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The modulation of the immune system following solid organ transplantation has made considerable progress
with new immunosuppressive regimens and has considerably improved rejections rates. The improvement in
long-term allograft survival is, however, modest. A complex network of cytokines, chemokines, adhesion,
activation and co-stimulatorymolecules are the frontline contributors to allograft rejection, which in turn deter-
mines the evolution of graft function and its long-term survival. Polymorphisms in these genes influence protein
levels and presumably their signaling effects. In this review, we present a relevant panel of candidate genes
related to the immune system in the context of solid organ transplantation; we discuss the most convincing re-
ports of genetic associationswith outcomes in renal transplantation and highlight themost promising loci among
the vast body of literature.

© 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
1. Introduction

The success of solid organ transplantation depends on many donor
or recipient characteristics including HLA mismatch, pre-formed
antibodies, age and ethnicity, as well as on specific events linked to
the surgical procedure (e.g., cold ischemia time, reperfusion injury).
Careful use of immunosuppressants likewise has an impact, and while
experience has led to the titration of these drugs to blood levels within
thresholds to improve outcomes and avoid adverse effects, there
remains unexplained variability in outcomes.

A large body of literature provides evidence that the efficacy and
toxicity of immunosuppressive therapymight bemitigated by polymor-
phisms in important pharmacogenes related to their pharmacokinetics
and, to a minor extent, pharmacodynamics. Only a few of the reported
associations have translated into validated pharmacogenetic applica-
tions. Pharmacogenetics is defined as “the study of variations in DNA
as related to drug response”. Variations of interest are non-pathogenic
and usually relatively common.Most studies in transplantation have fo-
cused on genetic variations that may change the relationship between
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the dose of the drug administered and its blood levels. The aim in this
context was to obtain additional tools to better achieve or maintain
levels in effective and non-toxic concentration targets. Genotyping of
cytochrome P450 3A5 (CYP3A5; a key enzyme in tacrolimus hepatic
clearance) is an example of routine application that was demonstrated
to be beneficial to the refinement of tacrolimus first dose through a ran-
domized multicentre trial [1]. However, the benefit in terms of clinical
outcomes for the CYP3A5 specific example, and others, remains to be
proven.

Pharmacogenetics of solid organ transplantation is indeed a very
particular area: clinical outcomes are influencedby immunosuppressive
therapy but additionally by the milieu of immune system players, in-
cluding cytokines and their receptors, chemokines and their receptors,
adhesion molecules, co-stimulatory molecules and innate immune
system proteins which are the frontline contributors to rejection (or
conversely to immune tolerance). This panel of cytokines provide a
long list of less explored candidate genes in the search for polymor-
phisms that might be used to predict clinical outcomes, and thus tailor
therapy based on risk.

Several excellent reviews exist on the topic of genetic polymor-
phisms in immune system genes and their impact on graft outcomes
in solid organ transplantation [2–5]. The following review aims to high-
light the loci that have been studied specifically in kidney transplanta-
tion related to outcomes of success (acute rejection, graft survival
chronic allograft nephropathy, among others), and to present an update
hts reserved.
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Table 1
Genes coding for the main proteins related to the immune response in the context of allograft transplantation.

Chromosome location Gene Name Other names Main functiona

Genes related to initial T cell activation
Co-stimulatory molecules

2 CD28 CD28 molecule Binds CD80/86 expressed by antigen-presenting cells to provide a co-stimulatory
signal (T-cell activation, proliferation and a proinflammatory response)3 CD80 CD80 molecule

2 CTLA4 Cytotoxic T-lymphocyte-
associated protein 4

CD152 Downregulates the immune system (acts as an “off” switch by stimulating the
CD28 receptor on the T cell)

20 CD40 CD40 molecule TNFRSF5 Mediates a broad variety of immune and inflammatory responses including T
cell-dependent immunoglobulin class switching and memory B cell developmentX CD40LG CD40 ligand CD154, CD40L

Regulatory molecules
1 PTPN22 Protein tyrosine phosphatase,

non receptor type 22
Negative regulator of TCR-signal

16 CIITA Class II, major
histocompatibility complex,
transactivator

Master regulator of the HLA class II

Genes related to cytokines and receptors
2 IL1A Interleukin-1 alpha (IL-1α) Produced by monocytes and macrophages, involved in inflammatory processes

and hematopoiesis
2 IL1B Interleukin-1 beta (IL-1β) IL1F2, catabolin Produced by activated macrophages (as a proprotein), involved in the

inflammatory response (cell proliferation, differentiation, apoptosis)
2 IL1R1 Interleukin 1 receptor, type 1 CD121A, IL1RA Receptor for interleukin-1 alpha, interleukin-1 beta, and interleukin-1 receptor

antagonist
2 IL1RN Interleukin-1 receptor

antagonist (IL-1RA)
Inhibits the activities of interleukins 1, alpha and beta

4 IL2 Interleukin 2 (IL-2) Lymphokine Proliferation of T and B lymphocytes
22 IL2RB Interleukin-2 receptor

subunit beta (IL-2Rβ)
CD122 Component of intermediate and high affinity IL2-receptor,

Involved in endocytosis and transduction of mitogenic signals from IL-2
5 IL3 Interleukin-3 (IL-3) Potent growth promoting cytokine (mainly hematopoietic cells)
5 IL4 Interleukin 4 (IL-4) Produced by activated T cells, immunoregulation (differentiation in TH2 cells)
16 IL4R Interleukin 4 Receptor alpha CD124 Binds IL-4 (to promote differentiation of Th2 cells) and IL-13 (to regulate

IgE production)
7 IL6 Interleukin 6 (IL-6) IFNB2 Functions in inflammation and the maturation of B cells also capable of inducing

fever in people with autoimmune diseases or infections
1 IL10 Interleukin-10 (IL-10) Produced primarily by monocytes, immunoregulation (differentiation in TH2 cells)
5 IL12B Interleukin 12, subunit beta

(IL12-B)
Expressed by activated macrophages, an essential inducer of Th1 cells development

6 IL17A Interleukin 17 (IL-17) CTLA8, IL-17A T helper 17 (Th17) cells activation
11 IL18 Interleukin 18 (IL-18) IGIF (IFNγ inducing

factor)
Augments natural killer cell activity in spleen cells. Stimulates interferon gamma
production in T-helper type I cells

4 IL21 Interleukin 21 (IL-21) Role in both the innate and adaptive immune responses (differentiation,
proliferation and activity of macrophages, natural killer cells, B cells and CTLs)

6 TNFA Tumor necrosis factor (TNFα) Cachexin, cachectin Secreted by macrophages, proinflammatory cytokines (cell proliferation,
differentiation, apoptosis)

6 LTA Lymphotoxin alpha TNFB (Tumor necrosis
factor-beta)

Involved in inflammatory, immunostimulatory, and antiviral response, role in
apoptosis, role in formation of secondary lymphoid organs during development

19 TGFB1 Transforming growth factor
beta (TGF-β)

Regulates proliferation, differentiation, adhesion, migration, and other functions
in many cell types

Genes related to the innate immune response
4 TLR2 Toll-like receptor 2 CD282 Role in pathogen recognition and activation of innate immunity
9 TLR4 Toll-like receptor 4 CD284
3 TLR9 Toll-like receptor 9 CD289
19 C3 Complement component 3 C3b Central role in the activation of complement system, antimicrobial activity
5 CD14 CD14 molecule Expressed on monocytes/macrophages, cooperates with TLRs to mediate the

innate immune response to bacterial lipopolysaccharide

Genes related to the effector phase of rejection (graft infiltration and injury)
4 CXCL8 Chemokine (C–X–C motif)

ligand 8
IL8 Chemoattractant for neutrophils, also a potent angiogenic factor

2 CXCR1 Chemokine (C–X–C motif)
receptor 1

IL8RA, IL8R1, CD128,
CD181

Interleukin 8 receptor (high affinity)

2 CXCR2 Chemokine (C–X–C motif)
receptor 2

IL8RB, IL8R2, CD182 Interleukin 8 receptor (high affinity)

17 CCL2 Chemokine (C–C motif)
ligand 2

MCP-1 (monocyte
chemotactic protein 1)

Chemoattractant for monocytes and basophils

17 CCL5 Chemokine (C–C motif)
ligand 5 (CCL5)

RANTES Chemoattractant for blood monocytes, memory T helper cells and eosinophils

3 CCR2 C–C chemokine receptor type 2 CD192 CCL2 receptor
3 CCR5 C–C chemokine receptor type 5 CD195 CCL5 receptor
10 CXCL12 Chemokine (C–X–C motif)

ligand 12
SDF1 (stromal cell-
derived factor 1)

Ligand of chemokine (C–X–C motif) receptor 4, role in immune surveillance,
inflammation response, tissue homeostasis, and tumor growth and metastasis

Other adhesion Molecules
1 VCAM1 Vascular cell adhesion

molecule 1 (VCAM-1)
CD106 Leukocyte-endothelial cell adhesion and signal transduction

19 ICAM1 Intercellular Adhesion
Molecule 1 (ICAM-1)

CD54 Expressed on endothelial cells and cells of the immune system. Binds to
integrins of type CD11a or CD11b (CD18)
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Table 1 (continued)

Chromosome location Gene Name Other names Main functiona

1 SELE E-selectin CD62E, ELAM Found in cytokine-stimulated endothelial cells, accumulation of blood leukocytes
at sites of inflammation

1 SELL L-selectin CD62L, LAM1,
LECAM1

Expressed by leukocytes to facilitate their migration into secondary lymphoid
organs and inflammation sites

6 VEGFA Vascular endothelial
growth factor (VEGF)

Vascular permeability
factor (VPF)

Facilitates leukocyte infiltration into the inflammation site

Genes involved in allograft injuries
19 FAS Fas cell surface death

receptor
APO1, CD95, TNFR6 Apoptosis of Fas-positive cells

12 IFNG Interferon gamma
(IFNγ)

Type II interferon Activates of macrophages, induces cytotoxic activities of other cells and apoptosis

a Information obtained from the Gene database (NCBI).
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of recent reports.We revisit the physiology of the immune system in the
context of solid organ transplantation, and highlight important players.
We then focus on studies performedwith a notable number of cases for
the outcome studied, aiming to avoid a common problem in the vast
body of literature in this field: underpowered studies that report signif-
icant findings without adjustment, and consequent reporting bias of
positive findings at specific loci, which in turn often conflict among
the totality of positive reports. Among these studies,we highlight prom-
ising loci. At present, these require replication, and if confirmed rele-
vant, testing in prospective trials to determine their usefulness as
predictive markers.

2. Candidate genes

Proteins related to the immune response in the context of allograft
transplantation whose genes are subsequently discussed in this review
are listed in Table 1. Genes were selected based on association studies
related to outcomes of success in renal transplantation. The loci studied
are presented in Tables 2 and 3: Table 3 lists the most commonly stud-
ied panel of classic cytokine loci, while Table 2 extends the list of genes
and presents less commonly studied loci.

2.1. Genes related to initial T cell activation

2.1.1. Histocompatibility leukocyte antigens (HLA)
Allograft rejection (and particularly humoral rejection) originates

primarily due to HLA mismatch between the donor and recipient.
Certain HLA mismatched transplants achieve long term function
without evidence of humoral rejection, suggesting differential immuno-
genicity of HLAmismatches. One explanation might relate to regulators
of HLA gene expression. The major histocompatibility complex class II
transactivator, a master regulator of the HLA class II, is coded by CIITA
which contains a Single Nucleotide Polymorphism (SNP) found to be
associated with donor-specific human leucocyte antigen antibody
production post-transplantation [6] (Table 3).

2.1.2. Co-stimulatory signals
The immune response leading to allograft rejection involves T cell

activation triggered by antigen recognition through the T-cell receptor
(TCR). This is reinforced by engagement of co-stimulatory molecules
(CD28 and its ligands CD80 and CD86), known as the co-stimulatory
signal, or signal 2 [7].

CTLA-4 is a CD28 homologue and is thus a negative regulator of
T-cell proliferation signals (i.e. is an anti-proliferative signal) [3]. Several
genetic variations in CTLA4 gene have been tentatively linked to poor
clinical outcomes in solid organ transplantation (acute rejection, steroid
resistant acute rejection, delayed graft function, see below and in
Table 3). Regarding CD28, one study focused on a single polymorphism
in relation to acute rejection [8] (Table 3).
Following TCR engagement, the interaction between CD40 Ligand
(CD40L, or CD154) and CD40 is the next critical event. CD40 is
expressed on antigen-presenting cells and B lymphocytes, whereas
CD40L is expressed on T lymphocytes. Their engagement on T lympho-
cytes induces IL-2 production, followed by evolution of CD8+ T cells
into cytotoxic T cells (CTLs). CD40 is also important for B cells, mono-
cyte,macrophage, and leukocyte functions in the context of the immune
response (2). CD40LGwas investigated as a candidate gene in one study
concerning acute renal rejection but no association was found [9].

2.1.3. T cell receptor (TCR) regulators
Certain enzymes serve as negative regulators of T cells. The protein

tyrosine phosphatase, non receptor type 22 (PTPN22) functions as a
regulator of TCR-signal transduction by removing phosphate groups
from tyrosine residues on intracellular proteins. A specific locus in the
PTPN22 gene has been investigated with respect to long-term allograft
failure but no association was found [10] (Table 3).

2.2. Cytokine growth factors promoting T cell activation

There are two main sub groups of cytokines driving the expansion
and differentiation of CD4+ T Cells in TH1, TH2, TH17 or regulatory T
cells: pro- and anti-inflammatory cytokines.

The role of these cytokines in acute rejection or induction of graft
tolerance is linked to the balance between TH1 and TH2 cells. TH2
lymphocytes facilitate tolerance by secreting anti-inflammatory IL-4
and IL-10 (inhibiting macrophages activation), whereas TH1 lympho-
cytes contribute to inflammation by secreting IL-2, IL-12, Tumor Necro-
sis Factor-alpha (TNFα) and Interferon gamma (IFNγ) [11]. The genes of
these cytokines have been the focus of numerous genetic studies in solid
organ transplantation: findings are summarized in Tables 2 and 3 and
will be addressed in detail later in this review.

IL-2 promotes CD4+ and CD8+ T cells proliferation and differenti-
ation. Its receptor (IL-2R) consists of 3 subunits, which modulate its
affinity with IL-2: the high affinity α-chain subunit (CD25, coded by
IL2RA); the β-chain subunit (CD122, coded by IL2RB) and the common
γ subunit.

IL-17A and its homologue IL17F, critical cytokines responsible for
Th17 cell reaction involved in inflammation, have been studied as
candidate genes in kidney transplantation outcome and several SNPs
in IL17 have associatedwith outcomes (acute rejection and graft failure)
[12–14] (Table 3).

Finally, TNFα is produced by activated macrophages but also by
CD4+ T- and NK-cells. It is involved in inflammation, activating endo-
thelial cells, up-regulating cell adhesion molecules and participating of
the recruitment of different leukocytes [15]. A specific polymorphism
in TNFAhas beenwidely tested for associationwith renal transplant out-
comes (Table 2) and will be discussed in detail below. Other loci have
likewise been tested (Table 3).



Table 2
Classic cytokine polymorphic loci tested for association with renal transplant outcomes. Positive associations were considered as reported by authors.

Gene Common name dbSNP No association Association

IFNG +874 A/T, UTR5644 rs2430561 [74,47,75,44,70,76,53,71,77-79,33,80-82,68,83,28] [84,42,72,85–89]
IL10 −1082 G/A rs1800896 [40,2,65,90-92,47,27,42,9,45,70,76,93,43,52,71,46,62,63,77,79,85,86,81,82,94,95] [66,58,96-98,74,84,75,44,72,21,80,73,68,83]
IL10 −819 C/T rs1800871 [40,2,96,65,90-92,47,75,27,42,45,70,93,71,46,62,63,77,85,81,82,94,28] [84,44,21,80,68,83]
IL10 −592, 571 C/A rs1800872 [40,2,96,65,90-92,47,75,27,42,45,70,93,43,71,77,78,85,81,82,94,95,28] [84,44,21,62,80,68,83]
IL1A −889 C/T rs1800587 [40,2,49,75,85,80,81]
IL1B −511 C/T rs16944 [40,2,75,99,46,85,80,94]
IL1B +3954, +3962 C/T rs1143634 [40,2,75,99,85,100,80,94,28] [46]
IL2 −330 T/G rs2069762 [96,84,75,42,60,101,46,62,64,85,81,89,95] [102,78,94]
IL4 −590 T/C rs2243250 [40,2,90,49,75,93,64,78,85,89,94] [98]
IL6 −174 G/C rs1800795 [40,103,65,90,74,84,75,42,44,45,70,43,52,46,100,80,54,81,94,68,83,28] [2,47,104,60,21,71,64,85,6,82,89,105]
TGFB +869 C/T, +29, Leu10Pro, c10 rs1800470 [40,58,2,65,92,47,75,27,44,9,106,70,93,53,46,62,77,78,107,85,86,80,81,89,94,105,83] [108,109,84,42,59,110,21,111,71,82,68]
TGFB +915 G/C, Arg25Pro, +74, c25 rs1800471 [40,58,65,98,74,108,92,47,75,27,42,44,9,70,93,53,71,46,62,77,78,85,80,94,105,83,95] [109,84,59,72,21,106,111,82,28,68]
TNFA −308 G/A, TNF 1/2 rs1800629 [40,2,103,90,98,91,74,84,92,47,75,42,9,60,76,43,52,53,77-79,50,85,86,80-82,28,83] [66,69,58,65,49,67,27,59,44,72,21,101,70,71,46,62,64,63,73,68,61]

[66] Sankaran 1999 [103] Reviron 2001
[69] Poli 2000 [96] George 2001
[40] Marshall 2000 [65] Gandhi 2001 (assumed loci based on commercial tray)
[58] Pelletier 2000 [97] Asderakis 2001
[2] Marshall 2001 [90] Cartwright 2001
[98] Poole 2001 [53] Brabcova 2007
[91] Hahn 2002 [71] Nikolova 2008
[74] Hutchings 2002 [46] Manchanda 2008
[108] Iñigo 2003 [62] Grinyó 2008
[109] Ochsner 2002 [64] Pawlik 2008
[102] Morgun 2003 [63] Mendoza-Carrera 2008
[84] McDaniel 2003 [77] Tajik 2006
[92] Melk 2003 [78] Satoh 2007
[49] Lee 2004 [107] Cho 2008
[47] Müller-Steinhardt 2002 [79] Azarpira 2008
[104] Müller-Steinhardt 2004 [50] Israni 2008
[75] Uboldi de Capei 2004 [33] Singh 2009
[67] Wramner 2004 [85] Lobashevsky 2009
[27] Mytilineos 2004 [6] Martin 2009
[42] Hoffman 2004 [100] Krajewska 2009
[59] Park 2004 [86] Omrani 2010
[44] Alakulppi 2004 [80] Khan 2010
[110] Chow 2005 [54] Sánchez-Velasco 2010
[9] Dmitrienko 2005 [87] Crispim 2010
[45] Loucaidou 2005 [81] Oetting 2011
[60] Pawlik 2005 [88] Zibar 2011
[72] Tinckam 2005 [82] Kocierz 2011
[21] Lacha 2005 [89] Karimi 2012
[101] Pawlik 2005 [28] Jiménez-Sousa 2012
[99] Manchanda 2006 [112] Park 2011
[106] Hueso 2006 [94] Seyhun 2012
[70] Gendzekhadze 2006 [73] Mandegary 2013
[76] Azarpira 2006 [68] Dhaouadi 2013
[93] Amirzargar 2007 [105] La Manna 2013
[111] Li 2007 [61] El-Gezawy 2013
[43] Alakulppi 2008 [83] Gaafar 2014
[52] Breulmann 2007 [95] Chen 2014

Authors, ordered by year published.
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2.3. Genes related to the innate immune response

Proteins of the innate immune systemmay affect the longevity of the
transplanted organ. Toll Like Receptors (TLRs) may be activated in a
variety of circumstances. Ischemia-reperfusion creates a milieu of in-
flammation in the organ producing “danger signals” that activate TLRs,
leading to an increased production of mRNA levels of certain cytokines
(IL-1, IL-6, IL-8, IL-10 and IFNγ).

Furthermore, TLR expression of antigen presenting cells (APCs) may
regulate the co-stimulatory signal and consequently influence the acti-
vation of the antigen-specific adaptive immune response [16]. The TLR
family is composed of 11 members, activating different intracellular
events through signal transduction: production of cytokines,
chemokines and cellularmembrane proteins related to the inflammato-
ry responses. TLR4 and its co-receptor CD14, are believed to initiate in-
flammation and tissue injury by responding to many various ligands
(CD14 recognizes bacterial components) [17]. The complement system
contributes an important element of the innate immune system, but
also plays a role in adaptive immunity: complement component 3
(C3) plays a central role in the activation cascade. Polymorphisms in
TLR2, TLR4, TLR9, CD14 and C3 have been tested for associations with
kidney transplant outcomes (see Table 3 for references).

Two cytokines involved in the innate immune response and which
have been tested for association in renal transplantation are IL-1 and
IL-6 (Tables 2 and 3).

The pro-inflammatory cytokine IL-1 exists on two major isoforms:
IL-1α and IL-1β, coded by IL1A and IL1B respectively. IL-1α is translated
into a biologically active form, whereas IL-1β has no biological activity
until it is processed by caspase-1.

The IL-1 receptor antagonist, IL1RA (coded by IL1RN) is an IL1 signal
regulator: it is produced in response to the same stimuli that lead to IL-1
production.

IL-6 has been the focus of numerous association studies (Tables 2
and 3). It is multifunctional, involved in leukocyte trafficking, T-cell
proliferation, B-cell differentiation and survival. It is produced by
endothelial cells, fibroblasts, monocytes, and macrophages in response
to different stimuli during systemic inflammation (including IL-1,
IL-17 and TNFα).

2.4. Genes related to the effector phase of rejection (graft infiltration and
injury)

2.4.1. Genes related to the graft infiltration
The infiltration of leukocytes into the site of tissue damage is an im-

portant part of the allograft rejection process. Extravasation of leuko-
cytes from the blood to the site of inflammation is regulated by
several protein families, including selectins, integrins, chemokines and
chemokine receptors, whose expression is upregulated at the site of
inflammation.

The interaction between selectins is the first step in the contact be-
tween the leukocyte and the blood vessel, allowing to the rolling of
the immune cell along the vascular endothelium at the inflammation
area. Endothelial cells express E-selectin (coded by SELE), while
leucocytes express L-selectin (coded by SELL). Two groups explored
the influence of the variability in SELE and SELL on acute renal rejection
[18,19] (Table 3).

Subsequent interaction between chemokines and their receptors
induces strong adhesion of leukocytes with endothelial cells.

The different roles and involvement of chemokines and their recep-
tors in kidney diseases have been reviewed by Panzer and colleagues
[20]. Two main families will be discussed here: the C–X–C and the C–C
chemokine family (whose genes cluster at chromosome 14 and 17
respectively). Each chemokine has different primary target cells. For
example, CCL2 (also known asMCP-1) targets monocytes, T cells, baso-
phils, and natural killer (NK) cells, whereas CCL5 (also known as
RANTES) targets eosinophils or basophils. The genetic variability of
these chemokines and theirs receptors has been studied in the context
of deterioration of graft function (CCL5 and CCL2) [21], recurrent acute
rejection (CCL5) [22] and premature kidney graft failure (CCL2) [23]
(see Table 3).

Genes coding for Intercellular Adhesion Molecule 1 (ICAM1) and
vascular cell adhesion molecule-1 (VCAM-1) have also been identified
as candidates and explored (see Table 3 for references).

In addition to it's well known role in vasculogenesis and angiogene-
sis, vascular endothelial growth factor (VEGF) contributes to the local
inflammatory processes that facilitate leukocyte infiltration. Several
authors have investigated VEGFA as a candidate gene in the context of
kidney transplantation (see Table 3 for references).

2.4.2. Genes involved in allograft injuries
Allograft destruction by activated T cells occurs via two major cyto-

toxic mechanisms: the release of perforin/granzyme in cytoplasmic
granules of CD8+ CTLs and NK cells, and through the Fas/Fas ligand
system in CD4+ CTLs. Activated macrophages, neutrophils and eosino-
phils contribute additionally.

The binding of Fas to its ligand (FasL) results in trimerization of Fas
and apoptosis of Fas-positive cells. Increased expression of cell-surface
Fas has been observed in acute rejection [24]. At least one study has in-
vestigated FAS as a candidate gene in kidney transplantation (Table 3).

IFNγ is produced by both adaptive and innate immune cells (e.g. NK
cells, NKT cells,macrophages,myelomonocytic cells, TH1 cells, cytotoxic
T lymphocytes, and B cells) and has distinct roles: on the one hand, it
promotes the development of the TH1 response, regulates MHC class I,
II and antigen presentation. On the other hand, it activates macro-
phages, the cytotoxic activities of other cells, and induces apoptosis
[25]. It may contribute to the severity of the rejection episode by
stimulating neopterin by monocytes derived macrophages, which are
also effectors of tissue damage in the acute rejection process [26]. Asso-
ciation studies with this gene are reported in Table 2 and discussed
below.

3. Association between genetic variation in immune response-
related genes and outcomes in kidney transplantation

A very large number of short genetic variations (mostly SNPs and
short insertion/deletions) in the above-mentioned genes have been
studied in the context of success of the kidney allograft. In most cases
those polymorphisms have been purported to have functional
consequences, however these are likely to be context specific. Many
candidate polymorphisms have been ascribed phenotypes and inheri-
tance models based on specific in vitro or in vivo scenarios, which
may not be relevant in the context of solid organ transplantation.

Much of this work in determining polymorphism candidates was
performed prior to the Human Genome and HapMap Projects and has
lead to a vast body of work using the same loci: this work continues
despite the opportunities that these projects provide, and the choice
of candidate polymorphism to represent these justified candidate
genes might not be optimal. Furthermore, even if some of the polymor-
phisms in these candidate loci do indeed have functional and measur-
able consequences, for the most part, at present, none that have been
replicated have emerged to impart an effect size that would lead to a
clinical consequence with utility as a marker to predict outcomes.
Below we focus on studies with a large number of cases for the
phenotype studied: we arbitrarily chose approximately 100 cases as a
threshold. This arbitrary choice reflects a number we thought was sub-
stantial. More precise calculations based on power depend on theminor
allele frequency of each variant (which differs between loci) and some
idea of effect size (which is often unknown), thus would be difficult to
achieve.

Table 2 lists the genetic variations most commonly investigated.
They are located in a panel of 9 genes. Table 3 lists the less commonly
studied loci.
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3.1. Positive associations in kidney transplant recipients

Perhaps the largest cohort in a single publication to-date involved
2298 primary transplant recipients and 1901 repeat transplants [27].

Of the primary transplant recipients, there were presumably 237
cases of graft failure after the first year, and of the repeat transplant
288, though these numbers were extrapolated from the presented per-
centages of graft survival and may not be exact due to censorship for
death. Nonetheless, this represents a very large number of cases
among published reports on this topic. This work was performed by
the Collaborative Transplant Study group, an international registry.
Only Caucasian participants were included, and all genotyped loci
Table 3
Polymorphic loci in immune system genes, studied with respect to outcomes of success in the c
thors. Common names of loci are listed as reported by authors. All attempts were made to acc

Common name dbSNP

Cytokines and receptors
IL1R1 −970 C/T
IL1R1 pst1 1970 C/T rs2234650
IL1RA 86 bp VNTR
IL1RN mspa1 11100 T/C rs315952
IL1RN VNTR 240/410 (intron 2)
IL1RN A/G rs2234676
IL1RN C/T rs419598
IL2 + 166 G/T rs2069763
IL2–IL21 intergenic rs6822844
IL2RB c.1173C/A rs228942
IL2RB c.750C/T rs228953
IL3 C132T, Pro27Ser rs40401
IL3 (−1107 from 5′UTR) rs181781
IL3 (−1484 from 5′UTR) rs2073506
IL4 1098 T/G rs2243248
IL4 33 T/C rs2070874
IL4 VNTR B1B1/B2B2
IL4R +1902 G/A, Q576R Gln/Arg rs1801275
IL6 − 572 G/A rs1800796
IL6 − 597 G/C rs1800797
IL6 + 565 G/A, nt565 rs1800797
IL6 3247 G/A
IL8 -251 A/T rs 4073
CXCR1 −2668 G/A rs2671222
CXCR2 −8939 C/T rs4674258
CXCR2 1208 T/C rs 1126579
IL10 A rs3024493
IL10 A rs1554286
IL10 A rs2222202
IL10 C rs3024498
IL10 C rs1878672
IL10 G rs3021094
IL10 T rs3024494
IL10 −851 C/T rs1800894
IL10.G microsatelites
IL10.R microsatelites
IL12B -1188 A/C rs3212227
IL17 −197 A/G rs2275913
IL17F 6329 G/A rs766748
IL17F −1507 G/A rs1889570
IL17F 7384 A/G rs2397084
IL17F 7470 G/A rs11465553
IL17F 7489 A/G rs763780
IL18 −137 G/C rs187238
IL18 −607 C/A rs1946518
IL21 5250 C/T rs4833837
IL21 + 1472 G/T rs2055979
IL23R c.309 C/A rs10889677
TNFA −1031, −1032 T/C rs1799964
TNFA −238 G/A rs361525
TNFA −857, −859 C/T rs1799724
TNFA −863, −865 C/A rs1800630
TNFA +488 A/G
TNFA A rs3091257
TNFA a microsatellite
TNFA d microsatellite
exhibited Hardy–Weinberg equilibrium. The authors grouped patients
into presumed phenotypes of cytokine expression levels based on IL10
haplotypes (comprising three SNPs: rs1800896 (−1082), rs3021097
(−819) and rs1800872 (−592)), two TGFB1 SNPs in codon 10
(rs1800470; c10) and 25 (rs1800471; c25), one SNP in TNFA
(rs1800629; −308) and one in IL4R (rs1801275: +1902).

No associations between the different presumed phenotypes and
graft survival were found in first transplant recipients for the loci tested
([27] in Tables 2 and 3). Repeat transplant recipients with the TNFA
rs1800629 (−308) A/A “high producer” genotype presented lower
graft survival. This was significant at both 1 and 3 years post-
transplant following correction for multiple testing in univariate
ontext of kidney transplantation. Positive associations were considered as reported by au-
urately retrieve rs identifiers for loci in order to consolidate reports.

No association Associations

[45]
[40,2,75,85,80]

[99]
[40,2,75,85,80]
[46]
[28]
[28]
[75,62,85,112] [94]
[113]
[95] [112]
[95] [112]

[114]
[114]
[114]

[75,93,33,28,83]
[33,28,83] [75,93]
[46]
[40,2,75,27,85,28]
[28] [104]

[104]
[75,28,33,83]
[40]

[33]
[18]

[18]
[18]
[50]
[50]
[50]
[50]
[50]
[50]
[50]
[62]

[115] (G12)
[115] (G12)
[75,78,80,26,116] [85]
[12]
[13]
[13]
[13]
[13]

[13]
[117] [30,118]

[30,117]
[12]
[12]

[12]
[59,45]
[40,2,75,27,59,78,85–87]
[59,45]
[59,45]
[2,40]
[50]

[96] (a9), [119] (a9)
[96] [119] (4)



Table 3 (continued)

Common name dbSNP No association Associations

TNFA G rs3093662 [50] [50] (uncorrected)
LTA 249 A/G (intron 1) rs909253 [2,40]
LTA 365 C/G (intron 1) rs746868 [2,40]
LTA 720 C/A (exon 3) rs1041981 [2,40]
TGFB1 −509 C/T rs1800469 [2,40,78,107] [108]
TGFB1 −880 G/A [2,40]
TGFB1 −800 G/A rs1800468 [108]
TGFB1 A rs1800472 [50]
TGFB1 C rs1982073 [50]
TGFB1 C-del (deletion) [46]
TGFBR2 C/G promoter rs764522
TGFBR2 G/A promoter rs3087465 [120]
TGFBR2 Asn389Asn (exon 3 ) rs2228048 [120]
IFNG12bp microsatelite rs3138557 [58,90,9] [97] (12CA), [63] (12CA)

Chemokines and receptors
CCL2 (MCP-1) −2518 G/A rs1024611 [61,53] [21,23,121]
CCL2 C/T rs4586 [28]
CCL5 (RANTES) −109 T/C [53] [21]
CCL5 (RANTES) −28 C/G rs2280788 [21,53,22]
CCL5 (RANTES) −403 G/A rs2107538 [21,53,28] [22]
CCL5 (RANTES) In1.1 T/C (intron 1) rs2280789 [22]
CCR2 V64I, +190G/A, +/64I rs1799864 [53,23,42,121,122] [33,34,37,19,123,36]
CCR5 −32, delta32, Δ32 rs333 [53,33,34,37,35,19,123,122,36] [87,32]
CCR5 −59029 A/G [19,123,36] [34,42,37,35]
CXCR4 C/T rs2228014 [124]
CX3CR1 V249I [34]
CX3CR1 T280M [34]
SDF1 G/A rs1801157 [124]

Co-stimulatory molecules
CTLA4 −1147 C/T rs16840252 [125]
CTLA4 +9 A/G, Thr17Ala rs231775 [9,10] [70,125,126]
CTLA4 −1661 A/G rs4553808 [70]
CTLA4 −1722 T/C rs733618 [70]
CTLA4 −318 C/T rs5742909 [9,70,125]
CTLA4 (AT)n (exon 3) 22 alleles [127]
CD28 +17 T/C IVS3 rs3116496 [8]
CD40LG 21-27 bp microsatelite [9]

Adhesion molecules
ICAM1 G/A exon 6 [19]
ICAM1 R241G, Gly152Arg rs1799969 [63,87,28]
ICAM1 A/G E469K, Lys469Glu rs5498 [63,87,28] [128]
ICAM1 G/R (exon 4) [19]
VCAM1 T/ C rs3170794 [128]
VCAM1 T/ C rs1041163 [128]
SELE 1402 C/T, His468Tyr rs5368 [18]
SELE G/T (exon 2) [19]
SELE 128 S/R, Ser149Arg (exon 4) [19]
SELE 554 L/F, Leu575Phe (exon 11) [19]
SELL −206 F/L, Phe206Leu rs1131498 [19]
SELL −642 A/G rs2205849 [18]

Innate immune system
C3 Arg80Gly, S/F [51]
TLR2 A/T (−16934 ) rs4696480 [28]
TLR4 C/T (Thr397Ile) rs4986791 [28]
TLR4 D299G, Asp299Gly [129,17] [130,131]
TLR4 T399I, Thr399Ile [129] [130,131]
TLR9 −1486 T/C rs187084 [132]
TLR9 2848 G/A rs352140 [132]
CD14 −159 C/T [17]
CD14 −260 T/C rs2569190 [133]

T-cell activation/regulation
CIITA −168 A/G rs3087456 [6]
CIITA 1614 G/C rs4774 [6]
PTPN22 1858 C/T rs2476601 [10]

Other
FAS -670 G/A [105]
PTPRC (CD45) 77 C/G (exon 4) rs17612648 [9]
VEGFA −1154 A/G rs1570360 [31] [29,30]
VEGFA −2578 C/A rs699947 [28,29,31,30]
VEGFA −460 T/C rs833061 [28]
VEGFA −7 C/T rs25648 [31]
VEGFA 936 C/T 3′UTR [39]
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analyses. Significance was maintained in HLA-DRB1 mismatched recip-
ients (1–2 mismatches, n = 1045) but not in matched recipients (n =
46).

In multivariate Cox regression analysis the TNFA rs1800629 (−308)
A/A “high producer” genotype was associated with relative risk of 1.96
(95% CI: 1.23–3.11; p = 0.0047), presumably after the first year, and
remained significant by the third year. TGFB1 “high producer” haplo-
type, versus “intermediate” and “low producer” haplotypes combined
presented higher transplant survival, but only after the first year. In
the Cox model this represented a relative risk of 1.49 (95% CI:
1.15–1.92; p = 0.0026). The authors acknowledge the limitation of
working with data from a large registry, and that testing clinical out-
comes such as acute rejection or delayed graft function is difficult as
they are unverifiable: for this reason graft survival with censorship
for loss to follow-up was the approach taken. Furthermore, details
of variables, including acute rejection and delayed graft function,
would not have been included in multivariable analyses for graft
survival.

Jiménez-Sousa and colleagues explored chronic renal allograft dys-
function, defined as ≥30% of the inverse of creatinine after the third
month of transplantation, versus the highest value of the first three
months (158 cases; 118 controls) [28]. Thirty-eight loci in 10 immune
related genes were genotyped ([28] in Tables 2 and 3). The loci were
primarily in promoter regions, and were included if functional conse-
quences could be determined using a variety of in silico methods.
They found three significant associations, following exploration of
possible genetic models of inheritance, and adjusted findings in multi-
variable analysis.
Notes to Table 3:
Authors from Table 2 that tested additional loci are included here using the same order. Additi
[113] Asano 1997.
[114] Kobayashi 1999.
[32] Fischereder 2001.
[29] Shahbazi 2001.
[34] Abdi 2002.
[23] Krüger 2002.
[42] Hoffmann 2004.
[115] Viklický 2004.
[31] Lemos 2005.
[116] Ducloux 2005.
[51] Brown 2006.
[117] Palmer 2006.
[118] Kolesar 2007.
[22] Krüger 2007.
[119] Nogueira 2007.
[37] Yigit 2007.
[39] Günesacar 2007.
[26] Chin 2008.
[120] Kang 2008.
[121] Kim 2008.
[122] Hoffmann 2009.
[35] Cha 2009.
[123] Kim 2010.
[124] Krichen 2010.
[125] Lee 2010.
[18] Ro 2011.
[19] Krichen 2011.
[126] Lee 2011.
[127] Gorgi 2011.
[30] Mittal 2011.
[128] Azmandian 2012.
[36] Firasat 2012.
[129] Domański 2012.
[12] Karimi 2014.
[130] Kim 2013.
[10] Kłoda 2013.
[131] Kłoda b 2013.
[132] Kim b 2013.
[17] Krichen 2013
[133] Kwiatkowska 2014.
[13] Park 2014.
[8] Pawlik 2014.
TGFB1 rs1800471 (G/C versus G/G) and VEGFA rs699947 (A/C–A/A
versus C/C) associated with an increased risk of chronic renal allograft
dysfunction (OR = 2.65, 95% CI: 1.09-6.47; p = 0.025 and OR = 1.80,
95% CI: 1.02–3.20; p = 0.044, respectively).

Correction for multiple testingwas performed by the Stratified False
Discovery Rate software. VEGFA rs699947 has been found to associate
with other kidney transplant outcomes in smaller cohorts and with
varying methodologies in analyses among reports (acute rejection:
[29,30]; graft survival: [31]; see Table 3). These authors did not apply
corrections for multiple tests.

Fischereder et al. report improved graft survival in CCR5 Δ32 (i.e. a
deletion of 32 nucleotides in CCR5; rs333) homozygous carriers
compared to heterozygotes and non carriers: only one of 21 (4.7%) indi-
viduals lost their graft in the follow up period, compared to 87 of 555 in
the other group (15.7%) (HR = 0.367, 95% CI: 0.157–0.859; log-rank
p = 0.033) [32] (see Table 3). However, from the Kaplan–Meier plot
presented it is clear that a substantial proportion of both groups are
not represented in data beyond 5 years of follow up, and at this time
point it is difficult to tell whether the difference in graft survival
between the groups would have been significant.

It also raises the question whether bias occurred in following the
known CCR5Δ32 homozygous carriers more closely compared to larger
cohort. The frequency of rejection episodes was similar between the
two groups. The deletion is rare and several groups reporting lack of
associations did not detect homozygous carriers [17,33–37] (Table 3).

Oetting et al. performed a validation study for frequently 21 reported
loci (see Tables 2 and 3 for loci related to the immune genes) [38]. A
total of 585 patients were genotyped, and there were 98 cases of acute
onal reports are from the following authors:
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rejection in the first 12 months post-transplantation. Loci were test-
ed at three time-points to acute rejection (1 month, 6 months 12
months).

The authors make a case against correction for multiple testing, and
instead applied a sum of squared score test, however this approach
permits a p value threshold of 0.0615 and is unconvincing. For immune
related genes, CCR5 Δ32 associated with acute rejection at six months
only. While Fischereder et al. report a protective effect of this deletion
for homozygous carriers (Del/Del), Oetting et al. grouped heterozygous
and homozygous carriers (Wt/Wt versusWt/Del or Del/Del, OR = 2.33,
95% CI: 1.08–5.02; p = 0.0316). Both findings are in the same direction
for a protective effect of the variant (Δ32) allele.

Gunesacar et al. genotyped the single SNP VEGFA rs3025039 (report-
ed as+936 C/T), located in the 3′ untranslated region in cases who had
lost their graft in the first year post-transplant, and controls with a well
functioning graft at the same time point (n = 265 cases, n = 290 con-
trols) [39]. Subjects were sourced from the Collaborative Transplant
Study bio-bank, were Caucasian and were all primary kidney recipients
receiving deceased donor kidneys.

A protective effect was detected among heterozygotes at this locus
(OR=0.57, 95%CI: 0.35–0.91; p=0.019). A dose effectwasnot evident
among TT carriers, but may be due to lack of power.

3.2. Positive associations in donor and recipient cohorts

Marshall et al. analyzed 22 polymorphisms in 11 cytokine genes in
kidney transplant recipients (114 cases, 95 controls) [40] and 20 poly-
morphisms in 11 genes in cadaveric donors (77 cases, 68 controls)
[41] (see Tables 2 and 3).

The phenotype considered was presence or absence of acute rejec-
tion in the first 30 days post transplantation: although this phenotype
is somewhat limited and only applicable to the immediate post trans-
plant period, the large number of cases defined by strict clinical criteria
give weight to the findings, though the results are not generalizable. To
cover the large number of tests considering various genetic models and
haplotype combinations, the authors applied a two-set approach as a
correction. No associations were found for recipients. In donors,
however, the IL6 promoter SNP rs1800795 (known as –174) associated
with acute rejection (C/C vs G/C and G/G genotypes: OR = 8.67; p =
0.0002). Thisfindingwas significant regardless of HLAmismatch group-
ing. The two-set approach affirmed relevance in the context of multiple
testing. In sub-group analyses steroid responsive rejections maintained
significance, however steroid resistant rejection demonstrated an
elevated degree of risk (compared to no rejection; cases = 33,
controls = 68; OR = 15.96; p = 0.000007). Fifty-six donors provided
kidneys to two distinct recipients: for the primary analysis one recipient
was included and selected in a random fashion. The 56 remaining recip-
ients allowed testing of the outcome to determine a positive predictive
value in an independent, albeit small, group: the finding remained
significant (PPV = 78%; p = 0.02).

The IL6 rs1800795 (−174) C allele is reported to correspond to de-
creased IL-6 secretion, however the authors argue that linking genotype
to in vivo phenotype is not straight forward, especially given its pleiotro-
pic effects. They present an interesting set of arguments, but what is
clear is that the finding is compelling.

Other authors that have tested this locus in donors did not find an
association for acute rejection (see Table 2) in relatively large (N100
cases) [42,43] or in smaller [44–46] studies, thus it may be specific for
the immediate post-transplant period, and for solely cadaver donors.
Despite a small case number for the phenotype studied (n = 39, graft
loss), Müller-Steinhardt and colleagues had complete 3 year data for
their cohort of 158 kidney recipients [47]. They found IL6 rs1800795
(−174) C allele carrying recipients (C/C–G/C) were at an increased
risk (Bonferroni corrected p = 0.047). When this group re-examined
their data testing additional IL6 promoter polymorphisms (rs1800797:
−597, rs1800796: −572) the risk estimate was strengthened:
individuals homozygous for the wild-type allele at all three loci (G–G–
G haplotype) exhibited superior graft survival at three years. Those
with a mutant allele at any locus were at an 8-fold increased risk (95%
CI: 1.8–34.6; p = 0.006).

Experimental data for the functional consequence of these loci dem-
onstrates a complex scenario, and that genotyping IL6 rs1800795
(−174) alone might miss the bigger picture [48]. Marshall et al. note
that rs1800795 is located near two steroid response elements, and
hence may influence outcomes in a context specific manner [40].

The effect size of IL6 SNPs seemsnotable and replication in an appro-
priate sized cohort might prove worthwhile to determine if this locus
will be a clinically useful predictive marker.

Lee et al. tested three loci IL1A rs1800587 (−889C/T), IL4 rs2243250
(−590 C/T), TNFA rs1800629 (−308 G/A) (recipients: cases = 140,
controls = 137; cadaveric donors: 122 = cases, 111 = controls) [49].
Cases were defined as having at least one acute rejection episode in
the first post-transplant year, while controls had no such events in the
first year. No associationswere found for any of the loci. Sub-group anal-
yses among HLA-DR mismatched transplants revealed TNFA rs1800629
(−308) A allele, only among donors, conferred an increased risk for
rejection (cases = 75, controls = 45; RR = 1.4, p = 0.0395): a two-
set approach was used to account for multiple testing.

Israni et al. constructed an impressive cross-sectional cohort
comprising 616 recipients from the Delaware Valley region, and 349 re-
cipients receiving the contralateral kidney identified through theUnited
States Renal Data System (USRDS) registry [50]. The total cohort
comprised 965 recipients and 512 donors. The phenotype examined
was delayed graft function, defined as requiring dialysis in the first
week post-transplant (up to 326 events were analyzed, depending on
the loci tested). While most authors select candidate polymorphisms
based on literature reports, this group attempted a tagging approach
when possible, and aimed for loci with a minor allele frequency N 10%
(number of loci per gene: HMOX1: 9, IL10: 7, TNFA: 3, TP53: 7, TGFB1:
2). TGFB1 loci were selected based on reported functional consequence
(HMOX1 and TP53 are apoptosis related genes). Only donorswere geno-
typed: 256 donors contributed both kidneys (representing 512 recipi-
ents in the final analysis). Of these, 57% of recipient pairs had
concordant outcomes: the authors report this as unexpected due to
chance (p = 0.004, binomial exact test).

TNFA rs3093662G versus A allele associatedwith delayed graft func-
tion followingmultivariable analysis (OR=1.85, 95%CI: 1.16–2.96; p=
0.01), however this did not hold when a correction for multiple testing
was applied.

Brown et al. genotyped the complement C3 rs2230199 SNP
(Arg80Gly), designated Slow (S) and Fast (F) respectively, for the
difference in electrophoretic motility imparted on the protein due
to the amino acid change, in 513 pairs of Caucasian donors and recip-
ients [51]. Donor genotypes proved of importance, but only when re-
cipients did not carry themutant allele: kidneys from donors with C3
S/S versus C3 F/F or F/S genotypes exhibited improved graft survival
(hazard ratio = 2.21, 95% CI: 1.04–4.72; p = 0.04).

Other notable cohorts, exhibiting a large number of cases of the phe-
notype tested andwhere donorswere genotyped include the ones from
Hoffmann et al. [42] (donors only, loci in IL2, IL6, IL10, TNFA, TGFB1, IFNG,
CCR2, CCR5; Tables 2 and 3) and Firasat et al. [36] (donors and recipients,
loci in CCR2 and CCR5; Table 3), however both papers suffer poor
reporting or lack of strategy to address multiple testing. Hoffmann
et al. genotyped 12 loci in 244 donors and report associations between
TGFB1 codon 10 variant (rs1800470) and CCR5 rs1799987 (59029G/A)
and acute rejection (approximately 109 episodes; p = 0.027 and p =
0.039 respectively) and IFNG rs2430561 (+874A/T) and biopsy-
proven chronic allograft nephropathy (p b 0.008) [42]. The authors
report applying a Bonferroni–Holm correction with Fisher's exact test
in the methods, however the results that are reported used chi-square,
linear regression and Kaplan–Meier methods and it is unclear how
multiple testing was ultimately accounted for.
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Firasat et al. genotyped up to 606 pairs donors and recipients (n =
157 episodes of rejection, biopsy proven) and report the G/G wild
type genotype of CCR2 rs1799864 (V64I) in recipients to be associated
with rejection (OR = 2.14, 95% CI = 1.2–3.7, p = 0.009): correction
for multiple testing was not addressed [36].

3.3. Large cohorts with no associations at loci tested

We applied similar criteria for reports on lack of association, namely
a large number of cases and a strategy to address multiple tests.
Dmitrienko et al. analyzed loci in CTLA4, TGFB1, IL10 or TNFA, and dinu-
cleotide repeat polymorphisms in IFNG and CD40L, in 100 acute rejec-
tion cases, and 100 rejection free renal transplant recipients
(Caucasian first kidney recipients, for events occurring in the first
post-transplant year; Tables 2 and 3) [9]. No associations were found
with acute rejection for single loci or allelic analyses for dinucleotide re-
peats in multivariable analyses. Associations with the CD40L -147 allele
(rs not reported) and TGFB1 c25 (rs1800471) and graft failure, a second-
ary outcome measure, require confirmation as the authors report, par-
ticularly as this phenotype was not used for constructing the case
control cohort. Breulmann and colleagues genotyped IL10 rs1800896
(−1082), TNFA rs1800629 (−308), IL6 rs1800795 (−174), grouping
by predicted phenotypes at two levels, in a large cohort (224 consecu-
tive patients, rejection cases = 115, graft failure = 33) and found no
significant associations with rejection [52] (Tables 2 and 3). Alakulppi
et al. typed TNFA rs1800629 (−308), IL10 rs1800872 (−592),
rs1800896 (−1082) and IL6 rs1800795 (−174), as well as other loci
in genes with a functional role in thrombogenesis (total of 11 loci, see
Tables 2 and 3 for immune genes) [43]. They included 772 recipients,
and 462 donors; the number of cases with rejection was 122.

Correction for multiple testing was applied and no locus was found
associated with rejection, or the other clinical outcomes tested, for nei-
ther donors nor recipients. Brabcova and colleagues typed 9 loci in im-
mune system genes TNFA rs1800629 (−308), CCL2 rs1024611
(−2518), CCL5 rs2107538 (−403), −109 (no rs reported) and
rs2280788 (−28), CCR2 rs1799864 (+190G/A), IFNG rs2430561
(+874A/T), TGFB1 rs1800470 (c10) and rs1800471 (c25) (total num-
ber of recipients = 436; chronic allograft nephropathy cases = 122,
cases with sub-clinical rejection = 38, acute rejection cases = 190),
and found no associations [53] (Tables 2 and 3). Sánchez-Velasco and
colleagues genotyped IL6 rs1800795 (−174) in 335 kidney recipients
(cases of acute rejection = 133, cases of chronic allograft
nephropathy = 115) and found no associations [54] (Tables 2 and 3).

3.4. Meta-analyses of published associations

To make sense of this vast body of literature, several authors have
performed meta-analyses at the most frequently studied loci.

Thakkinstian and colleagues attempted to achieve individual patient
data for their meta-analysis in the kidney transplant setting by petition-
ing authors [55]. Five of 13 invited authors collaborated: these thirteen
papers had passed pre-determined selection criteria. There was suffi-
cient data to explore the effect of TGFB1 rs1800470 (c10) (data
representing 5 studies; 334 cases/325 controls), TGFB1 rs1800471
(c25) (4 studies, 234 cases/205 controls), TNFA rs1800629 (−308)
(4 studies, 350 cases/427 controls), IL10 rs1800896 (−1082; 3 studies,
122 cases/117 controls) on transplant outcome. ‘Poor outcome’ was a
composite of acute graft rejection, chronic allograft nephropathy, graft
failure and chronic graft rejection thus muddying analyses. No associa-
tionwas foundwith any of these polymorphisms in univariate analyses.

Age ≥ 45, and ≥3 HLAmismatches associated with poor outcomes: a
fixed-effect logistic model including these covariables revealed that
TGFB1 rs1800470 (c10) T/C vs T/T genotype increased risk, OR 1.5
(95% CI: OR: 1.0–2.2; p = 0.034; 325 cases, 334 controls). No effect on
risk was foundwhen C/C was compared to T/T carries making interpre-
tation of this finding difficult (Cochrane Armitage test for trend, lack of
dose effect despite a substantial number of CC heterozygotes). For IL10
rs1800896 (−1082), this group included ORs from three additional
studies to the individual patient data, achieving 352 cases and 302 con-
trols. With and without adjustment for age and HLA mismatches, there
wasno significant association at this locus, however the authors report a
trend: a minor dose effect can be observed, but is likely due to chance.
Correction for multiple testing was not reported. Significant findings
were reported for haplotype analyses of TGFB1 and IL10, but are
unconvincing.

Wu et al. performed a meta-analysis of loci in the IL4 gene, limiting
to studies reporting acute rejection, and explored various modes of in-
heritance (multiplicativemodel, CochraneArmitage test for trend, dom-
inant and recessivemodels) [56]. Pooled analyses (including heart, liver
and kidney transplant) revealed no association for recipient IL4
rs2243250 (−590 C/T) (492 cases and 721 controls; 7 studies of kidney,
2 of liver and 1 of heart transplants); recipient IL4 rs2070874 (−33C/T)
(98 cases and 220 controls; 2 studies in kidney, 1 in liver); and donor IL4
rs2243250 (−590 C/T; 298 cases and 390 controls; in kidney (n = 4
studies) 4 and heart (n = 1) transplants). No significant associations
emerged in sub-group analyses by ethnicity (Asian and Caucasian).
Most of the data represented kidney transplant recipients, and there
were no significant findings for these SNPs.

IL4 rs2243250 (−590 C/T) was associated with acute rejection of
liver transplants (T/T + C/T vs. C/C: OR = 0.36, 95% CI 0.14–0.90; 77
cases, 152 controls). The p value for this association is not reported,
but rather a p value for heterogeneity, which the authors deem accept-
able. At the same time, it is not clear whether corrections for multiple
testing were applied.

Ge and colleagues performed a meta-analysis of studies involving
TGFB1 c10 (rs1800470) and c25 (rs1800471) loci and acute rejection
[57]. Among kidney transplant recipients (9 studies, 123 cases, 301 con-
trols) there was no association for purported intermediate versus high
production phenotypes. The significant findings reported globally
were influenced by two studies in heart transplant recipients.
3.5. Notable associations: TNFA rs1800629 (−308)

In Table 2 of the most frequently studied loci, the balance between
positive reports and negative reports of association largely favors the
negative side. The exception is TNFA rs1800629 (−308). Associations
have been found between this SNP and numerous outcomes in donors
and recipients: acute rejection, recipients [21,44,46,58–63]; graft sur-
vival, recipients [27,64]; graft survival, donors [65]; associations in sub
group analyses, recipients [66–68], associations in sub group analyses,
donors [49]; associations with other phenotypes/multiple phenotypes
[69–72]; donors: [73] (see Table 2).

Majority of reports of association implicate the TNFA rs1800629
(−308) A allele in acute rejection. While studies with a substantial
number of cases found no association with the phenotypes tested [41,
43,52,53], Mytilineos and colleagues found an almost doubled risk for
graft loss in cadaver kidney recipients, but not in primary kidney recip-
ients, independent of HLAmismatching, and in a large Caucasian cohort
[27]. In situations where TNFA rs1800629 (−308) has associated with
an outcome in HLA mismatched subgroups, donor type may have
been a primary reason.

Some authors report synergy for combinations of loci in TNFA and
IL10 in recipients: the original paper from Sankaran et al. is frequently
reported and derives from an analysis in a cohort of 100 recipients
and donors, where a large proportion received treatment for rejection
[66]. The authors group controls as 0 or 1 rejection episode (n = 74),
and cases as 2 or more (n = 21). All significant findings were in
subgroup analyses, and in recipients only, and although justified by
physiologically plausible explanations, there was no apparent correc-
tion for multiple testing. Marshall et al. did not corroborate these
combinations in a larger cohort [40].
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In their excellent review of cytokine gene polymorphisms and their
functionality, Smith et al. present a case that the TNFA rs1800629
(−308) might not have a functional consequence, and might instead
be a marker in linkage disequilibrium [48]. While there are numerous
TNFA promoter polymorphisms, the authors present the possibility
through reports of interesting experimental work that the functional
polymorphism might even occur in the nearby LTA gene. If this locus
does indeed represent a different functional polymorphism in TNFA or
a nearby gene, ethnic origin is crucial and may be one of the reasons
for discrepancies in findings.

4. Conclusion

The literature dedicated to determining associations between
kidney transplant outcomes and genetic polymorphisms in immune
system genes suffers from positive reports of associations, often from
underpowered studies, which might in turn represent publication
bias. We have attempted to highlight interesting findings from studies
with a large number of cases, which typically have addressed the issue
of multiple testing.

The role of the immune system in the context of transplantmedicine
in events such as acute rejection, delayed graft function, chronic
allograft dysfunction and graft survival, among others, is complex and
involves many genes. Of these, many are polymorphic, and there is a
possibility thatmultiple loci have functional consequences. Strategic se-
lection of loci may help to better interrogate candidate genes, for exam-
ple tag-SNP approaches involving loci with a minor allele frequency
greater than a threshold percentage, or in silico approaches in determin-
ing promoter and splice site variants. Typically these genes are highly
conserved, with very few examples of polymorphisms influencing the
protein sequence. Grouping rare SNPs in association studies might
help to address the issue of rarity for loci that have a confirmed func-
tional effect. However, multiple rare SNPs might not necessarily appear
in individuals so as to affect the effect size in an incremental way.

The event outcomes are complex phenotypes and likely have
variable and complex causes. Multivariable models including variables
known to affect the outcome of interest are necessary. Although it is
difficult to conceive confounding in associations related to genotype,
multivariable analyses help in adjusting the observed effect, and may
strengthen it, or reveal it to be weak.

There are various strategies to address the issue of multiple testing
including the two-set approach and Bonferroni correction. In the diffi-
culty of achieving appropriate sized case cohorts, Bonferroni correction
may be too strict, while the two-set approachmay lead to loss of power
in very small case cohorts. Retrospective cohorts are difficult to recon-
struct with complete data, and in particular lead to inadequate measure
of the phenotype/outcome of interest, whichmay be falsely recorded as
a case or unintentionally missed. Prospective cohorts require a mini-
mum 95% participation to represent the population. Cross sectional
case control selection requires that accurate data of variables known
to affect the outcome be included. While genetic loci cannot be con-
founded in the traditional sense, these variables are necessary to adjust
the measured effect size and place it in context. A case control design
has the advantage of increasing the number of cases, and thus
contributing greater power. While matching is a controversial topic, in
transplant medicine matching allows accounting for a spectrum of
variables without subsequent adjustment. Matching time-to-event in
controls is one way to approximate similar experience of immune sup-
pression and risk experience in controls.

A major concern is also to identify the most relevant phenotype to
address in genetic association studies. New immunosuppressive
regimens have considerably decreased acute rejection rates (at least in
kidney transplantation), whichmake adequately powered studies diffi-
cult to undertake in restricted transplant populations. Alternately
chronic dysfunction is an attractive phenotype to study since it ad-
dresses a particularly relevant long-term outcome. It is however very
difficult to define consensually and homogeneously. Variation in pheno-
type selection among studies is a limit for replication and the identifica-
tion of valuable markers.

We agree with other authors that a collaborative approach, with
studies based on large populations, with uniform definition of
phenotypes is warranted to reach a sufficient level of evidence [41].
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