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Abstract

When microeconomic adjustment is lumpy, the VAR-estimated persistence of the correspond-
ing aggregated variable is downward biased. The extent of this bias decreases with the level of ag-
gregation, yet convergence is very slow and the bias is likely to be present for sectoral data in general
and, in many cases, for fully aggregated data as well. Paradoxically, while idiosyncratic productiv-
ity and demand shocks smooth away microeconomic non-convexities and are often used to justify
approximating aggregate dynamics with linear models, their presence exacerbates the bias. We
propose procedures to correct for the bias and provide various applications. In one of them, we
account for the persistence-gap behind Bils and Klenow’s (2004) rejection of the Calvo model. In
another, we find that the difference in the speed with which inflation responds to sectoral and ag-
gregate shocks (Boivin et al 2009; Mackoviak et al 2009) disappears once we correct for the missing
persistence bias.
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1 Introduction

The dynamic response of aggregate variables to shocks is one of the central concerns of applied
macroeconomics. The main procedure used to measure these dynamics consists in estimating a
vector autoregression (VAR). In non- or semi-structural approaches, the characterization of dynam-
ics stops there. In other, more structural approaches, researchers wish to uncover underlying pa-
rameters from the estimated VAR and use the implied response to shocks as the benchmark against
which the success of the calibration exercise, and the need for further theorizing, is assessed.

The main point of this paper is that when the microeconomic adjustment underlying an ag-
gregate variable is lumpy, conventional VAR procedures often lead the researcher to conclude that
there is less persistence than there really is. The extent to which persistence is underestimated
decreases with the level of aggregation: linear models capture no persistence when applied to an
individual series while the bias vanishes completely when they are applied to a series that aggre-
gates infinitely many agents. Interestingly, convergence is very slow: the bias is likely to be present
in general for sectoral data and, quite often, for aggregate series as well. For example, even in the
case of the U.S. Consumer Price Index, that aggregates approximately 80,000 prices, the bias turns
out to be large, with the estimated half-life of shocks biased downward by approximately 40%.

We propose a procedure to correct for the bias and provide two detailed applications. In the first
application, we explain why estimates for the speed of adjustment of sectoral prices obtained using
approaches tailored to the underlying lumpy behavior are much lower than those obtained with
standard linear time-series models, thereby solving a puzzling finding in Bils and Klenow (2004). We
also show that linear time series models deliver estimates in line with those obtained with nonlinear
methods once the linear methods are applied correcting for the “missing persistence bias”.

Our second application revisits Boivin, Giannoni and Mihov’s (2009) finding that sectoral infla-
tion responds much faster to sectoral shocks than to aggregate shocks (see also Mackowiak, Moench
and Wiederholt, 2009). In this case we show that once we correct for the missing persistence bias
the responses of inflation to both types of shocks look very similar.

The intuition underlying our main result follows from comparing the impulse response of the
true nonlinear model that includes lumpy adjustment with the impulse response of a linear approx-
imation, in the simple case of one agent and i.i.d. shocks, so that the agent’s optimal response every
time it acts is to adjust by the sum of shocks that accumulated since the last time it adjusted. We
then have that the agent responds in period ¢ + k to a shock that took place in period ¢ only if the
agent adjusted in ¢ + k and did not adjust in all periods between ¢ and ¢ + k — 1. It follows that the
average response in ¢ + k to a shock that took place in ¢ is equal to the probability of having to wait
exactly k periods until the first opportunity to adjust after the shock takes place. In the simple case
where the arrival process that determines when adjustments take place follows a geometric distri-
bution, as in the discrete time version of the Calvo (1983) model, the nonlinear impulse response

will be identical to that of an AR(1) process, with persistence parameter equal to the probability of



not adjusting in a given period.

Consider next the impulse response obtained using a linear time-series model. This response
will depend on the correlations between the agent’s actions at different points in time. If the agent
did not adjust in one of the periods under consideration, there is no correlation since at least one
of the variables entering the correlation is exactly zero. The correlation will also be zero when the
agent adjusted at both points in time because the agent’s actions reflect shocks in non-overlapping
periods and shocks are uncorrelated. This implies that the impulse response obtained via linear
methods will be zero at all strictly positive lags, suggesting immediate adjustment to shocks and
therefore no persistence, independent of the true degree of persistence. That is, even though the
nonlinear IRF recovers the Rotemberg (1987) result, according to which the aggregate of interest
follows an AR(1) process with first-order autocorrelation equal to the fraction of units that remain
inactive, the linear IRF implies an i.i.d. process which corresponds to the above mentioned AR(1)
process when all units adjust in every period and wrongly suggests instantaneous adjustment to
shocks.

The bias falls as aggregation rises because the correlations at leads and lags of the adjustments
across individual units are non-zero. That is, the common components in the adjustments of dif-
ferent agents at different points in time provides the correlation that allows the econometrician
using linear time-series methods to recover the nonlinear impulse response. The more important
this common component is —as measured either by the variance of aggregate shocks relative to the
variance of idiosyncratic shocks or the frequency with which adjustments take place— the faster the
estimate converges to the value of the persistence parameter as the number of agents grows. While
idiosyncratic productivity and demand shocks smooth away microeconomic non-convexities and
are often used as a justification for approximating aggregate dynamics with linear models, their
presence exacerbates the bias. The fact that in practice idiosyncratic uncertainty is many times
larger than aggregate uncertainty, suggests that the problem of missing aggregate dynamics is likely
to be prevalent in empirical and quantitative macroeconomic research.

Under quite general assumptions, a stationary process can be approximated by a vector autore-
gression.? It is common to infer the speed of adjustment of the process to the innovations from the
VAR estimates. When the true process is linear in the innovations, the impulse responses estimated
in this way will capture the actual persistence of shocks. By contrast, a central theme underlying the
results in this paper is that when the variable of interest aggregates over units with lumpy adjust-
ment, using a VAR will underestimate the true persistence of shocks. The (reduced form) shocks
inferred from the VAR estimation differ systematically from the true underlying shocks, and the
aggregates of interest respond faster to these estimated shocks than to the true shocks.

The remainder of the paper is organized as follows. Section 2 presents the Rotemberg (1987)
equivalence result that justifies using linear time-series methods to estimate the dynamics for ag-

2The theoretical underpinning for this statement is Wold'’s representation result, see Ash and Gardner (1975) for an
insightful discussion.



gregates with lumpy microeconomic adjustment, as long as the number of units in the aggregate is
infinite. Section 3 begins by presenting the missing persistence bias that arises when the number
of units considered is finite. Next we describe approaches to correct for the bias. We also study var-
ious extensions of the baseline model, showing that the bias continues being significant. Section 6

studies two detailed applications and Section 7 concludes.

2 Linear Time-Series Models and the Calvo-Rotemberg Limit

Regardless of whether the final goal is to have a reduced form characterization of aggregate dy-
namics, or whether this is an intermediate step in identifying structural parameters, or whether it
is just a metric to assess the performance of a calibrated model, it is common that researchers in

macroeconomics at some key stage estimate an equation of the form:
a(L)Ay: =€y, €Y)

where Ay represents the change in the log of some aggregate variable of interest, such as a price
index, the level of employment, or the stock of capital; € is an i.i.d. innovation and a(L) = 1 -
Z’;Zl arL*, where L is the lag operator and the a;s are fixed parameters.

The question that concerns us here is whether the estimated a(L) captures the true dynamics of
the system when the underlying microeconomic variables exhibit lumpy adjustment behavior. We
show that unless the effective number of underlying micro units is implausibly large, the answer is
‘no.

We setup the basic environment by constructing a simple model of microeconomic lumpy ad-
justment. Let y;; denote the variable of concern at time ¢ for agent i and y?, be the level the agent

chooses if it adjusts in period ¢ (the ‘reset value’ of y). We will have that:
Ayir =it V], = Yie-1), 2)

where ¢;; = 1 if the agent adjusts in period ¢ and &;; = 0 if not.

From a modeling perspective, discrete adjustment entails two basic features. First, periods of
inaction are followed by abrupt adjustments to accumulated imbalances. Second, the likelihood
of an adjustment increases with the size of the imbalance and is therefore state dependent. While
the second feature is central for the macroeconomic implications of state-dependent models, it is
not needed for the point we wish to raise in this paper. We therefore suppress it in this section and
consider it only when analyzing extensions in Section 3. That is, the special model we consider in

this section corresponds to that in Calvo (1983) with:

Pr{¢;; =0}
Pr{¢;; =1}

o
1-p.

3)



It follows from (3) that the expected value of ¢;; is 1 — p. When ¢;; is zero, the agent experiences
inaction; when its value is one, the unit adjusts so as to eliminate the accumulated imbalance. We
assume that ¢;; is independent of (y;-k ; — Yitr-1) —this is the simplification that Calvo (1983) makes
vis-a-vis more realistic state dependent models— and therefore have:

E[Ayl'tly;‘k[» J’it—l] = (1_P)(J/;t_}/it—1); (4)

so that p represents the degree of inertia of Ay;;. When p is large, the unit adjusts on average by
a small fraction of its current imbalance and the expected half-life of shocks is large. Conversely,
when p is small, the unit is expected to react promptly to any imbalance.

Let us now consider the behavior of aggregates. Given a set of weights w;, i = 1,2,..,n, with
w; >0 and Z?zl w; =1, we define the effective number of units, N, as the inverse of the Herfindahl
index:

1
N

n 2°
i=1 W;

When all units contribute the same to the aggregate (w; = 1/n) we have N = n, otherwise the effec-
tive number of units can be substantially lower than the actual number of units.

. . N .
We can now write the aggregate at time £, y,', as:
N n
Ve = Z W;Yit-
i—-1

Similarly we define the value of the aggregate reset value, yiv *,as
N n
Y=Y wiyiy
i-1

Technical Assumptions (Shocks)

Let Ay} = v{ + v! , where the absence of a subindex i denotes an element common to all units.

We assume:

1. The v;’s are i.i.d. with mean p4 and variance O’i > 0.

2. The vf .'s are independent (across units, over time, and with respect to the v’s), identically

distributed with zero mean and variance 0% > 0.

3. The ¢;,’s are independent (across units, over time, and with respect to the v4’s and v'’s), iden-

tically distributed Bernoulli random variables with probability of success p € (0,1]. 1

As Rotemberg (1987) showed, when N goes to infinity, equation (4) for Ay* becomes:

AyP=0=-p) (¥ = y2p- (5)



Taking first differences yields
Ay =pAy2 + 1= p)AyT, (6)

which is the analog of Euler equations derived from a simple quadratic adjustment cost model ap-
plied to a representative agent.3

This is a powerful result which lends substantial support to the standard practice of approxi-
mating the aggregates as if they were generated by a simple linear model. What we show below,
however, is that while this approximation may be good for some purposes, it can be particularly
bad when it comes to motivating VAR estimation of aggregate dynamics.

Before doing so, let us close the loop by recovering equation (1) in this setup. For this, let us
momentarily relax the Technical Assumptions 1 and 2, allowing for persistence in the vf and vft’s,

so that the change in the aggregate reset value of y, Ay*>*, is generated by:
b(DAY?" = ¢y,

where the €,’s are i.i.d. and b(L) =1 - Ziq:l biLi defines a stationary AR(q) for Ay*®°*. Assuming
Technical Assumption 3 holds we have

Ay® = pAy2; + 1 - Ay,
which combined with the AR(q) specification for Ay*>* yields
(1-pD)b(L)AY? =1 - p)e;.
Comparing this expression with (1) we conclude that
(1-pL)

a(Ll) =b(L) .
l-p

The bias we highlight in this paper comes from a severe downward bias in the (explicit or implicit)
estimate of p, resulting in an estimate for a(L) that misses significant dynamics. In the next section
we simplify the exposition and set b(L) = 1, as in the case considered by the Technical Assumptions.

We consider the general case in Section 3.5.

3 The Missing Persistence Bias

The effective number of units, N, in any real world aggregate is not infinity. The question that
concerns us in this section is whether N is sufficiently large so that the limit result provides a good

approximation.

3Using quadratic loss functions in economics was initiated by Holt et al. (1961) and continued by Tinsley (1971), Sims
(1974) and Sargent (1978). For the proof, see Appendix E.



Our main proposition states that the answer to this question depends on parameter values, in
particular, on the relative importance of aggregate and idiosyncratic shocks, the effective number of
agents, and the frequency of adjustment. When any of these is small, the bias can remain significant
even at the economy-wide level. We argue that this is likely to be the case for various aggregates
with lumpy microeconomic adjustment in the U.S. and, by extension, for smaller economies and

sectoral data.

3.1 The Theory

We ask whether estimating (6) with an effective number of units equal to N instead of infinity yields
a consistent (as T goes to infinity) estimate of p, when the true microeconomic model is described
by (2) and (3). The following proposition answers this question by providing an explicit expression
for the bias as a function of the parameters characterizing adjustment probabilities and shocks (p,
ta, opand o) and N.

Proposition 1 (Aggregate Bias)

Let p denote the OLS estimator of p in
AyN = const. + pAyN | +e;. )

Let T denote the time series length. Then, under the Technical Assumptions, plimy_, 0 depends on

the weights w; only through N and

K

plimy_op™ = ——p, (8)
with )
1-p M
P (V-1 - () o)
= 2 i (a2
() - 15 (5)
It follows that:
lim plimy_ . p" = p. (10)
N—oo

Proof See AppendixCand E. |

Equation (10) in the proposition restates Rotemberg’s (1987) result. Yet here we are interested
in the value of p before the limit is reached. That is, we would like to assess the value of K.

The bias drops as the effective number of units in the aggregate being considered rises and as
the relative importance of aggregate to idiosyncratic shocks rises. Other factors that contribute to

slow convergence is a larger drift (in absolute value) in the process driving the reset variable y*, and



alarger degree of inertia as captured by the fraction of agents that do not adjust in any given period,

o-

3.2 The biasis large in practice

To put the relevance of this non-limit result in perspective, we consider three examples where
lumpy microeconomic adjustment has been well established: employment, prices, and investment.
Table 1 reports how the half-life and expected response time of shocks varies for these aggregates
with the effective number of units, N.* We focus on the T=co case for two important reasons: the
missing persistence bias is conceptually distinct from the well-known AR(1) finite sample bias® and
in most realistic applications (including our empirical applications in Section 4) the missing persis-
tence bias is an order of magnitude larger than finite sample bias.®

Table 1: SLow CONVERGENCE

Estimated Half-Life of Shocks and Expected Response Time

Aggregate Frequency Effective number of agents (V)
100 400 1,000 4,000 10,000 40,000 00

Prices monthly 0.257 0464 0.767 1744 2.699 3.886 4.595
Employment quarterly 0.373 0.663 0.912 1.197 1.287 1.338 1.357
Investment annual  0.179 0.356 0.582 1.333 2167 3.397 4.265

Prices monthly  0.072 0.290 0.681 2.049 3.415 5.121 6.142
Employment quarterly 0.184 0.541 0.879 1.275 1.401 1.474 1.500
Investment annual 0.021 0.167 0.436 1.466 2.653 4418 5.666

First three rows show the reported half-life. The half-life is inferred from estimation of (7), which is
—log2/logpoo With poo = plimy_, . p obtained from Proposition 1. The fourth to sixth rows show results
when the expected response time (ERT) is the measure of persistence. For an AR(1), the ERT is poo/(1 — o)
(see Appendix D). Parameters for prices: p = 0.86, u4 = 0.003, 0 4 = 0.0054, o = 0.048. Parameters for
employment: p = 0.60, ug = 0.005, 04 = 0.03, o1 = 0.25. Parameters for investment: p = 0.85, u4 = 0.12,
0 4 =0.056, o7 = 0.50. Numbers in boldface correspond, approximately, to the effective number of units for
U.S. aggregates (CPI for prices, non-farm business sector for employment and investment).

The results for prices, reported in the first row in Table 1, assume p = 0.86, in line with the
median frequency of price adjustments for regular prices reported in Klenow and Kryvtsov (2008).”

Values for 4 and o 4 are taken from Bils and Klenow (2004), while o7 is consistent with the value

4See Appendix D for the definition and main properties of the expected response time.

5See Hamilton 1994 pp 216 for a textbook treatment.

6Monte-Carlo results confirming this statement are available upon request.

"The average over the eight median frequencies reported by Nakamura and Steinsson (2008) for regular price changes
suggest taking p = 0.89 which leads to a larger bias.



estimated in Caballero et al (1997).8 The table shows that the bias remains significant even for
N =10,000, which corresponds, approximately, to the effective number of prices used to calculate
the CPL? In this case, the main reason for the bias is the high value of o;/0 4.

The second row in Table 1 reports the results for aggregate U.S. employment. We use the param-
eters estimated by Caballero, Engel, and Haltiwanger (1997) with quarterly Longitudinal Research
Datafile (LRD) data for 4, 0 4, 01 and p. The second row in Table 1 suggests that with N = 3,683,
which is the effective size of employment in the non-farm business sector in 2001, the bias is only
slightly above 10%. However, note that when N = 100, which corresponds to the average effective
number of establishments in a typical two-digit sector of the LRD, the estimate half-life of shocks is
less than one third of the actual half-life.

Finally, the third row in Table 1 reports the estimates for equipment investment, the most slug-
gish of the three series. The estimate of p, 4 and o 4, are from Caballero, Engel, and Haltiwanger
(1995), and o7 is consistent with that found in Caballero et al. (1997).!° Here the bias remains very
large and significant throughout. In particular, when N = 986, which corresponds to the effective
number of establishments for capital weights in the U.S. Non-Farm Business sector in 2001, the es-
timated half-life of a shock is only 14% of the true half-life or, equivalently, the estimated frequency
of adjustment, 1 — p, is more than four times the true frequency. The reasons for this is the combi-
nation of a high p, a high p4 (mostly due to depreciation) and a large o (relative to g 4).

Summing up, the missing persistence bias is large at the sectoral level for inflation, employment
and investment. Furthermore, linear time-series models will miss a substantial part of the dynamic
behavior of U.S. inflation and investment at the aggregate level as well. The true half-life of a shock
is close to twice its estimate for inflation and more than seven times its estimate for investment.
Even though the setting we have used to gauge the magnitude of the bias is quite simple, in Sec-

tion 3.5 we show that these conclusions extend to more general settings.

3.3 Whatis behind the bias and slow convergence?

Having established the proposition and the practical relevance of the bias, let us turn to the intuition

behind the proof of the proposition. We do this in two steps. We first describe the genesis of the bias,

8To go from the o'; computed for employment in Caballero et al. (1997) to that of prices, we note that if the demand
faced by a monopolistic competitive firm is isoelastic, its production function is Cobb-Douglas, and its capital fixed
(which is nearly correct at high frequency), then (up to a constant):

pi, = wr—ai)+ (1 -apl,

where p* and I* denote the logarithms of frictionless price and employment, wy and a;; are the logarithm of the nom-
inal wage and productivity, and «a; is the labor share. It is straightforward to see that as long as the main source of
idiosyncratic variance is demand, which we assume, o I« = (I-ap)og..
9The median (mean) total number of observations per month between 1988:02 and 2007:12 is 66,582 (67,428). The
median (mean) effective number of observations per month during this period is 10,328 (10,730).
1076 go from the o computed for employment in Caballero et al. (1997) to that of capital, we note that if the demand
faced by a monopolistic competitive firm is isoelastic and its production function is Cobb-Douglas, then o, =07,. .



which can be seen most clearly when N = 1. We then show why, for realistic parameter values, the

extreme bias identified for N =1 vanishes very slowly as NV grows.

3.3.1 The genesis of the bias

Let us set u4 = 0. From (8) we have that when N = 1, regardless of the true value of p,
plimy_ 6 =0. 1y

That is, a researcher that uses a linear model to infer the speed of adjustment from the series for one
unit will conclude that adjustment is infinitely fast independent of the true value of p. Of course,
few would estimate a simple AR(1) for a series of one agent with lumpy adjustment, but the point
here is not to discuss optimal estimation strategies for lumpy models but to illustrate the source of
the bias step-by-step. The case N =1 is a convenient first step in this process.

The key point to notice is that when adjustment is lumpy, the correlation between this period’s
and the previous period’s adjustment is zero, independently of the true value of p. To see why
this is so, consider the covariance of Ay; and Ay;_;, noting that, because adjustment is complete

whenever it occurs, we may re-write (2) as:

I;-1 * : _
I-1 Yico AV &=L
Ay =& Y Ay; , = (12)
k=0 0 ifE, =0,

where /; denotes the number of periods, as of period ¢, since the last adjustment took place. So that

I; = 1 if the unit adjusted in period ¢ -1, 2 if it did not adjust in ¢ — 1 and adjusted in ¢ -2, and so on.

Table 2: CONSTRUCTING THE MAIN COVARIANCE

Adjustin t—1 Adjustin ¢ Ay Ay Contribution to Cov(Ays, Ay_1)
No No 0 0 Ay:Ay;r 1=0
No Yes 0 Ay;f Ay Ay;1=0
Yes No Yhtays .0 AyAy;1=0
Yes Yes Z;;;IO Ay; 1 Ayf Cov(Ay;—1,Ay;) =0

There are four scenarios to consider when constructing the key covariance (see Table 2). If there
is no adjustment in this and/or the last period (three scenarios), then the product of this and last
period’s adjustment is zero, since at least one of the adjustments is zero. This leaves the case of ad-
justments in both periods as the only possible source of non-zero correlation between consecutive
adjustments. Conditional on having adjusted both in # and ¢ — 1, we have

Cov(Ay, Ayi-11¢r =81 =1) = Cov(Ay; , Ay[_ 1 +Ay[,+-+Ay; ;) =0,



since adjustments in this and the previous period involve shocks occurring during non-overlapping
time intervals. Every time the unit adjusts, it catches up with all previous shocks it had not adjusted
to and starts accumulating shocks anew. Thus, adjustments at different moments in time are un-
correlated.

The case N = 1 is also useful to compare the impulse responses inferred from linear models with

those obtained from first principles. We define the latter via:

It follows from Proposition 1 that the impulse response of Ay to Ay™* inferred from a linear time-
series model estimated for an individual series of Ay will be equal to one upon impact and zero for
higher lags.

To calculate the correct impulse response, we note that Ay, responds to Ay; if and only if the
first time the unit adjusted after the period ¢ shock took place is in period ¢ + k. It also follows from

our Technical Assumptions that in this event the response is one-for-one. Thus

It =Prié;=0,E01 =0, ikt = 0,&,4 = 11 = (1 - p)p*.

This is the IRF for an AR(1) process obtained for aggregate inflation in the standard Calvo model
(see, for example, Section 3.2 in Woodford, 2003).11

What happened to Wold’s representation, according to which any process that is stationary and
non-deterministic admits an (eventually infinite) MA representation? Why is Wold’s representation
in this case an i.i.d. process, suggesting an infinitely fast response to shocks, independent of the
true persistence of shocks?

In general, Wold’s representation is a distributed lag of the one-step-ahead linear forecast er-
rors for the process. In the case we consider here we have E[Ay;Ay;.1] = 0 and therefore Ay, —
E[Ay;+11Ay¢] = Ay;+1 so that the Wold innovation at time ¢ + 1, Ay;.1, differs from the innovation
of economic interest, A y;‘ 1

Wold’s representation does not necessarily capture the entire process but only its first two mo-
ments. If higher moments are relevant, as is generally the case when working with variables that
involve lumpy adjustment, the response of the process to the innovation process in Wold’s repre-

sentation will not capture the response to the economic innovation of interest.

3.3.2 Slow convergence

We have characterized the two extremes. When N = 1, the bias is maximum; when N = oo there

is no bias. Next we explain how aggregation reduces the bias, and then study the speed at which

1 As discussed in Caballero and Engel (2007), the impulse response for an individual unit and the corresponding aggre-
gate will be the same for a broad class of macroeconomic models, including the one specified by the Technical Assump-
tions in Section 2.
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convergence occurs.

For this purpose, we begin by writing p as an expression that involves sums and quotients of
four different terms:

CovAyN, Ay ) X wiCov(Ayi,, Ay1i-1) + Lixj wiw;Cov(Ayy,, AYa,i-1)
Var(AyN) Y wiVar(Ayy,) + Xizj wiw;Cov(Ay, s, Ays,p)

A

plimT—»oop =

and since N=1/); wl? and ) ; w; =1:

NCov(Ayit,Ayit-1) + N(IN—=1)Cov(Ayir, Ayj t-1)
NVar(Ayis) + N(N —1)Cov(Ay;s, Ayijt)

A

plimy_ 0=

) (13)

where the subindices i and j in Ay denote two different units. Table 3 provides the expressions for

the four terms that enter in the calculation of p.

Table 3: CONSTRUCTING THE FIRST ORDER CORRELATION

COV(Ayil‘) A)/i,t—l) COV(AJ’it, ij,t—l) Var(Ayl.t) COV(Ayit; A_V];)
- =
Lumpy (4 = 0): 0 ﬁpai 0% +07 ﬁai
1- 2 1-
Lompy (ua 20 ~pkiy L W R Y W

If N =1, only the two within-agent terms remain, one in the numerator and one in the denom-
inator. Since the covariance in the numerator is zero,'? p is zero as well. This drag on p remains
present as N grows, but its relative importance declines since the between-agents covariances in
the numerator and denominator are multiplied by terms of order N?. This means that the reduc-
tion of the bias must come from the between-agents correlations at leads and lags, captured by the
second expression in the numerator and denominator. The expression in the numerator is positive
because not all individual units react to common shocks at the same time. The expression in the
denominator is positive, because some do react at the same time. Either way, it is clear that these
expressions are proportional to the variance in aggregate shocks only. In fact, as summarized in the

first row of Table 3:
1-p

Cov(Ay, Ayi 1) = ——=p0o?,
ov(AYit, AYi 1) 1+pp0A

Cov(Ayir, Ayjs) = l_—pai,
1+p
and we see that the ratio of the two between-agents covariance terms is indeed p. When N goes to
infinity, it is this ratio that dominates p.

While these between-agents terms are proportional to the variance of aggregate shocks only,

12Eor simplicity we continue assuming p14 = 0.
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the within-agent responsible for the biases are proportional to total uncertainty. In particular, the
denominator of (13) is

Var(Ayy,;) = O'i + 0'%,

which cannot be compensated by the within-agent covariance in the numerator since this is equal
to zero for the reasons described earlier. Thus p remains small even for large values of N.

Aside from the relative importance of idiosyncratic shocks for the bias, we see from the expres-
sion for K in Proposition 1 that the bias is larger when the drift is different from zero and when
persistence is high. The latter is intuitive: When p is high, the between-agents covariances are
small since adjustments across units are further apart, thus a larger number of units are required
for these terms to dominate in the calculation of p.

To understand the impact of the drift on convergence, we must explain why the covariance be-
tween Ay; and Ay;_; for a given unit is negative when p 4 # 0 and why the variance term increases
with |u 4| (see the second row in Table 3). To provide the intuition for the negative covariance, as-
sume (4 > 0 (the argument is analogous when p14 < 0) and note that the unconditional expectation
of Ay, is equal to u4, which corresponds to expected adjustment when adjusting in consecutive
periods (the intuition is straightforward, see Appendix C for a formal proof). Expected adjustment
when adjusting after more than one period are larger than p 4. It follows that a value of Ay, above
average suggests that it is likely that the agent did not adjust in ¢ — 1, implying that Ay;_, is likely
to be smaller than average. Similarly, a value of Ay, below average suggests that it is likely that the
agent adjusted in period ¢ —1, and Ay;_, is likely to be larger than average in this case.

The reason why the variance term increases when p 4 # 0 is that the dispersion of accumulated
shocks is larger in this case, because by contrast with the case where 14 = 0, conditional on adjust-
ing, the average adjustment increases with the number of periods since the unit last adjusted (it is
equal to 4 times the number of periods).

Summing up, linear time-series models use a combination of self- and cross-covariance terms
involving units’ adjustments to estimate the microeconomic speed of adjustment. Inaction biases
the self-covariance terms toward infinitely fast adjustment (and beyond when p4 # 0). It follows
that the ability to recover the true value on p depends on the cross-covariance terms playing a
dominant role. Yet these terms recover p thanks to the common components in the adjustment
of different units in consecutive periods, thus their contribution when estimating p will be smaller
when adjustment is less frequent (larger p), and when idiosyncratic uncertainty is large relative to

aggregate uncertainty.

3.4 Bias Correction

This section studies an approach to correct for the missing persistence bias, based on using a proxy
for the reset value y*. Two alternative approaches—one based on an ARMA representation of A yiv ,

the other on instrumental variables—are discussed in Appendix A.
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So far we have assumed that the sluggishness parameter p is estimated using only information
on the economic series of interest, y. Yet often the econometrician can resort to a proxy for the reset

value y*. Instead of (7), the estimating equation, which is valid for V = co, becomes:
AyN =const. + pAyN , + (1 - p)AyiN + ey, (14)

with some proxy available for the regressor Ay*.

Equation (14) hints at a procedure for correcting the bias since it tells us what the correct con-
trol function to use is to get an unbiased estimate of p: use a proxy for innovation in the shock,
Ay;. Since the regressors are orthogonal, from Proposition 1 we have that the coefficient on Ay, _;
will be biased downward. By contrast, the true speed of adjustment can be estimated directly from
the parameter estimate associated with Ay, as long as the constraint that the sum of the coeffi-
cients on both regressors add up to one is not imposed. Of course, the estimate of p will be biased
if the econometrician imposes the latter constraint. We summarize these results in the following

proposition.

Proposition 2 (Bias with Regressors)

With the same notation and assumptions as in Proposition 1, consider the following equation:
AyiV:const.+b0Ayﬁ1+b1Ay;‘N+et, (15)

where Ay*N denotes the average shock in period t, Y. w;A ¥;, Then, if (15) is estimated via OLS, and
K defined in (9),

(i) without any restrictions on by and by :

lim,__by = —~ (16)
PHMT—00b0 = 7770
plimT_,ooEI = 1-p; (17)
(ii) imposing bp = 1 — by :
, R 1-p)?
l bp=p - ——.
pimr o0 = P K+l-p

Proof See AppendixC. 1

Proposition 2 entails the general message that constructing a proxy for the reset variable y* can
be very useful when estimating the dynamics of a macroeconomic variable with lumpy microeco-
nomic adjustment. Also, it is important to avoid imposing constraints that hold only when N = co.

We apply this approach in Section 4.
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3.5 Extensions

The Technical Assumptions we made so far in this section allowed for closed form expressions and
simple intuitions for the missing persistence bias. In Appendix B we consider the following depar-
tures from the assumptions we have made so far: the probability of adjusting is state-dependent,
y* does not follow a random walk, agents’ decisions are strategic complements and agents” adjust-
ment decisions are lumpy but spread out over time (‘time-to-build’). We show that the missing

persistence bias continues be present (and significant) in all of these cases.

4 Applications

In Section 2 we established the existence of the missing persistence bias theoretically, in Section 3
we argued, via simple calibration exercises, that it is likely to be large in practice. In this section we
go one step further and present two applications where recent findings on inflation dynamics are
overturned once the missing persistence bias is considered.

The pricing literature is a natural context in which to study the relevance of the missing persis-
tence bias because numerous studies over the last decade have shown that at the item level prices
adjust infrequently.'® Both applications provide evidence of the presence of the bias and correct for
it using the approach outlined in Section 3.4. To correct for the bias we construct an estimate for the
aggregate and sectoral shocks facing retail price-setters, based on establishment level prices. These
series are of interest in their own right and can be of use in other applications.

Our first example shows that accounting for the missing persistence bias overturns Bils and
Klenow’s rejection of the Calvo model from their now classic 2004 paper.'* We start with this simple
example because the assumptions are identical to those underlying the results in Section 3 and
because we are able to calculate the exact magnitude of the bias in this case based on the CPI micro
database. We show that the bias is substantial and that the bias correction procedure eliminates the
bias almost entirely.

In our second application, we turn to recent empirical work using sectoral price data to argue
that firms respond faster to sectoral shocks than to aggregate shocks (Boivin, Giannoni and Mihov,
2009; Mackoviak, Moench and Wiederholt, 2009). These results have been interpreted as evidence
in favor of rational inattention or imperfect information models of price setting, because they sug-
gest that firms respond more to bigger, more salient shocks. However, we show that once the miss-
ing persistence bias is accounted for, there is little evidence that sectoral prices respond faster to

sectoral shocks than to aggregate shocks.

13Eor evidence based on the micro database used to calculate the CPI see Bils and Klenow (2004), Nakamura and Steins-
son (2008) and Klenow and Kryvtsov (2008).

l4The findings that follow do not affect the main contribution of their paper, which is to provide broad based evidence
on the extent to which U.S. prices are sticky at the microeconomic level.
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4.1 Example 1: Solving a Puzzle in Bils-Klenow

Figure 2 in Bils and Klenow’s influential 2004 paper (BK in what follows) presents a scatter plot of
the frequency of price adjustments, A, estimated from retail level pricing data, and the coefficient

ps estimated via OLS from the following regression using the sectoral inflation series 7 g;:
st = PsTs t—1 T €5t (18)

Under the assumptions of the Calvo pricing model considered in Section 3, which are the as-
sumptions considered by BK, we should have that g is approximately equal to 1 — A,. In contrast,
BK find that in all sectors p; is smaller than 1 - A s, with a substantial difference in most cases.

In other words, Figure 2 in BK shows that the persistence of shocks inferred from a linear time-
series model estimated with sectoral data is considerably smaller than the true persistence param-
eter inferred from microeconomic retail pricing data. BK interpret this finding as evidence against
the Calvo model. However we show below that the missing persistence bias leads to downward
biased estimates of the sectoral p; and that once we correct for this bias the systematic difference
between psand 1 — As disappears.'®

We proceed in three steps. First we calibrate a multisector Calvo model and show that figures
obtained from simulating this model look similar to Figure 2 in BK. Next we use the CPI micro
database and the reset price inflation methodology of Bils, Klenow and Malin (2012) to estimate
sectoral shocks series. We then use the bias correction approach from Section 3.4 to obtain es-
timates for p; that are immune to the missing persistence bias. We find that the bias correction
method does a good job, that is, we find that ps =~ 1— As.

To gauge whether the bias could be an explanation for the BK finding, we first obtain a back of
the envelope estimate of whether the magnitude of the bias is quantitatively similar to the magni-
tude suggested by Figure 2 in BK. Towards this end, we calibrate a multi-sector version of the Calvo
model and compare the true adjustment frequencies with those estimated by linear time-series
methods using simulated data. We work with the two-digit or “Expenditure class” level of aggrega-
tion rather than the ELI level of aggregation used in BK because we will need to estimate underlying
shocks when correcting for the bias and this level of aggregation provides a good balance between
having a sufficiently large number of sectors and being able to obtain good estimates for underlying
shocks.!® The number of sectors we consider is 66.

The calibration we use is standard and the details are relegated to Appendix H.1. Of course,
an important element in our calibration is that we set the number of effective price-setters in each
sector to the number observed in the CPI micro database. Our multi-sector model provides a simple

laboratory to test whether the missing persistence bias is relevant in this case. The implications

15For an alternative explanation for the bias see Le Bihan and Matheron (2012)

16we only use representative monthly pricing data in constructing our price indices to be able to measure monthly
shocks, which cuts down our underlying sample sizes significantly when compared to using bimonthly data as well. Also,
we only chose those sectors for which we could have data for the entire sample period.
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Figure 1: Simulation Counterpart to Bils-Klenow figure from Multi-sector Calvo Model
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from our simulations are summarized in Figure 1, the prediction of the Calvo model is shown by
the solid black line. The BK prediction is shown by the blue crosses. Consistent with BK’s results,
we find that the estimated persistence of sectoral inflation rates is much lower than is implied by
the Calvo model. That is, the blue crosses always lie below the black line (the Calvo prediction) just
as Bils and Klenow found using the CPI micro database.

We use the reset price methodology of Bils, Klenow and Malin (2012), applied to each sector
separately, to construct a sectoral-specific estimate for the shock (see Appendix G for details).

Following Section 3.4 we implement our bias correction procedure by including our measure of

the sectoral shock as an additional control in equation (15):

Tse = PBsTst—1+YsVst + €5t (19)

Proposition 2 implies that if we estimate 8 and y in the above equation without imposing any con-
straints across them, ¥ will be an unbiased estimate of the actual fraction of adjusters A;.

We first return to our simulated multi-sector Calvo model, estimate the v-shocks using our
repeat-price-change methodology and then estimate the above regression sector by sector. The
results for each sector are represented by circles in Figure 1, where each circle represents the aver-
age of 500 corrected estimates for 1 — A obtained via simulations, based on estimating a linear time
series model for sectoral inflation data. All estimates now lie close to the Calvo prediction (the solid
line).
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Next we implement the bias correction approach using micro data on prices from the BLS. We
use the CPI research database which contains individual price observations for the thousands of
non-shelter items underlying the CPI over the sample period 1988:03-2007:12. Prices are collected
monthly for all items only in New York, Los Angeles and Chicago, and we restrict our analysis to
these cities to ensure the representativeness of our sample.!” The database contains thousands
of individual “quote-lines" with price observations for many months. In our data set, an aver-
age month contains approximately 12,000-15,000 different quote-lines. Quote-lines are the highest
level of disaggregation possible and correspond to an individual item at a particular outlet. An ex-
ample of a quote-line collected in the research database is al6 oz bag of frozen corn at a particular
Chicago outlet.

Much of the recent literature has discussed the difference between sales, regular price changes
and product substitutions. We exclude sales following Eichenbaum, Jaimovich, and Rebelo (2012)
and Kehoe and Midrigan (2012), who argue that the behavior of sales is often significantly different
from that of regular or reference prices and that regular prices are likely to be the important ob-
ject of interest for aggregate dynamics. We exclude product substitutions because these require a
judgement on what portion of a price change is due to quality adjustment and which component is
a pure price change. This introduces measurement error in the calculation of price changes at the
time of product substitution. Bils (2009) shows that these errors can be substantial.!®

As a first step we replicate Bils and Klenow’s (2004) results for our 66 sectors. First we estimate
equation (18) using the micro data, and denote the implied frequency of adjustment estimates as
AVAR — 1 _ B, As in Bils and Klenow (2004), we find that B < 1 — A where A™™ denotes the
true frequency of adjustment, estimated from the micro level quote-lines. Next we estimate equa-
tion (19) using our constructed shock measure, vs;, based on the repeat price-change approach
outlined above.

We denote the coefficient on our sectoral shock measure by 15, where the superindex ¢ stands
for “corrected”. To gauge the extent to which the A¢ corrects the missing persistence bias, we regress
the change in estimated speed of adjustment we achieve in a given sector on the magnitude of the

bias (which in this particular case is known). That is, we estimate by OLS the following equation:
VAR i VAR
A§ =AM = a+ AT =A™ + error.

Here 7 is the coefficient of interest as it captures the extent to which our bias correction actually
decreases the bias. If the bias reduction is large but unrelated to the magnitude of the bias, the
estimated value of a will be large while n won't be significantly different from zero. By contrast, if

the bias reduction is proportional to the actual bias, we expect an estimate of n that is significantly

17The most representative sample would be to use all bimonthly observations, but then many price changes are poten-
tially missing. Some items are sampled monthly outside of New York, Los Angeles and Chicago, but these items are not
representative, so we restrict our monthly analysis to these three cities.

18Nevertheless, we have also repeated the analysis including product substitutions and found similar results.
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positive, taking values close to one if the bias completely disappears.

Table 4: Bias-Correction Estimation

Multi-sector Calvo Model CPI database

(simulations) (actual data)
n 1.038*** 1.000***
(0.012) (0.028)
Constant -0.003 -0.063***
(0.005) (0.024)
Observations 66 66
R-squared 0.99 0.95

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p< 0.1

Table 4 shows the estimates we obtain. Both in the multi-sector Calvo simulation and with the
CPI database, our bias correction strategy comes very close to eliminating the bias entirely. For
the CPI data, the estimated value of 1 is not statistically different from one. This suggests that the
departure from the Calvo model found in Figure 2 in BK is likely driven by the missing persistence
bias. Thus, this example shows that the bias is relevant at the sectoral level and that through the use

of microeconomic data our control function approach can be used to overcome this bias.

4.2 Example 2: Faster response to sectoral shocks than to aggregate shocks?

The theoretical literature on sticky-information and costly observation models points out that there
is no reason why prices should adjust equally fast to different types of shocks. For example, Boivin,
Gianonni and Mihov (2009) (henceforth BGM) provide empirical evidence that sectoral inflation
responds much faster to sectoral shocks than to aggregate shocks, which is consistent with both of
these classes of models. However, differential speed of adjustment to shocks at different levels of
aggregation could also signal the presence of the missing persistence bias. We explore this possi-
bility next and show that the difference in speed of adjustment disappears once we correct for the
bias.

To understand BGM’s approach, we must first introduce some terminology. Define I1; as a col-
umn vector with monthly sectoral inflation rates in period t, for sectors 1 through S, based on data
from the BEA and the PPI, where S denotes the number of sectors. BGM assume that II; can be
decomposed into the sum of small number K of common factors, C;, and a sectoral component, e;:

H[:Act+et, (20)

where A denotes an SxK matrix of factor loadings that are allowed to differ across sectors, while

C; and e; are Kx1 and Sx1 matrices. This formulation allows them to disentangle the fluctuations
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in sectoral inflation rates due to the macroeconomic factors—represented by the common compo-
nents C; which sector specific weights—from those due to sector-specific conditions represented
by the term e;.

BGM extract K principal components from the large data set II; to obtain consistent estimates
of the common factors.'® Next they regress each sectoral inflation series on the common factors,?°
denoting the predicted aggregate component, 1;C;, by n?fg, and the residual that captures the

: sect.
sector-specific component, eg;, by w37

l a; t
nstZ/lsCt+est=nS§g+n§?C. (21)

To calculate IRFs with respect to the common and sectoral shocks, BGM fit separate AR(13) pro-

agg
st

efficients. For example, for the processes considered under the Technical Assumptions this sum is

and 755" series and measure the persistence of shocks by the sum of the 13 AR co-

cesses to

equal to p.

Table 5: BGM’S RESULTS WITH OUR CPI SERIES

Sum of AR coefficients for AR(13)

nE
Average over 66 series 0.45 -0.11
Median over 66 series 0.64 —0.04

To start, we reproduce their benchmark results using our 66 series and compare the results we
obtain to what BGM found using a different time period and data.?! Table 5 shows we find similar
results to BGM when we replicate their methodology in the CPI data.?> We report the mean and
median of the same persistence measure used by BGM.

Even though the persistence measures we obtain for the response to aggregate shocks are some-
what smaller than those reported by BGM, the difference between the persistence of the aggregate
and sectoral components of sectoral inflation are similar to those in BGM. There is clear evidence
of significant persistence for the former and no evidence of persistence for the latter. A similar con-

clusion was reached by Mackoviak, Moench and Wiederholt (2011) using CPI data and a different

196tock and Watson (2002) show that the principal components consistently recover the space spanned by the factors
when S is large and the number of principal components used is at least as large as the true number of factors.

20BGM allow C; to follow an AR process. We allow for this possibility and allow C; to have 6 lags in our baseline estima-
tion. We have also tried different specifications where we allow for either 0 or 12 lags of C; and found similar results.

2lThere are a number of differences between our sample and BGM’s. The most notable difference is that BGM use
disaggregated information on both prices and quantities whereas we just use information on prices. The other main
differences are over sample period (BGM use the sample period 1976-2005 whereas we use data over the time period
1988-2007) and in the number of series used (BGM use 600 in their baseline whereas we use 66).

22We report results that assume there are 4 common factors, with three lags in each of these factors. Results are robust
for reasonable deviations from these assumptions.
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methodology. Both BGM and Mackoviak et al (2009) conclude that this difference in persistence is
strong evidence in favor of sticky-information models. We revisit this conclusion next.?3

We begin by noting that BGM’s persistence measure is calculated by first regressing each com-
ponent on lags of itself. Since the underlying prices adjust infrequently and there are not many
prices underlying these sectoral inflation series, BGM’s results could be driven by the missing per-
sistence bias.

To investigate this hypothesis, we use the same shock measures that we computed from CPI
micro data that were discussed in depth in Section 4.1. That is, we have data for 66 sectoral infla-
tion series from the CPI for the period 1988:03-2007:12, together with the corresponding series of
innovations (the v’s from Section 4.1).

Define V; as the Sx1 vector with the period ¢ sectoral shock measures. Our proxy for the com-
mon components of the aggregate shock are the first K principal components of V, denoted by m{f ,
k=1,2,..,K. To decompose the v,; into the sum of an aggregate and a sectoral component we

regress these shocks on the common factors and their lags and denote the residual by x;:%*

K
Vst = i y’;jm';_j + X1, (22)
k=1j=0

The term with double sums on the r.h.s. is the component driven by aggregate shocks, while the

residual x;; is the component driven by sectoral shocks.
So far we have K aggregate shock components, mff , and a sectoral shock, x;, for each of the 66
sectoral innovation series we obtained from the CPI using reset price inflation in Section 4.1. Next
we decompose the sectoral inflation series into two components, one driven by aggregate shocks,

the other by sectoral shocks. To do this, we estimate:

Mgt = i ¥ Lym* +v(L)xs,, (23)
k=1
where nf(L) = ijo nstj and vg(L) = ijo vstj denote lag polynomials. We model each n’sC(L) and
v(L) as quotients of two second degree polynomials. The results we obtain are robust to reasonable
variations in the order of these polynomials.?®
The approach we use to correct for the missing persistence bias is based on information that is
not included in the sectoral inflation series and therefore we must use a persistence measure that is

different from the one used by BGM. We consider the expected response time (see Section 3.2 and

23Carlsson and Skans (2012) use firm level information on prices and marginal costs from Sweden, and find that cost
pass-through to idiosyncratic cost shocks is much less than one. They interpret this finding as contradicting the predic-
tions of the Rational Inattention Model of Mackowiak and Wiederholt (2009).

240ur results are robust to ignoring distributed lags of common components yet we believe it is more realistic to include
these components as aggregate shocks might affect sectoral shocks with a lag.

25These robustness results are available upon request. We implemented this estimation using the polyest command in
Matlab. See http://jp.mathworks.com/help/ident/ref/polyest.html for details.
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Appendix D) to each of the K aggregate shocks and summarize the K response times to aggregate

shocks by their median:

sec  _ : k k
Ts = Z]Vsj/zvsj’
j=0 j=0
agg,k _ .k k
Ts = Z]nsj/znsj’
j=0 j=0
T?gg = mediangTgg.

Because we have a direct proxy for both shocks, our measures of persistence to these shocks are not

susceptible to the missing persistence bias.

Table 6: THE RESPONSE OF SECTORAL INFLATION RATES TO AGGREGATE AND IDIOSYNCRATIC SHOCKS

Median of estimated expected response times to shocks

PCs nlags agg sec
(1) 2)

2 0 3.63  3.03
(0.84) (0.56)

2 3 257 271
(0.77)  (0.55)

2 6 3.05 177
(0.86) (0.51)

2 12 279 286
(0.91) (0.56)

4 0 272 256
(0.44) (0.53)

4 3 1.98 253
(0.44) (0.54)

4 6 212 199
(0.34) (0.50)

4 12 172 217
(0.45) (0.54)

6 0 1.87 251
(0.38) (0.50)

6 3 200 283
(0.46) (0.64)

6 6 197 256
(0.33)  (0.55)

6 12 214 224

(0.33) (0.56)

The results are shown in Table 6. The numbers we report are medians across sectors. The in-
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terquartile ranges (divided by the square root of the number of sectors) are shown in parentheses.
We consider 12 possible combinations for the number of principal components (PC) and number
of lags (nlags) used on the r.h.s. of (22).

Columns (1) and (2) show that after correcting for the missing persistence bias using the pro-
cedure outlined above, there is no significant difference between the estimated response times of
sectoral inflation series to aggregate and sectoral shocks. The average difference between corrected
estimates is both economically and statistically small (2.38 vs. 2.48 months) and, if anything, the
sectoral component of sectoral inflation is more persistent than the aggregate component. We con-
clude that once one corrects for the missing persistence bias, there is no longer evidence that firms

respond differently to aggregate and sectoral shocks.

5 Conclusion

While many (if not most) microeconomic actions are infrequent and lumpy, large idiosyncratic
shocks map these discrete microeconomic series into smooth aggregated counterparts. The pre-
sumption (either explicit or implicit) is then that standard linear time series analyses can be ap-
plied to these smooth aggregated time series to gage their first order stochastic properties. The
main result of this paper is to challenge or qualify this presumption. We show that while it holds
in the limit, convergence (as we aggregate) is extremely slow, especially (and paradoxically) when
idiosyncratic shocks are large. Moreover, we show that away from this limit, the bias is systematic
and it always represents an aggregate time series whose response to aggregate shocks is faster than
the true response.

On the constructive side, we show how to use microeconomic data to correct the bias, and
demonstrate with a couple of applications the usefulness of this approach. In particular, we show
thats the bias can account for the persistence-gap behind Bils and Klenow’s (2004) rejection of the
Calvo model, and that the difference in the speed with which inflation responds to sectoral and ag-
gregate shocks (Boivin et al 2009; Mackoviak et al 2009) disappears once we correct for the missing

persistence bias.
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APPENDIX

A Additional Bias Correction Methods

In the main text we studied an approach to correct for missing persistence bias using a proxy for y*,
this is the approach we used in Section 4. Here we provide two additional approaches.

A.1 ARMA Correction

The second correction we propose is based on a simple ARMA representation for A yfv .

Proposition 3 (ARMA Representation)

Consider the assumptions and notation of Proposition 1. We then have that A yiv follows the following
ARMA(1,1) process:
Ayy = pAyL + (1= p)ler—Oerl, (24)

where €, is an i.i.d. innovation process and 0 = (S— V' S2-4)/2>0 with S =2+ (1 - p*)(K-1)]/p.?8

Proof See Appendix C. 1

Using (24) to write Ayfv as an infinite moving average shows that its impulse response to &-
shocks satisfies:
1-p ifk=0
I =
(1-p)(p-0)p* 1 ifk=1.

Yet this is not the impulse response to the aggregate shock v, because ¢, in (24) is not v4. As in
section 3.3.1, the innovation of the Wold representation is not the innovation of economic interest.
The derivation of the impulse response from section 3.3.1 for the case where N =1 carries over to
the case with N > 1 and the true impulse response is equal to (1 - p)pk, that is, it corresponds to the
case where 0 =0 in (24).

This suggests a straightforward approach to estimating the adjustment speed parameter, p: Es-
timate an ARMA(1,1) process (24) and read off the estimate of p (and the true impulse response)
from the estimated AR-coefficient. That is, first estimate an ARMA model, next drop the MA poly-
nomial and then make inferences about the implied dynamics using only the AR polynomial.

This approach runs into two difficulties when applied in practice. First, for small values of N
we have that A yfv is close to an i.i.d. process which means that 8 and p will be similar. It is well
known that estimating an ARMA process with similar roots in the AR and MA polynomials leads to
imprecise estimates, resulting in an imprecise estimate for the parameter of interest, p.

Second, to apply this approach in a more general setting like the one described by equation (1)
in Section 2, the researcher will need to estimate a time-series model with a complex web of AR and
MA polynomials and then “drop” the MA polynomial before making inference about the implied
dynamics. This strategy is likely to be sensitive to the model specification, for example, the number
oflags in the AR-polynomial b(L) in the case of (1).

265caling the right hand side term by (1 — p) is inoccuous but useful in what follows.
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A.2 Instrumental Variables

Equation (24) in Proposition 1 suggests that lagged values of Ay and Ay* (or components thereof)
may be valid instruments to estimate p in a regression of the form

Ayiv = const. + pAyf‘\i1 +ey.

More precisely, if v, = Ay; N then Ay;_j and A y;‘i\;c will be valid instruments for k = 2. Yet things
are a bit more complicated, since v, = Ay*" holds only for N = co. As shown in the following
proposition, the set of valid instruments is larger than suggested above and also includes Ay} _I\i

Proposition 4 (Instrumental Variables)

With the same notation and assumptions as in Proposition 1, we will have that A yi\i o k=2and
A y;‘f\’j, Jj =1 are valid instruments when estimating p from

Ayiv = const. + pAyﬁ1 + ey.
By contrast, A yﬁ | s not a valid instrument.

Proof See AppendixC. 1

B Extensions

B.1 State-dependent Models

The intuition we provided in Section 3 for the missing persistence bias is based on two assumptions:
adjustment is lumpy and shocks (the Ay*) are independent across periods. Thus the correlation
between Ay; and Ay;_; for aunitis zero either because the agent did not adjust in one of the periods
or because adjustments at different points in time are independent. This intuition does not depend
on whether agents’ adjustments are determined by an exogenous process (as in the Calvo model
considered so far) or state-dependent (as with Ss-type models). That is, Table 2 in Section 3.3.1
continues to be valid when adjustment policies are state-dependent. because in these models we
also have that shocks in non-overlapping time periods are independent when y* follows a random
walk.?’

Thus the main ingredient for the missing persistence bias is valid both for models with con-
stant and state-dependent adjustment hazards, all that matters is that consecutive adjustments are
uncorrelated. Of course, the statistics of interest will be different across both types of models, in
particular, the adjustment cost structure is likely to involve more parameters than the sufficient
statistics p we have worked with so far. Yet the main message remains. For example, when us-
ing simulated methods of moments or indirect inference to calibrate or estimate parameters for a
DSGE model, using the correct number of agents is important, since otherwise the parameters that
are obtained are likely to be biased.

27Jorda (1997) provides a general characterization of these models in terms of random point processes (processes with
highly localized data distributed randomly in time).
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B.2 Relaxing thei.i.d. Assumption

In Section 3 we have assumed that Ay* is i.i.d. Even though this assumption is a good approxima-
tion in many settings (nominal output follows a random walk in Woodford [2003, sect. 3.2], nominal
marginal costs follow a random walk in Bils and Klenow [2004]) it is worth exploring what happens
when we relax this assumption. When doing so, the cross correlations between contiguous adjust-
ments are no longer zero, but the missing persistence bias typically remains.

We consider first the case where both components of Ay*, v{‘ and vl.I .» follow AR(1) processes
with the same first-order autocorrelation ¢. The case we considered in the main text corresponds
to ¢ = 0. We show in Appendix E that, with a continuum of agents, Ay?° follows the following
stationary ARMA(2,1) process:

AyP = (p+PAYZ, — ppAy2, + e~ Bpdes1,

with €; proportional to vf and S denoting the agent’s discount factor.?
Table 7: SLow CONVERGENCE

Estimated Half-Life and Expected Response Time Ay* follows an AR(1)

Effective number of agents (V)
[0} 100 400 1,000 4,000 10,000 40,000 True

0 0.252 0466 0.769 1.724 2.639 3.794 4.596
0.1 0.246 0.440 0.723 1.683 2.659 3.841 4.615
0.2 0.296 0426 0686 1671 2.646 3.852 4.644
03 0.379 0459 0661 1615 2.651 3.882 4.690
0.4 0.529 0.564 0662 1589 2697 3.993 4.764
0.5 0.751 0.767 0.801 1416 2.704 4.064 4.887

0 0.068 0.292 0.684 2.021 3.329 4988 6.143
0.1 0.069 0.247 0587 1932 3339 5.045 6.160
0.2 0.139 0.246 0522 1874 3.290 5.039 6.186
0.3 0.277 0332 0509 1.745 3.251 5.050 6.225
0.4 0.514 0.533 0596 1.661 3.255 5.158 6.288
0.5 0.865 0.870 0.885 1.424 3.183 5.177 6.393

First six rows report the average estimate of the half-life of a shock. The parameter p is estimated
via maximum likelihood from (Ayiv - gbAyﬁl) = const. + p(Ayi\il - (/)Ayﬁz) + e — Bppe;—1 with
B and ¢ known. The estimated half-life is obtained by finding k that solves }_ ;?:0 di = % Z‘j’.‘;o dy.,

where A yiV =) k>0 Wk Vi—k is the (infinite) MA representation of A yiv assumed by the researcher.
Estimates based on 100 simulations of length 1,000 each. Rows 7-12 are analogous to rows 1-6 with
expected response time instead of estimated half-life. The expected response time is calculated
from (p+p—-2¢pp)/(1—p—p+pd)—Ppd/(1—-Pp¢) (see Appendix D). Parameters (monthly pricing
data): p = 0.86, 4 = 0.003, 0 4 = 0.0054, 0’7 = 0.048, = 0.961/12,

28With the notation of Section 2 we have b(L) = (1 — ¢L)/(1 - BopL).
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Table 7 shows the measures of speed of convergence considered in Table 1, for the case of prices,
once the i.i.d. assumption is relaxed. The first half of the table reports the estimated half-life of a
shock, the second half the expected response time. The reported estimates assume that the re-
searcher not only is aware that Ay™* is not i.i.d. but also knows the exact value of the first order
autocorrelation, ¢, as well as 8, and estimates p via maximum likelihood from

(Ayy =AY ) = const. + p(AyL ) — pAY;L,) + e — fdper.

The only source of bias is that the researcher ignores the fact that because the actual aggregate
considers a finite number of agents, using the linear specification valid for an infinite number of
agents will bias the estimated speed of adjustment upwards.?

It follows from Table 7 that the bias is generally larger when the Ay™* are correlated than in the
i.i.d. case, even though the increase in the bias is small. For example, for N = 10,000, the estimated
half-life is biased downward by 44.7% when ¢ = 0.5 as compared with 42.6% when ¢ = 0. Similarly,
the bias for the corresponding expected response times are 45.8 and 50.2%, respectively.

In Section 3 we assumed that y* is not stationary, we consider next the stationary case. We as-
sume that both the aggregate and idiosyncratic components of y;, follow stationary AR(1) processes
with the same first-order autocorrelation ¢, in previous sections we assumed ¢ = 1. The innovations
for these processes are the v and vl.f .» respectively. The remaining assumptions remain unchanged.

It follows from Appendix E that, with a continuum of agents, y?° follows the following stationary
AR(2) process:

Vo =+ Py —pdyiZ, + e

with €; proportional to vtA.

Table 8 revisits Table 1, for annual investment data, this time assuming y* follows an AR(1)
process instead of a random walk. We consider investment, instead of prices as we did in Table 7,
because the stationarity assumption for y* is more reasonable in the case of investment.3°

Table 8 reports the estimated fraction of adjusting firms, not the estimated half-life or the ex-
pected response time. The reason for reporting a persistence measure different from those reported
earlier is that when y is stationary the half-life and expected response time for Ay become infinite.3!
Reported estimates assume the researcher knows the value of ¢ in the AR(1) process but believes
N = oo, and therefore estimates p via OLS from

AR ARES AR AP RS (25)

Table 8 shows that the bias is still present when ¢ < 1 but decreases as ¢ becomes smaller. We
show in Appendix F that there is no bias when ¢ = 0. Because the parameters in Table 8 corre-
spond to annual investment data, the first order autocorrelation parameter ¢ is likely to be around
0.8, suggesting the bias will be large. For example, for N = 1,000 (which corresponds roughly to
the effective number of firms for the U.S. non-farm business sector) and ¢ = 0.8, the researcher

29simulations show that the bias disappears if we estimate (Ay{v —d)Ayfil) =const.+ p(Ayf\i1 —([)Ayﬁz) +er—yi1er—1—
Y2er—2 with no constraints on y; and 2. This suggests that the random walk assumption can be relaxed in Proposition 3.
We thank Juan Daniel Diaz for this insight.

30Nonetheless, results are qualitatively similar if we work with prices.

31Also, if we report the half-life and expected response time for y instead of Ay, these persistence measures will be
finite but cannot be meaningfully compared with the measures in Table 1 because the latter do not converge to the
former when ¢ tends to one.
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Table 8: SLOow CONVERGENCE

Estimated Fraction of Adjusters, 1 — p, when y* follows an AR(1)

Effective number of agents (V)
() 100 400 1,000 4,000 10,000 40,000 True

0.6 0.493 0374 0.287 0.198 0.172 0.158 0.150
0.7 0.599 0.448 0.328 0.210 0.177 0.158 0.150
0.8 0.712 0.533 0385 0.231 0.186 0.161 0.150
0.9 0.843 0.646 0.469 0.269 0.205 0.169 0.150
1.0 0982 0.856 0.697 0.410 0.279 0.188 0.150

Parameter p estimated based on (25), 100 simulations with series of length 1,000. Parameters
(annual investment data): p =0.85, u4 =0.12, 04 =0.056, 0 = 0.5, = 0.96.

concludes, on average, that 38.5% of firms adjust in any given year, when the true value is 15%.

B.3 Strategic Complementarities

Under the Technical Assumptions from Section 2, agents’ decision variables are neither strategic
complements nor strategic substitutes. This may not be a reasonable assumption. For example,
in the pricing literature many authors have argued that strategic complementarities are a central
element to match persistence suggested by VAR evidence.

This motivates considering the case where the y* are strategic complements. Following Wood-
ford (2003, section 3.2) we assume that log-nominal income follows a random walk with innovations
€;. Aggregate inflation, 7, then follows an AR(1) process

Tr=¢pm 1+ 1 —ple;s

with ¢ > p when prices are strategic complements. In line with the strategic complementarity pa-
rameters advocated by Woodford, we assume ¢ = 0.944. The true half-life of shocks increases from
4.6 to 12.1 months and the expected response time from 6.1 to 16.9 months.

Under these assumptions, Alog p; follows the following ARMA(1,1) process:

Alogp; = pAlogp;_, +cle;— pes_1),

withc=(1-¢)/(1-p).3?

The second and fourth rows in Table 9 present the estimated half-life and expected response
time, respectively, in this setting. The first and third rows reproduce the values for the case with
no strategic complementarities (Table 1). The bias is larger with strategic complementarities: With
10,000 units, which corresponds to approximately the effective number of prices considered when
calculating the CPI, the estimated half-life is one-third of its true value, compared with 60 percent
of its true value in the case with no complementarities.

321 the notation of Section 2 we have b(L)y=Q1-¢L)/1-pL).
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Table 9: SLow CONVERGENCE AND STRATEGIC COMPLEMENTARITIES

Estimated Half-Life with Strategic Complementarities

0 [0 Effective number of agents (V)
100 400 1,000 4,000 10,000 40,000 00

0.8600 0.8600 0.257 0.464 0.767 1.744 2.699 3.886 4.595
0.8600 0.9442 0.268 0.484 0.826 2.170 4.016 7.638 12.067

0.8600 0.8600 0.072 0.290 0.681 2.049 3.415 5.121 6.142
0.8600 0.9442 0.081 0.314 0.761 2.657 5.308 10.527 16.914

First two rows show the estimated half-life. The half-life is calculated from —log2/logpoo With poo = plimy_ o, p
when p = ¢ and p estimated from (7) with 100 simulations of length 1000 when ¢ > p. Rows 3-4 show results when the
expected response time (ERT) is the measure of persistence. For an AR(1), ERT is defined as poo/ (1 —poo). Parameters:
p =0.86, uy =0.003, 0 4 =0.0054, o1 = 0.048. Numbers in boldface correspond to the effective number of units for
U.S. CPL

B.4 Adding smooth adjustment

Suppose now that in addition to the infrequent adjustment pattern described above, once adjust-
ment takes place, it is only gradual. Such behavior is observed, for example, when there is a time-
to-build feature in investment (e.g., Majd and Pindyck (1987)) or when policy is designed to ex-
hibit inertia (e.g., Goodfriend (1987), Sack (1998), or Woodford (1999)). Our main result here is
that the econometrician estimating a linear ARMA process —a Calvo model with additional serial
correlation— will only be able to extract the gradual adjustment component but not the source of
sluggishness from the infrequent adjustment component. That is, again, the estimated speed of
adjustment will be too fast, for exactly the same reason as in the simpler model.

Let us modify our basic model so that equation (2) now applies for a new variable j; in place of
¥r, with Ay, representing the desired adjustment of the variable that concerns us, Ay;. This adjust-
ment takes place only gradually, for example, because of a time-to-build component. We capture
this pattern with the process:

K K
Ayi= ) ¢edyei+ (1= ) pAF. (26)
k=1 k=1

Now there are two sources of sluggishness in the transmission of shocks, Ayy, to the observed vari-
able, Ay;. First, the agent only acts intermittently, accumulating shocks in periods with no adjust-
ment. Second, when the agent adjusts, it does so only gradually.

By analogy with the simpler model, suppose the econometrician approximates the lumpy com-
ponent of the more general model by:

Aj;l' = ij;t—l + Ut. (27)
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Replacing (27) into (26), yields the following linear equation in terms of the observable, Ay;:

K+1

Ayi= ) arhy,_+éq, (28)
k=1
with
ay = $r1+p,
aj = (Pk_P(Pk—l, k=2»---)K) (29)
ag+1 = —pok,

ande;=(1-p)(1 —Zle PrIAy;.
By analogy to the simpler model, we now show that the econometrician will miss the source of
persistence stemming from p.

Proposition 5 (Omitted Source of Sluggishness)
Let all the assumptions in Proposition 1 hold, with j in the role of y. Also assume that (26) applies,
with all roots of the polynomial 1 —lele ¢rz* outside the unit circle. Let dy, k = 1,..., K+ 1 denote the
OLS estimates of equation (28).
Then:
plimy_ . ax = ¢y, k=1,..,K,

plimy_ . ax+1 0. (30)

Proof See AppendixC. 1

Comparing (29) and (30) we see that the proposition simply reflects the fact that the (implicit)
estimate of p is zero.

C Proof of Propositions

Proof of Proposition 1

In this appendix we prove Proposition 1. The proof uses an auxiliary variable, x;;, equal to
how much unit 7 adjusts in period ¢ if it adjusts that period (that is, the value of Ay;; conditional
on adjustment). Because of the Technical Assumptions, x;; equals the unit’s accumulated shocks
since it last adjusted. The following dynamic dynamic definition of x;; is what we use in the proof:

Xirr = (=i Xie +AY; 141 GD
Ayir = SitXit. (52)
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In what follows, subindices i and j denote different units.

We first derive the following unconditional expectations:

Ex; = -4, (33)
1-p
ElAyirl = pa, (34)
EIAYN] = g, (35)
1 1+p
Elx: . — 2 2 , 36
[XirXj¢] 1 p2 A _1 A (36)

1+
[t

E[x7,] = : 37)

From (31) and the Technical Assumption in the main text we have:
Exj t+1 = pExjt + pa.

The above expression leads to (33) once we note that the stationarity of x;; implies Ex; ;+1 = Ex;;.
Equation (34) follows from (33) and Technical Assumption 3. Equation (35) follows directly from
(34).
To derive (36), we note that, from (31)

Elxi, X)) = EH(=&)xir+ Ay], HO =)0+ Ay
E[(Q=¢i)xie(L=&j)xjel + E[AJ/ZHIU IBLI
+El(1= &) XiAY ] 14q] + EIAYS AV ]

pZE[xitxjt] + Z%Hi + (,ui1 +ai),

where we used the Technical Assumptions, (33) and i # j. Noting that x;;x;; is stationary and
therefore E[x;;x;¢] = E[x; ;~1X} 1], the above expression leads to (36).
Finally, to prove (37), we note that, from (31) we have

Elx?. ]

it+1

E[(1-&)x;,] + 2B - &) xiAy] ] + EIAY] )%

= pE[xlgt] + Zﬁui + (O’i+0‘%+ﬂi‘),

where we used that (1 - ¢;;)?> = 1-¢;;, (33) and the Technical Assumptions. Stationarity of x;; (and
therefore xft) and some simple algebra complete the proof.

Next we use the five unconditional expectations derived above to obtain the four expressions in
the second row of Table 3. The expression for the OLS estimate § in (8) then follows from tedious
but otherwise straightforward algebra.

We have:

Cov(Ayi r+1,Ayie) = E[AY; 1+1AYi4] —,Ui = E[&i 41X, 111801 Xi ] —ﬂi = (1-P)E[x; +1&irXi] —,U?q
= (1= P)EHQ = &) xis + Ay }inxidl = 5 = (L= p)EH(L = &;)E0x7] + (L= pEIAY] 1y Eiexif — i
= (1-p)x0+(-p)ps—4y = —p,
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where in the crucial step we used that (1 —¢;)¢;; always equals zero.

We also have the cross-covariance terms (i # j):

Cov(AYi,ee1,AYje) = Eli e Xia1&jexjel — 15 = A= p)Exi 150X — 15
= (U-pEHA=&ixir+ Ay} 3 jixjd = iy = p(1— p)°Elxigxjel + (- p)p — iy = ;—5,003.
Cov(Ayin,Ayjr) = El&ixiejexjl — p5 = (1= p)°Elxipxje) -y = ;—Zai.
Finally, the variance term is obtained as follows:
Var(Ayir) = BIES,x3,) — iy = ElEux?) — 15 = (- )BT -y = 04+ 07+ lz_—ppui. N

Proof of Proposition 2

Part (i) follows trivially from Proposition 1 and the fact that both regressors are uncorrelated. To
prove (ii) we first note that:

, s Cov(Ay;=Aye1, Ayf —Ayi-1)
plimy_ b1 = " .
Var(Ay; —Aye-1)

We therefore need expressions for Cov(A yfV JA yiv ), Cov(A yiv JA yﬁ 1) and Var(A yﬁv ).
We have

* 1 *
COV(AJ’?]: AJ’?] ) = NCOV(A)/U;AJ/”) + ( )COV(Ayitrijt)-

1
1—-—

N
Both covariances on the r.h.s. are calculated using (31), yielding 0'?4 + 0% and 0124, respectively. Ex-
pressions for Cov(AyN, A yﬁ 1) and Var(A yN) are obtained using an analogous decomposition and
the covariances and variances from Table 3. We have all the terms for the expression above for by,
the remainder of the proofis some tedious but otherwise straightforward algebra. 1§

Proof of Proposition 3

To prove that A yfv follows an ARMA(1,1) process with autoregressive coefficient p, it suffices to
show that the process’s autocorrelation function, y, satisfies:33

Yk =PYk-1, k=2. (38)

We prove this next and derive the moving average parameter 6 by finding the unique 6 within
the unit circle that equates the first-order autocorrelation of this process, which by Proposition 1
is given by (8), with the following well known expression for the first order autocorrelation of an
ARMA(1,1) process:

_1-¢0)(p-0)

=62 098

Proving that 0 tends to zero as N tends to infinity is straightforward.

33Here we are using Theorem 1 in Engel (1984) characterizing ARMA processes in terms of difference equations satisfied
by their autocorrelation function.
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We have:

E[AYN Ay

n n
YN wiwiEE; pekXi +k€ e Xjie]
i=1j=1

n

n

= (1-p) ) Y wiw;Blx; ki X
i=1j=1
n

n

= (A-p) ) > wiwBH( =& k-0 Xi k-1 +AY] 1 IS jeXe]
i=1j=1

n n n n
= (1-p)p) Y wiwBX;x1EjXje] + (L=p)pa ) Y wiw;EIEj,xj]
i=1j=1 i=1j=1

n n

= pY Y wiwElE; k1% ek Xje) + (L= p)py
i=1j=1

= PEAYN A+ (- o),

where in the fourth step we assumed k = 2, since we used that ¢; ;4,1 and ¢, are independent
even when i = j. Noting that y; = (B[AyN  AyN] - p?)/Var(Ay,) and using the above identity yields
(38) and concludes the proof. 1

Proof of Proposition 4

We have:
Ayl = Y wiiexic = Y wiki (Vi —Yii-1) = D will—p) Vi = Vi) + ) wi&i—1+0) (¥}, = Vi,i-1)-
i i i i

Similarly
AYN =Y wil - p) Yy~ Vie-2) + Y i1~ 1+ P) V] oy — Vii—2).
i i

Subtracting the latter from the former and rearranging terms yields
Ay =pAy, + A -p)Ay N + el (39)

with
e = Y w; [(fz‘t —1+p) (Vi = Vi) = Cipo1 — 1+ p)(y;t_l —Vi,t-2)|- (40)
i
The extra term €Y on the r.h.s. of (40) explains why AyY | is not a valid instrument: AyY | is
correlated with ejtv because both include ¢; ;-1 terms. Of course, ejtv tends to zero as N tends to
infinity: its mean is zero and a calculation using many of the expressions derived in the proof of

Proposition 1 shows that
2p| o o 1tp 5
Var(e,;) = W 0-A+O-I+E:UA .
It follows from (39), (40) and Technical Assumption 3 that €; is uncorrelated with Ay;, for all s,
which implies that Ay;_ is a valid instrument for s = 1. And since Ay; ;_j are uncorrelated with ¢;,
and ¢; ;- for k = 2, we have that lagged values of Ay, with at least two lags, are valid instruments as

well.

Proof of Proposition 5
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The equation we estimate is:
K+1

Ayi= Y agAy, g +&s, 41)
k=1
while the true relation is that described by (26) and (27).
It is easy to see that the second term on the right hand side of (26) denoted by w; in what follows,
is uncorrelated with Ay;_g, k = 1. It follows that estimating (41) is equivalent to estimating (26) with

error term
I-1

K
we== (1-) o0&t Y Ay, 1
k=1 k=0

and therefore:
¢r ifk=12,..,K,

plim;_ ax =
0 ifk=K+1.

This concludes the proof. 1

D The Expected Response Time Index: 7

We define the expected response time of Ay to Ay* as:

o kI
k=0 Ik
with A
I, =E, Yi+k
Oet

Where E;[-] denotes expectations conditional on information (that is, values of Ay and Ay*) known
at time ¢. This index is a weighted sum of the components of the impulse response function, with
weights proportional to the number of periods that elapse until the corresponding response is ob-
served. For example, an impulse response with the bulk of its mass at low lags has a small value of
7, since Ay responds relatively fast to shocks.

Lemma Al (7 for an Infinite MA) Consider a second order stationary stochastic process

Ayi=) Wi€r i
k=0
withyy =1, Y =0 wi < 00, the €;s uncorrelated, and €; uncorrelated with Ay;_1,Ay;—2,... Assume

that ¥ (2) = Y k=0 Wi2"* has all its roots outside the unit disk.
Then:
Y1) Xier ky

Y1) YisoVk

Iy=vyy and 71 =

Proof That I} =y is trivial. The expressions for 7 then follow from differentiating ¥ (z) and evalu-
atingatz=1. |
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Proposition Al (7 for an ARMA Process) Assume Ay; follows an ARMA(p,q):

p q
Ay — Z OkAYi—k = €1~ Z Or€r—k
k=1 k=1
where®(z) =1- Zzzl (,bkzk andB®(z) =1 - ZZ:I szk have all their roots outside the unit disk. The
assumptions regarding thee;’s are the same as in Lemma Al.
Definet as in (42). Then:
DY TR Wy )t
1-Y0 b 1-X]_ 6¢

Proof Given the assumptions we have made about the roots of ®(z) and ©(z), we may write:

O(L)

Y= @Gt,

where L denotes the lag operator. Applying Lemma Al with ©(z)/®(z) in the role of ¥(z) we then

have:
o dW)  Ip_ ko X kg

1) o) 1-YP ¢ 1-X7_ 6

Proposition A2 (7 for a Lumpy Adjustment Process) Consider Ay; in the simple lumpy adjustment
model (12) and 1 defined in (42). Thent = p/(1 - p).

Proof 0Ay;,/0Ayj; is equal to one when the unit adjusts at time ¢+ k, not having adjusted between
times t and ¢+ k — 1, and is equal to zero otherwise. Thus:

OAYr+k

IR =Pri¢iix =1, k-1 =Cr4k2=...=§ =0} = (1—P)Pk- (43)

I = Et

The expression for 7 now follows easily. 1

E Rotemberg’s Equivalence Result

Proposition 6 (Rotemberg’s Equivalence Result)

Agent i controls yi;, i = 1,..,N. The aggregate value of y is defined as yN = %Zﬁ.\il Yit- In every
period, the cost of changing y is either infinite (with probability p) or zero (with probability 1 — p)

(Calvo Model). When the agent adjusts, it chooses y;; equal to j; that solves

ming, Bt Z (,Bp)k(y;k - yt)z'
k=0

where 3 denotes the agent’s discount factor and y; denotes an exogenous process.>* We then have

Je=0-Bp) Y (BOEy, (44)
k=0

34This formulation can be extended to incorporate idiosyncratic shocks.
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It follows that, as N tends to infinity, y7° satisfies:

Ve =pyi+ A=) (45)

Consider next an alternative adjustment technology (Quadratic Adjustment Costs) where in every
period agent i choose y;; that solves:

miny, E; Y A5, — vid? + cWic = i-D?),
k=0

where c > 0 captures the relative importance of quadratic adjustment costs. We then have that there
exists p' € (0,1) and 5 € (0,1) s.£.3°

=0y +=p)n (46)
with
=(1-8) Y 6*E,yr, 47)
k=0

Finally, and this is Rotemberg’s contribution, a comparison of (44)-(45) and (46)-(47) shows that an
econometrician working with aggregate data cannot distinguish between the Calvo model and the
Quadratic Adjustment Costs model described above: p' plays the role of p and & the role of Bp.

Proof See Rotemberg (1987). 1
Corollary 1 Under the assumptions of the Calvo Model in Proposition 6.
a) Consider the case where y; follows an AR(1):

Vi =vyiter

with |y| < 1. We then have that E;y;, = =yk y; and y$° follows the following AR(2) process:

(1-p)(1-pp)
= + > > + ——¢4. 48
O+V)y 1= PYYi 2 1—Bow e (48)
b) Consider the case where Ay; follows an AR(1):
Ay; = Ay +ey,
with || < 1. We then have that
pa-¢h L
Etyiin= -6 Ay[ +y;
and Ay follows the following ARMA(2,1) process:
AyP =P+ PAY2 = pPAY2y + ———ler — fppe;1].

1,5<P

35The expression that follows is equivalent to the partial adjustment formulation:

AyR =01-pY G- y32)),
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Proof Straightforward. &

F The case where y* isi.i.d.

Assume that
Vie=yit+vi
with y} 4ii.d. with mean 4 and variance O'i and y; tI i.i.d. with zero mean and variance 0’%. The y;.“tl
processes are independent across agents and independent from the aggregate shock process y;4.
The remaining assumptions are the same as in the Technical Assumptions we made in Section 2.
For simplicity we assume p4 = 0, the case where p4 # 0 just adds a constant to the expressions
that follow. Equation (48) then implies that:

Y =py2i+0-p)-Bp)yi . (49)
We show next that the OLS estimator of p in the regression
Ve =Py te (50)

provides a consistent estimator of p even when N is finite. That is, when the driving processes y*
are i.i.d., there is no missing persistence bias.

Extending the analysis (and notation) from Appendix E to incorporate idiosyncratic shocks, we
obtain

Jit=Q0-Bp)y;,

Using the notation we introduced in Appendix C this implies that

2

1 1Y *
yN = N - l(l—fit)yz',z—l +(1—ﬁp)ﬁ i;fityir

1

Following a similar logic to the one we used in the proof of Proposition 4, we can rewrite the above
expression as
Ve =Py ter (51)

with

1 Y 1 N .
er=—) (1=t =P)yi—1+ (L= Pp)— Y &ty

N3 N3
Even though ¢; differs from the error term in (49), it also is uncorrelated with the regressor yﬁ 1
which is all we need for p estimated via OLS from (51) to be a consistent estimator for p.

G Reset price inflation and estimation of sectoral shocks

As mentioned in the main text, we use the reset price inflation introduced by Bils, Klenow and
Mailn (2012) to estimate sectoral shocks. The discussion of their methodology in this section closely
mirrors their own. The only difference is that we estimate reset price inflation at the sectoral level,
whereas Bils, Klenow and Malin (2012) focus on the aggregate properties of reset price inflation.
The basic idea behind reset price inflation is to make inferences about the underlying shocks using
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information contained only from observed price changes where the implicit assumption is that
when a firm adjusts it is adjusting to its optimal reset price.

Specifically, define p; ; as the log price of item i and time ¢ and define a price change indicator
as:

it =

1 if pie# pi-1
0 if pir=pi1
. . reset . . . .
For prices that change, the reset price, p i s simply the current price. For prices that do not

change, we index our estimate of the reset price to the rate of reset price inflation among price
changers in the current period.

reset __ pirt Iirt: 1
it = reset -0
Pi,t-1+ 75 Ii;=0
Given p!**®!, define reset price inflation, 7', as:

reset
2iWiy (pi,t - Pi,t_l) Liyt
2wl

reset _
Ty =

where w; ; denote i’s relative expenditure weight at time ¢. Thus reset price inflation is the “inflation
rate” conditional on the price changers. With Calvo price setting and assuming that the technical
assumptions in Section 3 hold, it is easy to show that reset price inflation reduces to the following

formula:3®
reset _ Ty —PTT¢-1 _ A

toT Tz 0) =V
This justifies using the reset price inflation methodology to estimate aggregate shocks. In Appendix
G we present simulation results showing that reset price inflation is also a good method to re-
cover the true shock innovations in both more realistic Calvo environments with large idiosyncratic
shocks and Ss-type settings.

H Simulation details

H.1 Calibration details

The details of the multi-sector Calvo model calibration are as follows. We calibrate a 66 sector ver-
sion of the Calvo pricing model. For each sector, we set the average sectoral inflation rate to what
is observed in the CPI micro data. We choose the standard deviation of the sectoral inflation rate
series, the persistence and standard deviation of the sectoral idiosyncratic shock series (assumed
to be an AR(1) in logs) to match the following four moments: the average size of price increases
and decreases, the fraction of price changes that are price increases and the standard deviation of
the sectoral inflation rate. In the model, the number of firms in each sector is given by the median
(across time) number of firms for that sector in the micro BLS data and each firm was simulated for
238 periods, which is the number of periods in the underlying data.

36This holds in the limit as the number of price setters becomes large so that the frequencies are exact and the idiosyn-
cratic shocks average out.
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Table 10 shows basic descriptive statistics for the simulated model, reported statistics are me-
dians across the 66 sectors, suggesting that the multi-sector Calvo model does a good job matching
moments across sectors.

Table 10: DETAILS OF MULTI-SECTOR CALVO CALIBRATION

Calibration results: Basic Statistics

CPI  Model

Frequency of monthly adjustment: 0.068 0.068
Fraction price changes > 0: 0.669 0.567
Average size of increases (%): 7.997  8.305
Average size of decreases (%): 9.073 8.180
Std of sectoral inflation: 0.004  0.005

H.2 Monte-Carlo Evidence: Do We Recover the True Shock In Practice?

To see if our shock measure was recovering the true aggregate shock, we simulated both a Calvo
and an Ss model with the following standard parameter values: the frequency of adjustment = 0.2,
Hagg = 0.002, 04g¢ = 0.003, p; = 0.97;0 = 0.04 (also tried something farther from a random walk:
p1 =0.7) These economies were simulated for T=300 periods with a burn in of 100 periods. Notice
that there are two types of shocks: aggregate shocks that affect everyone and idiosyncratic shocks
that are firm specific. In each simulation we ran the following regression:

Ut:a+ﬁzt+et

where v, is our shock measure (reset price inflation) and z; is the true shock innovation from each
simulation. The level and fit of this regression is informative of how well our shock measure proxies
for the true shock. It is an important robustness check because we want to make sure that we can
recover an unbiased estimate of the true aggregate shock in a situation where idiosyncratic shocks
are realistically large relative to aggregate shocks. The results (averaged across 100 simulations) are
comforting and shown below:

Unsurprisingly, the overall fit improves in terms of R? as the sample sizes increase. Most im-
portantly, we recover the true innovations in the Calvo case and an affine transformation of the
innovations in the Ss case for all sample sizes.
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Table 11: DOES RESET PRICE INFLATION RECOVER THE TRUE SHOCKS?

REGRESSION OF ESTIMATED SHOCK ON TRUE SHOCK: RESET PRICE INFLATION

CALVO Ss
NFIRMS INTERCEPT SLOPE R? INTERCEPT SLOPE R?

p=.7 500 -0.00 1.02 0.34 -0.00 3.07  0.41
(0.00) (0.08)  (0.04) (0.00) (0.19)  (0.04)

5000 -0.00 1.04  0.76 -0.00 3.05  0.67

(0.00) (0.03)  (0.02) (0.00) (0.18)  (0.04)

25000 -0.00 1.04  0.85 -0.00 3.07 0.72

(0.00) (0.02)  (0.02) (0.00) (0.10)  (0.03)

p=.97 500 -0.00 0.99 0.07 -0.00 2.97  0.28
(0.00) (0.21)  (0.03) (0.00) (0.26)  (0.04)

5000 -0.00 1.02 0.35 -0.00 3.00  0.45

(0.00) (0.07)  (0.05) (0.00) (0.20)  (0.04)

25000 -0.00 1.01 0.51 -0.00 3.00  0.48

(0.00) (0.06)  (0.04) (0.00) (0.22)  (0.03)
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