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structures. In comparison with correlation-based digital 
methods, we demonstrate the advantages of the proposed 
method, such as denoising and edge capture. These features 
allow us to obtain the temperature, for this experimental 
setting, with better image resolution than other techniques 
reported in the literature.

1  Introduction

Over the last few decades, many visualization and image 
processing techniques in experimental fluid dynamics 
have been proposed to describe qualitatively and quantita-
tively the behavior of certain flow regimes. The synthetic 
schlieren technique (SS) (Dalziel et  al. 1998; Sutherland 
et  al. 1999; Dalziel et  al. 2000) has been used to study 
interesting fluid dynamics problems such as internal waves 
and stratification because of its simple implementation and 
the quality of the results that can be obtained. This tech-
nique is based on the detection of the apparent displace-
ments of a synthetic background due to changes in the 
optical refractive index of the test fluid. Commonly, the 
computational method used to detect the apparent displace-
ments is digital PIV (Raffel et al. 1998), a correlation-based 
image method which has subpixel accuracy but an image 
resolution of the order of the overlap times the interroga-
tion window size. Moreover, some interesting mathemati-
cal techniques in image processing such as Lucas–Kanade, 
Horn–Schunck, and Brox optical flow methods (Horn and 
Schunck 1981; Lucas and Kanade 1981; Brox et al. 2004) 
have been applied in images obtained with the background-
oriented schlieren technique (BOS) (Richard and Raffel 
2001; Gojani and Obayashi 2012; Gojani et al. 2013; Raf-
fel 2015), an optical visualization method similar to SS. 
The application of the mentioned optical flow methods 
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improves the image resolution in comparison with digital 
PIV (Atchenson et al. 2009). The same conclusion has been 
reported when another versions of optical flow method 
have been applied in particle tracking and velocimetry 
experiments (Ruhnau et al. 2005a, b; Ruhnau and Schnorr 
2007).

All optical flow methods have an issue known as the 
aperture problem, which arises when a moving object is 
viewed through an aperture without the information of 
some structural properties such as edges, corners, and tex-
ture data (Wedel and Cremers 2011). Therefore, to avoid 
this problem, all optical flow methods require a regulariza-
tion. Depending on the regularization used, optical flow can 
be formulated using a featured-based approach or a vari-
ational approach. In general, variational formulations have 
the best performance in statistical evaluations. One of these 
formulations, based on the introduction of a L1-regularity 
term εreg = |∇u| (Rudin et al. 1992; Zach et al. 2007) and 
known as the total variation optical flow estimation (abbre-
viated as OpFlow), has shown to have interesting proper-
ties such as noise removal and the preservation of edges 
and contrast (Chan et  al. 2001; Strong and Chan 2003). 
Therefore, OpFlow (Zach et al. 2007; Sanchez et al. 2013) 
is promising for analyzing results of physical experiments.

The Rayleigh–Benard convection (RBC) in porous 
media is a benchmark problem where many visualization 
techniques have been applied. RBC is of particular inter-
est in research because it appears in a wide range of geo-
physical problems, including earth’s mantle convection, 
geothermal energy extraction, and underground energy 
storage systems. In the laboratory scale, some experiments 
about RBC in porous media using analogue working fluids 
in Hele-Shaw cells have been widely reported in the litera-
ture (Elder 1967a, b; Hartline and Lister 1977; Koster and 
Muller 1982; Nield and Bejan 2006; Cooper et al. 2014). In 
this context, the use of passive dyes for the observation of 
streaklines (Horne and O’Sullivan 1974), the pH color indi-
cator method (Hartline and Lister 1977), the holographic 
interferometry technique (Koster 1983; Lee and Kim 
2004), thermal point measurements (Nagamo et al. 2002), 
and thermo-sensitive liquid crystals (Ozawa et  al. 1992; 
Cooper et al. 2014) have been used to show the onset and 
the development of vertical thermal plumes that enhance 
heat transport inside the cell. However, the resolution of 
the images obtained with existing techniques is limited, 
and thermal details are commonly missing. Then, RBC in 
porous media using a Hele-Shaw cell is a good candidate to 
apply SS and to visualize thermal plumes.

In this work, we propose the use of OpFlow as an image 
analysis method for the SS technique, which gives better 
image resolution. To illustrate the applicability of OpFlow 
in optical density visualization, we implement the SS tech-
nique to quantify the temperature field inside a Hele-Shaw 

cell, where the working fluid has a temperature-dependent 
viscosity, and the cell is heated from below and cooled 
from above. The choice of studying heat transport in such 
type of fluids is motivated by the growing interest in under-
standing the physics of the geothermal energy extraction 
through carbon dioxide injection (Randolph and Saar 2011) 
and supercritical CO2 storage in geological formations 
(Benson et  al. 2005; Emami-Meybodi et  al. 2015), where 
the viscosity is variable with the concentration of dissolved 
supercritical CO2 into brine and only slightly variable with 
temperature.

The mathematical theory of OpFlow is discussed in 
Sect. 2. OpFlow depends on some non-physical free param-
eters which, in general, are chosen through visual inspec-
tion of the results. We determine these parameters by using 
a statistical methodology in which digital PIV plays a 
central role. The main goals and contributions of the arti-
cle are (a) to use a statistical tool to define adequately the 
OpFlow parameters to analyze experimental images, using 
digital PIV as a preprocessing step, and (b) to quantify the 
refractive index gradients in the flow, in a wide range of 
spatial scales, using the discontinuity detection capabili-
ties of OpFlow. The final contribution of this article is (c) 
to use OpFlow results to reconstruct the temperature map 
in stratified fluids in an out-of-equilibrium regime. Using 
these results, we demonstrate that the horizontal average 
temperature as a function of the vertical coordinate gives 
important information about the heat flux at the boundaries 
and the behavior of the convection inside the cell. In the 
following, we describe the mathematical theory of OpFlow.

2 � Mathematical theory

2.1 � Total variation optical flow

Optical flow is a mathematical method that quantifies the 
apparent motion of objects in space caused by the rela-
tive motion between a physical observer and the scene or 
by physical phenomena, such as particle motion or thermal 
convection (Baker et  al. 2011). This idea was introduced 
by J. J. Gibson during the Second World War and played 
a key role in the development of the ecological approach 
to visual perception, an approach that emphasizes studying 
human perception in the natural environment. He defined 
optical flow as information carried by light resulting from 
environmental structure and the animal’s path through the 
environment (Gibson 1950, 1966).

Let I(x, t0) be the intensity of a fluid parcel in the loca-
tion x at time t0, and I(x + u(x), t1) be the intensity of the 
same parcel at time t1, which will have displaced in space. 
The quantity u(x) = (u,w) is the two-dimensional displace-
ment field (or optical flow field) that has to be determined. 
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The most important assumption of optical flow is that the 
intensity value of the parcel I(x, t0) does not change while 
it moves to I(x + u, t1), which is known as the brightness 
constancy assumption (BCA), and it is represented by the 
equation

which contains two unknowns, u and w, that cannot be 
solved; thus, it is necessary to introduce an additional 
regularity constrain. To regularize the problem, Horn and 
Schunck (1981) introduced a smoothness term by penal-
izing the derivative of the optical flow field, yielding a 
functional which must be minimized using a variational 
approach

where ϑ(u) imposes the BCA constrain to Eq.  (2). The 
introduction of the quadratic L2-regularizer εreg = |∇u|2  , 
called spatial coherence, favoring flow fields which are 
spatially smooth, penalizing the high variations. There-
fore, this quadratic regularizer does not allow the detec-
tion of discontinuities in the optical flow field (Wedel and 
Cremers 2011). The quadratic L2-regularity present in the 
Horn–Schunck functional might not be a regularizer based 
on physical approaches. A first-order div-curl L2-regularizer 
of the type εreg = α|∇ · u|2 + β|∇ × u|2 was introduced 
by Suter (1994), and a second-order div-curl L2-regularizer 
εreg = α|∇(∇ · u)|2 + β|∇(∇ × u)|2 has been proposed 
by Gupta and Prince (1996), where both have a much more 
physical meaning, penalizing high divergence-rotational 
components. However, the first- and second-order div-curl 
methods are more difficult to implement computationally 
(Corpetti et al. 2005; Stark 2013). A well-known limitation 
of the Horn–Schunck method is that it can only estimate 
small motions. In spite of the  problem mentioned above, 
the method has been well evaluated (Meinhardt-Llopis et al. 
2013) and the variational formulation (2) allows us to com-
pute the optical flow field for all pixels within the image, 
resulting in a dense flow field (one vector per pixel). This 
feature is attractive since it does not require subpixel algo-
rithms to estimate the apparent displacement through the 
position of the maximum in the correlation plane, such as 
for digital PIV. Despite the fact that the accuracy of the sub-
pixel level in PIV is 0.1 to 0.05 pixels, the image resolution 
obtained in SS by using cross-correlation methods is of the 
order of the size of the interrogation window scaled with the 
overlap used (one vector per window), which is 8× 8 pixels 
in the most general case. Moreover, the computational costs 
of using OpFlow are more expensive than digital PIV.

(1)−∂I

∂t
= ∇I · u

(2)

F[u] =
∫

Ω

(

|∇u|2 + �|ϑ(u)|2
)

dΩ ,

ϑ(u) = ∂I

∂t
+∇I · u

In general, in real-world scenes and laboratory-scale 
experiments, there may be many objects with defined edges 
moving. Because of that, some authors change the quad-
ratic L2-regularity to a L1-regularity which better preserves 
discontinuities (Wedel and Cremers 2011). In this context, 
the total variation optical flow method (OpFlow) is a vari-
ational method whose formulation is based on the minimi-
zation of the functional given by Zach et al. (2007)

which is the L1 version of Horn–Schunck functional (2), 
where ψ(u) is called the residual (BCA data term), u0 is 
an approximation of u and � is a parameter known as the 
attachment parameter (Sanchez et  al. 2013). Despite the 
fact that there are many versions of L1-regularity terms 
proposed in the literature, we have chosen the OpFlow 
formulation given by Zach et  al. (2007) because they 
have proposed an exact numerical scheme to solve (3) by 
using the well-known Rudin–Osher–Fatemi (ROF) model, 
which has denoising capabilities without blurring edges 
(Rudin et al. 1992) . This point is important, because we 
want to detect not only discontinuities on the flow, but 
also get a smooth flow where noise is controlled. The TV-
L1 method, which means total variation with the L1-norm, 
is used to compute the integral over the domain of the 
absolute values of mathematical quantities of interest. In 
Eq. (3), the objective quantity to minimize is the L1-norm 
of the gradient of the flow subject to the L1-norm of the 
BCA data term, which is controlled by the parameter �.  
An efficient method given by Zach et  al. (2007), which 
uses the duality-based method proposed by Chambolle 
(2004), solves Eq. (3). The method enables one to find the 
minimum of the strictly convex functional with a quad-
ratic relaxation

where v is an auxiliary vector (known as the dual variable), 
and the parameter θ is known as the tightness parameter 
(Sanchez et  al. 2013). Setting the parameter θ to a small 
value, it forces Jθ to reach its minimum value when u ∼ v , 
obtaining the TV-L1 functional (3). Although the optical 
flow is rigorous and accessible to further developments, 
there is a certain ambiguity in the correct choice of param-
eters � and θ that represent the apparent motion of an exper-
imental image pair and the computation of dense motion 
fields. The choice of both parameters is often a practical 
problem in the application of OpFlow to analyze physical 
experiments.

If an exact representation of the flow is known 
(the ground truth image), some popular performance 

(3)
J[u] =

∫

Ω

(|∇u| + �|ψ(u)|) dΩ ,

ψ(u) = I(x + u0, t1)+∇I(x+ u, t1) · (u− u0)− I(x, t0) ,

(4)Jθ [u] =
∫

Ω

(

|∇u| + 1

2θ
(u− v)2 + �|ψ(v)|

)

dΩ ,
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estimators such as the angular error, the average end-
point error, the interpolation error, and the normalized 
interpolation error (Barron et  al. 1994; Baker et  al. 
2011) help to set � and θ . However, in experimental 
images, this information is not known a priori, and the 
choice by inspection of the parameters is a common 
practice. To solve this problem, we propose to use digi-
tal PIV as a preprocessing step. The idea is to compare 
the results of both techniques, digital PIV and Opflow, 
by using the structural similarity index metric (Wang 
et  al. 2004; Wang and Bovik 2009). We associate the 
highest value of this metric with the optimal values for 
� and θ for the image in study, so that the initial image 
resolution obtained with digital PIV can be improved by 
the dense flow field given by OpFlow. As well as the 
Horn–Schunck optical flow, the resolution of OpFlow 
is equal to one pixel. As a consequence, OpFlow can 
detect small structures of few pixels of length with a 
better definition, while globally structural properties are 
similar to those obtained by digital PIV (see Fig. 9 for 
more details).

The OpFlow method has been extensively evaluated 
against other optical flow methods (Barron et  al. 1994; 
Baker et  al. 2011) using the average end-point error over 
some images of the Middlebury database, obtaining better 
results in comparison with Lucas–Kanade, Horn–Schunck, 
and Brox algorithms which have been used in the BOS lit-
erature (Atchenson et  al. 2009). In particular, an interest-
ing extension given by Wedel et  al. (2008) which uses a 
cartoon-texture image decomposition by the TV-L1 model 
improves the BCA constrain and therefore the optical flow 
estimation. In our experimental applications, it is not nec-
essary to use this decomposition because the conditions of 
illumination of the cell are homogeneous along experimen-
tal runs.

2.2 � Statistical metrics

In order to compare the similitude between two images, the 
mean square error (MSE) has been used in signal process-
ing applications. If f and g are two images represented as 
a two-dimensional array of size Nx × Ny, the MSE metric 
between them is defined as

Therefore, a minimum value of MSE means a good sim-
ilarity between images. In addition, the structural similarity 
index metric (SSIM) is defined as

(5)MSE = 1

NxNy

Nx
∑

i=1

Ny
∑

j=1

[

fj,i − gj,i
]2

.

(6)
SSIM = (2µfµg + C1)(2σfg + C2)

(µ2
f + µ2

g + C1)(σ
2
f + σ 2

g + C2)
,

where, if the image is stored as a one-dimensional array of 
size N = NxNy, the mean intensity and the standard devia-
tion of the image f are defined as

In equation (6), C1 and C2 are constants. The SSIM met-
ric satisfies the conditions of symmetry, boundedness 
(SSIM ≤ 1) and unique maximum (SSIM = 1 if and only 
if f = g). Wang and Bovik (2009) compare both metrics 
with a series of images distorted from an original image, 
concluding that the MSE values are nearly identical, even 
though the same images present important visual differ-
ences that are detected using SSIM. This conclusion is 
important in the comparison of our experimental images, so 
we analyze the data with the SSIM method instead of MSE.

2.3 � Synthetic schlieren equations

The synthetic schlieren (SS) method is a non-intrusive, opti-
cal density visualization technique in fluid mechanics that 
measures the optical refractive index gradients of a test fluid 
by means of the quantification of the deflections of the light 
rays that come from a background image (Dalziel et al. 2000).

The SS equation, in the simplified one-dimensional 
problem, can be obtained minimizing the optical length 
functional (Kumar and Muralidhar 2012)

where y = y(z) is the vertical deflection of the light ray in 
function of the horizontal variable z, as shown in Fig.  1, 
and n = n[y(z)] is the optical refractive index of the fluid, 
which depends on space. The Euler–Lagrange equation 
associated with (7) is

in which boundary conditions are associated with the 
physical problem to be solved. We assume that the opti-
cal system satisfies the paraxial approximation dy/dz ≪ 1 . 
If n is constant, the solution of Eq.  (8) is a straight line 
y(z) = yi − z tan φi, where tan φi is the angle of the inci-
dent light ray. In a more general case, assuming that 
n[y(z)] = nf − n′[y(z)], where nf  is the reference refrac-
tive index of the fluid at temperature T0, n′ ≪ nf  and dn′/dy 
varies slowly with coordinate y, the solution of Eq. (8) is

µf =
1

N

N
∑

s=1

fs ; σf =

√

√

√

√

1

N − 1

N
∑

s=1

[

fs − µf

]2
.

(7)F[y] =
∫ L

0

n(y)

√

1+
(

dy

dz

)2

dz,

(8)n(y)
d2y

dz2
=

[

1+
(

dy

dz

)2
]

dn

dy
,

(9)y(z) = yi − z tan φi −
1

2nf

dn′

dy
z2 .
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The paraxial approximation is satisfied when φi ≤ 10◦. In 
such case, tan φi ∼ φi is valid within an accuracy of 1%. 
From Fig. 1, reconstructing the light ray trajectory from A′ 
to a′, we have where na, np and nf  are the optical refractive index for 

air, acrylic, and the test fluid reference, respectively, and 
α is the incident paraxial angle in the position A′. This 
result is satisfied by a light ray that comes from the back-
ground image, when the system is unperturbed. Finally, 
reconstructing the light ray trajectory from A′ to b′ and 
defining the apparent displacement on the lens position 
�ya′b′ = ya′ − yb′, we obtain the well-known SS formula 
(Dalziel et al. 2000)

where the angle of deflection ε, formed by the incident and 
the refracted light rays (see Fig. 2), is defined as

Finally, using geometric operations, we obtain 
the apparent displacement on the background image 
�yAB = yB − yA = st ε, where st is the parallel distance 
to the optical axis between the background image and the 
intersection point of the light rays perturbed and unper-
turbed, as shown in Fig. 2, which is defined as

This distance defines an effective refractive plane where 
light rays are deflected by local changes in the optical 
refractive index.

(10)ya′ = yA′ − Ls α − 2 Lp
na

np
α − b

na

nf
α − Lc α ,

(11)�ya′b′ =
b

nf

dn′

dy

[

1

2
b+ nf

np
Lp +

nf

na
Lc

]

,

(12)ε = b

na

dn′

dy
.

st =
na

nf

[

1

2

(

2nf

na
− 1

)

b+ nf

np

(

2np

na
− 1

)

Lp +
nf

na
Ls

]

.

Hele-Shaw cell

na np n(y) np

B
ac

kg
ro

u
n
d
im

ag
e

L
en

s

z

y

Ls b

Lp Lp

Lc

∆yb′a′

∆yAB

F

A′
i

i

a′

b′

r

A

B

T

Fig. 1   Light ray deflection due to a variable optical refractive index 
n(y). The optical system is a Hele-Shaw cell made of acrylic. There 
are three physical media where light rays can travel, which are air, 
acrylic and the test fluid. The corresponding  optical refractive 
indexes are na, np and n(y), respectively. The points F and T are the 
focal length of the lens and the intersection of the apparent (incident, 
dashed blue line) and refracted (dashed red line) light rays

Fig. 2   Synthetic schlieren 
experiment setup. The image is 
a one-dimensional representa-
tion, where �yba = (�x,�y).  
The deflection angle ε is the 
angle between the refracted and 
the incident light rays (Gojani 
et al. 2013)
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Let M = si/so be the lens magnification. Using the thin 
lenses law, we have M = f /(so − f ), where f is the focal 
length, and so is the distance between the background 
image and camera, so the apparent displacement measured 
in the plane of the image sensor is �yab = M�yAB. Replac-
ing these relations in the definition of �yAB, we obtain

recovering the definition of the angle of deflection ε pro-
posed by Gojani et  al. (2013), in the context of image 
recording using the background-oriented schlieren (BOS) 
technique. In general, the SS and BOS techniques quan-
tify a scalar property of the fluid, such as the density ρ, 
which depends on the thermodynamic variables through a 
constitutive equation. For example, if the fluid is air, then 
the Gladstone–Dale model and the ideal gas equation are 
applied successfully when BOS is used (Richard and Raf-
fel 2001). In our experiments, a Hele-Shaw cell filled with 
pure PPG is heated from below and cooled from above with 
constant temperature difference �T = Tbot − Ttop. Then, a 
constitutive equation n = n(T) is necessary to reconstruct 
the thermal dynamics, so the equation to solve is

which constitutes the mathematical formulation for the 
simplified one-dimensional model. If the deflection of 
the light ray has two-dimensional components, given by 
ε = εx x̂ + εy ŷ, the equations for the angles of deflection 
are

where �x and �y are the spatial deflections in the plane of 
the image sensor. Traditionally, these deflections are esti-
mated from classical PIV algorithms (Tokgoz et al. 2012) 
or optical flow estimation, where the Lucas and Kanade 
(1981), Horn and Schunck (1981), and Brox et al. (2004) 
algorithms have been applied to experimental images giv-
ing satisfactory results (Atchenson et  al. 2009). Here, we 
show that it is possible to enhance the detection of deflec-
tions by using OpFlow. Finally, Eq. (14) is extended to the 
vector model ∇n′ = na ε(x)/b  , where taking the diver-
gence on both sides of equation, we obtain the Poisson 
equation for SS–BOS techniques

with Neumann boundary conditions x̂ · ∇n′ = 0 in x = 0 
and x = L , in addition to the Dirichlet boundary conditions 
which are n′(y = 0) = n′bot and n′(y = H) = n′top. Equation 
(16) will be used to reconstruct the temperature map for a 

(13)ε = �yab

Mst
,

(14)
dn′

dy
= na

b
ε(y) ,

(15)εx =
�x (s0 − f )

f st
, εy =

�y (s0 − f )

f st
,

(16)∇2n′ = na

b
∇ · ε(x) ,

Ra = 680, which is presented in Sect. 5. To solve (16), we 
implement the Red-Black SOR-Chebyshev method (Press 
et  al. 2007) using OpenMP libraries. In the following, 
we discuss the experimental setup and the application of 
OpFlow to analyze experimental images.

3 � Experimental setup

3.1 � Working fluid properties

Analogue fluids that represent a physical phenomenon 
in underground systems have been used in the context of 
supercritical CO2 dissolution in brine-saturated porous 
media (Neufeld et  al. 2010). In this context, Backhaus 
et  al. (2011) used aqueous solutions of propylene glycol 
(PPG) as working fluid. The PPG shows interesting ther-
modynamical properties with important changes in tem-
perature (Sun and Teja 2004). For the SS technique, the 
important variable to consider is the change in the optical 
refractive index as function of temperature. For the work-
ing fluid in consideration, this dependency is modeled as 
n(T) = n0 − β T , where n0 = 1.4391 and β = 0.0003 ◦C−1 
(Turan et al. 2002).

The density and dynamic viscosity of PPG were 
obtained from Sun and Teja (2004). Figure  3 shows the 
dependence with temperature for both fluid properties. This 
information will be used later to explain the results from 
visualization of temperature maps. For the experimental 
results shown in Sect.  5, the Prandtl number Pr = ν/κ , 
where ν = µ/ρ is the kinematic viscosity, is Pr = 275. 
Furthermore, the working temperatures were Tmin = 30 ◦C 
and Tmax = 45 ◦C, as shown in Fig. 13.

3.2 � Experimental setup and procedures

The experimental setup and methodology used for the 
acquisition of images are similar to those described in Wil-
deman et al. (2012) and suggested by Gojani et al. (2013) 
(see Fig.  2). The homogeneous porous medium is repre-
sented by a Hele-Shaw cell, which is made with acrylic of 
height H = 100 mm, width L = 150 mm, and thickness 
Lp = 8 mm. To separate the plates, we use two aluminum 
shims of width L̃ = 150 mm, height H̃ = 30 mm, and 
thickness b = 1 mm, sealing the cell on the top and bottom 
by pressing the plates and shims with stainless steel bolts. 
On the sides, the cell is sealed using O-rings which are 
pressed by other acrylic plates using bolts of similar char-
acteristics, creating an experimental device which is water-
proof (see Fig. 4).

The design of the Hele-Shaw cell leaves a free flow 
channel of dimensions L × h× b  , with h = 50 mm. The 
cell is filled with propylene glycol from an inflow point, 
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saturating the flow channel, where excess fluid goes to a 
head tank through an outflow point. To generate the ther-
mal convection, we add two nichrome wires on the free 
sides of aluminum shims, applying a constant current. The 
temperature on the shims is measured using both a RTD-
PT100 sensor connected to a Keithley nano-voltmeter and 
a thermal camera ULIRvision, which confirms that the 
aluminum shims are heated uniformly, so we consider that 
the measured temperature on shims is the boundary condi-
tions in which thermal convection can develop inside the 
cell. The convective behavior is controlled by the Rayleigh 
number Ra = �ρgKH/µκ (Otero et  al. 2004), where �ρ 
is the maximum density difference, g is the gravitational 
acceleration, K = b2/12 is the permeability of the cell, b 
is the gap of the cell, H is the height, µ is the dynamic vis-
cosity, and κ is the thermal diffusivity. With this informa-
tion, for the experimental results shown in Sect. 5, we have 
Ra = 680.

3.3 � Visualization and error analysis

To mount the experiment, we use an optical table and a 
metallic structure where the cell is inserted vertically. A 

white light LED panel is placed behind the cell, and a white 
acrylic light diffusor is placed between the cell and the 
LED panel. At the diffusor, we add a background pattern of 
dots printed on a transparent slide, creating the background 
image shown in Fig. 5.

Accordingly with Fig.  2, the SS configuration of the 
experiments is given by the parameters st, so and f. For 
the results presented in Sect.  4, we have Ls = 5 cm and 
so = 100 cm. A Canon Rebel T3 EOS camera was used 
to acquire photographs of size 5184× 3456 pixels2. The 

a b

Fig. 3    a Dynamic viscosity of PPG as a function of temperature. b Density of PPG as a function of temperature. Experimental data were 
extracted from Sun and Teja (2004)

Fig. 4   Schematic view of the 
Hele-Shaw cell. The dimen-
sions of variables presented 
in this figure are the fol-
lowing: L = L̃ = 150 mm, 
H = 100 mm, Lp = 8 mm, 
H̃ = 30 mm, h = 50 mm and 
b = 1 mm

Aluminium shim

Aluminium shim

Hele-Shaw cell

inflow point

outflow point
y

x

L , L̃

h

H̃

H

Lp

b

Lp

O-ring

Aluminium shim

Fig. 5   Background dots pattern for BOS measures. The size of the 
image is 10× 5 cm2
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images were saved using the 8-bit JPEG format since our 
main objective was to detect apparent displacements of 
synthetic dots of appreciable size. The 14-bit RAW format 
is very expensive in terms of data storage for our purposes. 
As we demonstrate in Sect. 4, the use of a lossy codec is 
adequate to accomplish our objectives.

The image focus was achieved by using a telephoto lens 
Canon EF 75–300 mm f /4− f /5.6, and the focal length 
was set to f =  135  mm with a focal ratio fr = 5.6. It is 
important to note that any issue from the CMOS sensor of 
the camera such as photon shot noise, pixel vignetting, and 
fill fraction of pixels can be avoided by the OpFlow denois-
ing capabilities when images are analyzed. However, non-
uniform response due to the photon shot noise can impact 
negatively in the CMOS sensor performance and therefore 
in the BCA constrain, limiting the applicability of OpFlow. 
In such cases, preprocessing the images using the cartoon-
texture decomposition can be useful to fix this problem 
(Wedel et  al. 2008). In this work, this preprocessing step 
was not used because the original images are adequate to 
be analyzed directly with OpFlow.

Following Gojani et al. (2013), an experiment is well suited 
for the application of SS when the fluid flow only deflects the 
light ray, but does not displace it. From Fig. 2, this condition is 
satisfied when b/(so − st) = 1× 10−3 ≪ 1 , which is fulfilled 
by our experimental setup. Moreover, the background image 
dimensions must satisfy the condition max{L/2,H/2} ≤ so/4 
to ensure the paraxial limit assumed in Eq. (14). In our experi-
ments, we have L/2 = 10 cm and H/2 = 5 cm.

The optical refractive index values considered in this 
work are na = 1.00029, np = 1.49 and nf = 1.4331 at 
T = 20 ◦C. Considering that the cell lengths were measured 
using a vernier of resolution 0.01 mm and the cell gap was 
measured using a micrometer of resolution 0.001 mm, we 

have st = 61.28± 0.03 mm. The error in the estimation of 
ε can be computed using the formula σε = δ/[2(so − f )], 
where δ is the diameter of a single dot in the background 
image. By construction, δ = 100 μm and σε = 6× 10−5 
rad. A single pixel of the CMOS camera sensor is equiv-
alent to 1 pixel = 91.95± 0.09 μm of the background 
image, so by using the angular error σε and the maximum 
displacement detected by OpFlow, which is �y

(max)
ab = 5.5 

pixels, we have �y
(max)
AB = 0.506± 0.004 mm. The error of 

this estimation is the spatial resolution of the optical sys-
tem in our experiments. Obviously, the spatial resolution 
can be enhanced by two ways, reducing the dot diameter or 
increasing the distance so and magnification.

4 � Optical flow results

4.1 � Displacement sensibility analysis

The OpFlow algorithm and libraries given by Sanchez 
et  al. (2013), modified for automation and data storage 
purposes using python libraries and HDF5, were applied 
to the acquire images. As an example of this application, 
for a fixed � = 0.1 and variable θ, we obtain the image 
sequence presented in Fig.  6, where the displacement 
DOF(θ , �) =

√
u · u, detected by OpFlow formula (4), 

depends on θ. For very small θ, the method does not detect 
changes in the pair of images, but for very large θ values, 
the flow is over smoothed.

By visual inspection of the sequence presented above, 
we conclude that the best image resolution was achieved for 
O(θ) ∼ 1. Figure 7 shows max[DOF] as function of θ, for 
several values of �. It is interesting to note that max[DOF] 
always has a local maximum for 10−4 < θ < 102 and 

a b c

d e f

Fig. 6   OpFlow results for � = 0.1 and different values of θ : 
θ = 1× 10−4 (a), θ = 1× 10−2 (b), θ = 1× 10−1 (c), θ = 1 (d), 
θ = 1× 102 (e) and θ = 1× 104 (f). With the objective to compare 

the size of the image and the maximum displacement detected by 
OpFlow, the vertical and horizontal coordinate values in each image 
are given in pixels. The conversion is 550 pixels = 50 mm
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� > 10−2. Moreover, max[DOF] reaches a constant value 
for θ > 102, which is clearly observed in Fig. 6e, f, where 
the images appear diffused in comparison with others.

Considering these results for max[DOF], the principal prob-
lem that arises when OpFlow is applied is the correct choice of 
optimal parameters. When the exact flow is not known, there 
is no ground truth image to compare with, so that the choice 
of parameters must be done by visual inspection. Physically, 
the method loses strength when it is compared with other 
techniques such as digital PIV, which detects a correct maxi-
mum displacement. Moreover, digital PIV is not adequate 
when cross-correlation is poor. In this sense, it is reasonable 
to think that there is a compromise between a good correla-
tion of a pair images (digital PIV) and the generation of dense 
fields (OpFlow), which can be used to analyze image motion 
with high accuracy. In the following, we will explain the appli-
cation of the statistical metrics defined above, to obtain an 
approximation of the adequate values of OpFlow parameters 
using a digital PIV preprocessing, where we want to compute 
an initial result of the apparent displacement, which is later 
enhanced by means of the OpFlow estimation.

4.2 � Comparison between digital PIV and OpFlow

OpenPIV (Liberzon et  al. 2009) is an open-source soft-
ware that implements the cross-correlation algorithm 
given in Raffel et  al. (1998), using fast Fourier transform 
(FFT) and standard statistical tools for vector validation. 
Setting the interrogation window w = 16 pixels, the over-
lap as 50% and the well-known peak to peak as a signal-
to-noise method with thresholding of 1.8, the maximum 
displacement detected by the method is max[DPIV ] = 5.4 

pixels = 0.497 mm. To compare the OpFlow and digital 
PIV results using OpenPIV, the statistical metric defined in 
Eq.  (6) gives the mathematical background to establish a 
methodology to fix the Opflow parameters. This method-
ology consists in finding the maximum value of the SSIM 
metric for several scales of � and θ. As an example, we 
use the same data set used to generate the maps shown in 
Fig. 6, and we compute the SSIM for an array of 13× 13 
values of � and θ. A quadratic bivariate spline is applied to 
the scatter data, generating the smoothed and continuous 
map shown in Fig. 8b. The maximum value SSIM = 0.684 
is achieved for �c = 0.029 and θc = 1.072, where the posi-
tion of this point is shown in Fig. 8a.

Therefore, the � and θ values found using SSIM are cho-
sen as the OpFlow parameters, giving the results shown 
in Fig. 9, which is similar to the visual inspection param-
eter estimation and where a significant improvement with 
respect to the digital PIV result is observed. It is interesting 
to note that the OpFlow result is denoised, capturing the 
small-scale displacements that are hidden in the digital PIV 
result. Moreover, the result of the application of the SSIM 
metric to both image methods gives a small θc, so the pro-
posed method effectively recover an important feature of 
Chambolle’s method (Chambolle 2004) and � is converted 
to the important parameter in OpFlow, because it controls 
the accuracy of the method. There is no theoretical method 
to determine the optimal values of both parameters from 
OpFlow equation. However, the empirical results from this 
kind of experiments suggest that the statistical methodol-
ogy allows the definition of a good set of OpFlow param-
eters that ensures a good representation of the observed 
physical phenomena. For experimental image sequences, 
the methodology can be automated and the OpFlow param-
eters can be computed for each image. As example, we 
observe that OpenPIV took about 30 s to analyze an image 
of 622× 1341 pixels in a MacBook Pro with an Intel Core 
i7 2.2 GHz processor, while the methodology using SSIM 
is a time-consuming process, taking about 15 min to ana-
lyze the same image. However, computing these parame-
ters for a few images and calculating the mean values, we 
obtain a reasonable strategy to optimally set � and θ. Once 
that has been done, the OpFlow parameters are set globally 
for each image. Using OpenMP libraries, the time execu-
tion of the OpFlow algorithm is approximately 30 s.

To evidencing the capabilities of OpFlow in the edge 
detection and image denoising, on the right image of 
Fig.  10, it is possible to appreciate an horizontal bound-
ary structure on the bottom zone of the image, which 
corresponds to the aluminum shim. This boundary is 
not detected by OpenPIV, as shown on the left image of 
Fig. 10. Additionally, the noise result obtained with Open-
PIV is typical of cross-correlation methods applied to SS 
experiments, and it is due to the image resolution of the 

Fig. 7   Sensitivity analysis of OpFlow parameters, using the maxi-
mum displacement detected as the metric. It is interesting to note that 
this metric reaches a constant value for θ > 102, which is independ-
ent of �
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method, where we use an interrogation window of w = 16 
pixels with an overlap of 50%. On the other hand, OpFlow 
removes the noise, preserving the edges detected and 
improving the image resolution.

5 � Thermal reconstruction

To reconstruct the thermal distribution, we use the math-
ematical theory presented in Sect.  2.3 and the numerical 
strategy to solve the differential equation of the SS theory, 
where the temperatures at bottom and top of the cell are 
constants. Figure  11 shows the result of the reconstruc-
tion of temperature from the apparent displacement on the 
background image shown on the right image of Fig.  10. 

a b

Fig. 8   SSIM parameter space. The statistical strategy enables to 
define adequately the OpFlow parameters. The maximum value of 
SSIM was achieved for �c = 0.029 and θc = 1.072 which is indicated 
by the square dot in (a). As a result, the smooth OpFlow output using 

these parameter values is showed in the inset plot in (a). This plot is 
discussed in Fig. 9. b Shows the characteristic values of SSIM param-
eter space for the image pair analyzed. The structure of the SSIM 
parameter space is not universal and depends on the images

a b

Fig. 9   OpenPIV a compared with OpFlow result b for the apparent 
displacement of background dots pattern. The OpFlow image was 
generated using the parameters � = 0.029 and θ = 1.072. A signifi-

cant improvement of the resolution of the displacement was achieved 
using OpFlow, in comparison with OpenPIV

Fig. 10   OpenPIV compared with OpFlow for the apparent dis-
placement of background dots pattern, for an experiment where 
f = 55  mm, fr = 7.1, b = 1  mm, Lp = 8  mm, Ls = 100  mm and 
so = 403 mm. The OpFlow parameters are � = 0.02 and θ = 2.48
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In this figure, we observe few convective isolated plumes. 
The conductive heat transfer is characterized by a sta-
ble temperature gradient in the whole domain, where the 
temperatures at z = 0 and z = H are the temperatures 
measured at the aluminum shims. The same figure shows 
the horizontally averaged temperature versus depth, 
T̄(z, t) = (1/L)

∫ L

0 T(x, t) dx. T̄(z) has a constant value 
in the middle of the cell with constant standard deviation, 
which is a behavior observed in developed thermal convec-
tion in porous media (Otero et al. 2004).  

However, it is interesting to note that the values of 
∂T̄/∂z are different at the vertical boundaries, which can 
be explained considering the variability of the dynamic vis-
cosity of the fluid with temperature and the heat lost due to 
thermal conduction through the solid walls. In fact, the vis-
cosity of PPG at 30 ◦C is 32 cP, while this value at 45 ◦C 
is 15 cP, which is an important difference compared with 
the viscosity of water in the same range of temperatures. 
Defining the heat available per horizontal unit length as 
Q
(av)
L = (1/L)

∫

V
ρ̄ cp T dV = ρ̄ cp b

∫ H

0 T̄ dz , where ρ̄ is the 
mean density between the range of temperatures considered, 
we see that the area below the curve of the observed T̄(z) is 
less than the theoretical curve for the purely conductive case. 
Considering cp = 2.51 J/g K and ρ̄ = 1.023± 0.007 g/cm3, 
where the error is related with the deviation from the mean 
value for a range of temperatures between 30 and 45 ◦C, we 
obtain �QL = Q

(conv)
L − Q

(cond)
L = −(2.63± 0.02) J/cm.

Thus, we have experimental evidence that some heat 
was conducted through the acrylic used to built the cell. 
This finding arises the question of how this heat transfer 
affects the convective behavior of the fluid. This ques-
tion has also been studied by Koster (1983), concluding 
that the acrylic affects the thermal convection, so the new 
question is what is the amount of heat lost by conduc-
tion and how the heat lost scales with Ra, for this kind of 
experiments.

The thermal conductivity of acrylic is similar to that of 
PPG, which is kppg = 0.195± 0.001 W/mK (Sun and Teja 

2004). The error is related with the deviation from the mean 
value for a range of temperatures between 30 and 60 ◦C. 
To understand the energetic balance in thermal convection 
between the fluid and the acrylic, we analyze a transient 
convection regime for Ra = 680. The choice of this value 
is related with the observations of the geothermal convec-
tion in sedimentary basins (Clausnitzer et al. 2001).

Another example of thermal reconstruction is shown 
in Fig. 12. We can see many thermal plumes, where some 
nonlinear behaviors such as the coalescence and destabili-
zation of protoplumes in the bottom boundary layer are evi-
denced. These processes are triggered by parcels of denser 
fluid that reach the lower regions of the cell and cause the 
convergence of parcels of less dense fluid. Due to viscosity 
effects, the dense fluid parcels move slowly in comparison 
with lighter fluid, so the observed nonlinear behavior is not 
only driven by density, but also by viscosity.

6 � Transient dynamics

The transient regime is controlled by the temperature rise of 
the aluminum shims, which is slow. It takes about one hour 
to reach a constant temperature, as shown in Fig. 13. Because 
the top and bottom boundaries have temperatures that change 
with time, the lower zone of the cell shows the appearance 
of a boundary layer that destabilizes in a few thermal fingers, 
as we show in Fig.  12. This result is a good example that 
shows the transition to a fully developed convective dynam-
ics, where the convection is driven by density and viscosity.

Figure 14 shows the conductive flux at vertical bound-
aries, where the conductive flux per unit length is com-
puted as Q̇L = kppg b ∂T̄/∂z, being kppg the thermal con-
ductivity of PPG. From this figure, we can observe that 
the heat flux at the bottom has a local minimum at t = 50 
min, which coincides with the beginning of the destabili-
zation of the thermal boundary layer. We define the mean 
value of a horizontal-averaged physical quantity f̄ (z, t) 

Fig. 11   Thermal reconstruction 
of the OpFlow result presented 
on the right image of Fig. 10. 
The horizontal-averaged 
temperature is shown with error 
bars, which is compared with 
the conductive regime. A devia-
tion from the conductive regime 
is evidenced by means of the 
difference in the areas below 
the curve
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as �f �(t) = (1/H)
∫ H

0 f̄ (z, t) dz. From Fig.  12, analyz-
ing the mean temperature evolution presented in Fig.  15, 
we can observe that this quantity grows monotonically in 

the transient regime, until it reaches an statistically con-
stant value of �T� = 37.9± 0.3 ◦C from time t = 80 min. 
In other words, the system reaches a steady-state regime 
from this time, where the amplitude and shape of ther-
mal plumes seem to be similar. Therefore, neglecting vis-
cous dissipation and thermal dispersion, a first conclusion 
from the temperature reconstruction is that the difference 
between the conductive heat flux at top and bottom, from 
time t = 80 min (see Fig. 14), can be explained if we take 
into account the energy lost by wall conduction.

The total amount of energy injected to the fluid is used 
mainly in two processes, (a) to locally increase the tem-
perature of the fluid, i.e., ∂T/∂t �= 0, and (b) to exchange 
energy with the solid walls by conduction. The estimation 
of the amount of mechanical energy converted into heat is 
important for the correct interpretation of the energy bal-
ance of the system. The results obtained from the temper-
ature maps, for this regime, are not sufficient to conclude 
any effect from the dynamic viscosity in the development 
of thermal fingers, and more information is need to charac-
terize the dynamics of the flow under these conditions.

Fig. 12   Thermal reconstruction for an experimental image sequence for Ra = 680. The time difference between images is �t = 5 min, from left 
to right. Some well-known nonlinear behaviors such as coalescence and destabilization of protoplumes can be observed

Fig. 13   Temperatures of the aluminum shims, on bottom Tbot and top 
Ttop. These measurements were used as boundary conditions for ther-
mal reconstruction in the transient regime

Fig. 14   Conductive heat flux per unit length, at bottom and top of the 
cell, during the transient regime

Fig. 15   Mean temperature 〈T〉 as function of time. We can see that 
the temporal evolution of this quantity seems to have a statistically 
constant value from the time t = 80 min
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7 � Conclusions

We present a methodology based on the use of the TV-L1 opti-
cal flow method (OpFlow) to analyze experimental images 
obtained by the SS technique. Comparing the images ana-
lyzed by digital PIV and OpFlow, we can estimate the opti-
mal OpFlow parameters for a specific set of experimental 
images, improving the image resolution. As a benchmark case 
study where SS can be applied successfully in the measure-
ment of a scalar quantity, in this case the temperature, we per-
form laboratory experiments of thermal convection in porous 
media, using a Hele-Shaw cell filled with propylene glycol 
as working fluid. The main advantages of the methodology 
to capture refractive index gradients using OpFlow are both 
image denoising and edge detection, which are crucial for fur-
ther analysis of reconstructed temperature maps. We provide 
results that show these capabilities of OpFlow for the analy-
sis of this type of experiments. These results are impossible 
to obtain using digital PIV, despite the fact that the correlation 
methods can be enhanced using a smoothing post-processing.

Using the dense flow field given by OpFlow, we recon-
struct the temperature map for an experimental transient 
regime, and we study the conductive heat flux per unit 
length and the mean temperature as function of time, 
observing that the developed convection reaches a steady-
state regime. Qualitatively, our thermal measurements 
show that the thermal boundary layer at the bottom destabi-
lizes after a transient time. Above this boundary layer, heat 
transport is enhanced by a vertical advective flux that must 
be quantified. A work related with this problem is in pro-
gress. We will measure simultaneously both the tempera-
ture and velocity fields in order to better characterize the 
fluid dynamics of this type of systems.
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