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Abstract To every abelian subvariety of a principally polarized abelian variety (A,L) we
canonically associate a numerical class in the Néron–Severi group of A. We prove that these
classes are characterized by their intersection numbers with L; moreover, the cycle class
induced by an abelian subvariety in the Chow ring of A modulo algebraic equivalence can
be described in terms of its numerical divisor class. Over the field of complex numbers,
this correspondence gives way to an explicit description of the (coarse) moduli space that
parametrizes non-simple principally polarized abelian varieties with a fixed numerical class.

Keywords Abelian variety · Abelian subvariety · Non-simple · Néron–Severi · Humbert
surfaces

1 Introduction

For many years, mathematicians have been interested in non-simple abelian varieties.
Although the general abelian variety is simple, those that contain non-trivial abelian sub-
varieties appear frequently in nature. For example, if C and C ′ are smooth projective curves
with Jacobians J and J ′, respectively, and f : C → C ′ is a finitemorphism, then the pullback
f ∗ induces a homomorphism f ∗ : J ′ → J that has finite kernel. In particular, if g′ denotes
the genus of C ′, then J contains an abelian subvariety of dimension g′. Non-simple abelian
varieties have also been studied in the context of group actions. If G is a group that acts on
a polarized abelian variety (A,L) (that is, G acts on A by regular morphisms and g∗L is
numerically equivalent to L for every g ∈ G), then irreducible representations of G give way
to abelian subvarieties of A. This approach to studying non-simple abelian varieties has been
very successful and has produced a copious amount of interesting examples and families (see
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[9] for the general theory of group actions on abelian varieties and how they define abelian
subvarieties, as well as [4,6,11,12]).

Our point of view for studying the simplicity of abelian varieties is motivated by Kani’s
work on abelian surfaces in [8]. If (A,L) is a principally polarized abelian surface, then an
elliptic subgroup E ≤ A can be seen as a divisor, and it thus naturally induces a numerical
class in NS(A), the Néron–Severi group of A. Kani proved the following:

Theorem 1.1 (Kani) The map E �→ [E] that takes an elliptic curve on a principally polar-
ized abelian surface (A,L) to its corresponding numerical class induces a bijection between

(1) elliptic subgroups E ≤ A with (E · L) = d
(2) primitive numerical classes α ∈ NS(A) such that (α2) = 0 and (α · L) = d.

Here primitive means that the class is not a non-trivial multiple of another class. When
the dimension of A is greater than 2, this technique obviously does not work for studying
elliptic curves on A. However, if we wish to study codimension 1 abelian subvarieties, a
similar technique can be used that was studied in [1]. Concretely, if Z ≤ A is a codimension
1 abelian subvariety on a principally polarized abelian variety (ppav) of dimension n, then
the class [Z ] it defines in NS(A) is primitive and satisfies

(Z · Ln−1) > 0
(Zr · Ln−r ) = 0, r ≥ 2.

Moreover, these conditions completely characterize those numerical classes that come from
abelian subvarieties of codimension 1. If we wish to study elliptic curves on A, then we can
use the Poincaré Irreducibility Theorem that says that for every abelian subvariety X ≤ A
there exists a complementary abelian subvariety Y (that can be canonically defined using L)
such that the addition map X × Y → A is an isogeny. In particular, if E ≤ A is an elliptic
subgroup, then its complementary abelian subvariety Z E ≤ A is of codimension 1, and we
obtain a function

E �→ [Z E ] ∈ NS(A).

The following theorem was proven in [1]:

Theorem 1.2 (Auffarth) The map E �→ [Z E ] induces a bijection between

(1) elliptic subgroups E ≤ A with (E · L) = d
(2) primitive classes α ∈ NS(A) such that

(αr · Ln−r ) =
{

(n − 1)!d r = 1
0 r ≥ 2

The purpose of this paper is to generalize the previous theorems and characterize all
abelian subvarieties numerically. Assuming (A,L) to be a ppav, consider the following two
well-known facts:

(1) The Néron–Severi group is isomorphic to the group of endomorphisms on A that are
fixed by the Rosati involution

(2) For every abelian subvariety X ≤ A there exists a norm endomorphism NX ∈ End(A)

that characterizes X (see below for details).

One pleasant fact about the norm endomorphism of X is that it is fixed by the Rosati
involution, and therefore via the isomorphism from (i) we can associate to X a numerical
class δX ∈ NS(A).
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We recall that the exponent of an abelian subvariety X is the exponent of the finite group
ker(φL|X ), where for a line bundle (or numerical class) M on an abelian variety B, φM :
B → Pic0(B) = B∨ denotes the morphism x �→ t∗x M ⊗ M−1, where tx is translation by x .

It turns out that if d is the exponent of X , then δX = 1
d [N∗

XL], where NX is the norm
endomorphism of X (see Lemma 2.2 or [3, Exercise 5.6.15]). When X is an elliptic curve,
δX coincides with the class of the complementary abelian subvariety of X and therefore
the assignment X �→ δX generalizes the technique found in [1]. The principal theorems
established in [1,8] can be generalized to:

Theorem 1.3 The map X �→ 1
d [N∗

XL] gives a bijection between

(1) abelian subvarieties of dimension u and exponent d
(2) primitive classes α ∈ NS(A) that satisfy

(αr · Ln−r ) =
{

(n − r)!r !(u
r

)
dr 1 ≤ r ≤ u

0 u + 1 ≤ r ≤ n

Moreover, if Y is the complementary abelian subvariety of X in A and [Y ] is its class in the
Chow ring modulo algebraic equivalence, we have the equality

δu
X = u!(n − u)!du

(Ln−u · Y )
[Y ].

This theorem has several pleasant consequences, such as the fact that the Néron–Severi
group of a ppav along with its intersection pairing completely determine the abelian subva-
rieties that appear in A. This idea was already present in Bauer’s work [2], where he shows
that non-trivial abelian subvarieties can be detected numerically. We mention the relation
between his work and ours in Remark 2.5.

When working over the complex numbers, we show that this correspondence is quite
explicit, and show how it lets us describe the coarse moduli space of non-simple ppavs. In
particular, we relate the above theory to a moduli construction done by Debarre [5] that
describes the moduli space of non-simple ppavs. The complex case for n = 2 was studied
analytically by Humbert [7] (this is where the famous Humbert surfaces come from). The
results of Sect. 3 substantially generalize Humbert’s results.

2 Abelian subvarieties and numerical classes

Let (A,L) be a principally polarized abelian variety (ppav) of dimension n defined
over an algebraically closed field k, where L is a line bundle on A with h0(A, L) :=
dim H0(A,L) = 1. The Néron–Severi group of A is the finitely generated abelian group
NS(A) := Pic(A)/Pic0(A).

If M ∈ Pic(A), we will denote by φM the morphism A → A∨ where x �→ t∗x M ⊗ M−1.
This morphism depends only on the algebraic equivalence class of M , and so we can just
as easily define the morphism φα for any class α ∈ NS(A). Via L, we identify A with A∨,
and so we will consider φM to be an endomorphism of A. We denote by σ † the Rosati
involution of an endomorphism σ with respect to L; that is, σ † := σ∨σ where σ∨ is the dual
morphism of σ . It is well-known that NS(A) � Ends(A), where Ends(A) denotes the group
of endomorphisms of A fixed by †.

Let X ≤ A be an abelian subvariety of A, and let NX := jψL|X j∨ be the norm endo-
morphism associated to X , where j is the inclusion X ↪→ A and ψL|X is the unique isogeny
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734 R. Auffarth

X∨ → X such that ψL|X φL|X is multiplication by the exponent of the finite group ker φL|X

(the restriction of L to X gives an ample divisor on X , and so ker φL|X is finite). We define
the exponent of X to be the exponent of this group. Given an abelian subvariety X , let Y be
its complementary abelian subvariety; that is, Y is the connected component of ker NX . This
is an abelian subvariety of A and the addition map X × Y → A is an isogeny.

By [10], Theorem 10.9, if f is an endomorphism of A, then there exists a unique monic
polynomial Pf (t) ∈ Z[t] of degree 2n such that for every m ∈ Z, Pf (m) = deg( f −
m). Moreover, if p is a prime that doesn’t divide char(k), then Pf (t) is the characteristic
polynomial of the action of f on

Vp A = (Tp A) ⊗Zp Qp,

where A[pl ] denotes the group of pl -torsion points of A, Tp := lim← A[pl ] is the p-adic Tate
module of A, Zp denotes the ring of p-adic integers and Qp is the field of p-adic numbers.
We will call this polynomial the characteristic polynomial of f .

Let PX (t) denote the characteristic polynomial of NX . We see that N 2
X −d NX = 0, where

d is the exponent of X , and so the roots of PX (t) are 0 and d .

Proposition 2.1 If X ≤ A is an abelian subvariety of dimension u and exponent d, then

PX (t) = t2n−2u(t − d)2u .

Proof Let Y be the complementary abelian subvariety of X in A (defined by L). We have
the following commutative diagram:

A
(NX ,NY ) ��

NX

��

X × Y

g

��
A

(NX ,NY ) �� X × Y

where g =
(

didX 0
0 0

)
. Now (NX , NY ) is an isogeny, and so

NX = (NX , NY )−1
(

didX 0
0 0

)
(NX , NY )

in EndQ(A). In particular,

tr(NX ) = tr

(
didX 0
0 0

)
,

where tr denotes the trace function on End(A) ↪→ End(Vp). Let p be a prime such that
p 
= char(k) and such that A[p] � X ∩ Y (p exists since X ∩ Y is finite). In this case,
A[p] � X [p] ⊕ Y [p], and so

Vp A � (Tp Z ⊕ TpY ) ⊗Zp Qp � Vp Z ⊕ VpY.

It is then obvious that g acts on Vp A as

(
didX 0
0 0

)
, and so

tr(NX ) = tr

(
didX 0
0 0

)
= 2ud
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On a numerical characterization of non-simple. . . 735

(since dimQp (Tp Z) ⊗Zp Qp = 2u). Note that this argument was adapted from the argument
of [3] Corollary 5.3.10.

From our previous discussion, we have that

PX (t) = t2n−r (t − d)r =
r∑

m=0

(
r

m

)
(−d)mt2n−m .

Moreover, we have that tr(NX ) is precisely −1 times the coefficient of t2n−1. Putting every-
thing together, we get

2ud = tr(NX ) = d

(
r

1

)
= dr

and so r = 2u. ��
The key observation that allows us to study abelian subvarieties using numerical classes

is the following:

Key observation: Since NX is a symmetric endomorphism, there exists a unique numerical
class δX ∈ NS(A) such that NX = φδX .

This association then defines a function

� : {abelian subvarieties of A} → NS(A)

which we can write explicitly:

Lemma 2.2 δX = 1
d [N∗

XL].
Proof By identifying A with A∨, we have

φN∗
XL = N∨

X φLNX = N 2
X = d NX = φdδX .

The Néron–Severi group of an abelian variety is torsion free, and so the equality follows. ��
Since an abelian subvariety is determined by its norm endomorphism, we see that � is

injective. Our goal is to study the image of �. We know by the properties of norm endo-
morphisms in [3], p. 125 (the arguments there are valid over any algebraically closed field),
that

NX + NY = did,

where d is the exponent of X . In terms of numerical classes, we get that

δX = d[L] − δY ,

where [L] denotes the numerical class of L. In particular, [δX ] = −[δY ] in NS(A)/Z[L] and
so the natural function between abelian subvarieties of dimension u and abelian subvarieties
of codimension u can be seen as the inverse homomorphism.

Example 2.3 We have that δ{0} = 0 and δA = [L].
Example 2.4 If X is an elliptic subgroup of A (that is, an abelian subvariety of dimension
1), then δX corresponds to the numerical class of the complementary abelian subvariety of X
(this can be easily shown by hand, or by using the next theorem). In particular,� generalizes
the function described in [1].
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736 R. Auffarth

Remark 2.5 In [2], Bauer showed that if X is an abelian subvariety of A, then

sup{t ∈ R : L − t N∗
XL is nef} = 1

d2 ∈ Q

where d is the exponent of X (here we use additive notation for the line bundles). Moreover,
Bauer shows that this characterizes non-simple abelian varieties; that is, if (A,L) is a simple
polarized abelian variety and M ∈ Pic(A), then

sup{t ∈ R : L − t M is nef}
is always irrational. When L is a principal polarization, since

[L] − 1

d2 [N∗
XL] = [L] − 1

d
δX = 1

d
δY

where Y is the complementary abelian subvariety of X , Bauer’s result essentially says that
if δA can be written as δA = α + tβ in NS(A) ⊗ R for α nef and t maximal, then t is
rational if and only if α = 1

d δX and β = dδY for certain non-trivial complementary abelian
subvarieties X, Y ⊆ A. This shows that the existence of certain numerical classes guarantees
that A contains a non-trivial abelian subvariety. We can make this more precise with our
theory in what follows.

Our main theorem shows that abelian subvarieties are characterized by the intersection
numbers of their numerical classes.

Theorem 2.6 The map � : X �→ 1
d [N∗

XL] gives a bijection between

(1) abelian subvarieties of dimension u and exponent d
(2) primitive classes α ∈ NS(A) that satisfy

(αr · Ln−r ) =
{

(n − r)!r !(u
r

)
dr 1 ≤ r ≤ u

0 u + 1 ≤ r ≤ n

Moreover, if Y is the complementary abelian subvariety of X in A, in the Chow ring modulo
algebraic equivalence A∗(A) we have the equality

δu
X = u!(n − u)!du

(Ln−u · Y )
[Y ].

Before proving the theorem we prove a lemma.

Lemma 2.7 Let φ ∈ Ends(A) be a symmetric endomorphism with characteristic polynomial
of the form Pφ(t) = t2n−2u(t −d)2u. Then the minimal polynomial of φ is Mφ(t) = t (t −d).

Proof Let Q[φ] be the (commutative) subalgebra of EndQ(A) generated by 1 and φ, and let
Tφ ∈ End(Q[φ]) be multiplication by φ. We know that H : ( f, g) �→ Tr( f g†) is a positive
definite symmetric bilinear form, and we see that for all f, g ∈ Q[φ]

H(Tφ( f ), g) = Tr(φ f g†) = Tr( f g†φ†) = Tr( f (φg)†) = H( f, Tφ(g)),

and so Tφ is self-adjoint with respect to H . In particular, Tφ is diagonalizable on R[φ] =
Q[φ] ⊗ R, and so its minimum polynomial splits as the product of distinct linear factors:

MTφ (t) =
r∏

i=1

(t − λi )
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where r = dimQ Q[φ] and λi ∈ R. Evaluating in Tφ(1), we get that

0 =
r∏

i=1

(φ − λi id).

Therefore the minimal polynomial of φ divides MTφ , and by our hypothesis on the charac-
teristic polynomial of φ, we have that Mφ(t) must be t (t − d). ��
Proof of Theorem 2.6 If X is an abelian subvariety of dimension u and exponent d , by
Riemann-Roch we have

PNX (m) = m2n−2u(m − d)2u = deg(NX − m) = deg(m − NX ) =
(

(m[L] − δX )n

n!
)2

.

Therefore for m � 0, since m[L] − δX is an ample class we obtain that its self intersection
is positive, and so

mn−u(m − d)u = (m[L] − δX )n

n! = 1

n!
n∑

r=0

(
n

r

)
(−1)r (δr

XLn−r )mn−r .

On the other hand,

mn−u(m − d)u =
u∑

r=0

(
u

r

)
(−1)r dr mn−r .

By comparing the coefficients of these two polynomials we obtain the desired intersection
numbers.

Now let α be a primitive class that has the intersection numbers above. By our previous
analysis, we have that Pφα (t) = t2n−2u(t − d)2u . Since φα is a symmetric endomorphism,
by the previous lemma we get that φ2

α = dφα . Moreover φα is primitive since α is, and
so by the Norm-endomorphism criterion in [3] p. 124 (the arguments there work over any
algebraically closed field), we get that φα = NIm(φα) and Im(φα) is an abelian subvariety of
dimension u and exponent d .

Since (ker φδX )0 = Y (the connected component of ker φδX containing 0), we have that
there exists a line bundle L̃X on A/Y such that the numerical class of LX := p∗

Y L̃X is δX ,
where pY : A → A/Y is the natural projection.We see that if we intersect the numerical class
of L̃X u times (as algebraic cycles), we obtain a finite number of points. Since any two points
are algebraically equivalent on an abelian variety, we have that δu

X = mY p∗
Y [{0}] for some

integer mY ≥ 0 in the Chow ring of A modulo algebraic equivalence. Now, p∗
Y [{0}] = [Y ],

and so we get that

δu
X = mY [Y ]

for some integer mY .
We get that

(n − u)!2u!2d2u = (δu
X · Ln−u)2 = m2

Y (L|n−u
Y )2,

and so mY = u!(n−u)!du

(Ln−u ·Y )
. ��

The following corollary was of course implicit in [2], but can be seen more explicitly with
the previous theorem.
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738 R. Auffarth

Corollary 2.8 Simplicity for an abelian variety is a numerical property. In particular, if
(A,L) and (B, �) are two ppavs of dimension n such that there exists an isomorphism
φ : NS(A) → NS(B) that preserves the intersection pairing, then φ induces a bijection
between abelian subvarieties of A and abelian subvarieties of B that preserves dimension
and exponents.

Corollary 2.9 Let �(A) be the graded subring of A∗(A) generated by all cycle classes of
abelian subvarieties and their numerical divisor classes, and let �(A)Q := �(A) ⊗Z Q.
Then �(A)Q is a finite-dimensional vector space over Q.

Proof Since NS(A) is finitely generated, the Z-module generated by the δX is generated
by certain classes δX1 , . . . , δXm (recall that δA = [L]). By Theorem 2.6, for every abelian
subvariety X of dimension u and exponent d we have

(d[L] − δX )n−u = (n − u)!u!dn−u

(Lu · X)
[X ].

Since δX and [L] are linear combinations of the δXi (remember that [L] = δA), we obtain
that �(A)Q = Q[δX1 , . . . , δXm ]. Now since each δXi is integral over Q (they are nilpotent
classes after all), Q[δX1 , . . . , δXm ] is a finitely generated Q-module. ��
Corollary 2.10 For each i , the Q-vector space �i (A)Q generated by the cycle classes of
codimension i abelian subvarieties is finite dimensional.

One question that seems interesting is: If 
 is the group generated by the classes δX ,
what is its rank in comparison to the Picard number of A? If A is simple then the question is
uninteresting, since by Proposition 5.5.7 in [3] the Picard number of a simple complex ppav
can vary between 1 and 3n/2, but 
 = 〈[L]〉. Is there a non-trivial relation between the two
ranks for non-simple ppavs?

Using intersection numbers, we can tell when an abelian subvariety of codimension 1
contains an elliptic curve:

Corollary 2.11 Let E, Z ≤ A be abelian subvarieties of dimensions 1 and n − 1 and
exponents dE and dZ , respectively, and let δE and δZ be their respective numerical classes.
Then E is contained in Z if and only if

(δE · δZ · Ln−2) = dE dZ (n − 2)!(n − 2).

Proof We have that E ⊆ Z in this case if and only if [E][Z ] = 0 in A∗(A). By Theorem 2.6,
this is equivalent to δn−1

C(E)δC(Z) = 0, where C(E) and C(Z) denote the complementary
abelian subvarieties of E and Z , respectively. Since δC(E) = dE [L] − δE (and similarly for
Z ), this is equivalent to

(dE [L] − δE )n−1(dZ [L] − δZ ) = 0.

After expanding this expression we obtain the desired result. ��
It would be nice to have a numerical criterion for when an abelian subvariety is non-simple

in general.
For n = 2, Kani showed in [8] that elliptic subgroups on principally polarized abelian

surfaces can be described by the quadratic form q(α) = (α · L)2 − 2(α2) on NS(A)/Z[L].
The author showed in [1] that for n ≥ 3 the analogous form q(α) = (α · Ln−1)2 − n!(α2 ·
Ln−2) is not enough to describe elliptic subgroups, and homogeneous forms q2, . . . , qn were
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introduced on NS(A)/Z[L] in order to classify elliptic subgroups in higher dimensions.
Recall that

qr (α) := − 1

(r − 1)n! ((α
�)r · Ln−r ),

where α� = n!α − (α · Ln−1)[L] for α ∈ NS(A). With a little work, it can be shown that
the same homogeneous forms characterize, via �, not only elliptic subgroups on A, but all
abelian subvarieties on A. The generalization is as follows:

Theorem 2.12 Let π : NS(A) → NS(A)/Z[L] be the natural projection. Then the map
X �→ π( 1d [N∗

XL]) induces a bijection between

(1) abelian subvarieties of dimension u and exponent d on A
(2) primitive classes [α] ∈ NS(A)/Z[L] that satisfy (α · Ln−1) ≡ (n − 1)!ud (mod n!) and

qr (α) = f (u, r)dr for 2 ≤ r ≤ n, where

f (u, r) := 1

r − 1

min{r,u}∑
m=0

(
r

m

)(
u

m

)
n!m−1(n − 1)!r−m(n − m)!m!(−1)r−m+1ur−m

The condition (α · Ln−1) ≡ (n − 1)!ud (mod n!) is conjectured to be superfluous, as in
the case u = 1. We omit the proof of this theorem; it is not very different from the proof of
the special case proved in [1].

3 Analytic theory

When k = C, we have that A � C
n/� for some lattice �. By choosing real coordinates

x1, . . . , x2n on A that come from a symplectic basis B := {λ1, . . . , λn, μ1, . . . , μn} for
�, NS(A) can be canonically identified with a subgroup of

∧2
Z
2n � H2(A, Z) such

that the class of L is θ := −∑n
i=1 dxi ∧ dxi+n ; this is done via the first Chern class

c1 : Pic(A) → H2(A, Z). It is interesting to observe that
∧2

Z
2n no longer depends on A,

and this gives us a good environment to studymoduli of non-simple ppavs. Let τ be the period
matrix for (A,L) defined by B and the complex basis μ1, . . . , μn of C

n . The respective real
and complex coordinates are related by the following formula:

⎛
⎜⎝

z1
...

zn

⎞
⎟⎠ = (τ I )

⎛
⎜⎝

x1
...

x2n

⎞
⎟⎠ .

Given that NS(A) = H2(A, Z) ∩ H1,1(A, C), we obtain

NS(A) = {ω ∈ H2(A, Z) : ω ∧ dz1 ∧ · · · ∧ dzn = 0}.
In this context, Theorem 2.6 essentially says:

Theorem 3.1 The map X �→ c1(
1
d N∗

XL) induces a bijection between

(1) abelian subvarieties of dimension u and exponent d
(2) primitive differential forms η ∈ H2(A, Z) that satisfy
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740 R. Auffarth

(a) η ∧ dz1 ∧ · · · ∧ dzn = 0 and

(b) η∧r ∧ θ∧(n−r) =
{

(n − r)!r !(u
r

)
drω0 1 ≤ r ≤ u

0 u + 1 ≤ r ≤ n

where ω0 = (−1)ndx1 ∧ dxn+1 · · · ∧ dxn ∧ dx2n.

Observe that if we canonically identify H2(A, Z) with
∧2

Z
2n by using the coordinates

x1, . . . , x2n , condition (b) in the previous theorem only depends on the differential form η

and not on the abelian variety (since we have fixed c1(L) = θ ). For η ∈ ∧2
Z
2n , define the

sets

Hn(η) := {τ ∈ Hn : η ∧ dz1 ∧ · · · ∧ dzn = 0}
An(η) := πn(Hn(η)),

where πn : Hn → An is the natural projection, and define

B(n, u, d) := {η ∈
2∧

Z
2n : η satisfies condition (b) and Hn(η) 
= ∅}.

One thing we can do here is fix a period matrix of a certain ppav and go over elements of
B(n, u, d) (with a computer, for example), checking to see if they satisfy condition (a). This
amounts to looking for abelian subvarieties on a fixed ppav, and this method seems to be
useful for calculating examples. A second point of view is to fix an element η ∈ B(n, u, d)

and to search for all period matrices that satisfiy condition (a). This is equivalent to looking
for all ppavs with an abelian subvariety that induces the class η. In the rest of the paper,
we will analyze the second point of view. We note that this second point of view gives us
equations onHn that describe when the periodmatrix of a ppav contains an abelian subvariety
of fixed dimension and exponent.

If η = ∑
i< j ai j dxi ∧ dx j ∈ B(n, u, d), define the 2n × 2n matrix

Mη := (ai j )i, j ,

where a ji := −ai j . Define J to be the 2n × 2n matrix

J =
(

0 I
−I 0

)
.

Proposition 3.2 Let X ≤ A be a u-dimensional abelian subvariety of exponent d, and let
η ∈ B(n, u, d) be its numerical class. Then the rational representation of NX (with respect
to the symplectic basis above) is given by the matrix J Mη. In particular, u = 1

2 rank(Mη) and
the vector space in C

n that defines X can be identified, using {λ1, . . . , μn}, with the image
of J Mη. Moreover, d = − 1

u (a1,n+1 + · · · + an,2n) = 1
2u tr(NX ).

Proof Let [ρa(NX )] be the matrix of the rational representation of NX with respect to the
symplectic basis. Since NX is self-adjoint with respect to the positive definite Hermitian form
defined by L, we have that

Mη = 1

d
N∗

X Mθ = 1

d
[ρa(NX )]t Mθ [ρa(NX )] = 1

d
Mθ [ρa(NX )]2 = Mθ [ρa(NX )].

Now, Mθ = −J = J−1, and so [ρa(NX )] = J Mη. The exponent can be calculated using
condition (b) of Theorem 3.1 with r = 1. ��
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Let S ∗ τ denote the usual action of an element S ∈ Sp(2n, Z) on τ ∈ Hn ; that is,(
α β

γ δ

)
∗ τ := (ατ + β)(γ τ + δ)−1.

The matrix St is the rational representation of an isomorphism AS∗τ → Aτ , and so if
Xτ ≤ Aτ is an abelian subvariety, we define an abelian subvariety X S∗τ ≤ AS∗τ by the
commutative diagram

AS∗τ
St

��

NXS∗τ

��

Aτ

NXτ

��
AS∗τ Aτ

S−t
��

This then gives us an action of Sp(2n, Z) on B(n, u, d) where η is sent to the form S ∗ η

whose matrix is MS∗η = SMηSt . We wish to describe the orbits of this action.
Remember that the type of an abelian subvariety X ≤ A is the list (d1, . . . , du) such that

ker φL|X � ⊕u
i=1(Z/di Z)2.

Lemma 3.3 If X ≤ A = C
n/� is an abelian subvariety, then its type is determined by its

associated differential form.

Proof Let ρa(NX ) be the rational representation of NX with respect to the symplectic basis
given earlier, and let VX be the R-vector space generated by its columns. By the previous
proposition, VX can be identified with the vector space that induces X . Similarly, set �X :=
VX ∩ Z

2n ; this can be seen as the lattice of X . We see that the type of X is completely
determined by the finite group ker φL|X . After writing out the definitions, we see that

ker φL|X � {u ∈ VX : ut Jv ∈ Z,∀v ∈ �X }/�X .

This group does not involve the period matrix of A. ��
This lemma means that we can define the type of an element in B(n, u, d) in the obvious

way. Proposition 3.2 and Lemma 3.3 give us a concrete method of working with non-simple
ppavs.

Example 3.4 Consider the differential form η0 = dx3 ∧ dx8 − dx3 ∧ dx7 + dx2 ∧ dx5 −
dx2 ∧ dx6 + dx1 ∧ dx6 + dx4 ∧ dx7 − dx1 ∧ dx5 − dx4 ∧ dx8 ∈ ∧2

Z
8. This satisfies

condition (i i) of Theorem 3.1 with n = 4, u = 2 and d = 2. We have

Nη0 := J Mη =

⎛
⎜⎜⎝

A 0 0 0
0 A 0 0
0 0 A 0
0 0 0 A

⎞
⎟⎟⎠

where

A =
(

1 −1
−1 1

)
.

Moreover, a matrix τ ∈ H4 satisfies η0 ∧ dz1 ∧ dz2 ∧ dz3 ∧ dz4 = 0 if and only if it is
of the form

τ =

⎛
⎜⎜⎝

τ1 τ2 τ3 τ4
τ2 τ1 τ4 τ3
τ3 τ4 τ5 τ6
τ4 τ3 τ6 τ5

⎞
⎟⎟⎠
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Let (Aτ ,�τ ) be the ppav corresponding to the matrix τ above, and let Xτ be the abelian
surface that induces the class η0. Then using Proposition 3.2, the vector space that defines
Xτ is generated over C by the vectors⎛

⎜⎜⎝
1

−1
0
0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0
0
1

−1

⎞
⎟⎟⎠

and its lattice is spanned over Z by the vectors⎛
⎜⎜⎝

τ1 − τ2
τ2 − τ1
τ3 − τ4
τ4 − τ3

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

τ3 − τ4
τ4 − τ3
τ5 − τ6
τ6 − τ5

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1
−1
0
0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0
0
1

−1

⎞
⎟⎟⎠ .

The complementary abelian variety of Xτ in Aτ can be found using the same method. By
taking the alternating form −Mη0 , we can see that Xτ is an abelian subvariety of type (2, 2).

��
Let D = (d1, . . . , du) ∈ Z

u
>0 be such that di | di+1, D̃ = (1, . . . , 1, d1, . . . , du) (of

length n −u) and let K (D) := (Z/d1Z×· · ·×Z/duZ)2. We see that K (D) has a symplectic
pairing eD , where

eD(e j , ek) =
⎧⎨
⎩

e−2π i/d j k = u + j
e2π i/d j j = u + k
1 otherwise

,

and e j denotes the j th canonical vector. Let (X,LX ) be a polarized abelian variety of type
D, and define

K (LX ) := {x ∈ X : t∗x LX � LX }.
It is well-known that K (LX ) � K (D) (non-canonically), and K (LX ) has a symplectic
pairing eLX : K (LX )2 → Gm induced by the polarization.

We will now recall a construction done by Debarre [5]. Let Au(D) denote the coarse
moduli space parametrizing triples (X,LX , f ) where (X,LX ) is a polarized abelian variety
of type D and f : K (LX ) → K (D) is a symplectic isomorphism (that is, preserves the form
described above). Let AD

u,n−u denote the subvariety of An consisting of ppavs that contain
an abelian subvariety of dimension u and type D and let ε be the anti-symplectic involution
of K (D) = K (D̃) such that if x, y ∈ Z/d1Z × · · · × Z/duZ, then ε(x, y) = (y, x). Debarre
presents the morphism

�u,n−u(D) : Au(D) × An−u(D̃) → AD
u,n−u

where ((X,LX , f ), (Y,LY , g)) �→ (X×Y )/�g−1ε f , and�g−1ε f denotes the graph of g−1ε f .
By descent theory for abelian varieties, (X × Y )/�g−1ε f has a unique principal polarization
L (that is, a line bundle unique up to translation) such that its pullback to X × Y is LX �LY .
Debarre shows that �u,n−u(D) is surjective, and in particular the space of ppavs that contain
an abelian subvariety of fixed type is irreducible.

Let Sp(D) denote the group of all symplectic automorphisms of K (D). We notice that
Sp(D) acts on Au(D) × An−u(D̃) by

h · ((X,LX , f ), (Y,LY , g)) = ((X,LX , h f ), (Y,LY , εhε−1g)).
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We assume the following is known by the experts (Kani mentions this in [8] for the case
u = 1 and n = 2), but because of the lack of an adequate reference we prove it here:

Theorem 3.5 If u < n/2, the morphism �u,n−u(D) induces an isomorphism

(Au(D) × An−u(D̃))/Sp(D) → AD
u,n−u .

If n is even and u = n/2 then �n/2,n/2(D) induces an isomorphism

(An/2(D) × An/2(D))/(Z/2Z � Sp(D)) → AD
u,n−u

where Z/2Z interchanges the factors.

Proof Assume u < n/2. Then if h ∈ Sp(D), (εhεg)−1εh f = g−1ε f and so this action
obviously permutes the fibers of �u,n−u(D). If ((X,LX , fi ), (Y,LY , gi )), i = 1, 2, are two
pairs that induce the same ppav, then by descent theory for abelian varieties, the subgroups
of X × Y (that is, the graphs) induced by g−1

1 ε f1 and g−1
2 ε f2 must be equal. Therefore

( f2, g2) = ((εg2g−1
1 ε) f1, (εg2g−1

1 ε)g1) and the first part is proved.
If n is even and u = n/2, then it is easy to see that switching the two factors leaves the fibers

invariant. Moreover, via the homomorphism Z/2Z → Aut(Sp(D)) where 1 �→ (h �→ εhε),
a proof similar to the previous one shows that two elements in any fiber differ by the action
of Z/2Z � Sp(D). ��

This theorem has several pleasing consequences that allow us to better understand the
differential forms associated to abelian subvarieties.

Lemma 3.6 Let D = (d1, . . . , du). Then there exists a form η0 such that AD
u,n−u = An(η0).

Proof Let B ′ consist of all differential forms in B(n, u, d) of type D. We see that

AD
u,n−u =

⋃
η∈B′

An(η).

The irreducibility of AD
u,n−u implies that AD

u,n−u = An(η0) for some η0 ∈ B ′. ��

This lemma can be considerably strengthened:

Lemma 3.7 For all η ∈ B(n, u, d) of type D, AD
u,n−u = An(η).

Proof Assume that u ≤ n/2 and let Nη be the norm matrix associated to η. Define Vη to be
the R-span of the columns of Nη, �η = Vη ∩ Z

2n , Wη = ker Nη, �η = Wη ∩ Z
2n and D̃ the

complementary type of D (that is, D̃ is of length n−u, contains D and all the rest of its entries
are 1). SinceAn(η) 
= ∅, then Nη is the rational representation of a norm endomorphism for
some ppav, and so if E denotes the alternating form defined by the matrix J on R

2n , we have
that E |Vη is of type D and E |Wη is of type D̃. We notice, moreover, that Vη ⊕ Wη = R

2n , �η

and �η are lattices in their respective vector subspaces and Vη and Wη are orthogonal with
respect to E .

We now proceed with a construction that shows that the image of the map described in
Theorem 3.5 coincides with An(η). Let (X,LX ) ∈ AD , (Y,LY ) ∈ AD̃ be polarized abelian
varieties (whereAD is the moduli space of polarized abelian varieties of type D), and assume
that the abelian varieties can be written as complex tori X = V/�X and Y = W/�Y . Let
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EX (resp. EY ) denote the alternating form on�X (resp.�Y ) induced by LX (resp. LY ). Now
let

ψX : V → Vη

ψY : W → Wη

be symplectic isomorphisms that take �X (resp. �Y ) to �η (resp. �η). This can be done,
for example, by taking symplectic isomorphisms between the lattices and extending them
R-linearly. This gives us diffeomorphisms

ψ X : X → Vη/�η

ψY : Y → Wη/�η.

Letm : Vη×Wη → R
2n be the additionmap, and let Hη := m−1(Z2n)/(�η⊕�η).This gives

us (viaψ X ×ψY ) a finite subgroup H ≤ X ×Y . It is not hard to see that if D = (d1, . . . , du),
then |Hη| = |H | = (d1 . . . du)2. Moreover, H ∩ {0} × Y = H ∩ X × {0} = {(0, 0)}, and
so H is a maximal isotropic subgroup for LX � LY . By descent theory for abelian varieties,
LX �LY descends to a principal polarizationLwith alternating form E A on A = (X ×Y )/H .
Let A = U/�, and let ψU : U → R

2n be the R-linear isomorphism that makes the diagram

V × W ��

ψX ×ψY

��

U

ψU

��
Vη × Wη

m ��
R
2n

commute. Since themapV ×W → U is an isomorphism and EX �EY = ψ∗
X E |Vη �ψ∗

Y E |Wη ,
we see that ψ∗

U E = E A.
Let NX (resp. NY ) be the rational representations of the norm endomorphism of X (resp.

Y ) on A with respect to the symplectic basis induced by ψU and the canonical basis on R
2n .

We see that

NX + NY = d I = ψ−1
U NηψU + ψ−1

U Ndθ−ηψU .

Let x ∈ U be in the image of V ↪→ U and y in the image of W . Then dx = NX (x) =
ψ−1

U NηψU (x) and NX (y) = ψ−1
U NηψU (y) = 0. This shows that NX = ψ−1

U NηψU . There-
fore the numerical divisor class of X is precisely η. Since (X,LX ) and (Y,LY ) were chosen
arbitrarily, we see that the image of the map from Theorem 3.5 lies in An(η). ��
Proposition 3.8 The function

B(n, u, d)/Sp(2n, Z) → {(d1, . . . , du−1, d) ∈ N
u : di | di+1, du−1 | d}

that sends η to its type is bijective.

Proof The function is surjective, since given any type, there is a ppav that contains an abelian
subvariety of the same type. What is left to show is that if η, ω ∈ B(n, u, d) are of the same
type, then they differ by the action of a symplectic matrix. But this is trivial since by the
previous two lemmas, An(η) = An(ω). ��
Corollary 3.9 For every η ∈ B(n, u, d) of type D,

An(η) �
{

(Au(D) × An−u(D̃))/Sp(D) if u < n/2
(An/2(D) × An/2(D))/Z/2Z � Sp(D) if n is even and u = n/2.
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Example 3.10 In [7], Humbert found equations for the moduli space of abelian surfaces
that contain an elliptic curve of exponent m (which in his terminology are abelian surfaces
that satisfy a singular relation of discriminant m2). Indeed, he showed that the principally
polarized abelian surface associated to (

τ1 τ2
τ2 τ3

)

contains an elliptic curve of exponent m if and only if there exists a primitive vector
(a, b, c, d, e) ∈ Z

5 such that

b2 − 4(ac + de) = m2

and

aτ1 + bτ2 + cτ3 + d(τ1τ3 − τ 22 ) + e = 0.

If we take the differential form

ηm := −ddx1 ∧ dx2 + b − m

2
dx1 ∧ dx3 − adx1 ∧ dx4

+cdx2 ∧ dx3 − b + m

2
dx2 ∧ dx4 + edx3 ∧ dx4,

we see that these conditions are satisfied if and only if ηm ∧ ηm = 0 and ηm ∧ dz1 ∧ dz2 =
0. Moreover, it is easy to see that ηm has degree m. Therefore, the Humbert surface of
discriminant m2 is just the moduli space A2(ηm). This was explained in the language of
numerical classes in Kani [8]. By Proposition 3.8, all matrices of the form

⎛
⎜⎜⎝

0 −d b−m
2 −a

d 0 c − b+m
2

m−b
2 −c 0 e
a b+m

2 −e 0

⎞
⎟⎟⎠

for (a, b, c, d, e) ∈ Z
5 primitive and b2 − 4(ac + de) = m2 are equivalent under the action

of Sp(4, Z). Therefore if we take, for example, (a, b, c, d, e) = (1, m, 0, 0, 0), we get that
the moduli space of principally polarized abelian surfaces that contain an elliptic curve of
exponent m is given by the projection of{(

τ1 τ2
τ2 τ3

)
∈ H2 : τ1 + mτ2 = 0

}

to A2.
In higher dimension, we can take the differential form

ηm,n := −mdx1 ∧ dxn+1 + dx2 ∧ dxn+1.

We get that ηm,n ∈ B(n, 1, m) and so the moduli space of all ppavs of dimension n that
contain an elliptic curve of exponent m is given by the projection of

{(τi j )i, j ∈ Hn : τ11 + mτ12 = 0, τ1 j = 0 for j = 3, . . . , n}
to An . ��
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