
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE INGENIERÍA ELÉCTRICA

GRAPHSLAM ALGORITHM IMPLEMENTATION FOR SOLVING SIMULTANEOUS
LOCALIZATION AND MAPPING

MEMORIA PARA OPTAR AL TÍTULO DE INGENIERO CIVIL ELÉCTRICO

FRANCO ANDREAS CUROTTO MOLINA

PROFESOR GUÍA:
MARTIN ADAMS

MIEMBROS DE LA COMISIÓN:
MARCOS EDUARDO ORCHARD CONCHA

JORGE FELIPE SILVA SÁNCHEZ

SANTIAGO DE CHILE
MARZO 2016

ii

RESUMEN DE LA MEMORIA PARA OPTAR
AL TÍTULO DE INGENIERO CIVIL ELÉCTRICO
POR: FRANCO ANDREAS CUROTTO MOLINA
FECHA: MARZO 2016
PROF. GUÍA: SR. MARTIN ADAMS

GRAPHSLAM ALGORITHM IMPLEMENTATION FOR SOLVING SIMULTANEOUS
LOCALIZATION AND MAPPING

SLAM (Simultaneous Localization and Mapping) es el problema de estimar la posición de un
robot (u otro agente), y simultáneamente, generar un mapa de su entorno. Es considerado un
concepto clave en la robótica móvil, y fundamental para alcanzar sistemas verdaderamente
autónomos.

Entre las muchas soluciones que se han propuesto para resolver SLAM, los métodos basa-
dos en grafos han adquirido gran interés por parte de los investigadores en los últimos años.
Estas soluciones presentan varias ventajas, como la habilidad de manejar grandes cantidades
de datos, y conseguir la trayectoria completa del robot, en vez de solo la última posición.
Una implementación particular de este método es el algoritmo GraphSLAM, presentado por
primera vez por Thrun y Montemerlo en 2006.

En esta memoria, el algoritmo GraphSLAM es implementado para resolver el problema
de SLAM en el caso de dos dimensiones. En objetivo principal de esta memoria es proveer de
una solución de SLAM ampliamente aceptada para la realización de pruebas comparativas
con nuevos algoritmos de SLAM. La implementación usa el framework g2o como herramienta
para la optimización de mínimos cuadrados no lineales.

La implementación de GraphSLAM es capaz de resolver SLAM con asociación de datos
conocida y desconocida. Esto signi�ca que, incluso cuando el robot no tiene conocimiento del
origen de las mediciones, éste puede asociar las mediciones a los estados correspondientes,
mediante el uso de estimación probabilística. El algoritmo también usa un método basado
en kernel para la estimación robusta ante outliers. Para mejorar el tiempo de cómputo del
algoritmo, varias estrategias fueron diseñadas para veri�car las asociaciones y ejecutar el
algoritmo de manera e�ciente.

La implementación �nal se probó con datos simulados y reales, en el caso de asociación
conocida y desconocida. El algoritmo fue exitoso en todas las pruebas, siendo capaz de
estimar la trayectoria del robot y el mapa del entorno con un error pequeño. Las principales
ventajas del algoritmo son su alta precisión, y su alto grado de con�guración dado por la
selección de parámetros. Las mayores desventajas son el tiempo de cómputo del algoritmo
cuando la cantidad de datos es alta, y su incapacidad de eliminar falsos positivos.

Finalmente, como trabajo futuro, se sugieren modi�caciones para aumentar la velocidad
de convergencia, y para eliminar falsos positivos.

iii

iv

RESUMEN DE LA MEMORIA PARA OPTAR
AL TÍTULO DE INGENIERO CIVIL ELÉCTRICO
POR: FRANCO ANDREAS CUROTTO MOLINA
FECHA: MARZO 2016
PROF. GUÍA: SR. MARTIN ADAMS

GRAPHSLAM ALGORITHM IMPLEMENTATION FOR SOLVING SIMULTANEOUS
LOCALIZATION AND MAPPING

SLAM (Simultaneous Localization and Mapping) is the problem of estimating a robot's (or
other agent's) position and simultaneously generate a map of its environment. It is considered
to be a core concept in mobile robotics, and a fundamental one to achieve truly autonomous
systems.

Among the many solutions that have been proposed for solving SLAM, graph-based ap-
proaches have gained signi�cant interest from researchers in the recent years. These solutions
present various advantages, such as the capability to handle large amounts of data, and to
retrieve the complete robot trajectory, rather than just the last position. A particular im-
plementation of this approach is the GraphSLAM algorithm, �rst presented by Thrun and
Montemerlo in 2006.

In this thesis, the GraphSLAM algorithm is implemented for solving the SLAM problem
in a two dimensional scenario. The main objective of this work is to provide a widely
accepted SLAM solution for making benchmark comparisons to newer SLAM algorithms.
The implementation uses the g2o framework as a tool for nonlinear least squares optimization.

The GraphSLAM implementation is able to solve SLAM with known and unknown data
association. This means that even when the robot has no knowledge of the origin of mea-
surements, it can associate measurements to corresponding states, by means of probabilistic
estimation. The algorithm also uses a kernel-based method for robust estimation against out-
liers. In order to improve the algorithm's computation time, several strategies were designed
to e�ciently test the association between landmarks and run the optimizations.

The �nal implementation was tested with simulated and real data, in the case of known
and unknown data association. It worked successfully in all the test cases, being able to
estimate the robot path and the environment map with small error. The main advantages
of the algorithm are the high accuracy and the high level of customization given by its
parameters selection. The major drawbacks are the algorithm's computation time for large
datasets, and the inability to remove false alarms.

Finally, as future work, modi�cations are suggested to increase convergence speed, and
for dealing with false positives.

v

vi

A mi familia

vii

viii

Acknowledgments

I would like to thank professor Martin Adams for giving me the opportunity to work in the
thrilling and challenging �eld of robotics. This project has given me a very useful experience
about the scienti�c investigation and work in general.

I would also like to thank my co-workers in the AMTC laboratory, especially Keith Leung
and Felipe Inostroza. Your constant help, support, and review of my work allowed me to
make a much better project than I could have achieved on my own. Also, thank you for
providing me with sample codes and datasets for the project. It made my work much easier.

ix

x

Contents

List of Tables xiii

List of Figures xiv

1 Introduction 1

1.1 General Objectives . 2
1.2 Speci�c Objectives . 2
1.3 Document Structure . 2

2 Background 3

2.1 Basic Concepts in Probabilistic Robotics . 3
2.1.1 Environment and State . 3
2.1.2 Controls and Measurements . 4
2.1.3 Motion and Measurement Models . 4
2.1.4 Localization and Mapping . 6

2.2 Description of the SLAM Problem . 6
2.2.1 Correspondence Problem in SLAM 7

2.3 The GraphSLAM Algorithm . 8
2.4 Review of the State of the Art in SLAM . 15

3 Methodology and Implementation 17

3.1 The g2o Protocol . 17
3.2 The Known Correspondence Case . 19
3.3 The Unknown Correspondence Case . 22

3.3.1 The Correspondence Test . 22
3.3.2 The Unknown Correspondence Algorithm 23
3.3.3 Speeding up the Unknown Correspondence Algorithm 24

3.4 The Final Algorithm . 28

4 Results 30

4.1 Known Data Association . 30
4.2 Unknown Data Association . 39
4.3 Real Data . 46

4.3.1 Husky a200 Robot . 46
4.3.2 Parque O'Higgins . 46
4.3.3 Victoria Park . 48

xi

5 Conclusions 51

6 Bibliography 53

xii

List of Tables

3.1 g2o protocol for node and edge de�nition. a: angle. 19

4.1 Parameters for Test I. 33
4.2 Parameters for Test II. 34
4.3 Parameters for Test III. 35
4.4 Parameters for Test IV. 36
4.5 Parameters for Test V. 37
4.6 Parameters for Test VI. 38
4.7 Parameters for Test VII. 40
4.8 Parameters for Test VIII. 41
4.9 Parameters for Test IX. 42
4.10 Parameters for Test X. 43
4.11 Parameters for Test XI. 44
4.12 Parameters for Test XII. 45
4.13 Parameters for Test XIII. 47
4.14 Parameters for Test XIV. 48
4.15 Parameters for Test XV. 49

xiii

List of Figures

2.1 An example of a graph . 8
2.2 GraphSLAM ilustration in 2D . 9
2.3 Information matrix structure . 14

3.1 Illustration of odometry and measurement values in g2o. 18
3.2 Graphical representation of g2o protocol example. 20
3.3 Example of an initialization of a SLAM simulation. 21
3.4 Plots of di�erent kernels. 22
3.5 Example of the incremental optimization. 25
3.6 Plots of the PDF of the distance between two landmarks. 27
3.7 Plot of the maximum distance µδi,j in function of σ2

δi,j
. 28

4.1 Results for Test I. 33
4.2 Results for Test II. 34
4.3 Results for Test III. 35
4.4 Results for Test IV. 36
4.5 Results for Test V. 37
4.6 Results for Test VI. 38
4.7 Results for Test VII. 40
4.8 Results for Test VIII. 41
4.9 Results for Test IX. 42
4.10 Results for Test X. 43
4.11 Results for Test XI. 44
4.12 Results for Test XII. 45
4.13 Results for Test XIII. 47
4.14 Results for Test XIV. 48
4.15 Results for Test XV. 49
4.16 Comparison of results between GraphSLAM and iSAM. 50

xiv

Chapter 1

Introduction

The study of robotic systems is fundamental to achieve the increasingly demanding goal
of automating the processes that occur in every aspect of our lives. Autonomous systems
are becoming more ubiquitous by the day. While historically they were �rst used in man-
ufacturing companies and industrial processes, now they have found applications in areas
such as farming, mining, transportation, security, medicine, household maintenance, space
exploration, military uses, and much more.

In particular, mobile robotics is the study of a mechanical agent that can move in an
environment. A robot's ability to change its pose makes mobile robots capable of doing a
much wider range of tasks than stationary robots. However, their motion capability comes
with an essential problem: as the robot moves, it must compute its new position in order
to continue operating properly. In robotics, the problem of estimating the robot's current
position is called localization. Sensors are used to gather information about the robot location,
however, any kind of sensor is contaminated with noise, so the robot position cannot be
retrieved with absolute certainty, but it must be estimated by means of probabilistic methods.

If the environment in which the robot is immersed is also unknown, it must be estimated
alongside with the robot pose. The problem of estimating the robot's environment is called
mapping. When both localization and mapping must be solved concurrently, the problem is
called Simultaneous Localization and Mapping (SLAM). SLAM is considered to be the �Holy
Grail� of mobile robotics, as knowing both, robot location and the environment, are crucial
for every robot to work properly [2]. The sub�eld of robotics that studies the probabilis-
tic method and algorithms to solve problems such as SLAM is usually called Probabilistic
Robotics.

Currently, one of the most widely used algorithms to solve SLAM is GraphSLAM. Graph-
SLAM was developed by Thrun and Montemerlo [11], and is considered to perform better
and have lower complexity than most �ltering methods, such as the Extended Kalman Filter.
GraphSLAM represents the necessary information regarding the robot and the map as nodes
of a graph. The graph can then be converted to a special kind of matrix called a sparse
matrix. The advantage of using this type of matrix is that there exist specialized algorithms
that operate upon it, that are many times more e�cient that the ones used on regular, dense,

1

matrices.

1.1 General Objectives

The main objective of this work is to implement an o�ine version of the GraphSLAM al-
gorithm for solving 2D SLAM1. The implementation should be able to handle known and
unknown data association, and be robust to non-Gaussian noise and outliers. The g2o (gen-
eral graph optimization) framework2 will be used as a non-linear least squares solver for the
algorithm.

The contribution of this work is to provide a fully functional SLAM algorithm, which could
be used for the navigation of robots in real world scenarios, and as a benchmark comparison
for newer SLAM algorithms.

1.2 Speci�c Objectives

The objectives of this thesis are to:

1. Learn how to use the g2o framework.

2. Implement a data association algorithm to handle landmarks of unknown correspon-
dence.

3. Test the implementation with simulated and real data.

1.3 Document Structure

The remainder of the document is organized as follows. In Chapter 2, the basic concepts of
Probabilistic Robotics and SLAM, as well as the theoretical framework of the GraphSLAM
algorithm, are presented. In Chapter 3, the implemented GraphSLAM algorithm is explained
in detail. In Chapter 4, the results of the implementations are shown for various scenarios,
and a parameter analysis is made. Finally, in Chapter 5, the results are discussed, and
possible future work is suggested.

1The repository of this work can be found in: https://github.com/francocurotto/GraphSLAM.
2https://github.com/RainerKuemmerle/g2o

2

https://github.com/francocurotto/GraphSLAM
https://github.com/RainerKuemmerle/g2o

Chapter 2

Background

This chapter presents the theoretical framework upon which this work was developed. It has
the purpose of introducing readers unfamiliar with the topic of robotics and give a theoretical
foundation for the work done.

Section 2.1 describes the basic concepts of stochastic state estimation in mobile robotics,
needed to understand the rest of the work. Section 2.2 de�nes the problem of SLAM in
a mathematical way. The GraphSLAM algorithm is presented and discussed in detail in
Section 2.3. Finally, a brief review of the state of the art in SLAM is given in Section 2.4.

2.1 Basic Concepts in Probabilistic Robotics

2.1.1 Environment and State

Robotics is the science of perceiving and manipulating the physical world through an electro-
mechanical device, which is called a robot. The robot is provided with actuators to interact
with its soundings (such as wheels, or mechanical arms), and sensors to measure its envi-
ronment (such as cameras, or laser sensors). In this context, the environment refers to the
dynamical system with which the robot can interact (this includes the robot itself), and that
is characterized by its state. The state is a mathematical description that can be repre-
sented as a collection of state variables that summarizes all the information of interest. State
variables can contain information about the robot itself (for example, the robot position or
velocity), or the robot operating environment (e.g., position of nearby objects). Furthermore,
state variables can be static or dynamic. Dynamic state variables can change over time (like
the position of people) while static variables remain constant (such as walls or trees). In this
work, time is treated as a discrete variable, indexed by k.

3

2.1.2 Controls and Measurements

A robot can interact with the environment in two ways, it can in�uence the environment
using its actuators, and it can gather information of the state through its sensors.

Usually, a robot's actuators are activated through a control input. These controls inputs
could be given by a human using a controller device, or an algorithm implemented in a
computer. It is useful to keep a record of all the control inputs that has been applied over
time. A single control input at time k is denoted as uk, where the control uk changes the
state from time k − 1 to k. The sequence of control data from time k1 to k2 is denoted as
uk1:k2 = uk1 ,uk1+1 . . . ,uk2 .

Sensors are used to take measurements of nearby objects. As the robot acquire information
of its surroundings, it can generate a map of the environment. Formally, a map m is a list
of objects: m = [m1,m2, . . . ,mj, . . . ,mN]. Here N is the total number of objects in the
environment, and eachmj is a vector of properties. In this work, it's assumed that the map
is static, i.e., it doesn't change over time, hence m doesn't have a time index.

A feature-based map is used in this work. In feature-based maps, each element of the map
correspond to a distinct object, called landmark or feature, with an unique set of properties.
Typically, these properties are the position of the landmark, plus a distinct signature, such
as the color of the landmark. Hence, in a 2 dimensional scenario, the vector mj would look
like:

mj =

mj,x

mj,y

mj,s

 (2.1)

Being mj,x and mj,y, the horizontal and vertical position of the landmark j respectively,
and mj,s its signature vector.

It is assumed that each sensor produces at most one measurement per landmark at every
instance of time. The set of measurements produced at time k is denoted as zk. To distinguish
each landmark measured, zik denotes the i-th landmark detected at time k. Note that the
measurement zik is a vector, since several properties can be sensed from a single landmark
(e.g., distance and relative angle from the robot). The list of measurements taken from time
k1 to k2 is denoted as zk1:k2 .

2.1.3 Motion and Measurement Models

To tackle any problem in robotics, the mathematical models that describe the behavior of
the robot must be de�ned. The pose of the robot de�nes the state variables that depend
only on the robot (usually robot's position and orientation). The pose at time k is denoted
as xk.

4

The robot motion model describes how the control input changes the robot pose from one
timestep to the next. This model is called the forward kinematics equations of the robot.

In the core of the probabilistic robotics, it is the assumption that one cannot have a
deterministic description of the world, that is, there is always an amount of uncertainty
in it. Therefore, it is advantageous to use probabilistic models that take into account this
uncertainty. The simplest probabilistic assumption is that models are contaminated with
zero-mean white Gaussian noise. Using this probabilistic approach, a generic motion model
is:

xk = g(uk,xk−1) + δk (2.2)

Where g is a deterministic function that describes the robot's kinematics. uk is the control
input that change the pose form xk−1 to xk. And δk is a multivariate random Gaussian
variable, with zero mean and covariance matrix Rk (δk ∼ N (0,Rk)).

Since the motion model involves the addition of a Gaussian random variable, the model
itself can be seen as a Gaussian random process, which represents the probability of the robot
to end up in pose xk, given previous pose xk−1 and control input uk:

p(xk|xk−1,uk) = det(2πRk)
− 1

2 exp

{
−1

2
(xk − g(uk,xk−1))

TR−1k (xk − g(uk,xk−1))

}
(2.3)

Most robots incorporate an internal sensor to measure the change of position between
two timesteps. This way it can be veri�ed if the control input actually produced the desired
result. An example of this kind of sensors are the rotary encoders found in robot's wheels to
count the number of turns it have made. The method of estimating the robot motion using
these sensors is called odometry.

Similarly, the measurement model depicts how the robot obtains information of the en-
vironment. In other words, it describes mathematically the acquisition of measurements zk.
Just as the motion model, independent Gaussian noise is assumed for the measurements. A
generic measurement model is:

zik = h(xk,mj, i) + εik (2.4)

Where mj represents the i-th measured landmark in measurement zik, and xk the pose in
which the measurements were made. ε is an Gaussian random variable, with zero mean and
Qk covariance matrix (ε ∼ N (0,Qk)).

Again, this model can be represented as a random process and is given by:

p(zik|xk,m) = det(2πQk)
− 1

2 exp

{
−1

2
(zik − h(xk,mj, i))

TQ−1k (zik − h(xk,mj, i))

}
(2.5)

5

In principle, there is no error-free method to associate the detection number i with the
landmark number j. A possible solution is to assume that the association is automatically
given by a special function j = cik, called the correspondence function. The function cik
indicates deterministically which feature j correspond to each detection i, at every time k.

2.1.4 Localization and Mapping

Two of the main problems of interest in the �eld of probabilistic robotics are localization and
mapping. In essence, these two problems correspond to the estimation of a particular subset
of the state of the environment, given another subset of the same state. In this scenario, the
state variables can be partitioned into the robot's internal state, given by the pose xk, and
external states that can be measured by its sensor, given by the map m.

In the localization problem, it is assumed that the map is known with absolute certainty,
while the robot pose is unknown. The problem is then to estimate the robot pose over time
as it moves around the environment and takes measurements from the map. Aside from
the map, control inputs and measurements are available. Mathematically, the problem is to
calculate the Probability Density Function (PDF):

p(xk|m, z1:k,u1:k) (2.6)

Conversely, in the mapping problem, it is assumed that the location of the robot is known,
and it is necessary to estimate the map (location and signature of landmarks). Again, all
robot measurement are available. Note that robot control inputs are not needed, as they only
a�ect the robot pose, which is already known. Mathematically, it is necessary to determine
the PDF:

p(m|x0:k, z1:k) (2.7)

Where x0:k denote the sequence of robot poses from time 0 to k, also known as the robot's
trajectory or path. These two problems are just a particular case of an estimation problem,
and classical �ltering techniques, such as Extended Kalman Filter (EKF), have been applied
successfully to solve them [10].

2.2 Description of the SLAM Problem

Both localization and mapping problem have an important limitation, they both assume a
complete knowledge about a subset of the state of the environment: the robot pose and
the map respectively. In many practical problems, there is no absolute knowledge of any of
the state variables, and all the information regarding the state must be derived only from
the control input and the measurements. In this case, localization and mapping have to

6

be solved concurrently. In robotics, this problem is called Simultaneous Localization and
Mapping (SLAM).

Mathematically SLAM can be stated as the determination of the PDF:

p(xk,m|z1:k,u1:k) (2.8)

Note that both, robot's pose and the map are estimated given the control input and the
measurements. Also, note that according to (2.8), only the current pose of the robot is
being estimated. This is called the online SLAM problem. In some applications is useful
to estimate the whole robot trajectory. In this case the SLAM problem is stated sightly
di�erently:

p(x0:k,m|z1:k,u1:k) (2.9)

This case is called the full SLAM problem. In (2.9) all the robot poses up to time k are
being estimated.

It can be proven that the online SLAM is equivalent to the full SLAM after �marginalizing�
the previous pose variables:

p(xk,m|z1:k,u1:k) =

∫ ∫
. . .

∫
p(x1:k,m|z1:k,u1:k)dx1dx2 . . . dxk−1 (2.10)

2.2.1 Correspondence Problem in SLAM

Until now is being assumed that when the robot takes a set measurement zk, it can success-
fully associate the i-th measurement with the corresponding feature detected j, by means of
the correspondence function cik. This is called the correspondence problem, and in reality is
a nontrivial one. This is because, in the presence of noise, measurements may be incorrectly
associated.

The correspondence problem is of great importance in SLAM. A single wrong association
of landmarks could lead to divergences in the estimation. Also, once the wrong association is
done, it may be impossible to recover from the mistake if the algorithm is not robust enough,
or if the necessary information is no longer available.

In special cases, like simulations and when features can be distinguished correctly by
measurements, it can be assumed that data association is known, i.e., one has access to cik.

Most commonly, data association is not given and must be estimated by the algorithm.
There exist di�erent techniques to deal with this problem, one of the most popular is maxi-
mum likelihood correspondence.

7

This work deals with both cases, in which the correspondence is known, and when it is
unknown.

2.3 The GraphSLAM Algorithm

GraphSLAM is an algorithm for solving SLAM. It was �rst presented in [11]. It transforms
the SLAM posterior (2.9) in a graphical network that represents the likelihood of the data.
It then transforms the graph into a least square minimization problem, that can be solved
with conventional optimization techniques.

SLAM Representation in Graphs

A graph is a mathematical concept that is composed of two types of entities, nodes and
edges. Nodes are abstract entities that are uniquely identi�ed by some symbol (for example,
a letter or a number), they are usually represented as a circle in a diagram. An edge is
a pair of two di�erent nodes that correspond to a connection between those nodes, in a
diagram is represented as a line linking the nodes. The set of nodes in a graph is denoted
as V = {i : i is a node}, and the set of edges as E = {〈i, j〉 : node i is connected to node j}.
Figure 2.1 shows an example of a graph.

0

1

2

3

4

5

6

Figure 2.1: An example of a graph, with 6 nodes and 8 edges.

In the GraphSLAM context, nodes represent speci�cs state variables of the environment,
and edges represent information. Nodes could represent two types of state variables: it
could be either the pose of the robot xk at a certain time k, or the position of a landmark
mj. There is also two types of edges in the graph, the �rst ones are edges connecting two
consecutive robot poses xk and xk+1, and these correspond to the translation that the robot
realizes between k and k+ 1 produced by the control input uk+1. The second ones are edges
connecting the robot pose xk and the landmarkmj sensed in the measurement zik. Figure 2.2
illustrates the graph generated by a robot, as it moves on a map and take measurements of
landmarks.

In the graph, the set of all nodes actually constitute all the state variables, and the edges
accumulate all the information generated by the robot actions (motions and measurements).

8

x0

x1

x2

x3

x4

m1

m2

Figure 2.2: GraphSLAM illustration in 2D equivalent to Figure 2.1. The blue triangles are
robot poses, and the red diamonds are landmarks positions. The solid lines represents the
robot motion and the dashed lines the robot measurements.

Quadratic Form of SLAM Posterior

In SLAM, one usually wants to �nd a mathematical expression for the posterior probabil-
ity (2.9), and then �nd the state that is more consistent with the data.

In order to make the problem tractable, several assumption must be made about the
random behavior of the state variables. The must important of these assumptions is that the
states correspond to a Markov process. In Markov processes, future states are conditionally
independent of past states, given the current state.

Using Bayes theorem and the Markov assumption, the posterior (2.9) can be rewritten as:

p(x0:k,m|z1:k,u1:k) = η p(zk|x0:k,m, z1:k−1,u1:k) p(x0:k,m|z1:k−1,u1:k) (2.11)

= η p(zk|xk,m) p(x0:k,m|z1:k−1,u1:k) (2.12)

Where in (2.11) the Bayes theorem is applied for the measurements zk, η is the normalizing
factor. In (2.12) it is assumed that current measurements zk are conditionally independent
of past measurements, poses and control inputs, given the current pose xk and map m.

The last term of (2.12) can also be expanded using the de�nition of conditional probability:

p(x0:k,m|z1:k−1,u1:k) = p(xk|x0:k−1,m, z1:k−1,u1:k) p(x0:k−1,m|z1:k−1,u1:k) (2.13)

= p(xk|xk−1,uk) p(x0:k−1,m|z1:k−1,u1:k) (2.14)

Where again the Markov assumption is applied, this time, to pose xk.

Substituting (2.14) into (2.12) gives:

9

p(x0:k,m|z1:k,u1:k) = η p(zk|xk,m) p(xk|xk−1,uk) p(x0:k−1,m|z1:k−1,u1:k) (2.15)

Note that equation (2.15) simply states that the likelihood of the state at time k is
proportional to the same likelihood at time k−1, multiplied by the motion and measurements
probabilities. Applying (2.15) recursively yields:

p(x0:k,m|z1:k,u1:k) = η p(x0)
∏
k

p(xk|xk−1,uk) p(zk|xk,m) (2.16)

Where p(x0) is the initial knowledge of the robot pose. The �nal assumption to be made
is that every individual measurement zik is conditionally independent between each other,
given the pose and map, i.e., p(zik, z

j
k|xk,m) = p(zik|xk,m) p(zjk|xk,m). Then, the �nal

form of the posterior is:

p(x0:k,m|z1:k,u1:k) = η p(x0)
∏
k

[
p(xk|xk−1,uk)

∏
i

p(zik|xk,m)

]
(2.17)

For mathematical proposes, it is convenient to work with the negative log-likelihood of the
posterior:

− log(p(x0:k,m|z1:k,u1:k)) =

− c− log(p(x0))−
∑
k

[
log(p(xk|xk−1,uk))

∑
i

log(p(zik|xk,m))

]
(2.18)

Where c = log(η). An expression is given for p(xk|xk−1,uk) in (2.3), and for p(zik|xk,m)
in (2.5). For the initial belief, as usual, it is assumed a zero-mean Gaussian distribution with
covariance Ω−10 (p(x0) ∼ N (0,Ω−10)). In virtue of the assumption of independent Gaussian
noise, replacing all these expression into (2.18), gives a quadratic form for the negative log-
SLAM posterior:

− log(p(x0:k,m|z1:k,u1:k)) =

c+ xT0 Ω0x0 +∑
k

(xk − g(uk,xk−1))
TR−1k (xk − g(uk,xk−1)) +∑

k

∑
i

(zik − h(xk,mi))
TQ−1k (zik − h(xk,mi))

(2.19)

Notice that every term of the sum in (2.19) has an associated edge in the graph represen-
tation (see Figure 2.2).

10

Notation Simpli�cation

For notation simpli�cation, the state vector y that contains the variables of all the poses over
time, and all the landmarks, is de�ned:

y =


x0

x1
...
xk
m

 (2.20)

Furthermore every term in (2.19) can be encapsulated into a single notation called the
error function: eij(y). Every index i, j in the error function corresponds to a node in
the graph, that is, a robot pose or a landmark position. Then eij(y) is given by either by
xk − g(uk,xk−1), if both indexes correspond to consecutive poses, by zik − h(xk,mi), if
indexes correspond to one pose and one landmark, or x0 if i = j = 0. The error function can
be seen as di�erence between the expected and actual odometry or measurement.

Similarly, the information matrix Ωij between nodes i and j can be de�ned as R−1k , Q−1k ,
or Ω0 given by the same conditions as above. Given this,(2.19) can be written as:

F (y) := − log(p(y|z1:k,u1:k)) =
∑
〈i,j〉∈E

eij(y)TΩijeij(y) (2.21)

Where the constant c is removed, as it is not state dependent. Finally, the most probable
state for the map and the poses is determined by solving the following minimization problem:

y∗ = arg min
y

F (y) (2.22)

Taylor Expansion

The terms in (2.19) are quadratic in the functions g and h, which are usually nonlinear
functions. Having nonlinear dependency of F over y makes (2.22) di�cult to solve. A way to
simplify the problem is to linearize those functions using a �rst order Taylor approximation
over eij:

eij(y̆ + ∆y) ≈ eij(y̆) + J ij∆y (2.23)

Where y̆ an initial estimate of the state, J ij is the Jacobian of eij computed at y̆, and
∆y is a small increment around y. Then, a local approximation of F can be obtained:

11

F (y̆ + ∆y) =
∑
〈i,j〉∈E

eij(y̆ + ∆y)TΩijeij(y̆ + ∆y)

≈
∑
〈i,j〉∈E

(eij(y̆) + J ij∆y)TΩij(eij(y̆) + J ij∆y)

=
∑
〈i,j〉∈E

eij(y̆)TΩijeij(y̆)︸ ︷︷ ︸
:=kij

+2 eij(y̆)TΩijJ ij︸ ︷︷ ︸
:=bij

∆y + ∆yT JTijΩijJ ij︸ ︷︷ ︸
:=Hij

∆y

=
∑
〈i,j〉∈E

kij + 2bij∆y + ∆yTH ij∆y

= k + 2b∆y + ∆yTH∆y (2.24)

Where
∑
kij = k,

∑
bij = b and

∑
H ij = H . H and b are called the information matrix

and the information vector of the linearized system, respectively. The expression (2.24) can
be minimized in ∆y by solving the linear system:

H∆y∗ = −b (2.25)

Then the solution of the original problem is obtained by adding the increment obtained
in the linear system with the initial guess:

y∗ = y̆ + ∆y∗ (2.26)

The popular Gauss-Newton algorithm iterates several times between the steps of lineariz-
ing the system in (2.24), solving the linear system in (2.25), and updating the state in (2.26).

Structure of the Linearized System

Of all steps of the Gauss-Newton algorithm, the linear system solving in (2.25) is the most
computationally expensive, because it involves a matrix inversion (in practice more e�cient
methods are used, such as QR decomposition), and it's also the more prone to numerical
errors. In some cases, the number of landmarks and the path of the robot is so large, that
the inversion of H becomes intractable. It'll be shown actually, that the information matrix
H has and underlying structure that makes the solving of the system (2.25), more e�cient
and precise.

Looking at eij(y) it can be seen that the only variables that are present in the function
are those involves in nodes i and j. This means that the Jacobian J ij of eij has an special
structure formed by 2 blocks, and the rest is zero:

12

J ij =

0 . . .0 Aij︸︷︷︸
i

0 . . .0 Bij︸︷︷︸
j

0 . . .0

︸ ︷︷ ︸
y

 (2.27)

Where Aij and Bij are the matrices of the derivatives of the functions in eij with respect
the variables in nodes i and j respectively. This makes the matrix H ij to be formed of four
blocks, and the rest �lled with zeros:

H ij =



. . .
AT
ijΩijAij . . . AT

ijΩijBij
...

...
BT
ijΩijAij . . . BT

ijΩijBij

. . .

 (2.28)

Where all the zero entries are omitted. The o�-diagonal blocks represent the relative infor-
mation given by the edge 〈i, j〉. Therefore, every term H ij adds 4 blocks to the information
matrix H .

However, for the SLAM problem, not every combination of blocks (i.e. edges) is possible.
This fact is represented in Figure 2.3. This �gure shows how the information matrix get
�lled as the robot moves in the environment and takes measurements. Every colored square
corresponds to a block from (2.28).

The information matrix can be divided into four submatrices. The top-left matrix (�lled
with blue squares) has the relative information between to pair of poses. Since the informa-
tion acquired is only relative to two consecutive poses, this submatrix has a band diagonal
structure, leaving all the other elements in zero. The top-right and bottom-left submatrices
are equivalent and contain the relative information between a pose and a measured landmark.
The number of blocks in these matrices depends on the number of landmarks measured, but
is often in SLAM that only spatially close landmarks are measured at every pose, leaving
these matrices, again, with much of their elements in zero. Finally, the bottom-right subma-
trix regards information about a pair of landmarks. Since there are not direct measurement
between two landmarks, this submatrix is left as a block diagonal matrix.

Therefore, it is shown that the number of non-zero elements in H is proportional to the
number of edges in the graph, leading to a matrix with a large number of zero elements. These
kinds of matrices are called sparse matrices. Fast and e�cient algorithm exist to solve (2.25)
for sparse matrices, such as Cholesky decomposition and Preconditioned Conjugate Gradient
(PCG). These algorithms are already implemented in the g2o framework that will be used.

13

x0

m1

x0 m1

x0

m1

(a) Block addition to the information matrix H after a landmark measurement.

x0

x1

m1

x0 x1 m1

x0 x1

m1

(b) Block addition to the information matrix H after a robot movement.

x0

x1

x2

x3

m1

m2

m3

m4

x0 x1 x2 x3 m1 m2 m3 m4

x0 x1 x2 x3

m1

m2

m3

m4

(c) Shows the block structure of the information matrix H after 3 robot movements and 7 measure-
ments.

Figure 2.3: Progressing �lling of the information matrix H as the robot moves and takes
measurements. Blue: pose-pose block. Purple: pose-landmark block. Red: landmark-
landmark block.

14

2.4 Review of the State of the Art in SLAM

SLAM as a probabilistic problem has its beginning in the 1986 IEEE Robotics and Automa-
tion Conference held in San Francisco, California [3], [9]. One of the �rst papers to give a
solution to SLAM was [9] using the Extended Kalman Filter technique. This solution is now
known as EKF SLAM.

One of the �rst papers to state SLAM as an optimization over a graph is [8] by Lu and
Milios. They were the �rst to treat motion and measurements in an equal manner as infor-
mation constraints, which di�ered from standard EKF technique where motion information
is used for prediction, and measurement as correction for the Kalman �lter.

The GraphSLAM algorithm, as stated in this work, was �rst presented in [11] by Thrun
and Montemerlo. In this paper, the SLAM negative likelihood posterior is derived for solv-
ing the full SLAM problem, and the optimization problem is stated in a similar way as
in section 2.3. However, it does not specify how to solve the optimization in (2.22) from
subsection Notation Simpli�cation.

From there, several improvements have been made to the general idea of the GraphSLAM
algorithm. In [1] a similar graph representation is used to solve SLAM, called

√
SAM (Square

Root Smoothing and Mapping). In this context, smoothing corresponds to estimating the
entire robot trajectory up to the current time.

√
SAM uses the measurement Jacobian instead

of the information matrix to represent the system uncertainty. Although they are equivalent
in terms of information, they have di�erent computational properties.

√
SAM can be used

as a batch or an incremental algorithm for solving SLAM, and use either QR or Cholesky
factorization of the linear equation, with variable ordering for complexity improvement.

An updated version of
√
SAM, called iSAM, is presented in [5]. It improves the perfor-

mance in the incremental version, by directly updating the square root information matrix
with new measurements as they arrive. It also avoids unnecessary �ll-in in the information
matrix generated by trajectory loop, by doing periodic variable reordering. It solves online
data association using maximum likelihood and nearest neighbor matching.

Another improvement of iSAM is presented in [4], iSAM2, in which they de�ne a new data
structure, called the Bayes Tree, that allows them to improve the performance in the online
case, by updating only the necessary variables in the linearization point after the arrival of
new data.

In [7] a robust consistency-based loop-closure veri�cation method, Realizing Reversing
and Recovering (RRR) algorithm, is presented for the detection and correction of incorrect
loop closures generated by the SLAM algorithm. Incorrect loop closures appear when a robot
visits similar looking locations, which can severely corrupt the map estimate.

For e�ciently solving graph optimization problems that appear in SLAM and other situa-
tions, a framework called g2o (general graph optimization) is presented in [6]. g2o is an open
source optimization tool written in C++. It was designed to be easily extensible to a wide
range of problems, and it contains typical optimization techniques used for sparse matrices,

15

such as Cholesky decomposition and Preconditioned Conjugate Gradient.

16

Chapter 3

Methodology and Implementation

In this chapter, the implementation of the GraphSLAM algorithm is presented and explained.
The algorithm is capable of solving the SLAM problem in an o�ine manner for a 2D scenario,
in the cases of known and unknown data association.

The g2o framework used in this work provides of a least squares solver for the optimization
of equation (2.22), as well as a protocol to de�ne the graph of the SLAM problem. g2o is well
optimized and it has several options for the solver, so the known data association version of
the GraphSLAM algorithm is relatively straightforward to implement.

However, g2o does not provide a way to handle unknown data association, so the main
goal of this work is to implement a method for solving the correspondence problem in an
e�cient manner.

3.1 The g2o Protocol

The �rst step in implementing the GraphSLAM algorithm is to de�ne a protocol to store
and interpret the data on a graph. g2o already provides such a protocol. The stored data
are of two types: data from nodes, and data from edges.

In the SLAM context, nodes themselves can be of two types, pose nodes and landmark
nodes. Pose nodes represent the pose of the robot. In the 2D case, they consist of 3 variables:
robot's x and y position, and robot's orientation θ. In g2o a pose node is denoted with the
keyword VERTEX_SE21. Landmark nodes represent the 2D position (x and y) of a landmark.
They are denoted with the keyword VERTEX_XY.

Edges represent either robot's odometry (data of robot's change in position), or robot's
measurements of landmarks. Odometry is measured as the di�erence between robot's pose at
two consecutive timesteps: (∆x,∆y,∆θ). On the other hand, robot measurements are given

1Vertex is synonymous of node. SE2 is the Non-Euclidean space that consists of two spatial dimensions

and an angular dimension.

17

as the x and y distance to the landmark relative to the robot reference frame. Figure 3.1
illustrates the odometry and measurement of a robot. Keywords EDGE_SE2 and EDGE_SE2_XY

are use to denote odometry and measurement edges respectively.

∆x odom

∆y odom

∆x meas ∆y meas

∆θ odom

x0

x1 m1

Figure 3.1: Illustration of odometry and measurement values in g2o.

For GraphSLAM to work correctly, one must also provide to the algorithm the uncertainty
of odometry and measurements. These correspond to the covariance matrices Rk and Qk

from motion (2.2) and measurement (2.4) models respectively. g2o works with the inverse of
the covariance matrix, known as the information matrix. Nevertheless, these representations
are equivalent in terms of the knowledge of the system. Since covariance matrices (and their
inverse) are symmetric, only the upper diagonal block is needed. In this work, it is assumed
that the model uncertainties are time independent, i.e., all nodes have the same values for
the information matrix. The notation of each element of the matrices is given by:

R−1k =

ipxx ipxy ipxa
ipxy ipyy ipya
ipxa ipya ipaa

 Q−1k =

(
ilxx ilxy
ilxy ilyy

)
(3.1)

Where each element of the information matrices can be obtained by inverting the covari-
ance matrix of the corresponding model.

Finally, nodes must be indexed so they can be distinguishable from one another. This is
indicated by an integer id. Ids are used in edges to indicate which two nodes the edge is
connecting.

Table 3.1 summarizes g2o notation to represent nodes and edges.

In this work, it is assumed that the �rst pose is known with absolute certainty, and is
�xed to (0, 0, 0). In g2o, this is done by the command FIX id, where the id of the �rst pose
is used. To use the data in the framework, it can be written in plain text, which is then
uploaded to g2o.

The code below presents a simple example of the g2o protocol, its graphical equivalence
is shown in Figure 3.2. In practice, when solving SLAM, only odometry and measurements

18

Graph element Notation
Pose node VERTEX_SE2 id x y a

Landmark node VERTEX_XY id x y

Odometry edge EDGE_SE2 id1 id2 dx dy da ipxx ipxy ipxa ipyy ipya ipaa

Measurement edge EDGE_SE2_XY id1 id2 dx dy ilxx ilxy ilyy

Table 3.1: g2o protocol for node and edge de�nition. a: angle.

are known, then only edges must be speci�ed in the �le:

VERTEX_SE2 0 0 0 0
FIX 0
VERTEX_SE2 1 4 0 1 .57
VERTEX_SE2 2 4 4 3 .14
VERTEX_SE2 3 0 4 3 .14

VERTEX_XY 11 2 2
VERTEX_XY 12 6 2
VERTEX_XY 13 2 6

EDGE_SE2 0 1 4 0 1 .57 1 0 0 1 0 1
EDGE_SE2 1 2 4 0 1 .57 1 0 0 1 0 1
EDGE_SE2 2 3 4 0 0 1 0 0 1 0 1

EDGE_SE2_XY 0 11 2 2 1 0 1
EDGE_SE2_XY 1 11 2 2 1 0 1
EDGE_SE2_XY 1 12 2 −2 1 0 1
EDGE_SE2_XY 2 11 2 2 1 0 1
EDGE_SE2_XY 2 12 −2 2 1 0 1
EDGE_SE2_XY 2 13 2 −2 1 0 1
EDGE_SE2_XY 3 11 −2 2 1 0 1
EDGE_SE2_XY 3 13 −2 −2 1 0 1

Listing 3.1: g2o protocol example

3.2 The Known Correspondence Case

In the known correspondence case each measurement incorporates the information of the
landmark sensed from the map. It is equivalent to knowing the correct values of id1 and
id2 for every EDGE_SE2_XY. In a real world scenario, data association is usually not known,
however, the known correspondence case is still useful in simulations to check the correctness
of the algorithm.

With g2o, solving the known correspondence case is just a matter of loading the data to
the framework, set the desired parameters, and running the solver.

The parameters that can be set in the solver include:

19

1

1

2

2

3

3

4

4

5

5

6

6

x0 x1

x2x3

m11 m12

m13

Figure 3.2: Graphical representation of g2o protocol example. The lower left corner corre-
sponds to (0,0).

1. The sparse solver for the inversion in (2.25): Cholesky solver, PCG solver.

2. The optimization algorithm for solving (2.24)-(2.26): Gauss-Newton, Levenberg-Marquardt.

3. The number of iterations for the algorithm to stop.

For the sparse solver, g2o uses third-party libraries from which the user can choose:
CHOLMOD, CSparse2, Eigen3.

This work provides of a Python script to easily set the parameters of the framework and
run the solver. It also provides of a 2D simulator that generates a robot path, landmarks,
and measurements. It is a modi�ed version of the g2o simulator that allows the user to set
the information parameters from matrices (3.1) in the simulations. This makes it possible
to test the GraphSLAM algorithm for di�erent noise levels. The simulation also allows the
user to compare the results with the ground truth. The ground truth is the true estimate to
be achieved, and it is given by the simulator.

The Python script is also able to generate an initial guess of the estimate using robot
odometry and the �rst measurement of each landmark. The initial guess is used as a starting
point for the optimization algorithm. Figure 3.3 shows an example of the ground truth and
the initial guess of a SLAM simulation.

The pseudocode for the known correspondence case is shown in Algorithm 1.

Optionally g2o can use robust kernels to deal with outliers. An outlier is a corrupt mea-
surement that doesn't follow the distribution assumed for the model. They are usually gen-
erated by sensors malfunctions and tend to have extreme values, far away from the expected
measurement.

2CHOLMOD and CSparse can be found in http://faculty.cse.tamu.edu/davis/suitesparse.html
3http://eigen.tuxfamily.org/index.php?title=Main_Page

20

http://faculty.cse.tamu.edu/davis/suitesparse.html
http://eigen.tuxfamily.org/index.php?title=Main_Page

5 0 5 10 15
15

10

5

0

5

10 Initial Guess
Ground truth robot path
Ground truth landmarks
Estimated robot path
Estimated landmarks

Figure 3.3: Example of an initialization of a SLAM simulation. The light blue line is the
ground truth path, and dark red circles are ground truth landmarks. The blue line is odom-
etry path, and red crosses are the initial guess for landmarks.

Algorithm 1 GraphSLAM Known Correspondence

Require: optimizer, data
1: optimizer.setParameters(parameters)
2: optimizer.loadData(data)
3: optimizer.genInitialGuess()
4: optimizer.solve(numberIterations)
5: optimizer.writeData()

21

From equation (2.21), it can be seen that each error function has a quadratic in�uence in
function F (y). This means that a single outlier can signi�cantly degrade the construction of
F , and thus the result of the estimation. To mitigate this problem a robust kernel function
can be applied to each error term eij(y) in (2.21), so that high values of eij has reduced
e�ect in F . Robust kernels included in g2o are: Cauchy, DCS, Fair, GemanMcClure, Huber,
PseudoHuber, Saturated, Tukey, Welsch. Most robust kernels must also specify the kernel
width, that is the point on the function in which the kernel e�ect start. Figure 3.4 shows the
plots of di�erent kernels in g2o.

6 4 2 0 2 4 6
x

0

2

4

6

8

10

f(
x
)

Quadratic
Huber
Fair
Turkey
Geman-McClure
Cauchy
Welsch
Pseudo Huber

Figure 3.4: Plots of di�erent robust kernels with equal width, compared with the quadratic
function.

3.3 The Unknown Correspondence Case

In the unknown correspondence case, there is no information of which landmark generates
each measurement, neither of how many landmarks are on the map. The g2o framework does
not provide a way to solve the correspondence problem, so a method must be developed to
address the issue. In this work the method implemented is based on the one presented in [11],
with some di�erences to take in account the speed of the algorithm.

3.3.1 The Correspondence Test

The premise of the method is as follows: a correspondence test is developed to check the
likelihood of two landmarks being the same. If the likelihood is high enough, the landmarks
are merged into one.

To justify mathematically this test, the variable mi,j = (mi mj)
T is de�ned as the

22

concatenation of landmarks i and j. The posterior probability ofmi,j over the measurements
and control inputs is given by:

p(mi,j|z1:k,u1:k) = det(2πΣmi,j
)−

1
2 exp

{
−1

2
(mi,j − µmi,j

)TΣ−1mi,j
(mi,j − µmi,j

)

}
, (3.2)

Where µmi,j
= (µmi

µmj
)T is the current estimate of the landmarks i and j. Matrix

Σmi,j
is the covariance matrix marginalized over landmarks i and j. Since it has been

assumed a normal distribution for the estimate, this covariance can be computed using the
marginalization lemma [11]. In practice, g2o provides a function to compute Σmi,j

.

Then, to compare mi and mj another variable is de�ned as the di�erence between the
two landmarks: ∆i,j = mi −mj, or alternatively, using the di�erence matrix:

D =


1 0
0 1
−1 0
0 −1

 (3.3)

⇒∆i,j = mi −mj = DTmi,j (3.4)

It can be proven that ∆i,j is distributed as N (DTµmi,j
, DTΣmi,j

D) := N (µ∆i,j
,Σ∆i,j

).
Then its PDF is given by:

p(∆i,j|z1:k,u1:k) = det(2πΣ∆i,j
)−

1
2 exp

{
−1

2
(∆i,j − µ∆i,j

)TΣ−1∆i,j
(∆i,j − µ∆i,j

)

}
(3.5)

When two landmarks are equivalent it is expected that their position is the same, hence
∆i,j = 0. Evaluating this in the posterior probability (3.5) gives the likelihood of landmark
equivalence:

πj=k := p(∆i,j = 0|z1:k,u1:k) = det(2πΣ∆i,j
)−

1
2 exp

{
−1

2
µT∆i,j

Σ−1∆i,j
µ∆i,j

}
(3.6)

The correspondence test consists in assert a landmark equivalence when the likelihood
πj=k is greater than a user-de�ned threshold χ. Intuitively a greater threshold means being
more strict in considering landmark equivalences.

3.3.2 The Unknown Correspondence Algorithm

Once the correspondence test is de�ned, it can be used to implement a GraphSLAM algorithm
with unknown data association.

23

The algorithm works as follows: �rst, all landmarks are initialized as if each measurement
corresponds to an individual landmark. The correspondence test is run over every possible
pair of landmarks, merging landmarks that pass the test. After the tests are �nished, the esti-
mate is updated running the solver in the same way as in the case of known correspondence.
After the solver, the correspondence tests are run again, and the solver is run afterward.
Correspondence test and solver are alternated until no new landmark associations are found.

Algorithm 2 presents the unknown correspondence algorithm in pseudocode.

Algorithm 2 GraphSLAM Unknown Correspondence

Require: optimizer, data
1: optimizer.setParameters(parameters)
2: optimizer.loadData(data)
3: optimizer.genInitialGuess()
4:

5: while association found do
6: for all pair of landmark (i,j) do
7: if correspondenceTest(i,j) ≥ χ then
8: optimizer.merge(i,j)
9: end if

10: end for

11: optimizer.solve(numberIterations)
12: end while

13:

14: optimizer.writeData()

3.3.3 Speeding up the Unknown Correspondence Algorithm

Algorithm 2 is ine�cient. In particular, the correspondence test is run over every pair of
landmarks at each iteration. The number of pairs is quadratic in the number of landmarks,
furthermore, even landmarks that are obviously not equivalent, such as landmarks greatly
separated, are tested. Empirical testing has shown that the bottleneck of the algorithm is
the correspondence test, in particular, the computation of the marginalized covariance Σ∆i,j

,
therefore it is necessary to call this function as less often as possible. The optimization of the
algorithm is essential to run GraphSLAM in large datasets. The next subsections present
the strategies adopted to improve the algorithm performance.

Incremental Optimization

Incremental optimization is based on the following principle: landmarks measured late in the
robot's path are subject to the accumulated error of all past robot's poses. This fact is can
be visualized in the simulation in Figure 3.3. Due to this, equivalent landmarks found late in
the trajectory will be merged only when all the previous estimates of the pose have already

24

been corrected by the algorithm. Testing correspondence between these landmarks earlier is
pointless, simply because their error is too high to produce an association.

A way to deal with this problem is to test association only for landmarks measured in early
poses, and then test for late poses when the path is corrected. An extreme version of this
is the incremental optimization algorithm: at each iteration consider only the current pose.
Test landmarks observed in the current pose with landmarks from all previous poses and
then run the solver. In the next iteration do the same for the next pose, and repeat until the
last pose. Intuitively, the algorithm is incrementally correcting the path with early measured
landmarks, which have low uncertainty, until all path is corrected. Figure 3.5 illustrates the
working of the incremental optimization for a simple example.

x0

x1

x1

m1

m2

ma

mb

(a) Initial guess.

x0 x1

x1

m1

m2

mb

(b) Estimate after asso-
ciating m1 and ma, and
running the solver.

x0 x1

x1

m1

m2

(c) Estimate after asso-
ciating m2 and mb, and
running the solver.

Figure 3.5: Example of the incremental optimization. The yellow circle represents the land-
mark uncertainty. Note that at �rst is not possible to associate landmarks m2 and mb

because mb has the accumulated error of x1 and x2. It's not until the association between
m1 and ma, observed in previous poses, is made that the latter landmarks can be merged.

The incremental optimization has a subtle �aw, once a correspondence test is run between
two landmarks, it's never tested again, since only current measurements are tested. If a test
failed at some point, but posterior corrections make it possible for the test to pass, this
association will be missed. It is expected that this situation doesn't occur often, since the
incremental optimization algorithm usually gives a good estimate of the path up to the
current pose. Nevertheless, this error is absolutely possible.

To mitigate this problem, full optimizations can be run occasionally along with the in-
cremental optimization. Full optimization consists in testing correspondence between all
possible pairs of measured landmarks up to the current pose, in a similar fashion as it is done
in Algorithm 2. This way a compromise can be achieved between the algorithm speed and
performance. In this implementation, the user is able to choose the frequency with which the
full optimizations are run. It is done by setting the parameter io (inter full optimizations),
which is the number of incremental optimization performed between two full optimizations.

25

Pose Skipping

The incremental optimization algorithm described above runs the solver and produces an
optimization every time after a new pose is analyzed. In some cases, the solver optimization
becomes the bottleneck rather than the data association. In these cases, it is convenient to
test for association between several consecutive poses after running the solver.

This strategy is named pose skipping, where a parameter ps is introduced to control the
number poses to be skipped after the next optimization. If ps = n it indicates that the next
optimization will be executed n poses after the current pose. By default ps = 1 (no skipping
is made).

Distance Test

Even with incremental optimization, there are still a lot of landmarks that are unnecessarily
tested. The distance test strategy attempts to avoid testing landmarks that are widely
separated, and thus are obviously not equivalent. To do this, a distance threshold is de�ned,
with which, every pair of landmarks separated by a greater distance automatically fails the
test.

De�ning a value for the threshold is nontrivial. Two methods are implemented. The �rst
one is by user-de�ned input. If the user has prior knowledge of the robot or the map, he/she
could make a good estimate of the maximum distance between measurements from the same
landmark. Then the user can set the distance threshold to this value.

Even if the maximum distance is not known a priori, a threshold value can still be calcu-
lated. Consider the threshold χ for the correspondence test in Algorithm 2, for a given value
of χ, there exists a distance for which, even in the best case scenario, landmarks separated by
this distance or more with never be associated. To prove this, consider the random variable
for the distance δi,j between two landmarks. Its PDF is given by:

p(δi,j|z1:k,u1:k) =
1√

2πσ2
δi,j

exp

{
−

(δi,j − µδi,j)
2

2σ2
δi,j

}
(3.7)

di=j := p(δi,j = 0|z1:k,u1:k) =
1√

2πσ2
δi,j

exp

{
−
µ2
δi,j

2σ2
δi,j

}
(3.8)

Which is equivalent to the PDF p(∆i,j|z1:k,u1:k) in (3.5), for the one dimensional case.
µ2
δi,j

is the Euclidean distance between the mean of the landmarks, and σ2
δi,j

is the variance
of p(∆i,j|z1:k,u1:k) projected in the line between µ2

∆i,j
and (0, 0). For this analysis, the exact

value of σ2
δi,j

is not important.

The maximum distance at which association can still be made is given by the following
problem:

26

max
di=j≥χ

|µδi,j | (3.9)

Considering only the positive values of µδi,j , di=j becomes a decreasing function. By this
fact, it can be seen that maximum at (3.9) is achieved when di=j = χ. A visual demonstration
of this is shown in Figure 3.6. Expanding the equality gives:

di=j = χ (3.10)

1√
2πσ2

δi,j

exp

{
−
µ2
δi,j

2σ2
δi,j

}
= χ (3.11)

exp

{
−
µ2
δi,j

2σ2
δi,j

}
=
√

2πσ2
δi,j
χ (3.12)

µδi,j =

√
−2σ2

δi,j
log(

√
2πσ2

δi,j
χ) (3.13)

So the maximum distance for an association is given by (3.13). Unfortunately the distance
is a function of σ2

δi,j
, which is computationally expensive to get. However expression (3.13)

is concave in σ2
δi,j

, so a global maximum can be found (see Figure 3.7). Intuitively this
means that neither a large nor a low value of σ2

δi,j
is good for associating landmarks at great

distances.

0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
µ|∆i,j|

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

d
i
=
j

χ

σ 2
|∆i,j|=0.01

σ 2
|∆i,j|=0.0585

σ 2
|∆i,j|=0.15

Figure 3.6: Plots of the PDF of the distance between two landmarks for di�erent values of
σ2
δi,j

. The plots shows that maximum distance from zero is achieve when, dj=k = χ. Note that
the function that achieve more distance is neither the one with more nor with less variance.

Using di�erential calculus it can be found maximum of µδi,j for σ
2
δi,j

is achieved in σ2
δi,j

=
1

2πeχ
, which yields a value of µδi,j = 1√

2πeχ
. This value can be used as a distance threshold

that only depends on χ. The disadvantage of this method is that the threshold computed
tend to be large relative to the problem, so the amount of correspondence tests avoided is
limited.

27

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

σ 2
|∆i,j|

0.00

0.05

0.10

0.15

0.20

0.25

m
ax

 µ
|∆

i,
j|

Figure 3.7: Plot of the maximum distance µδi,j in function of σ2
δi,j

. It can be seen that is a
concave function.

3.4 The Final Algorithm

The �nal version of the implemented GraphSLAM algorithm solves the SLAM problem for
unknown correspondence, it incorporates the incremental optimization, pose skipping and
distance test strategies to speed up the algorithm. The implementation can be downloaded
from repository in https://github.com/francocurotto/GraphSLAM, with instructions on
how to install, compile and run the program.

The algorithm of the �nal version of GraphSLAM is presented in Algorithm 3. ps and io
correspond to the parameters for pose skipping and inter full optimization. To check if it is
the right time to use either of the strategies, the module (%) operator is used between the
pose number and the parameter.

The GraphSLAM algorithm calls to functions, intrementalDataAssociation and full-

Optiomization. The intrementalDataAssociation function tries to associate the land-
marks observed in the current pose, with the previous landmarks. Its pseudocode is shown
in Algorithm 4. The distance test is performed in line 5, where dt is the maximum dis-
tance accepted for an association. fullOptimization function search associations between
all previous poses up to the current pose, and then run the solver. It can be done by calling
intrementalDataAssociation iteratively, as shown in 5.

28

https://github.com/francocurotto/GraphSLAM

Algorithm 3 GraphSLAM Final Version

Require: optimizer, data
1: optimizer.setParameters(parameters)
2: optimizer.loadData(data)
3: optimizer.genInitialGuess()
4:

5: for all poses p do
6: incrementalDataAssociation(p)
7: if p % ps = 0 then
8: optimizer.solve(numberIterations)
9: end if

10: if p % io = 0 then
11: fullOptimization(p)
12: end if

13: end for

14:

15: optimizer.writeData()

Algorithm 4 Incremental Data Association Function

1: function incrementalDataAssociation(p)
2: for all landmarks lp observed in p do
3: for all previous poses q up to p do
4: for all landmarks lq observed in q do
5: if distance(lp,lq) < dt then
6: if correspondenceTest(i,j) ≥ χ then
7: optimizer.merge(i,j)
8: end if

9: end if

10: end for

11: end for

12: end for

13: end function

Algorithm 5 Full Optimization Function

1: function fullOptimization(p)
2: while association found do
3: for all previous poses q up to p do
4: IncrementalDataAssociation(q)
5: end for

6: optimizer.solve(numberIterations)
7: end while

8: end function

29

Chapter 4

Results

In this chapter, the results of the GraphSLAM algorithm are presented for di�erent test
scenarios. In Section 4.1 the algorithm is tested for the simple case of known data association
and simulated data. A parameters variation analysis is made, and their e�ect on the path
estimation is shown. In Section 4.2 a similar analysis is performed, but for the case of
unknown data association. In this case, new parameters related to the data association
algorithm are tested. Finally in Section 4.3, the GraphSLAM algorithm is run in more
realistic data. This data includes a robot simulated with Gazebo1, a much more realistic
robot simulator, and data obtained from real robots in outdoor environments.

Through these tests, several parameters and methods must be chosen for the algorithm
to work properly. To limit the scope of this work, the sparse solver and the optimization
algorithm are �xed and used in all the following tests. CSpase library and the Cholesky
decomposition is used for the sparse solver, and the Levenberg-Marquardt method is used as
the optimization algorithm. Also, whenever the robust kernel method is used, Huber is the
chosen kernel function (see Section 3.2).

4.1 Known Data Association

The known data association case is the easiest one of the three scenarios because correspon-
dence between landmarks is given a priori. In this case Algorithm 1 is used.

The parameters to be set in this case are the following:

• np: number of poses of the robot path.
• nl: number of landmarks in the map.

• iop: odometry position information (inverse of variance).

• ioa: odometry angle information.

• ilp: landmark position information.

1http://gazebosim.org/

30

http://gazebosim.org/

• it: number of iterations of the optimization algorithm.

• kw: width of the chosen robust kernel.

Where np, nl, iop, ioa, and ilp are parameters regarding the robot behavior in the test.
They are passed to the simulator. The parameters it and kw de�ne de optimization strategy.

Through all the tests made in this work, it is assumed that the information matrix of
odometry and measurements models (same as (3.1)) are diagonal, i.e., their variables are not
correlated. Furthermore, it is assumed that these matrices have the following structure:

R−1k =

iop 0 0
0 iop 0
0 0 ioa

 Q−1k =

(
ilp 0
0 ilp

)
(4.1)

This means that the robot experiences same uncertainty in the x and y axis, for both,
motion and measurement model.

Test I is run with the parameters of Table 4.1.

The simulation is constrained to a 2D world with x ∈ [−15, 15], y ∈ [−15, 15]. At each
step the simulator moves the robot 1 unit of distance and in turns randomly an angle of
θ = 0◦, 90◦, or −90◦. All simulations start from at (0, 0).

A kernel width of 1 unit is chosen heuristically, looking at the distance between landmarks.
Intuitively, the user should set the kernel width to a distance in which two landmarks are
unlikely to be the same, and therefore, it corresponds to an outlier.

The results of the test are shown in Figure 4.1. In Figure 4.1a the initial guess is plotted
on the left, and the posterior estimation after the solver on the right. The ground truth is
added in both graphs for comparison. Landmarks not observed by the robot are not shown.
It can be seen that the path of the initial guess rapidly diverges from the real solution. On
the other hand, the solver estimation �ts quite well with the ground truth, both for the path
and the landmarks.

To have a more quantitative view of the error made by the solver, the cumulative path
error for every step is shown in Figure 4.1b. The cumulative normalized error is given by:

error(i) =
1

i

∑
i

||posGT − posest|| (4.2)

Where i is the path's timestep. posGT and posest are the ground truth and estimated
position respectively. Then the error is the sum of the Euclidean distance between both
positions, normalized by the number of steps.

It can be seen that the error start increasing early in the path, but then it gets stabilized.
This is the e�ect of aggregating the information of the measurements and running the opti-

31

mizer. As long as the robot keep measuring the same landmarks, it can maintain its error
low.

In the next tests, all the information parameters of the robot are decreased simultaneously.
Is intended to show the e�ect in the estimation when adding uncertainty to the robot.

Test II, Test III, and Test IV, shows the results when iop = ioa = ilp = 100, iop = ioa =
ilp = 10, and iop = ioa = ilp = 1 respectively.

It can be seen that the estimated path gradually degrades as the information decrease.
Finally, when the information is 1, the algorithm breaks.

Test V shows the e�ect running the algorithm with a low number of iterations. In this
case it = 1. It can be seen that the algorithm was not able to converge properly, in contrast
to Test I.

In Test VI the kernel width was reduced to kw = 0.1, meaning the errors are suppressed at
a shorter distance. It can be seen that the new width actually improves the results, getting
a normalized error for the full path of around 0.08.

In terms of speed the algorithm performs quite fast, taking around 1[s] for all the tests.

32

Test I.

np nl iop ioa ilp it kw

300 40 1000 1000 1000 20 1

Table 4.1: Parameters for Test I.

25 20 15 10 5 0 5
15

10

5

0

5

10

15

20 Initial Guess

14 12 10 8 6 4 2 0 2

After Solver
Ground truth robot path
Ground truth landmarks
Estimated robot path
Estimated landmarks

(a) Initial guess and solver estimation.

50 100 150 200 250 300
Timestep

0.00

0.02

0.04

0.06

0.08

0.10

0.12

No
rm

al
iz

ed
 e

rr
or

Path Error

(b) Path normalized error.

Figure 4.1: Results for Test I.

33

Test II

np nl iop ioa ilp it kw

300 40 100 100 100 20 1

Table 4.2: Parameters for Test II.

35 30 25 20 15 10 5 0 5
20

15

10

5

0

5

10

15

20 Initial Guess

14 12 10 8 6 4 2 0 2

After Solver
Ground truth robot path
Ground truth landmarks
Estimated robot path
Estimated landmarks

(a) Initial guess and solver estimation.

50 100 150 200 250 300
Timestep

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

No
rm

al
iz

ed
 e

rr
or

Path Error

(b) Path normalized error.

Figure 4.2: Results for Test II.

34

Test III

np nl iop ioa ilp it kw

300 40 10 10 10 20 1

Table 4.3: Parameters for Test III.

35 30 25 20 15 10 5 0 5
20

10

0

10

20

30

40 Initial Guess

15 10 5 0 5

After Solver
Ground truth robot path
Ground truth landmarks
Estimated robot path
Estimated landmarks

(a) Initial guess and solver estimation.

50 100 150 200 250 300
Timestep

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
iz

ed
 e

rr
or

Path Error

(b) Path normalized error.

Figure 4.3: Results for Test III.

35

Test IV

np nl iop ioa ilp it kw

300 40 1 1 1 20 1

Table 4.4: Parameters for Test IV.

40 35 30 25 20 15 10 5 0 5
30

25

20

15

10

5

0

5

10

15 Initial Guess

20 15 10 5 0 5

After Solver
Ground truth robot path
Ground truth landmarks
Estimated robot path
Estimated landmarks

(a) Initial guess and solver estimation.

50 100 150 200 250 300
Timestep

0

1

2

3

4

5

6

7

8

No
rm

al
iz

ed
 e

rr
or

Path Error

(b) Path normalized error.

Figure 4.4: Results for Test IV.

36

Test V.

np nl iop ioa ilp it kw

300 40 1000 1000 1000 1 1

Table 4.5: Parameters for Test V.

25 20 15 10 5 0 5
20

15

10

5

0

5

10

15

20 Initial Guess

14 12 10 8 6 4 2 0 2 4

After Solver
Ground truth robot path
Ground truth landmarks
Estimated robot path
Estimated landmarks

(a) Initial guess and solver estimation.

50 100 150 200 250 300
Timestep

0.0

0.1

0.2

0.3

0.4

0.5

No
rm

al
iz

ed
 e

rr
or

Path Error

(b) Path normalized error.

Figure 4.5: Results for Test V.

37

Test VI.

np nl iop ioa ilp it kw

300 40 1000 1000 1000 20 0.1

Table 4.6: Parameters for Test VI.

25 20 15 10 5 0 5
15

10

5

0

5

10

15

20 Initial Guess

14 12 10 8 6 4 2 0 2 4

After Solver
Ground truth robot path
Ground truth landmarks
Estimated robot path
Estimated landmarks

(a) Initial guess and solver estimation.

50 100 150 200 250 300
Timestep

0.00

0.02

0.04

0.06

0.08

0.10

No
rm

al
iz

ed
 e

rr
or

Path Error

(b) Path normalized error.

Figure 4.6: Results for Test VI.

38

4.2 Unknown Data Association

In this section, similar tests are made, but in this case, it is assumed unknown data association
of the landmarks. The same simulator is used to generate the data, and Algorithm 3 to
compute the estimate.

Along with the parameters used in the known correspondence case, the following new
parameters must be set in these tests:

• χ: likelihood threshold for data association.

• dt: maximum distance for distance test.

• io: inter full optimization frequency.

• ps: Pose skipping.

Where χ and dt are the thresholds used in Algorithm 4. io is the number of incremen-
tal optimizations between two full optimizations, and ps is the number of poses between
optimizations, both from Algorithm 3.

Test VII show the results for a successful test with unknown data association. Notice
that in the initial guess there are several more landmarks than in the ground truth. That
is because the initial guess considers every single measurement as an independent landmark.
However in the result of the solver, the algorithm is able to associate the measurements with
the corresponding landmark, and correct the path of the robot. Nevertheless, there are 4
cases that are unable to be associated correctly.

The parameter dt is set to ∞ so no distant test is performed. In Table 4.7, variable t
correspond to the total time of the algorithm.

In the next tests, the threshold χ is modi�ed. In Test VIII the threshold is set to a very
low value χ = 10−100. It can be seen that the algorithm merges nonequivalent landmarks,
thus causes estimate divergence. In Test IX and Test X χ is set to 1 and 3 respectively.
In these cases, the thresholds are so high that the algorithm is unable to associate all the
equivalent landmarks. This cause that the estimated path gradually drift.

In Test XI χ = 0 and dt = 1, so that in this case the algorithm associates landmarks
using the distant test instead of the correspondence test. Every landmark at a distance of 1
unit will be automatically associated. Looking at Figure 4.11a it can be seen that now all
landmarks are correctly associated. However, Figure 4.11b shows that the estimation has a
greater cumulative error. Also, the distant test is faster than the correspondence test, taking
only 5[s]. Therefore, a trade-o� exists between using the distant test and the correspondence
test as a means to solve unknown association.

In Test XII the pose skip parameter is increased to ps = 100. the idea is to do as least
optimization as possible to increase the algorithm speed. It can be seen however that, due
to the lack of optimization, the algorithm is unable to correct the path and to associate the
landmarks. This errors also cause that the algorithm actually takes longer than in Test VII.

39

Test VII.

np nl iop ioa ilp it kw χ dt io ps t

400 30 1000 10000 1000 20 1 0.1 ∞ 400 10 13[s]

Table 4.7: Parameters for Test VII.

15 10 5 0 5 10 15 20
10

5

0

5

10

15

20 Initial Guess

15 10 5 0 5 10 15

After Solver
Ground truth robot path
Ground truth landmarks
Estimated robot path
Estimated landmarks

(a) Initial guess and solver estimation.

50 100 150 200 250 300 350 400
Timestep

0.00

0.02

0.04

0.06

0.08

0.10

0.12

No
rm

al
iz

ed
 e

rr
or

Path Error

(b) Path normalized error.

Figure 4.7: Results for Test VII.

40

Test VIII.

np nl iop ioa ilp it kw χ dt io ps t

400 30 1000 10000 1000 20 1 10−100 ∞ 400 10 94[s]

Table 4.8: Parameters for Test VIII.

15 10 5 0 5 10 15 20
10

5

0

5

10

15

20

25 Initial Guess

15 10 5 0 5 10 15

After Solver
Ground truth robot path
Ground truth landmarks
Estimated robot path
Estimated landmarks

(a) Initial guess and solver estimation.

50 100 150 200 250 300 350 400
Timestep

0

1

2

3

4

5

6

7

No
rm

al
iz

ed
 e

rr
or

Path Error

(b) Path normalized error.

Figure 4.8: Results for Test VIII.

41

Test IX.

np nl iop ioa ilp it kw χ dt io ps t

400 30 1000 10000 1000 20 1 1 ∞ 400 10 10[s]

Table 4.9: Parameters for Test IX.

15 10 5 0 5 10 15 20
10

5

0

5

10

15

20 Initial Guess

15 10 5 0 5 10 15

After Solver
Ground truth robot path
Ground truth landmarks
Estimated robot path
Estimated landmarks

(a) Initial guess and solver estimation.

50 100 150 200 250 300 350 400
Timestep

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

No
rm

al
iz

ed
 e

rr
or

Path Error

(b) Path normalized error.

Figure 4.9: Results for Test IX.

42

Test X.

np nl iop ioa ilp it kw χ dt io ps t

400 30 1000 10000 1000 20 1 3 ∞ 400 10 17[s]

Table 4.10: Parameters for Test X.

15 10 5 0 5 10 15 20
10

5

0

5

10

15

20 Initial Guess

15 10 5 0 5 10 15 20

After Solver
Ground truth robot path
Ground truth landmarks
Estimated robot path
Estimated landmarks

(a) Initial guess and solver estimation.

50 100 150 200 250 300 350 400
Timestep

0.0

0.1

0.2

0.3

0.4

0.5

No
rm

al
iz

ed
 e

rr
or

Path Error

(b) Path normalized error.

Figure 4.10: Results for Test X.

43

Test XI.

np nl iop ioa ilp it kw χ dt io ps t

400 30 1000 10000 1000 20 1 0 1 400 10 5[s]

Table 4.11: Parameters for Test XI.

15 10 5 0 5 10 15 20
10

5

0

5

10

15

20 Initial Guess

15 10 5 0 5 10 15

After Solver
Ground truth robot path
Ground truth landmarks
Estimated robot path
Estimated landmarks

(a) Initial guess and solver estimation.

50 100 150 200 250 300 350 400
Timestep

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

No
rm

al
iz

ed
 e

rr
or

Path Error

(b) Path normalized error.

Figure 4.11: Results for Test XI.

44

Test XII.

np nl iop ioa ilp it kw χ dt io ps t

400 30 1000 10000 1000 20 1 0.1 ∞ 400 100 21[s]

Table 4.12: Parameters for Test XII.

15 10 5 0 5 10 15 20
10

5

0

5

10

15

20 Initial Guess

15 10 5 0 5 10 15 20

After Solver
Ground truth robot path
Ground truth landmarks
Estimated robot path
Estimated landmarks

(a) Initial guess and solver estimation.

50 100 150 200 250 300 350 400
Timestep

0.00

0.05

0.10

0.15

0.20

No
rm

al
iz

ed
 e

rr
or

Path Error

(b) Path normalized error.

Figure 4.12: Results for Test XII.

45

4.3 Real Data

In this section, the correctness of the algorithm is proven for more realistic data. The size
of the data is much larger than the previous cases, the number of poses in a path are in the
order of thousands and tens of thousands. Unfortunately, the amount of data is so large,
that it becomes infeasible to apply the correspondence test because it so computationally
expensive it takes several hours to run the algorithm. For this reason, only the distant test
is used. Moreover, the data presents undesired properties like non-Gaussian noise and false
alarms, nevertheless, it'll be shown that it's still possible to apply the algorithm and get good
results.

4.3.1 Husky a200 Robot

The �rst of these test is a Husky a200 Robot simulated in Gazebo. Since this test is still a
simulation the ground truth and the path error can still be retrieved. However, since Gazebo
is a more realistic simulation, the nonlinear models of the robot, miss in the detections, and
false alarms are also simulated.

The parameters of the algorithm are presented it Table 4.13. In this case the information
parameters iop, ioa, and ilp are the assumed uncertainty that better �t the robot model. Since
no knowledge was acquired about the robot, these parameters were chosen by trial and error.

The results are shown in Figure 4.13. It can be seen that the algorithm can correctly
predict the robot path. Most of the landmarks are also found, but there a lot of false positives,
possibly generated by sensor malfunctions, spurious measurements, or moving objects. A
possible way to get rid of these false alarms is to apply a policy of elimination of landmarks
if they are not measured a certain number of times. Nevertheless, the false alarms do not
a�ect greatly the results of the estimation.

4.3.2 Parque O'Higgins

This dataset corresponds to data taken in Parque O'Higgins by a robot from Universidad de
Chile. Since this is real data there is no ground truth with which compare the robot path.
However, ground truth of landmarks (trees in this case) was made by hand using GPS image.
Also, the robot was controlled so that it return to the starting position at the end of the
path, so it is possible to check the correctness of the path by looking at the robot's �nal
position.

The results are shown in Test XIV, along with the parameters used in the test. It can be
seen that in the initial guess the robot doesn't return to the starting position (0,0), however,
it does when the algorithm is applied, thus proving the correctness of the estimate. Again,
the robot is able to detect the landmarks, but a lot of false positive are generated in the
process. Due to the large size of the data, the algorithm took 4 hours to �nish.

46

Test XIII.

np nl iop ioa ilp it kw χ dt io ps t

4700 18 10000 10000 1000 10 1 ∞ 0.5 500 10 3[min]

Table 4.13: Parameters for Test XIII.

10 8 6 4 2 0 2 4 6 8
15

10

5

0

5

10 Initial Guess

8 6 4 2 0 2 4 6 8

After Solver
Ground truth robot path
Ground truth landmarks
Estimated robot path
Estimated landmarks

(a) Initial guess and solver estimation.

0 1000 2000 3000 4000
Timestep

0.000

0.005

0.010

0.015

0.020

No
rm

al
iz

ed
 e

rr
or

Path Error

(b) Path normalized error.

Figure 4.13: Results for Test XIII.

47

Test XIV.

np nl iop ioa ilp it kw χ dt io ps t

8130 174 100000 100000 100 10 1 ∞ 3 500 10 4[hrs]

Table 4.14: Parameters for Test XIV.

60 40 20 0 20 40 60 80 100
100

50

0

50

100 Initial Guess

40 20 0 20 40 60 80 100

After Solver
Ground truth landmarks
Estimated robot path
Estimated landmarks

Figure 4.14: Results for Test XIV.

4.3.3 Victoria Park

The Victoria Park2 is a commonly used dataset to test algorithms related to localization,
mapping, and SLAM. No real ground truth of the map exists, however in this case the
results can be compared with ones obtained by similar algorithms.

Test XV show the results of the algorithm in the Victoria Park dataset. In Figure 4.16 the
results are compared with the iSAM algorithm [5] for the same dataset. It can be appreciated
the resemblance between the two results. The main di�erence is the number of landmarks,
since this implementation of GraphSLAM does not have a way to eliminate false alarms, they
will stay forever in the map. The main disadvantage of the GraphSLAM algorithm is the
computation time, due to the size of the dataset, it took 10 hours to �nish.

2Avaliable in http://www.mrpt.org/Dataset_The_Victoria_Park

48

http://www.mrpt.org/Dataset_The_Victoria_Park

Test XV.

np nl iop ioa ilp it kw χ dt io ps t

61763 - 8000 100000 5 15 1 ∞ 5 500 10 10[hrs]

Table 4.15: Parameters for Test XV.

300 200 100 0 100 200 300
300

200

100

0

100

200

300 Initial Guess

150 100 50 0 50 100 150 200 250

After Solver
Estimated robot path
Estimated landmarks

Figure 4.15: Results for Test XV.

49

-100 0 100 200

-50

0

50

100

150

200

250
Trajectory Est.

(a) Results GraphSLAM in the Victoria Park dataset (tra-
jectory only).

(b) Results iSAM in the Victoria Park dataset [5].

Figure 4.16: Comparison of results between GraphSLAM and iSAM.

50

Chapter 5

Conclusions

In the present work, the GraphSLAM algorithm was implemented for solving the SLAM
problem in the 2D scenario. The g2o framework provided to be a good tool for least squares
nonlinear optimization, and it includes kernels methods for robust estimation. The algorithm
makes some assumptions about the robot models, in particular, it assumes zero-mean white
Gaussian noise and the Markov condition. However, GraphSLAM proved to be robust to
outliers and non-Gaussian noise.

The GraphSLAM implementation is able to deal with known and unknown data associ-
ation of the landmarks. The known data association case is a simple application of the g2o
framework with the right parameters. The unknown data association is a more complicated
case since there is no a straightforward way to deal with it. A method of maximum likelihood
was developed using the uncertainty information that can be retrieved from g2o to create a
correspondence test. Then this test was applied iteratively to give a solution to the unknown
correspondence. To speed up the algorithm several strategies were implemented: incremen-
tal optimization, pose skipping and distant test, all were able to decrease signi�cantly the
computational time.

The GraphSLAM algorithm was also designed to be �ne-tuned, with several parameters
for the user to set. these parameters include the information in the robot model, the number
of iterations of the optimization algorithm, the kernel width, the number of full optimizations,
and the threshold of the correspondence and distant tests.

The algorithm was tested with simulated and real data, for known and unknown data
association. The algorithm performed satisfactorily, being able to correct the path in all the
tested cases, and achieved a low error when the ground truth was available. It was even
able to work correctly with real data, where several assumption about the robot model and
the data no longer hold. The implementation was also able to get results comparables with
popular algorithms like iSAM.

A parameter analysis was made for several test scenarios, from which is concluded that a
thorough choice of some parameters must be made for the algorithm to work correctly, while
others parameters a�ect the convergence speed. The biggest drawbacks of the algorithm

51

are the computation time, that can take in the order of hours for large datasets, and the
trial-and-error tuning of the parameters that has to be made if no prior information of the
robot model is known.

As future work it is suggested to improve the algorithm speed, for example, by incremen-
tally constructing the graph to optimize in g2o. Another unsolved issue in this work is the
management of false positives. It is suggested to implement a policy to discard landmarks
that are observed only a limited number of times, especially when future observations doesn't
�nd landmarks where they should. The algorithm could also be extended to work in the 3
dimensional case. This extension shouldn't be di�cult since g2o already support nodes and
edges of three dimensions.

52

Chapter 6

Bibliography

[1] Frank Dellaert and Michael Kaess. Square root sam: Simultaneous localization and
mapping via square root information smoothing. The International Journal of Robotics
Research, 25(12):1181�1203, 2006.

[2] MWMG Dissanayake, Paul Newman, Steven Clark, Hugh F Durrant-Whyte, and
Michael Csorba. A solution to the simultaneous localization and map building (slam)
problem. Robotics and Automation, IEEE Transactions on, 17(3):229�241, 2001.

[3] Hugh Durrant-Whyte and Tim Bailey. Simultaneous localization and mapping: part i.
Robotics & Automation Magazine, IEEE, 13(2):99�110, 2006.

[4] Michael Kaess, Hordur Johannsson, Richard Roberts, Viorela Ila, John J Leonard, and
Frank Dellaert. isam2: Incremental smoothing and mapping using the bayes tree. The
International Journal of Robotics Research, page 0278364911430419, 2011.

[5] Michael Kaess, Ananth Ranganathan, and Frank Dellaert. isam: Incremental smoothing
and mapping. Robotics, IEEE Transactions on, 24(6):1365�1378, 2008.

[6] Rainer Kümmerle, Giorgio Grisetti, Hauke Strasdat, Kurt Konolige, and Wolfram Bur-
gard. g2o: A general framework for graph optimization. In Robotics and Automation
(ICRA), 2011 IEEE International Conference on, pages 3607�3613. IEEE, 2011.

[7] Yasir Latif, César Cadena, and José Neira. Robust loop closing over time for pose graph
slam. The International Journal of Robotics Research, page 0278364913498910, 2013.

[8] Feng Lu and Evangelos Milios. Globally consistent range scan alignment for environment
mapping. Autonomous robots, 4(4):333�349, 1997.

[9] Randall C Smith and Peter Cheeseman. On the representation and estimation of spatial
uncertainty. The international journal of Robotics Research, 5(4):56�68, 1986.

[10] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics. MIT press,
2005.

53

[11] Sebastian Thrun and Michael Montemerlo. The graph slam algorithm with applica-
tions to large-scale mapping of urban structures. The International Journal of Robotics
Research, 25(5-6):403�429, 2006.

54

	List of Tables
	List of Figures
	Introduction
	General Objectives
	Specific Objectives
	Document Structure

	Background
	Basic Concepts in Probabilistic Robotics
	Environment and State
	Controls and Measurements
	Motion and Measurement Models
	Localization and Mapping

	Description of the SLAM Problem
	Correspondence Problem in SLAM

	The GraphSLAM Algorithm
	Review of the State of the Art in SLAM

	Methodology and Implementation
	The g2o Protocol
	The Known Correspondence Case
	The Unknown Correspondence Case
	The Correspondence Test
	The Unknown Correspondence Algorithm
	Speeding up the Unknown Correspondence Algorithm

	The Final Algorithm

	Results
	Known Data Association
	Unknown Data Association
	Real Data
	Husky a200 Robot
	Parque O'Higgins
	Victoria Park

	Conclusions
	Bibliography

