is the mass of preferences that rank alternative a at r in the set A.
The real-valued linear functions ¢’ ,(\) can be expressed as vectorial lin-
ear map qqa : A — ANl given by gua(A) = (g2 (N), ...,qﬁ()\)). Neutral-
ity implies that the choice v(A,\) depends on A only through the vectors

{qaa(X\) }aca. For later reference, the (rank-ordered) cumulative distribution
associated with g,4(\) € ANl is defined by

)= ), @

or, in vector notation, Qaa(A) = (QL,(A),..., Q"I (\) € [0,1]41-1. Since
Q‘aﬂ()\) =1 for any a, A, and A\, we omit this component.

Our final axiom is a standard continuity requirement.

Axiom (A3) (Continuity) The decision correspondence v is upper-hemicontinuous.
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The rules we study satisfy all three axioms:

Definition 1 (Monotonic Aggregation Rules) A monotonic aggregation rule
satisfies axioms (A1)-(A3). The set of monotonic aggregation rules is denoted
by V™.

Below we provide a representation that allows for an operational definition
of these rules. We start with an example and overview of the results.

2.2 Scoring rules and Overview of the Results

Scoring rules are a canonical example of aggregation rules that satisfy axioms
(A1)-(A3). A scoring rule v is characterized by a set of | X|—1 scoring vectors
{7V} reqa,...|xpy> Where v, is the scoring vector that applies when the available
set has k alternatives. We write v = (72,73, ...,7x|) and the k-alternative

scoring vector
Ve = (7]%7 ’}/lzv "'77113)

has k components satisfying yi > ~2 > ... > 4, and at least one these
inequalities is strict. Without loss of generality, v} = 1 and 7% = 0 for all
k €{2,....,|X|}. The scoring vector gives the number of "points" v} assigned
to the " ranked alternative among the k alternatives in a subset A. Given a
choice situation A C X, the score of alternative a from A under the ordering
T is 7&?”4’”). The total score of alternative a in choice situation A given a
population A is then

ga(a,2) =D AU N = > igiaN) = aaa(h). (3)

mell mp(a,A,m)=r

Note that for each scoring vector 7, we can construct the k-component vector
of score differences = (8}, 0%, ..., 0%) satisfying

, , .

§F=~F and 8 =] — 7"

for j € {1,...,k — 1}. Clearly 5£ > 0 as ’y,i > fyi“, for all 7. In fact, for
each k-component positive vector d; can construct a scoring vector in this
manner. Recalling that he (rank-ordered) cumulative distribution associated
to qaa(N) € ANe is Qu4, after a discrete version of integration by parts, we
can express (3) as

gala,A) = 6 Qua(N). (4)

7



This means that for a given set, the score of an alternative is a linear increas-
ing function of the cumulative distribution vector Qua(\) = (QL,(N), ..., Q*,(N\)) €
[0,1]*. In particular, it follows that if the distribution Qua()) first order
stochastically dominates (FOSD) Qua(A) then ga(a,A) > ga(b,\) for any
scoring rule. In the section 3 we show that for any monotonic rule we can
find a choice-set dependent utility function g, that assigns a "generalized
score" to each of the alternatives and such that the choice is the set of max-
imizers of g4. It is shown that the tight connection between the stochastic
dominance and the scores of alternatives is preserved by this function. Sec-
tion 4 generalizes a result obtained by Saari for scoring rules: A typical
monotonic rule, can induce any choice function as the population varies.

3 Representation Theorem

In this section we provide a general representation of monotonic aggregation
rules. We start with some definitions:

Definition 2 The choice-set dependent utility function g : A x A" — R is
said to represent a aggregation rule v at A € A if for each X € A" we have
that

v(A)(A) = argmax ga(a, A)

If for every A € A ga represents v at A we write v = {ga}aca-

In classical decision theory a representation associates a utility function
to a preference and the form of the utility function relates characteristics that
the preference displays. These characteristics may induce certain qualitative
properties in the choices that are observed. In the present context the analog
of "the preference" is a distribution over orderings. Choices are allowed to be
inconsistent as the set of available alternatives varies. Therefore it is natural
that our utility functions allow for choice set dependence. A representation
in our context is a set of utility functions, one for each available set. We
show that these utility functions, g4(a, \), have a property that reflects the
monotonicity assumption on the associated choice behavior.

Theorem 1 Let Qu4 : A" — [0, 1114171 be the cumulative distribution vector
map. An aggregation rule v satisfies axioms (A1)-(A3) if and only if there v
for each A € A there exists a increasing function Hy : [0,1]471 = R such
that ga(a,\) = (Ha 0 Qua)(\) represents v at A.

8



Theorem 1 is useful to derive important properties of the choice-set de-
pendent scoring maps g4. We later use these properties later to show that
most aggregation rules satisfying our axioms can generate arbitrary choices
as we vary the distribution of preferences. Observe that for scoring rules, H 4
is linear: Hx(Q) = Z‘ﬁl Q" where ¢’y > 0 with strict inequality for some
T

Before providing a proof, we state the following immediate corollary that
summarizes intuitive properties of the representation.

Corollary 1 If v satisfies axioms (A1)-(A8) then v can be represented by
collection {ga}taea of choice-set dependent utility functions such that

(i) ga(a,-) is monotonic, Lipschitz-continuous, and differentiable almost-
everywhere with respect to \;

(”) gA(a,M) > gA(Cl, /\) Zf QaA(NJ) FOSD QaA(/\)'

3.1 Proof of the Theorem

Theorem 1 is established with a lemmata that shows the tight connection be-
tween the Monotonicity axiom and FOSD. Specifically, as argued previously,
from neutrality we know that the dependence of the choice-set-dependent
utility function that represents a monotonic rule can be expressed as a func-
tion of the rank cumulative distributions Q,4(\) defined earlier for each
a€ A Ac Aand A € A, We show that one can identify the set choice-
set-dependent utility functions that represent a monotonic aggregation rule
with the functions that respect FOSD with respect to these distributions. To
make this precise, we introduce the following definition.

Definition 3 For a € X and X\ € A" the distribution p € A is said to
a-FOSD X if for any set of alternatives A C X with a € A we have that
(i) Qaa(pr) FOSD Qua(N) and

(ZZ) QbA(A) FOSD QbA(N) fOT’ be A \ {CL}
The set of distributions that a-FOSD X is denoted by FOSD(a, \).

Condition (i) says that at any choice set A € A the mass of preferences
that rank a better than any given rank k& < |A| is greater at u than it is at \.
Condition (ii) says that all alternatives other than a have lower cumulative
ranks. The idea of this definition is that while A and p may be quite differ-
ent, the improvement of the status of a within A is unambiguous. Because



no other alternative improves any of its rankings it is natural that once a is
chosen at A it remains chosen at pu.

The following Lemma establishes a connection between of the set of
monotonic transformations of A\ with respect to a, M(a, ), introduced to
define the monotonicity axiom and the set of distributions that a-FOSD A,
FOSD(a,\). Let Q4 : A" — CD,4 be the map that assigns to each distri-
bution of preferences i € Al the "stack" of cumulative distribution vectors
Qua(p) € [0,1]471 for a fixed A. Here, CD, = [0,1]I4=DI4I " Consider
{A, Ay, ..., Ag}, the collection of subsets that contain alternative a. Let
Q: Al x9_,CDy4, be the map that stacks all the Q4(u)’s for subsets in
this collection.

Lemma 1 Fiza € X and A € A". Then Q(FOSD(a,\)) = Q(M(a,\)).

The proof is in the Appendix, where we show that M (a, \) C FOSD(a, \).®
However, it turns out that both sets span the same cumulative distribution
maps.

Let Q and Q' be cummulative distribution vectors. That is, for some
integer R we have that Q, Q' € [0, 1]# and each of these vectors has increasing
components. Observe that () FOSD @' if and only if Q > @’ where > is a
vector inequality indicating that all of the components of () are greater than
or equal to the respective component of ()'.

Definition 4 Let Q,Q" € [0,1]% be cummulative distribution vectors, for
some R > 1. A real-valued function H : [0,1]% — R satisfies the FOSD
property if Q FOSD Q' = H(Q) > H(Q').

We have the following Lemma:

8The transformations allowed by the monotonicity axiom and captured by M (a, \) are
quite restrictive as they require a mass shift from from preferences that promote alternative
a but do not alter the relative order of any other alternative. In contrast, the dominance
conditions that define FOSD(a, \) allow for transformations that "on average" shift mass
to preferences that rank a better without promoting any other alternative in sets that
contain a.

10



Lemma 2 Let v € V™. Any representation {ga}taca of v is such that:

(i) For each A € A, there exists a continuous function Hy : [0,1]471 — R
such that ga(a,\) = Hx(Qua(\)) for alla € A and X € A';

(ii) For each A € A the function H 4 satisfies the FOSD property.

Part (i) follows immediately from the neutrality and continuity axioms,
the proof is omitted. Part (ii) follows directly from (i) and lemma 1. Indeed,
from (i) the representation on the distribution of preferences is restricted
to functions of the cumulative distributions (). Given this, from lemma
1, since the distributions that satisfy the monotonicity test span the same
cumulative distributions than those satisfying the FOSD property, the rep-
resentation must satisfy the FOSD property.

The previous Lemma identifies a representation with collections of func-
tions H 44 that satisfy the FOSD property.

4 Almost Every Monotonic Rule Spans All Choice
Functions

Recall that C* denotes the set of choice correspondences. A choice function
c € C* is such that for each A € A, the choice ¢(A) is a singleton. The
set of choice functions is denoted by C. From above an aggregation rule
v = {ga}aeca and a population A induce a choice correspondence v(\) € C*,
where v(\)(A) = argmax,cq ga(a, \) for each A € A.

Definition 5 (Ezplanation/Rationalization) The aggregation rule v is said
to explain a choice function ¢ € C if there exists a full Lebesgue measure set
A C AY such that for any A € A we have that ¢ = v(\), where v : A — C
15 the decision correspondence induced by v. The aggregation rule is said to
span all choice functions if v(A) = C.

Our purpose is to characterize the set of choice functions spanned by a
generic monotonic rule. As shown in the previous section, any monotonic
aggregation rule can be identified with a choice-set dependent utility func-
tion that determined by a collection monotonic transformations, one for each

11



choice set. The space of monotonic transformations is an infinite-dimensional
space. In this paper, we use a notion of "genericity" for infinite-dimensional
metric spaces called prevalence, which is based on a measure theoretic no-
tion. Prevalence extends the idea of "Lebesgue almost everywhere" used in
finite dimensional spaces. It was introduced independently by Christensen
[1974] and Hunt, Sauer and Yorke [1992|. In this paper we use the extension
of this concept introduced by Anderson and Zame [2001] -relative prevalence.?

For exposition, we provide a brief intuitive definition and focus on the main
intuitions that underlie our results. A detailed definition can be found in
Appendix A2. A Borel subset N of the function space M is called shy if
there exists a probability measure v on M for which the measure of every
translate of N is zero. That is, N is shy if v(N +t) = 0 for every t € M.
A prevalent set is a set whose complement is shy. In particular, prevalent
implies dense.!® Like Lebesgue measure 0, (relative) shyness is translation
invariant, preserved under countable unions, coincides with Lebesgue mea-
sure 0 in R¥, and no relatively open set is relatively shy. In particular, every
relatively prevalent set is dense. As used normally with the Lebesgue mea-
sure in a Euclidean space, we use "almost every" to identify a prevalent set
in the infinite-dimensional space.
This is the main theorem of the paper:

Theorem 2 For almost every aggregation rule v € V™ we have that v(A) =
C. That s, almost every monotonic voting rule spans all choice functions.

We differ a discussion of the behavioral interpretation of the theorem for
the next section and start by focusing on the technical contribution. Our
proof makes use of the representation of monotonic rules derived in Theorem
1 and, illustrates the precise conditions required for a family of aggregators
to span all choice functions.!! We introduce some notation to illustrate the

9 Anderson and Zame’s extension is substantial as in most economic models the primi-
tives -preferences, endowments, technology- are naturally described as a subset of a convex
topological space rather than a vector space as assumed in Hunt, Sauer, and Yorke [1992].

0There are two different type of "genericity" notions for infinite-dimensional metric
spaces. Aside from the measure-theoretic approach considered herein, the other notion is
topological and it is based on categories of sets. A set is said to be residual or generic if
it contains a countable intersection of dense sets. The complement of such set is said to
be of the first-category, i.e., it is a countable union of nowhere dense sets.

UThe result generalizes Saari [1989, 2001] who showed that almost any scoring rule
spans all choice functions. Saari’s proof exploits the linearity of scoring rules.

12



main argument.
Consider the representation v = {ga}aca. For each A € A, a,b € A, and
A€ Al let

Qﬁl(aﬂ b, )‘) = gA(a, )‘) - gA(bv >‘)

This is the difference between the score of alternative a and b at A. Con-
sider an arbitrary enumeration of the choice sets in the domain A so that
A= {A,, ..., Ak}, where K = | A|. For each choice set A; consider an arbi-
trary enumeration of its alternatives so that A; = {a;1,...,a;4,/}. For each
JeA{l,..., K}, let ¢ : A" — RI4I=1 be the vector map with components

Ue(A) = 0% (ajk, ajisr, A) for k € {1,...,|A;| — 1}. The map ¢} summarizes
the differences in score between pairs of alternatives in A;.

For short, let n = | X| be the total number of alternatives and S,, = n2"~1.
Observe that S, = Z£1(|Aj| — 1), that is, it is the total number of the
coordinates of all of the maps ¢y. ' For a fixed v, the excess score map
¢* : A — RS is defined by ¢°(\) = (¢V(N), ..., 9% (A\))T € R . Using,
theorem 1 it follows that each component of the excess score has the form
HY o Quya; — Hj 0 Qa,,, 4, Where H is an increasing function and @, 4 is a
linear cumulative distribution map. We exploit this structure to derive the
regularity properties of an excess score function for a typical rule v € V™.

Definition 6 Let v be an aggregation rule with excess score map ¢ : Al —
R, For a fived \g € AT let (-, \g) : AT — RS be the map defined by
W' (N) = ¢°(\) — ¢¥(N\o). The rule v is said to be reqular at N\g € A if there
exists € such that for any € < € and any e—neighborhood Ry of 0 € R, there
exists of open neighborhood Ay C A such that o= (Ry) C Ay.

In words, in a neighborhood of point of regularity Ay, we can always
find a point A such that each component of ¢’(\) — ¢”()\g) achieves any
predetermined sign. This means that ¢" is locally surjective.

Definition 7 A distribution of preferences X € AU js neutral for aggregation
rule v if v(A)(A) = A for all A € A.

121’s easy to check that S, is strictly less than the dimensionality of the simplex Al
which is n! — 1.

13



Note that, given a representation v = {ga}aca, \ is said to be neutral
if ga(a,\) = ga(b,\) for all a,b € A, A € A. In terms of the excess score
function, the latter is equivalent to ¢” (X) = 0.

The following Lemma shows how regularity at a point together with neu-
trality at that point implies full span.

Lemma 3 An aggregation rule v € V™ spans all choice functions if there
exists a A € int(A) such that (i) X is neutral for v and (11) v is regular at

.

We provide the argument, a formal proof is omitted. The existence of an
interior distribution A neutral for v implies that ¢”(A) = 0. If, in addition,
v is regular at that point, we can always find A such that the components of
®"(A) — @¥(X) = ¢”(N) have any predetermined signs. That is, by regularity,
we can always find a A such that the ties in the scores in any choice set A are
broken in any way we want. In particular, for any given choice function ¢, we
can always find an open subset U such that if A\ € U then ¢%(c(A),b,A) >0
for all b # ¢(A), or equivalently, ¢(A) maximizes ga(a, A) for each A.

From Lemma 3, to establish theorem 2 it is sufficient to show that for a
typical v there exists a point A such that the \ is neutral for v and the rule
is regular at that point. Let eq € A! be the distribution that puts equal
weight on each ordering of II.

Lemma 4 If v satisfies the neutrality aziom (AS8) then N = en s neutral
with respect to v.

The result is an immediate consequence of the neutrality axiom, the proof
is straightforward and omitted.

Lemma 5 Almost every v € V™ is regular at A= e -

The proof of Lemma 5 is in the Appendix. We provide the main argu-
ment. Let C"™ denote the set of excess score functions associated with some
monotonic rule v € V™. The result is established by showing that almost
every ¢ € C™ is regular at a point where it has a zero (¢(A) = 0). If p € C™
is differentiable, the result obtains from a version of Sard’s Theorem. In-
deed, for a smooth ¢ a sufficient condition for regularity at Ay is for the
Jacobian D¢"(\g) to have full rank at that point (or equivalently, D" (\g) is
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surjective), which follows from Sard’s theorem. Intuitively, the set of points
such that one of the components, say ¢}, of the excess score map is zero
defines a surface Uj, C A, For example, in the case of linear scoring rules,
this surface is an hyperplane. The gradient V¢, (\) at any point A € Uy,
defines a direction of increase of that particular component. A zero of ¢ is
a point in the intersection of all of the surfaces defined by the zeros of each
individual component. The full-rank condition implies that we can always
find an orthogonal collection of vectors that have a positive projection on
each of the component-gradients. That is, we can always find a point in the
neighborhood of a zero such that an increase or decrease of a component of
the scoring vector does not affect the value of another one.

However, our representation theorem does not imply smoothness and it
is easy to come up with sensible monotonic rules that are not smooth. By
Corollary 1, since the choice-set dependent utilities that represent a rule v
are Lipschitz-continuous in A\, we have that so is the excess score ¢” . For this
class of functions a generalized Jacobian is available. In effect our proof in the
Appendix establishes a version of Sard’s theorem for a subset of Lipschitz
continuous maps. The argument has two main steps. We first show that
the subset R™ of C™ corresponding to rules that are regular at the "zero"
points of the associated excess function is a Borel set of the ambient space,
which in our case is a set of Lipschitz continuous functions. Next we find
a finite-dimensional subset of rules N, that satisfies the property for the
Lebesgue measure. We use the set of scoring rules, which is defined by a
collection of scoring vectors (a subset of a Euclidean space) as seen in section
2.1. We know that for these rules the theorem holds [Saari, 2000]. The
argument is established by showing that any projection of the non-regular
scoring functions C™\ R™ onto Nj is a set of Lebsegue measure zero on the
finite-dimensional space.

5 Domain Restrictions and Extensions

Theorem 2 says that any behavior, no matter how irrational, can be explained
using a model of conflicting motivations aggregated with a typical monotonic
rule. This means that the model of choice presented herein cannot be rejected
using choice data alone. There are two important classes of comments that
should be noted at this point. First, the range of experimentally observed
choice patterns is indeed very wide. In the case of a three alternatives, there
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are four logically possible choice functions -modulo a relabeling of the alter-
natives. Indeed, choices from pairs of alternatives can respect transitivity or
exhibit cycles. All choice functions with a cycle are the equivalent modulo a
permutation of the alternatives. Alternatively, if choices from pairs respect
transitivity, they will be consistent with unique order. For example, a choice
function such that

c{z,y}) =z, ey, 2}) =y, and c({z, 2}) = 2

is consistent with the ranking m = zyz. In this case, there are three possible
choice functions depending on the choice from the triple. If ¢({z,y,2}) = =
then the choice is seemingly rational. 1If ¢({x,y, z}) = y we say that ¢ exhibits
second-place choice. The compromise effect illustrated by our example on
other-regarding behavior is an example of this type of behavior. Finally, if
c({x,y, z}) = z we say that ¢ exhibits third-place choice. Both experimental
and field-based studies have displayed all four of the logically possible choice
functions -seemingly rational, cyclic, second and third-place choice.'* Few
systematic studies with four or more alternatives have been made. Thus far,
there is no reason to believe that any particular family of choice functions
will never be seen in some data set. Therefore, the fact that our model can
accommodate choice functions of arbitrary complexity may well be a strength
rather than a weakness.

A second comment on this "full range" theorem relates to the support of
the set of explanatory populations. Introspection and psychological research
make "internal conflict" an appealing idea. The theorem above places no
restriction on the extent of this conflict. However as we discuss below, specific
limitations on the nature of a decision maker’s internal conflict will place

13The three patterns inconsistent with rational behavior have been documented by the
experimental psychology and decision-making literature that focuses on context effects in
choice with multi-attribute alternatives. The classic paper by Tversky [1969] and more
recent work by Roelofsma and Read [2000] show that cyclic choice can arise systematically.
There is also robust evidence of Second Place Choice, as shown by Simonson [1989]. Third
place choice seems to be more elusive but Redelmeier and Shafir [1995] finds this pattern.
The prevailing psychology theories include sequential decision-making procedures such as
elimination by aspects or theories based on context-dependent salience such as asymmetric
dominance. A more comprehensive theory called reason-based choice is proposed by Shafir,
Simonson, and Tversky [1993]. This theory, based on the idea that the context determines
which among of many conflicting reasons prevails in a given choice situation, is close in
spirit to the model presented in this paper.
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restrictions on the family of choice functions that can be generated and are
testable using choice data alone.

5.1 Domain Restrictions
5.1.1 Dual-System Explanations

Recent research in behavioral and neuroeconomics has emphasized that de-
partures from rationality could result from the conflict between two or more
"systems" or motivations. For example, in several domains of decision-
making (e.g. choice under uncertainty, intertemporal choice) non-rational
choice is often attributed to the interaction between affective and rational
brain systems.'* The structure of internal conflict need not be based on bi-
ological systems, as illustrated by one of our motivating examples, in which
choice results from the conflict between selfish and other-regarding motives.
In our framework a "dual system" corresponds to a domain restriction on ex-
planatory populations. Dual-system explanations can be identified with set
Adwal — X € Al Ay + A = 1 for some 7,7’ € II}. These are distributions
that put weight on at most two preferences, one for each "system".

Proposition 1 If |X| = 3 then dual-system explanations based on mono-
tonic rules can only explain choice functions that are either seemingly ra-
tional or satisfy second-place choice (compromise effect). Cyclic choice and
third-place choice cannot be explained by dual-system explanations based on
monotonic rules.

Thus, if the analyst incorporates specific assumptions about the nature
of the conflict in a specific decision context, the theory yields sharper pre-
dictions. In particular, in the case of three alternatives, cyclic choice and
third-place choice can only be generated by distributions that give positive
weight to three or more motivations. There is a sense in which these behav-
iors are more "irrational" than seemingly rational and second-place choice
as they can only be rationalized with "more conflicted" explanations. The
following example is from our related paper Green and Hojman [2014].

Example 2 Selfish and Other-regarding Motives in Conflict

14See for example, Kanheman [2003] and Camerer-Loewenstein-Prelec [2005].
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The clash between a "selfish motivation" that aims to maximize mate-
rial well-being and motivations grounded on social norms of reciprocity is
pervasive in a number of social dilemmas.'> In this example there are three
outcomes z = (1,0), y = (2, 1) and z = (3, 3) each representing the split of
one dollar. Each alternative is a = (ay,as) where a; is what person 1 gets
and ay is what person 2 gets, a; + as = 1. Individual 1 chooses the outcome
as in a dictator game. We focus on this individual’s preferences and behavior.

A commonly observed choice behavior when outcomes have multiple at-
tributes is the "compromise effect". In this example, consider the following

choice pattern

Hence, when confronted with any pair of outcomes the dictator chooses the
alternative that gives him or her the highest share. However, when all three
alternatives are available, the decision maker chooses the "compromise" alter-
native. In line with Shafir, Simonsen, and Tversky [1993], this choice pattern
can be explained as follows: when the two extreme outcomes z and z are
available, the conflict between selfish and other-regarding motives becomes
more salient and alternative y provides a "compromise" between these con-
flicting reasons. Without adhering to a specific "story", our model of choice
is consistent with this view. If we restrict the domain of explanations to
distributions of preferences over the "selfish motivation" 7, = xyz and the
"other-regarding motivation" m, = zyx, there are two are four choice behav-
iors that can be explained using linear aggregation rules: seemingly rational
choice consistent with 7, "seemingly rational choice" consistent with 7,, and
two instances of "second-place choice". Both second-place choice behaviors
have the "compromise alternative" y chosen from the triple and in one case
choices from the pairs are consistent with m, while in the other they are
consistent with m,.

13 The extensive literature on other-regarding behavior has focused on rationalizations
based on "social preferences". See Sobel [2005] for a survey. The pattern of behavior in
this example cannot be explained appealing to any of the models as it is inconsistent with
the maximization of a preference.
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5.1.2 "More is Better" and Natural Explanations

We have considered a general finite space of alternatives X. In many eco-
nomic applications X has a structure that imposes natural restrictions on
the set of explanatory preferences. For example, in choosing between differ-
ent cars, the decision-maker may consider the miles per gallon of gas, safety
indicators, and color of each option. If mileage per gallon and safety are
represented as numbers, each of the attributes admits a natural order (color
perhaps not). In the case of consumption bundles, the amount of each com-
modity is similarly ordered in the usual "more is better" fashion. In each of
these examples, an alternative can be described by a m—component vector
x = (x1,...,x,) of m attributes or commodities, so that X = % X;, and
there exists a (maximal) subset of attributes O C {1,...,m} such that for
each i € O, the space X; has a linear order >;. These orders induce a partial
order > on the space X: x > y if x; >; y; for all i € O and z; = y; for all
i ¢ O. The partial order > has the usual interpretation of "more is better".
Only preferences in the set 119 = {r € |z = y = xmy} rank alternatives
consistent with the order >, and it is natural to seek explanations that put
weight exclusively on preferences in ITI. If the domain of distributions is
restricted to A9 = {\ € A"\, > 0 = 7 € 19}, it can be shown that
using a typical monotonic rule a choice function ¢ can be explained only if
it is consistent with the partial order > on X. Thus, a choice function such
that, for some A, ¢(A) is dominated under > by some other alternative in A
cannot be explained.

5.1.3 Consistent Aggregators

Restricting the set of aggregators can also lead to sharper predictions. Prop-
erty (M3) places no constraint on the function H4 across subsets. For illus-
tration, suppose that X = {x,y, z,w} and let A = {z,y,2}. Suppose that

gala,\) = QL,(N), i.e., the score of an alternative is simply the weight of
those preferences that rank it first. Instead, if X is available suppose that
gx(a, ) = Q34 ()\), i.e., the scoring function gives equal importance to pref-

erences that do not rank the alternative last out the four available. Unless
we want to allow the aggregation of preferences to vary arbitrarily across
choice situations, it might be reasonable to impose some consistency on the
aggregator.

An example of "consistent aggregator" is the Borda rule, which is defined
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by scoring functions of the form g4(a, \) = ﬁ > Q’ 4(\). Tt can be shown
that the score of an alternative a at set A is the average of the score this
alternative gets in each subset of A of size |A| — 1 and thus, by recursion,
it is an average of the score a obtains in pairwise contests against each of
the other alternatives in the choice set. The tight connection between scores
across different choice situations restricts the choice functions that can be
explained using this type of aggregator. In particular, if | X| = 3 third-place
choice cannot be explained by using Borda aggregators. More generally,
consider the following definition:

Definition 8 (Weak Condorcet Consistency) A choice function ¢ € C satis-
fies Weak Condorcet Consistency (WCC) there is no choice set A of three
or more alternatives such that for some pair of alternatives x,,,x; € A
(i) x; is never chosen from a pair that contains any other alternative in
a (r; ¢ c{x,a}), a € A\{x}), (ii) x is always chosen from a pair that
contains any other alternative in a (r, = c({x;,a}), a € A\{xy}), and (iii)

xy 18 chosen from A (x; = c¢(A)).

For each set A, and each alternative a € A, let 1,4 : A — [0, 1]417 be
the map that assigns each distribution A\ with the vector n,4(\) = (Qé’{%b} (A))bea{a}s
i.e., the vector that collects the weight Q! (a b}()\) on preferences that prefer
a to b when the pair {a, b} is available.

Proposition 2 Suppose that v = {ga}a. If there exists an increasing and
symmetric function Hy, : [0,1]471 — R such that ga(a,\) = Ha(fia(a, \))
for each A € A, a € A then then choice rule induced by v satisfies WCC.
That is, v(\) satisfies WCC' for any A.

The result follows immediately as, if H, is symmetric and increasing,
for any A and z,,x; € A that satisfy (i) and (ii) we have that ga(zy, \) >
ga ({L’l, )\)

5.2 Non-Neutral Rules and Status Quo Bias

There are multiple examples in the psychology literature that emphasize
the salience of certain alternatives over others. A canonical example is the
existence of a status quo or default alternative. Extending our results to allow
for non-neutral rules is non-trivial. However, it is possible to consider simple
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extensions of the framework that allow for certain types of non-neutrality.
The following example provides an illustration. In this example, the decision
maker is characterized by a distribution of preferences A as before, and a
choice-set dependent utility function with two components:

gi(% >‘) = Z]\A(a’ )‘) + QhA(a7 /\)

The first part g4 is a "neutral component" satisfying the same properties as
the representations characterized earlier. The second part, is a "non-neutral
component" scaled by a constant § € [0,00) and ha(a, ) > 0 if a = ap and
zero for any other alternative. Alternative ay plays the role of a status quo
receiving an additional "default" utility as in Rubinstein and Salant [2007].
This utility could depend on A and A, indicating that the relevance of the
status quo may depend on how conflicted the preferences are with respect to
alternatives in A. For example, if A is a degenerate distribution that puts
weight on a single preference, the status quo could be irrelevant. In contrast,
the status quo could become more salient if A\ has a larger support.

From a purely formal perspective, note that the example allows us to
illustrate the role of the neutrality axiom in Theorem 2. For simplicity sup-
pose that ha(a, A) is independent of A and A, ha(ag, A) = hg > 0. Note that
for & = 0, the rule is neutral and the distribution that gives equal weight to
all preferences, ey, is neutral for the rule. By continuity, for small values of
0 -i.e. a small departure from neutrality, there exists Ay close to ey that is
neutral for the rule defined by ¢%. Thus, Theorem 2 will remain valid. In
contrast, for large 6 this is no longer true. In particular, for 6 large enough
the status quo ag is always chosen whenever available. This holds for any A.
Thus, an arbitrary choice function is no longer rationalizable by varying the
distribution of preferences.

6 Conclusion

We provide a choice-set dependent utility representation for a decision maker
that aggregates multiple preferences with a monotonic rule. Using this rep-
resentation we show that, in the absence of domain restrictions on the set of
allowable preferences or additional restrictions on the aggregation procedure,
a typical monotonic aggregation rule can explain any behavior as we vary the
distribution of underlying preferences. That is, given any choice observations,
for almost every aggregation rule one can find a distribution of preferences
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that rationalizes that pattern of choice. Domain restrictions on the set of
preferences (e.g. dual motivation models) or consistency restrictions on the
aggregator reduce the set of admissible behaviors. Applications to positive
models of individual decision making with context effects and social choice
are discussed.
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A  Proofs

A.1 Representation

To establish lemma 1 we introduce some notation. Recall that n = X. Fix
a € X. Let II"* denote the set of strict preferences on X \ {a}. For each
pell=let II" = {r € ll| zpy = xmy, z,y € X\{a}}, i.e., the set of prefer-
ences on X that are consistent with p on X \ {a}. Observe that {II*} ,cr-a
is a partition of II. Note also that, since preferences in II” share the same
relative ranking of all alternatives other than a, each preference in the set is
defined precisely by the ranking of alternative a. In particular, we can write
17 = {xf, ..., 72} where 7}, is the preference in II” that ranks alternative a in
position k € {1,...,n}.

For any A € A" and K C Il let A(K) = >. ;M. Fix p € II"* and
A € A and let \» € A! denote the distribution on II? induced by .
Formally, for p such that A\(II?) > 0, let A2 = 0 if 7 ¢ [I” and N\ = %
if 7 € I1?; for p such that A\(II?) = 0 we just set \* equal to an arbitrary
distribution independent of A with support in II’. By construction, the
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vectors {M\},c-« are mutually orthogonal to each other, supp(A\?) C II7,
and A can be decomposed as

A= > ATV (5)
p:A(ITP) >0
The next lemma shows that a-FOSD for distributions in II” reduces to a
much simpler condition.

Lemma 6 Fix a € X. For any p € II” we have that p* a—FOSD N &
QaX(,Mp) FOSD an()\p).

Proof. By definition, showing u? a—FOSD A requires proving that, for
all A that contains a, (i) Qua(t”) FOSD Qua(A?) and (ii) Qua(A?) FOSD
Qua(p”) for all @’ € A\{a}. Clearly, Qux () FOSD Qux(\°) is a necessary
condition for (i) to hold. We need to show that it is sufficient for both (i)
and (ii). To show this, we show that the cumulative distributions Q.4 can
be expressed in terms of Q,x.

Fix p € II7*. Since all preferences in I1” have the same relative ranking
of all alternatives other that a, we can relabel the alternatives so that

X = {%1,1’2, "'>$n717a}

and x;mx;4q for all m € I1I” and j € {1,2,...,n — 1}. With this convention,
any choice set A C X containing alternative a can be expressed as

A= {xh 1 Ljas +ees Ljjaj_1> CL},
so that xj, 7x;, | for all 7 € 117
Recall that rank(a, A,7) € {1,...,|A|} denotes the rank of a € A among

alternatives in A under order 7 and =}, is the preference in II” that ranks a
at position k. Using the above notation it is easy to verify that

1 itk <j
rank(a, A,mp) =< r if g <k <j.,re{2 .. |A -1} (6)
|A’ if k> j|A|71-

Now, by definition, Q7 4(A\*) = > 4. ank(a AxD)<r A, which combined with (6)
' OT) S k
yields
Jr
V) =N, = Qi (X),

k=1
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Similarly, Q7 ,(u*) = Q' (u?). Thus, a sufficient condition for Qua(u”)
FOSD Q,4(\*) to hold for any set A containing a is that Q,x(u”) FOSD
Qax (A7)

On there hand, if A = {z;,,z),,..., 7, _,,a} as above we have that

r if k> g,

rank(z;,, A, ) = { r+1 if k <j,. g

By definition, @7 4(1) = X prank(ay, Axt)<r “fr;; which using (7) gives

balW) =D by =1=3 il =1- Qi (n).

k> jr k<jr

Similarly, Q"

zj. A

(V) =1 = Qi (X).

We conclude that Qua(A) FOSD Qg a(p?) for all a’ € A\{a} and any A
containing a translates into Q,x (1”) FOSD Q.x(A?). The proof is complete.
u

Recall that m(a, ) is the set of preferences that preserve the ranking of
7 for alternatives in X \ {a} but rank a better than 7 does. On the other
hand, M(a,\) = {p € A" p=WTX, W € W(a)} is the set distributions
that can be obtained from A by a sequence of monotonic transformations
with respect to a. Here W(a) is the set of II x II stochastic matrices such
that for each W € W(a) we have that W (m, ') € [0, 1], W (7, #") = 0 unless
' € m(a,7), and Y, .y W(m, ') = 1.

Lemma 7 Fiz a. For any W € W(a), W(m, ") > 0 only if for some p €

1%, we have that m, 7" € II? and 7' € m(a,n). Thats is, 7 = 7, and 7' = 7T§-)/

with p' = p and j < k.

Proof. The result follows from two facts. First, {II’},cn-« is a partition
of II, where each element of the partition is defined precisely by the fact
that the relative order of all alternatives other than a is fixed. Second, as
observed earlier, II” = {n{, ..., 7~} where 7, is the preference in II” that ranks
alternative a in position k € {1,...,n}.

From the previous it follows that 7 = 7 and 7 = 7r§’/ for some p, o', k
and j. It also follows that m(a,n}) = {n?, ..., 7}, so that 7’ € m(a, ) only
if o = p and j < k. The conclusion follows. =
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Lemma 8 If u € M(a,\) then for all p € II7* (i) p(I17) = A(I1?) and (ii)
wP a-FOSD N.

Proof. Let u € M(a,)\). By definition, this means that u = WZX\ for
some II x IT matrix W € W(a). Part (i) is immediate from lemma 8 as any
stochastic matrix in W € W(a) implies probability mass transfers within
each set IT?. That is, it preserves the mass of of each II?. To establish (ii),
using (5), by linearity we have

o)WY = Y uIr)ywha

p:\(I1P)>0 p:u(I1P) >0

where the last step uses part (i). Thus, using (5) for u, we conclude that
WT N is the distribution on II? induced by pu, i.e., u? = WTNP.

From lemma 6, we just need to show that Q,x (u”) FOSD Q,x(A\?). This is
straightforward as any matrix W € W(a) is such that, the vector u? = WT\?
"shifts" mass in A\? to preferences in I1” that rank alternative a better. Indeed,
some algebra shows that, for any r € {1,....n — 1},

ax (17) = Qux (V) + Z Z W(Wfa ng))‘fr; > Qux (A7)

j>r k=1
]
Lemma 9 Fiza € X and A € A". Then M(a,\) C FOSD(a, \).
Proof.

Let A be any subset that contains alternative a and a’ be generic alterna-
tive in that set. For any A € A" we have that A\ = 3= 1,5 A(II?)A? and,
by the linearity of the cumulative distribution map Q) 4, we have

QuaN) = > MI")Qua(N).
p:A(11P)>0

Let p € M(a,\). We show that p € FOSD(a,\). We start by showing that
Qaa(pr) FOSD Qua(A). Indeed, from Lemma 8, for each p € II7* we have
that for any such p, p(I1?) = A(I1?) and p” a—FOSD A*. The latter means
that Qua(?) > Qua(N?). Hence,

Qaa(i) = Qaa(N) = D p(I1°)Qua(p”) = MI1”)Qua(N)

= D M) [Qaa(p”) = Qua(X)] > 0.
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We conclude that Qua(1) FOSD Qua()).

The same argument shows that if Qpa(\?) FOSD Qpa(p”) for each p and
b # a then Qpa(A) FOSD Qpa(p). It follows that u a—FOSDA, ie., u €
FOSD(a,\). =

A.1.1 Proof of lemma 1

We introduce some notation. Let S C A be the collection of subsets of X
with two or more elements that contain a € X. The cardinality of § is
Sn = 1 (Zj) = 21 —1. Consider an arbitrary labelling of these subsets
so that S = {4, ..., Ag, }. Similarly, for each A; € S, we label alternatives
so that A; = {bjl,... jia, . Given A € § and a' € A each cumulative
distribution vector Qu4(.) € [0, 1]4=! write CD4 = [0, 1]U4I=DxI4l and let
Q4 : A — CD 4 the map that assigns to each distribution of preferences y €
A the "stack" of all cumulative distribution vectors Qy, a; (1) € [0, 1]i4l=1,
Let Q : AT — x5 CD,. be the map that stacks all the Qa(p)’s together
with the conventlon that components that do not involve a have a negative
sign. With this convention, u € FOSD(a,\) <= Q(u) > Q(\), where the
inequality holds for each component of the vector.

We need to show that Q(FOSD(a,\)) = Q(M(a,\)). From lemma 9 it fol-
lows that Q(M(a, \)) € Q(FOSD(a,\)). It remains to show that Q(FOSD(a, \)) C
Q(M(a, \)). We start by noting that since the Qu4(-) maps are linear, so is
Q(11). We establish the result by exploiting the linearity of Q(-) and a di-
mensionality argument.

Let A(a,\) = {u € AWu(11?) = MNII?), p € 1I7*}. Observe that
M(a,\) C A(a,)). Our first step is to show that Q(AT) = Q(A(a,\))
for any A € A, This implies that for any u € FOSD(a, \), there exists u’ €
A(a, A) such that Qpa(p) = Qpa(y’) for all b € A, A € A. (Clearly, ' is also
in FOSD(a,\) as it spans the same cumulative distributions as p). Using
this the result, the second step shows that for any p € FOSD(a, \)NA(a, \)
there exists « € M(a, A) such that Q') = Q(p).

Step 1: Q(A") = Q(A(a, )

We show the result by assessing the dimensionality of Q (A™). Note that
for a fixed b and A, Qpa(p) has |A|]—1 components and the component Qj 4 (1),
r € {1,...,|A| — 1} is the mass that u assigns to preferences that rank b in
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position r or better in set A. Now, for any r, since the mass on preferences
that rank some alternative in position j is one, >, , Q1 (p) = r for all p.
This implies |A| — 1 constraints on the components of the stack vector Q4
for each set A. In addition, the Borda score of b in A is simply e?Qua(p) =

Li‘l_ "Qy (). If |A] > 3 this score is entirely determined by scores from
pairs that contain b and some other alternative b’ € A. Indeed, €T Qpa(u)
is proportional to Y- p_ 1y e () Qig(1) (see for example, Saari [2000]).
Thus, if A has three or more elements, given the cumulative vectors for
pairs, there are |A| additional "Borda" constraints, one for each alternative
in b. It follows that, excluding the (";1) = n — 1 pairs that contain a, the
number of free parameters in Q)4 is at most (|A| — 1)|A| — (|A] — 1) — |A] =
(|JA| —2)(JA| = 1). For each pair B = {a, b}, b € X\{a}, there is a single free
parameter Q}5(1). Thus, adding across subsets A € S, we get the number
of free parameters of @ is at most

n

dnEZ(k—z)(k—n(Z:D +n—1=mn-1)n-2)2""4+n—1,

k=3

In sum, the dimension of the image of Q satisfies dim(Q(A")) < d, =
(n—1)(n—2)2"3+n—1.

We now calculate dim(A(a, A)). Any u € A(a, A) satisfies p(I17) = A(I17).
These are [[I7%| = (n — 1)! constraints, but one of them is implied by all of
the others as 3 u(I1?) = 37 A(II?) = 1. Since the dimensionality of A" is
III| — 1 =n! — 1, we conclude that

dim(A(a, ) =n!l—1—-((n—=1!=1)=(n—1)! x (n—1).

Observe that for n = 3, we have that dim(A(a, A)) = 4 and, from above,
d3(Q) = 4. By induction on n, it is straightforward to show that d,, <
dim(A(a, A)) for all n > 3. (Intuitively, (n —1)! x (n—1) = O((n/e)™) grows

faster than d, = O(n?2").) Thus, dim(Q(A")) < d, < dim(A(a, \)), so that

dim(Q(A™)) < dim(A(a, \)).

On the other hand, A(a,A) C A Combining these two, we conclude
that Q(A") = Q(A(a, V).

Step 2: For any p € A(a, A) such that 4 € FOSD(a,\) there exists p' €
M (a, \) such that Q(p') = Q(u).
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Let u € A(a,\) N FOSD(a,\). We provide a procedure o find u' €
M(a, ) such that Q(z/) = Q(p). Note that y/ € M(a,\) if there exists a
"transfer" matrix W € W(a) such that p/ = WA

We start by observing that for any A and u there exists a stochastic matrix
W -possibly multiple matrices, such that u = WTA. This matrix describes
how to relocate the mass described by the distribution A to obtain u, each
element W (n',7) is the fraction of Ay transferred to p. If we consider the
restriction that u € A(a, A), which implies that the mass of preferences in I17
remains fixed, we can further restrict W so that W(W’, m)>0=mn €ll’
for some p. This means W describes mass transfers for preferences within
the same set II?. Of course, if W (x',7) = 0 for all 7 ¢ m(a,n’') we are done
as it would mean that W € W(a) or, equivalently, that € M (a, \).

Suppose instead that W (x’, 7) > 0 for some 7’ and 7 ¢ m(a, 7"). We refer
to this type of transfer from preferences that rank a higher to preferences that
rank a lower preserving the relative ordering of the other alternatives as a
"negative transfer". Of course, it must also be the case that W (z”,7) > 0 for
some 7" and m € m(a, "), otherwise we would have that A € FOSD(a, )
rather than p € FOSD(a, i1). These transfers are referred as "positive trans-
fers". We can thus decompose the vector u into three components ™, ugd
and p) such that

po= "+ g+
The first component p_ captures all the "negative transfers" described in
W,, the second and third components p and u; correspond to "positive
transfers". The vector pg is chosen to neutralize the negative transfers cap-
tured by p_. More precisely, u~ + g is in the Kernel of the transformation
AQ(v) = Q(v) — Q(N). Tt can be shown that p/ = uf + A € M(a,)), the
details are omitted.

A.2 Prevalence: Almost Every Monotonic Rule is Reg-
ular

The following definitions are from Anderson and Zame [2001].
Definition 9 [Shyness/Prevalence] Let Z be a topological vector space and

let K C Z be a convex Borel subset of Z which is completely metrizable in
the relative topology. Let ¢ € K. A universally measurable subset S C Z is
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shy in K at ¢ if for each 6 > 0 and each neighborhood W of 0 in Z, there
1s a reqular Borel probability measure v on Z with compact support such that
supp p C (0(K — K)+ K)N (W + K) and v(S + z) = 0 for every z € Z.
The set E is shy in K if it is shy at each point K € K. A (not necessarily
universally measurable) subset F C K is shy in K if it is contained in a
shy universally measurable set. A subset P C K 1is prevalent in K if its
complement K\P is shy in K.

We use Lp to denote the Lebesgue measure on finite-dimensional vector
space F'. A straightforward example of a shy set is a set such that it and all of
its translates have Lebesgue measure 0 in some finite-dimensional subspace.
Formally:

Definition 10 [Finitely Shy/Prevalent] Let Z be a topological vector space
and let K C Z be a convex Borel subset of Z which is completely metrizable in
the relative topology. A universally measurable subset S C K is finitely shy in
K if there is a finite-dimensional subspace N C Z such that Ly(K + a) > 0
for some a € Z and Ln(S + z) = 0 for every z € Z. A (not necessarily
universally measurable) subset T'C K s finitely shy in K if it is contained
in a finitely shy universally measurable set. A subset P C K is finitely
prevalent in K if its complement K\ P is finitely shy in K.

All finitely prevalent sets in K are also prevalent in K (Anderson and
Zame [2001]). If a set P is prevalent in K we say that "almost every"element
of K satisfies the property that defines the elements in P.

A.2.1 Proof of Theorem 3

Throughout the proof, we use the same notation introduce in the section 4.

In our case the ambient space Z is the space of locally Lipschitz continuous
functions from A™ to R%. Observe that Z endowed with the sup norm
is a topological vector space. From Corollary 1 the excess score function
¢y : Al — R5» associated to a monotonic rule v € V™ is locally Lipschitz-
continuous. Let C™ = {¢ € Z| ¢ is an excess score function for some
v € V™}. (Note that any ¢ € C™ can be described as ¢ = (¢4, ..., ¢s, ) where
each ¢; is an excess score map for set A; € A, i.e., there exist some monotonic
and continuous function H; such that ¢;, = Hj 0 Qu,4; — Hj 0 Qayy4;-)
Finally, let R™ = {¢ € C™| ¢ is regular at er;}. Our purpose is to show:
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Theorem 3 R™ is finitely prevalent in C™ (thus, prevalent in C™).

Our proof parallels the proof of Theorem 3.7 in Shannon [2006]. A similar
proof technique is used to show Theorem 5.2 in Anderson and Zame [2001].
We start by introducing a finite-dimensional subspace in which the desired
property holds "Lebesgue almost everywhere" in that subspace.'® Let N* be
the set of excess score functions associated to the set of scoring rules. This
set is not a subspace as can be shown that it is not closed to multiplication by
negative scalars. Let N° = {¢ € Z|—¢ € N*}. By construction, N = NsUN’
is a subspace of Z. Clearly, N C Z and this set is finite dimensional. Indeed,
it is isomorphic to set of matrices of Il x S,,. We use N as our probe.

Before showing our main result we need some preliminary steps:

Lemma 10 Almost any z € N is reqular at eyy.

The proof is omitted. It follows directly from Saari [1989, 2000] who
shows that the set of scoring rules that are not regular (and do not span all
choice functions) are a lower dimensional algebraic set of N*.

Lemma 11 Ly(N®) > 0 and thus Ly(C™) > 0.

Proof. Note that Ly(N*®) = Ly(N"). Since Ly(N°*UN") = 1 we have that
Ly(N®) >1/2. m

Lemma 12 Let E be a compact subset of a Euclidean space. Let M(E) be
the space of monotonic and continuous functions with domain E empowered
with the sup norm p. The metric space (M(E), p) is complete and convez.

Proof. Convexity is straightforward: The convex combination of two con-
tinuous and monotonic functions is continuous and monotonic. We focus on
completeness.

Since M (FE) is a subset of the subspace C'(E) of continuous functions and
C(E) is complete, any Cauchy sequence {H*} C M(E) converges to some
continuous function H. This convergence is uniform as F is compact. Since
H* is monotonic for all k, if Q > @’ then H*(Q) > H*(Q') for all k. Taking
the limit we have that the limit function satisfies H(Q) > H(Q'), which
means that H* € M(F). =

16Tn Hunt, Sauer and (1992), and Hunt (1993) this space is called a probe.
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Lemma 13 C™ is a convex Borel set of Z.

Proof. Throughout the proof, we use £ = [0,1]l4l, for some integer 1 <

|A] <n—1 (i.e., a set of cumulative distribution vectors). As in the previous
lemma, let M(E) be the space of continuous and monotonic functions with
domain E. Fix any pair of linear maps Q, Q" : A - E, Q # @’ and define
Cn={¢: A" 5 Rl¢p = HoQ—-HoQ, Hec M(E)}. The space of
"single coordinate" excess score functions of an excess score function in C™
has exactly the same structure of CJ* for some A, @), and )’. We show that
(for any A, @, and Q') the set of "component" excess scores CJ" is a convex
Borel set of Z, the set of locally Lipschitz continuous functions from A to
R. This is sufficient to establish the result as C" is the Cartesian product of
spaces with structure of C{" and, respectively, Z = xf;lZo.

The convexity of CJ* follows from the convexity of M(E). Indeed, given
H,H € M(E) and, any a € [0,1], let H(c) = «H +(1 — «) H. From Lemma
12, H(o) € M(FE). Thus, given b, ¢ € C" defined by ¢ = Ho Q — H o Q'
and ng[OQ—fIOQ’ we see that

ap+(1—a)¢ = H(a)o Q- H(a) o Q'

is also an element of C".

We show that Cf' is Borel in Z; by showing it is a closed set. This
follows directly Lemma 12 above: The sequence {¢*} C Ci* with ¢* =
H* o Q — H* o Q' converges to some ¢ < H* converges to some H. By
Lemma 12 H € M(E) (as M(FE) is complete). It follows that the limit
p=HoQ—HoQ isin CJ'. Hence, CJ" is closed. m

Lemma 14 R™ is a Borel set of Z (thus, universally measurable).

Proof. For each ¢ € R™, the generalized Jacobian at er, d¢(er), has
full rank. This rank is S,,, the dimension of the codomain of all functions
in C™. Given ¢ € C™ (not necessarily regular at er;) we can calculate
the determinant of all the S, x 5, sub-matrices of the generalized Jacobian

O¢(en). Let O(¢) be the maximum absolute value of these determinants. By
construction 6(¢) > 0 and 0(¢) > 0 if and only if O¢p(ery) has full rank. Let

Ry = {6 € Z16(6) > 1/k}.

Each of these sets is an open set in Z. It follows that R™ = Uy R}, is Borel
as it is a countable union of open sets in Z. =
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We can finally prove Theorem 3.

Proof of Theorem 3.

The result is established by showing that S = C™\R™ is finitely shy
in C™. Note that from Lemma 13, C™ is a convex Borel subset of the
ambient space Z. From Lemma 14, S is a Borel set and, thus, universally
measurable. Let N be the finite-dimensional subspace of linear excess score
functions defined above. From Lemma 11 there exists a € Z such that
Ly(C™+a) > 0. To prove that S is finitely shy in C™ we need to show that
Ln(S 4+ 2z) =0 for every z € Z.

To that end, let z € Z be arbitrary and consider (S — z) N N. Let
Py : Z — N be the projection map on the finite-dimensional space N. It’s
easy to verify that ¢ € (S—2)NN < ¢ € Py(S—=z). From the linearity of Py
it follows that (S —2) NN = Sy — zn, where Sy = Py (S5) and zy = Py(2).
Note that Sy is the set of excess score functions in N that are not a regular at
err.- From Lemma 10, Sy has Lebesgue measure 0 in N. Thus, the translate
Sy — zn has Lebesgue measure 0 in N as well. Since (S —z)NN = Sy — zy,
(S — z) N N has Lebesgue measure 0 in N. As z was arbitrary, S is finitely
shy in C™. R
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