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ABSTRACT

Aim It has been suggested that predicting species distributions requires a process-
based and preferably dynamic approach. If dynamic models are to contribute
towards understanding species distributions, uncertainties related to their spatial
extrapolation and bioclimatic parameters need to be addressed. Here, we analyse
the potential of a forest gap model for predicting species distributions.

Location Pacific Northwest of North America (PNW).

Methods We used the dynamic forest gap model ForClim, which includes
climate, competition and demographic processes, to simulate the distribution of 18
tree species outside the domain of the data used for fitting. We explored model
accuracy for species distributions at the regional scale by: (1) estimating species
climatic tolerances so as to maximize agreement with regional distribution maps
versus (2) employing a bioclimatic parameter set that produces high accuracy at the
local scale. We then performed the opposite tests and simulated local forest com-
position in a small area in the PNW, using (3) the local bioclimatic parameters and
(4) the bioclimatic parameters that produced the highest accuracy at the regional
scale. We also compared the ForClim results with predictions from a standard
correlative species distribution model (SDM).

Results ForClim produced regional species distributions with fair to very good
agreement for 12 tree species. The optimized bioclimatic parameters consistently
improved the accuracy of regional predictions compared with simulations run with
the local parameters, and were consistent with SDM results. At the local scale,
predictions using the local parameters conformed to descriptions of forest compo-
sition, but accuracy decreased strongly when using the regionally calibrated
parameters.

Main conclusions Forest gap models can predict regional species distributions,
but at the cost of reduced accuracy at the local scale. Future applications of gap
models to understand regional species distributions should include robust
parameterization schemes and additional ecological processes that are important at
large spatial scales (e.g. dispersal, disturbances).
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INTRODUCTION

Predicting species distributions is challenging due to the

dynamic processes that influence species ranges (MacArthur,

1972; Gaston, 2003) and the various spatial and temporal scales

at which these process operate (Levin, 1992; Chave, 2013). A

variety of statistical species distribution models have been devel-

oped (Guisan & Zimmermann, 2000; Thuiller et al., 2008), but

there is an increasing recognition that understanding species

distributions is likely to require a process-based, dynamic
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modelling approach (Dormann et al., 2012; García-Valdés et al.,

2013). Dynamic vegetation models (DVMs) have the potential

to improve our understanding and prediction of species distri-

butions, but there have been only a few such applications to date

(cf. Snell et al., 2014, for a review). As most DVMs were not

designed to address questions of species range dynamics, an

important first step is to test the limitations and assumptions of

a particular model at a scale that is appropriate for the predic-

tion of species distributions.

DVMs simulate changes through time in the occurrence,

abundance and productivity of plant species. They typically

include processes that are important for simulating range

dynamics, such as competition and demography, and the influ-

ences of climate on these processes. Forest gap models

(Bugmann, 2001) are DVMs that are widely used to predict

forest community composition at the local scale. These models

appear to be suitable for simulating species distributions

because they incorporate biotic interactions and abiotic con-

straints at the level of individual trees based on dynamic cal-

culations of growth, establishment and mortality (Bugmann,

2001). To date, forest gap models have not been used for

species distribution analyses, for two main reasons. First, gap

models often require a large number of parameters to be esti-

mated for each species, thus limiting their application to a

comparatively small set of species (Guisan & Zimmermann,

2000; Guisan & Thuiller, 2005; Dormann et al., 2012). Second,

the bioclimatic parameters in gap models are typically esti-

mated using somewhat arbitrary approaches (e.g. qualitative

estimates of climatic conditions) or by using coarse map reso-

lutions that fail to capture the influence of topography on local

climate (Loehle & LeBlanc, 1996; Schenk, 1996). While the

uncertainty about the quantification of species climatic toler-

ances may influence the ability of a gap model to simulate tree

species distributions, reservations regarding the number of

species needed to run simulations are no longer valid. For

example, the ForClim model currently has about 140 tree

species parameterized, allowing the simulation of forest com-

position over large regions (Bugmann & Solomon, 2000;

Busing et al., 2007).

Inverse modelling techniques (Grimm & Railsback, 2005)

offer a transparent and robust method for estimating the cli-

matic tolerances of species. In such an approach, data on species

distributions and climate can be used for calibrating species

parameters in forest gap models, as is traditionally done in cor-

relative species distribution modelling (Hartig et al., 2012).

However, parameters denoting species climatic tolerances in

DVMs are rarely changed without: (1) a reformulation of the

model (with respect to ecological processes) or (2) an explicit

up-scaling of the model to gain efficiency (Lischke et al., 2006).

Here, we propose to use an inverse modelling approach to test

the applicability of a forest gap model at the regional scale, and

to address uncertainties related to their spatial extrapolation and

bioclimatic parameters. Specifically, we assess whether the gap

model framework is an appropriate representation of those pro-

cesses that determine species ranges; if so, the model should be

able to predict regional species distributions. Further, we assess

the ability of a forest gap model to predict species distributions

across spatial scales by employing a bottom-up versus top-down

parameterization approach. The bottom-up approach uses a

parameter set that has high accuracy at the local scale for simu-

lating regional-scale distributions, whereas in the top-down

approach we evaluate model accuracy at the local scale when

using a parameter set that has high accuracy at the regional scale.

Ultimately, these analyses serve to reveal whether there is a

trade-off between model generality and specificity when using

DVMs to predict regional species distribution (Thuiller et al.,

2008).

METHODS

The forest gap model – ForClim

ForClim (Bugmann, 1996; Bugmann & Solomon, 2000) is a

generalized forest succession model that can be used for the

temperate zone (Bugmann et al., 2001). ForClim incorporates

simple yet reliable formulations of biotic (i.e. competition for

light) and abiotic (i.e. climatic) influences on ecological pro-

cesses, while using a limited number of ecological assumptions

(Bugmann, 1996). ForClim simulates independent forest

patches (usually 200 patches of 800 m2), where trees establish

and compete for light following the gap model approach

(Bugmann et al., 2001). Stand properties are derived by aver-

aging the properties across the replicated patches (Bugmann,

1996). Tree growth is modelled using an empirical growth

equation, which is regulated by species-specific responses to

the availability of light across the canopy, growing degree-days

and soil moisture (Bugmann, 1996; Bugmann & Solomon,

2000). Mean monthly temperatures are used to calculate

growing degree-days and winter temperature. A monthly

drought index is calculated based on soil water holding capac-

ity, monthly precipitation sums and mean monthly tempera-

tures (Bugmann & Cramer, 1998; Bugmann & Solomon,

2000). The effects of the climatic variables and light availability

are combined to derive realized tree growth rates (Bugmann &

Solomon, 2000). Tree establishment rates are determined as a

function of species-specific responses to winter temperature,

light availability on the forest floor and growing degree-days

(Bugmann, 1996). A comprehensive description of the version

of the model used in this study (ForClim v.3.0) can be found

in Rasche et al. (2011, 2012).

We applied ForClim to the Pacific Northwest region of North

America (PNW) to simulate the distribution of 18 tree species

using species-specific parameters adopted from Bugmann &

Solomon (2000). These parameters were either left unchanged

or were recalculated to fit the definitions in the current version

of the model (for details see Appendix S1 in Supporting Infor-

mation). For the purpose of this study, we focused on

re-estimating those species-specific parameters that denote cli-

matic tolerances, i.e. the minimum degree-day requirement

(kDDMin), minimum and maximum winter temperature toler-

ance (kWiTN and kWiTX, respectively) and drought tolerance
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(kDrTol), hereafter referred to collectively as ‘bioclimatic

parameters’.

Calculation of bioclimatic tolerances from species
range information

First, we extracted climatic information from the entire distri-

bution range of the target species. We used digital representa-

tions of the species range in North America, as described by

Little (1971). We randomly distributed 1000 points over each

species range map, and then used those points to extract the

corresponding climatic data from a gridded database

(WorldClim, v.1.4, release 3; Hijmans et al., 2005). WorldClim

provides climatic information at high resolution (2.5 arcmin in

this study) and captures the climatic complexity that is induced

by topography. We used monthly precipitation and tempera-

ture data from WorldClim at each point to calculate the

bioclimatic variables following the ForClim equations

(Bugmann, 1996; Bugmann & Cramer, 1998) and emulating

the stochastic calculations performed by the model. The soil-

related parameters required for calculating the drought index

were taken from Bugmann & Cramer (1998) and Bugmann &

Solomon (2000).

The bioclimatic variables extracted from each point over the

entire species range were used to estimate their probability

density function (black line in Fig. S1), which was approximated

by a polynomial spline with the unknown coefficients estimated

by maximum likelihood (Kooperberg & Stone, 1992). We used

these probability density functions to evaluate the probability of

the original bioclimatic parameters from Bugmann & Solomon

(2000) (orange bar in Fig. S1; hereafter local parameters). This

procedure was repeated for each species and each bioclimatic

variable.

Simulation of tree species distribution at the
regional scale

Our regional study area covers the distributional ranges of the

18 tree species parameterized in the PNW by Bugmann &

Solomon (2000). It was delimited by merging the distribution

maps from all 18 species, and then constrained to the western

slope of the Cascade Mountains. This latter condition was

imposed to avoid several dominant tree species not yet

parameterized in the model. We divided the study area into 328

strata of equal area, and selected a random location in each

stratum. This stratified random sampling of locations ensured

that the selected locations covered the entire study area. We used

ForClim to build a presence–absence prediction map for each

species based on the ForClim simulations of steady-state forest

composition. For each of the 328 strata, 200 patches were simu-

lated (corresponding to c. 16 ha) for 1500 years of succession,

allowing unlimited seed availability for all species. Climatic

parameters for running the model at each location were

extracted from the WorldClim monthly temperature and pre-

cipitation data. A species was determined to be ‘present’ at a

certain location if the sum of the basal area of trees > 12.7 cm

diameter at breast height was > 1 m2 ha−1. This threshold was

found to produce the most accurate results (Fig. S2) and it is a

commonly used tree size threshold for forest inventories

(McRoberts et al., 2005).

For each species we also built a reference map, which used the

same 328 strata as above but species presence/absence was deter-

mined from Little (1971). The reference and prediction maps

were then compared to assess the accuracy of presence–absence

simulations from ForClim using Cohen’s Kappa statistic

(Goodman & Kruskal, 1954; Cohen, 1960). Kappa values range

from −1 to +1, with values > 0.4 indicating a fair degree of

agreement. Values < 0.2 indicate performance no better than

random (Monserud & Leemans, 1992). We complemented

Kappa with the following statistics (Allouche et al., 2006): the

area under the receiver operating characteristic curve (AUC)

and the proportion of observed presences that are predicted as

such (i.e. sensitivity, accounting for omission errors).

We used the range of probabilities described above to create

100 parameter sets using a Latin Hypercube design (Stein,

1987). The 100 sets covered the range of probabilities for each

bioclimatic variable, but the actual parameter value used was

extracted from the probability density function for each species.

For example, a minimum degree-day probability of 0.1 would

mean 609 degree-days for Abies amabilis, but 931 degree-days

for Acer macrophyllum. Each species was simulated using all 100

probability sets, and the results were evaluated to determine

which parameter values produced the most accurate presence–

absence simulations. To select the bioclimatic parameters that

maximized simulation accuracy for each species distribution, we

ran simulations for the 328 strata using the 100 parameter sets

(i.e. 32,800 simulations of steady-state forest composition).

When comparing the reference and prediction maps for each

species we selected the parameter set with the highest Kappa

(hereafter the ‘optimized’ parameter set; blue bar in Fig. S1).

In addition, we ran simulations for the 328 strata using the

bioclimatic parameters as estimated by Bugmann & Solomon

(2000) (the ‘local’ parameter set, see also Appendix S1). The

local parameter set was obtained in 1995 (Bugmann & Solomon

1995) by visually overlaying bioclimatic maps directly onto Lit-

tle’s species distribution maps (Little 1971) and modified to

coincide with species bioclimatic requirements as described by

Franklin & Dyrness (1988).

We further checked whether species traits indirectly influence

the ability of the model to distinguish climatically suitable and

unsuitable habitats (Guisan et al., 2007). For this analysis, we

correlated the Kappa statistics from the optimized parameters

against species-specific parameter values denoting functional

traits including maximum age, maximum height, growth rate

and shade tolerance.

Finally, we compared ForClim predictions with species distri-

bution maps obtained from a correlative species distribution

model (SDM). We ran a SDM for each tree species (see addi-

tional methods in Appendix S1) and tested the prediction accu-

racy for the 328 strata. The accuracy of the SDM for presence–

absence simulations was assessed following the same methods

used for ForClim simulations (see also above).

Predicting tree species distribution
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Simulation of tree species distributions at the local
scale

To test if regionally optimized bioclimatic parameters are

valid at the local scale, we chose a longitudinal transect

along which ForClim had already been comprehensively

tested and had been found to produce accurate projections

of tree species composition and biomass (Bugmann &

Solomon, 2000). This 242-km transect is located at 44.13° N,

extending from the Pacific Coast into the desert shrubland of

the Great Basin in the interior of Oregon. Temperature and

moisture vary from wet and warm at the coast to wet and cold

in the Cascade Mountains, and into the hot dry conditions

of the eastern Oregon desert shrubland. We simulated the

same sites along the Bugmann & Solomon (2000) transect,

using climatic data extracted from WorldClim and other site

characteristics obtained from Bugmann & Solomon (2000)

(i.e. soil water holding capacity and available nitrogen).

At each site we simulated steady-state forest composition fol-

lowing Bugmann & Solomon (2000) using the local and

optimized parameter sets. Simulation results were compared

qualitatively and using the Jaccard index of similarity at each

site. All statistical analyses were conducted in R (R Core Team,

2013).

RESULTS

Regional species distributions

Optimizing bioclimatic parameters consistently improved the

accuracy of the presence–absence simulation of the DVM at the

regional scale for all tree species compared with simulations that

used the local parameters (Table 1; Kappa > 0.4 for 10 out of 18

tree species). The SDM predictions were more accurate than

DVM predictions for all but three species (Table 1). However,

DVM predictions with the optimized parameters approached

the accuracy and sensitivity of SDM (Table 1, Figs 1 & 2, Appen-

dices S2 & S3). Both SDM and DVM simulations produced

commission errors towards the northern limits of species distri-

butions (Table 2). In general, DVM predictions had lower com-

mission errors than SDM predictions, but higher omission

errors (Table 2). From the traits analysed, only the shade toler-

ance parameter was significantly correlated with regional

presence–absence accuracy of the DVM (Spearman’s rank cor-

relation, ρ < −0.6, P < 0.001), indicating that predictions are less

accurate for shade-intolerant species.

For some tree species, ForClim produced a highly accurate

regional presence–absence map when using the optimized

parameter set (Kappa > 0.7, e.g. Picea sitchensis; Fig. 1a, see also

Table 1 Summary of accuracy statistics for presence–absence predictions of tree species in the Pacific Northwest of North America. Three
accuracy statistics are included: (1) the Kappa statistic, (2) AUC (the area under the curve of the receiver operating characteristic curve)
and (3) sensitivity: the proportion of correctly predicted presences, calculated after Allouche et al. (2006). Species are ordered by
DVM-optimized Kappa values. The highest value for each accuracy statistic, for each species is indicated in bold.

Species name

Kappa AUC Sensitivity

DVM-optimized DVM-local SDM DVM-optimized DVM-local SDM DVM-optimized DVM-local SDM

Picea sitchensis 0.78 0.1 0.77 0.88 0.54 0.90 0.82 0.09 0.92

Tsuga heterophylla 0.78 0.5 0.65 0.89 0.73 0.83 0.87 0.47 0.83

Thuja plicata 0.71 0.56 0.66 0.84 0.74 0.84 0.73 0.51 0.79

Arbutus menziesii 0.65 0.57 0.76 0.78 0.73 0.91 0.59 0.48 0.87

Abies grandis 0.61 0.38 0.79 0.79 0.81 0.89 0.62 0.86 0.81

Chamaecyparis nootkatensis 0.6 0.58 0.83 0.78 0.78 0.93 0.64 0.63 0.92

Acer macrophyllum 0.54 0.23 0.64 0.74 0.59 0.85 0.53 0.19 0.91

Abies lasiocarpa 0.5 −0.01 0.67 0.77 0.5 0.84 0.76 0.24 0.80

Tsuga mertensiana 0.49 0.43 0.76 0.78 0.74 0.91 0.79 0.72 0.94

Alnus rubra 0.42 0.08 0.78 0.7 0.53 0.89 0.47 0.07 0.87

Abies amabilis 0.37 0.31 0.59 0.69 0.72 0.86 0.5 0.73 0.87

Pseudotsuga menziesii 0.37 0.29 0.46 0.69 0.64 0.74 0.62 0.5 0.77

Pinus ponderosa 0.36 0.17 0.37 0.75 0.6 0.73 0.81 0.45 0.70

Picea engelmannii 0.35 −0.07 0.36 0.76 0.55 0.74 0.77 0.21 0.67

Pinus monticola 0.29 0.16 0.30 0.66 0.6 0.70 0.48 0.43 0.61

Quercus garryana 0.14 0.06 0.64 0.54 0.52 0.83 0.09 0.04 0.70

Abies procera 0 −0.03 0.58 0.5 0.55 0.75 0.2 0.1 0.50

Pinus contorta 0 0 0.55 0.5 0.5 0.78 0.03 0.01 0.75

DVM-optimized, simulations of the dynamic vegetation model (ForClim) using the parameter set for each species that maximized the accuracy of
presence–absence simulations at the regional scale; DVM-local, simulations run with the parameter set used in Bugmann & Solomon (2000) for
simulating a transect at 44.13° N latitude; SDM, results of a correlative species distribution model.
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Appendix S2). In contrast, the local parameter set predicted the

same species to be constrained to the area where the model had

originally been calibrated (Fig. 1b). For other species, regional

predictive maps were similar when using either the optimized or

the local parameters (e.g. Tsuga mertensiana, Fig. 1c, d). The case

of Pseudotsuga menziesii represents a third response type, where

the optimized parameters improved the simulation results but

resulted in an over-prediction beyond the potential limits of the

species; in this case the optimization increased sensitivity

(Table 1, Fig. 1e, f). Finally, ForClim was not able to predict

the more southerly part of the regional distribution for some

species (e.g. T. mertensiana, Fig. 1c; see also Alnus rubra in

Appendix S2).

A sensitivity analysis across all 18 species revealed that there

was no discernible pattern of improvement in regional

presence–absence predictions to similar changes in bioclimatic

parameters (Fig. 3). Instead, the variation in the accuracy in

response to changes in bioclimatic parameters was highly

species specific. For example, Picea sitchensis was most sensitive

to variation in the minimum degree-day requirement (kDDMin

in Fig. 3a), whereas other species were sensitive to variation in

drought tolerance (kDrTol in Fig. 3b, d). In general, however,

changes in all bioclimatic parameters of a species were needed to

obtain the most accurate prediction of regional presence–

absence (Fig. 3). These changes restricted the range of probabil-

ities to > 0.8 for maximum winter temperature and drought

tolerance (Fig. 4a, b), and < 0.2 for minimum degree-day

requirement (Fig. 4c); and we obtained a broad range of prob-

abilities for minimum winter temperature (Fig. 4d).

Local species distributions

At the local scale, simulations using the local parameter set

conformed to the forest composition zones described by

Figure 1 Predictive distribution map
for three tree species in the Pacific
Northwest of North America using a
dynamic forest gap model (ForClim).
The orange (online version only)/light
grey area is the species range (reference
maps from Little, 1971). Each circle
indicates a location where the model
predicted the species to occur.
Orange/grey circles indicate agreement,
where ForClim predicted the species to
occur and the location was inside the
species range. Black circles indicate
disagreement, where ForClim predicted
the species to occur but the location was
outside the species range. Simulations
were run using the optimized parameter
sets obtained in this study and the local
parameter set based on Bugmann &
Solomon (2000). Simulations covered a
delimited study area (indicated in dark
grey) represented by 328 stratified
random locations, where the model was
run to predict steady-state forest
composition.
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Franklin & Dyrness (1988; Fig. 5a). Picea sitchensis forests from

longitudes 124–123.50° W, replaced by forests dominated by

Pseudotsuga menziesii, Tsuga heterophylla and Tsuga plicata from

longitudes 123.50–122.25° W; increased dominance of Abies

amabilis from 122.12° W, and forests dominated by Abies

amabilis and T. mertensiana between longitudes 121.92 and

121.83° W as well as from 121.71 to 121.62° W (Fig. 5a). As a

matter of fact, simulations with ForClim 3.0 were superior to

results from Bugmann & Solomon (2000), particularly for forest

composition at the highest elevations (i.e. longitudes 121.79–

121.75° W; Fig. 5a). Using the local parameter set, ForClim

simulated open forests with biomass < 7 t ha−1 composed of

Abies lasiocarpa and T. mertensiana, which corresponds well to

forest descriptions near upper tree line (Fig. 5a, Franklin &

Dyrness, 1988). Similar to Bugmann & Solomon (2000), our

simulations showed forests dominated by Abies grandis and P.

menziesii, followed by Pinus ponderosa from 121.50° W, and

steppe from 121° W in the lower eastern Cascades (Fig. 5a).

When we used the regionally optimized parameter set to

simulate the same transect, the results were quite different

(Fig. 5b). Forest composition was characterized by the almost

ubiquitous and erroneous dominance of Picea sitchensis and T.

heterophylla along the transect, the disappearance of the A.

amabilis zone and a strong over-prediction of biomass at the

highest elevations (Fig. 5b). Compositional similarity between

simulations using the optimized and local parameters was

always < 0.5, falling to values of < 0.2 between longitudes 121.92

and 121.62° W (Fig. 5c).

DISCUSSION

Overall, our results demonstrate the potential of using forest gap

models to predict regional species distributions. They also illus-

trate a potential trade-off between predicting geographical

species distributions (generality) and capturing local forest

composition accurately. At the regional scale, simulations of tree

species distributions had fair to very good accuracy compared

with the reference maps (Table 1), suggesting that ForClim

includes the key processes required to capture regional distribu-

tions for most tree species. However, not all species were well

represented, indicating that there may be ecological processes

that are missing in the model.

Figure 2 Predictive distribution map for three tree species in the
Pacific Northwest of North America using a correlative species
distribution model (SDM). Details are as in Fig. 1. Methods for
running the SDM are described in Appendix S1.

Table 2 Summary of presence–absence simulation errors for 18
tree species in the Pacific Northwest of North America.
Commission errors indicate that the model predicted a presence
when it should be absent, and omission errors indicate the model
predicted an absence when it should be present. Results were
calculated using all of the species data (a total of 5904 trials,
number of species × number of sites) and are expressed as a
percentage of this total. As most of the errors were at the edge of
the species ranges, we focused on these areas. Upper and lower
elevation sites refer to sites located above the 75th and below the
25th quantiles of the elevational distribution for each species.
Northern and southern sites were defined as those sites located
north of the 75th and south of the 25th quantiles of the
latitudinal distribution for each species. ‘Overall total’ refers to the
total sum of errors across the entire distribution for all species.
The names of model simulations as in Table 1.

Commission errors Omission errors

DVM-optimized SDM DVM-optimized SDM

Upper elevation 0.7 3.6 4.6 1.3

Lower elevation 1.0 0.6 0.6 0.2

Northern 5.1 8.4 3.6 0.8

Southern 2.6 2.6 3.4 1.6

Overall total 9.4 12.9 10.8 3.3
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Figure 3 Sensitivity analysis for the
bioclimatic parameters used to maximize
presence–absence simulation accuracy.
The bioclimatic parameters are kDDMin
(minimum degree-day requirement),
kWiTN (minimum winter temperature
tolerance), kWiTX, (maximum winter
temperature tolerance), and kDrTol
(drought tolerance). Black dots represent
the 100 samples chosen from the range
of probabilities for each bioclimatic
parameter (see also Fig. 4). The squares
are the species-specific bioclimatic
parameters taken from Bugmann &
Solomon (2000) and triangles are the
species-specific optimized parameters.
The model was run with all bioclimatic
parameter sets and evaluated for
accuracy, using the Kappa statistic.
Horizontal lines indicates values of the
Kappa statistics from which accuracy can
be regarded as fair (Kappa > 0.4) to good
(Kappa > 0.7).
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Figure 4 Density plots of bioclimatic
parameter probabilities obtained for 18
tree species of the Pacific Northwest of
North America. Probabilities were
determined based on bioclimatic
information taken from the entire tree
species range (see Methods). ‘Optimized’
refers to the parameters that maximized
the accuracy of presence–absence
simulations at a regional scale. ‘Local’
parameters are those determined by
Bugmann & Solomon (2000) along a
transect at 44.13° N latitude. Optimized
parameter values are shown on the
x-axis as tick marks. Note the different
scales on the y-axis.
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Below, we discuss the importance of: (1) parameterization

schemes, (2) potentially missing processes in DVMs, (3) species-

specific ecological characteristics that are likely to matter in this

context, and (4) the strengths and limitations of using DVMs to

simulate patterns and processes across spatial scales, i.e. from

local to regional scales.

Bioclimatic parameterization

Our results emphasize the importance of testing the generality

of parameterizations prior to using DVMs to predict species

distributions. From our analysis, we found that the probabilities

to determine the bioclimatic limits that best represent the

regional species distribution commonly differed from the prob-

abilities of the local parameters (Figs 1, 3, & 4). The local param-

eters in our study had originally been obtained by determining

the climatic limits of tree species at their elevational range

boundaries within Oregon and adjacent areas (cf. Bugmann &

Solomon, 2000). Our results suggest that this calibration

method does not capture the climatic information needed to

determine range boundaries of tree species at the regional scale.

In addition, the low accuracy of simulated species distributions

when using the local parameters (Table 1) suggests that param-

eters calibrated in a small area may not be useful in other

regions; this conforms to caveats regarding the application of

correlative species distribution models (cf. Araújo & Guisan,

2006; Randin et al., 2006).

The regionally optimized parameters were able to distinguish

species that differed only slightly in their extreme climatic tol-

erances. For example, some tree species had the same drought

tolerance according to the local parameter set (0.2 for

Chamaecyparis nootkatensis, T. heterophylla and T. plicata),

whereas the optimization identified markedly different drought

tolerance values for these species (ranging from 0.21 to 0.29).

Similarly, our method revealed minimum degree-day require-

ments that were offset by 200 degree-days for species with the

same requirement in the local parameter set. Parameter changes

such as these were essential for improving the accuracy of simu-

lated tree species distributions (Table 1).

On the one hand these results demonstrate that locally and

qualitatively calibrated DVMs are likely to require an adjust-

ment of their parameters if they are applied to predict regional

species distributions. On the other hand, the disparity of the

parameter sets to simulate forest composition at local scales

Figure 5 Steady-state forest
composition simulated by ForClim along
an environmental gradient at latitude
44.13° N in the Pacific Northwest of
North America. The transect starts at the
Pacific coast (left) and extends to the
steppe in Oregon (right). The horizontal
bar at the top illustrates the forest
composition zones described by Franklin
& Dyrness (1988) and follow the shades
indicated in the legend. (a) Simulations
run using the local parameter set
(Bugmann & Solomon, 2000). (b)
Simulations run using the optimized
parameter set (this study). (c) Jaccard
index of compositional similarity
between simulated sites.
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(Fig. 5) suggests that regionally optimized parameters may not

be appropriate for quantitatively assessing tree species abun-

dance (e.g. biomass) at this scale.

Ecological processes potentially missing in the model

Our parameterization scheme relied on the assumption that a

species’ distribution is in equilibrium with the current climate

(Guisan & Zimmermann, 2000; Svenning & Sandel, 2013) and

that a species’ presence/absence reflects the interaction between

bioclimatic limits, competition and demography. These

assumptions appear to be correct for eight of the studied species,

i.e. those with the highest level of accuracy in the simulation of

their distribution (Kappa > 0.5; Table 1).

However, many species were predicted to occur beyond their

northern distribution limit (cf. Fig. 1e, Appendix S2), a commis-

sion error common to both ForClim and the SDM predictions

(cf. Fig. 2c, Appendix S3). This suggests that the current north-

ern limits of these species may not be in thermal equilibrium, or

alternatively that current species distributions are a reflection of

post-glacial migration lags (as neither the SDM nor ForClim

include dispersal limitations). Similar to some European tree

species (Svenning & Skov, 2004; Dullinger et al., 2012; Randin

et al., 2013), pollen records from the PNW suggest that some

conifers are still expanding northwards (Xie & Ying, 1994; Elias,

2013), and pollen records indicate a larger range prior to the Last

Glacial Maximum (Hansen, 1941). Environmental factors (e.g.

soil moisture) or biotic interactions (e.g. competition) could

help explain the slow spread of PNW conifers towards their

current northern limits (Elias, 2013). Most DVMs are based on

the assumption of unlimited seed dispersal (cf. Snell et al.,

2014). Clearly, seed dispersal processes need to be included if

one intends to use DVMs for predicting future tree range shifts.

Establishment in new areas is another crucial process that

may be limiting the rate of range expansion. Although ForClim

simulates tree establishment, it does so in a highly simplified

manner, not capturing the microsite conditions upon which

some tree species rely. For example, Picea engelmannii and A.

lasiocarpa seeds have increased survival at the tree line ecotone

due to favourable climatic and soil microsites (Germino et al.,

2002). Pinus contorta relies on fine-scale (< 500 m2) habitat het-

erogeneity throughout its range, as it is specifically adapted to

poor soils and areas where summer frost events preclude the

establishment of many other species (McKenzie et al., 2003).

Other processes such as disturbance, land-use changes, human

influence and other biotic interactions can further cause species

distributions to be in disequilibrium with climate (Guisan &

Zimmermann, 2000; Svenning & Sandel, 2013). The joint effects

of these processes, dispersal limitation and establishment

success are likely to influence the realized distribution of a

species and to modify species pools at the regional scale.

Furthermore, tree species with a wide distribution range may

have intrinsic variability in their climatic tolerance from one

region to another because populations are genetically differen-

tiated or narrowly adapted to their local environments

(Morgenstern, 1996). For example, Picea sitchensis is distributed

over 22° of latitude in the PNW, and has genetic clines that

confer adaptation to local climate and enable competitive

annual growth (Mimura & Aitken, 2007; Holliday et al., 2010).

Such trait variability is not captured by our optimized param-

eter scheme, which is based on the assumption of uniform

parameter values across a species’ range. Genetic variability can

lead to potentially wider bioclimatic limits for a species. For

example, the strong overprediction for P. sitchensis at the local

scale using the regionally optimized parameters (Fig. 5) does

not conform to the narrow dependence of this species on fog-

modulated coastal environments at this latitude in the PNW.

Thus, there may be a need to represent species as multiple sub-

species that differ in their parameterization, if the model is

applied to predict species distributions across spatial scales.

Ecological characteristics of tree species

Our results suggest that certain species traits, as well as experi-

mental design, influence the ability of a DVM to accurately

predict regional species distributions. Specifically, the relation-

ship with shade tolerance indicates that the model is well suited

to simulate late-successional tree species distributions in undis-

turbed forests. The three species with the highest accuracy (P.

sitchensis, T. heterophylla and T. plicata; Table 1) are all late-

successional, shade-tolerant trees that persist for a long time in

undisturbed landscapes (Franklin & Hemstrom, 1981). In con-

trast, we generally found lower levels of accuracy for pioneer,

shade-intolerant species (e.g. Pinus ponderosa, P. contorta and

also Pseudotsuga menziesii, cf. Table 1). An absence of external

disturbances in our simulations may explain the under-

prediction of pioneer, fire-tolerant species, such as Pinus

ponderosa and Quercus garryana, in areas with historically high

fire frequencies (Franklin & Hemstrom, 1981). Although fires

and other stand-replacing disturbances can be included in

ForClim via predictive parameters (Busing et al., 2007; Rasche

et al., 2011), they were not included in the current study due to

the difficulty of defining the heterogeneity of disturbance

regimes across the study area. An obvious example of a species

that would have benefited from the inclusion of fire is P. contorta

(Franklin & Hemstrom, 1981). The SDM was able to capture the

distribution of P. contorta without including fire; in ForClim,

however, this highly shade-intolerant species was out-competed

by later-successional species. In this case, the bioclimatic

envelope approach (SDM) produced a more accurate distribu-

tion, although for the wrong reasons. Ignoring the interaction

with fire would most likely cause severe errors under future

climate scenarios.

In contrast, some late-successional species were overpredicted

by ForClim towards the southern edge of their ranges (e.g. T.

mertensiana), possibly due to increased competition by south-

ern species not included in our set and thus a rather weak effect

of climate limitations (Ettinger et al., 2011). Finally, subdomi-

nant tree species (e.g. A. amabilis) tend to occur in a patchy

manner within their distribution range, making it difficult to

capture their actual distribution with a DVM. Overall, to accu-

rately reflect species ranges the inclusion of additional processes
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such as disturbances in combination with improved bioclimatic

parameters may be critical for reducing biases in DVM predic-

tions (cf. Brotons et al., 2004; Snell et al., 2014).

Pattern and processes across spatial scales

Predicting regional species distributions requires models that

capture regional patterns while maintaining key interactions

and ecological processes that occur at small scales. Although

forest gap models were not specifically developed for predicting

regional species distributions, we showed that they have a high

potential in this regard (Table 1), provided that one is willing to

sacrifice local-scale detail and current limitations due to

parameterization schemes are addressed. Importantly, predic-

tions of regional species distributions using a DVM consider the

impact of competition, demography and the influence of

climate and environmental factors at the level of the individual

tree; this is a distinct advantage over correlative SDMs. Although

in our example the DVM did not perform better than the SDM

for presence–absence predictions of the current distribution,

DVMs have distinct advantages over SDMs when it comes to

predicting species abundances or range shifts in response to

climate change (provided that dispersal and migration processes

are integrated appropriately with the other demographic pro-

cesses in DVMs).

Our simulation experiments further illustrate possible

sources of uncertainty (cf. Ford et al., 2013) in the predictions of

species distributions across spatial scales using DVMs. Since it is

unlikely that the true climatic tolerances of a particular species

differ across spatial scales, our results may also reflect uncer-

tainty in the climate data and/or species distribution maps, as

discussed below.

Local-scale simulations of forest dynamics typically use

climate data from individual weather stations (i.e. instrumental

data); we had to use gridded (i.e. modelled) climatic data at

both scales of analysis. The gridding procedure may conceal

important local-scale climatic features that may be important

for species distributions towards the range edges, where many

species occur in favourable microsites only, and not under the

‘generally prevailing’ climate. Additionally, a finer resolution

and higher accuracy of inferred soil properties (i.e. water

holding capacity and nitrogen availability, < 1 km2) could

improve predictions of regional species distribution in both

the DVM and the SDM, especially at sites where precipitation

is limiting.

Model uncertainty may also be due to the relatively coarse

level of information in the species distribution data. On the

one hand the reference distribution maps indicate presence

only (not abundance). This makes it difficult to extract rela-

tionships between climatic factors and demographic processes,

as all we have are the absolute limits to their distribution. On

the other hand the Little (1971) maps are spatially contiguous,

which is a clear advantage for regional-scale analyses, but the

quality of the underlying data (or interpretations) is difficult to

appreciate.

CONCLUSIONS

The ability of the dynamic vegetation model ForClim to predict

regional species distributions corroborates that the DVM frame-

work is an appropriate, although perhaps incomplete, represen-

tation of the processes involved in determining species ranges.

The application of forest gap models for predicting species dis-

tributions requires the recognition of ecological processes that

may cause disequilibrium with climate, such as dispersal limita-

tions, migration lags and disturbances.

Despite of these caveats, it is important to appreciate that

dynamic forest models include the effects of individual-based

inter- and intraspecific competition as modified by climatic

variability, and they further capture these fine-scale dynamics in

a simple framework that is efficient to run at regional scales and

relatively straightforward to analyse and interpret. These are

clear advantages over purely correlative species distribution

models. Future applications of gap models to understand and

predict species distributions should examine how the strengths

of biotic interactions are influenced by climate and disturbance,

together with the spatially explicit modelling of key ecological

processes such as dispersal. Including additional processes may

be relevant when predicting range shifts (e.g. as a result of

changing fire regimes due to climate change), but less important

for predicting current species distributions. To face the chal-

lenges of predicting range dynamics across multiple spatial

scales, future efforts should focus on assessing the relevance and

the spatial scale at which ecological process operate. This is

crucial if we intend to use DVMs to predict how species distri-

butions and vegetation dynamics will be affected by future

climate change.
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