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We price S&P 500 index options under the assumption that the conditional risk-neutral density
function of the index follows a Semi-Nonparametric (SNP) process with GARCH variance.
The model is estimated combining a set of option contracts written on the index and the daily
index return time series in the period 1996–2011. The in-sample and out-sample performance
of the model is compared with several benchmark models, beating most of them. We conclude
that a pricing model dealing simultaneously with non-normalities and time-varying volatility
helps to mitigate the observed S&P 500 index option biases. © 2015 Wiley Periodicals, Inc.
Jrl Fut Mark 36:217–239, 2016

1. INTRODUCTION

The weak empirical performance of the Black–Scholes (BS, 1973) model is well documented
in the literature. In particular, the observed prices of out-of-the-money puts and in-the money
calls are too high when compared with the prices delivered by the BS model (Bakshi, Cao, &
Chen, 1997; Dumas, Fleming, & Whaley, 1998). This empirical regularity, known as volatility
smile/smirk, is the main challenge to be addressed by any model attempting to provide a
realistic fit to prices in option markets. The restrictive assumptions of normality of log-returns
and constant volatility explain the unsatisfactory empirical performance of the BS model. In
this paper, we introduce and evaluate the empirical performance of an option pricing model
that relaxes these two assumptions. In particular, we assume that the conditional distribution
of log-returns can be approximated by a Semi-Nonparametric function (SNP) and that the
log-returns’ volatility belongs to the GARCH class. The SNP density function takes the form
of an Hermite polynomial expansion whose leading term is the normal density and whose
polynomial coefficients may vary with time as well.

The SNP density function, originally proposed by Gallant and Tauchen (1989), is at-
tractive for at least three reasons: first, Gallant and Nychka (1987) have shown that, under
mild conditions, the SNP density function can consistently approximate the true density
function of the process; second, it provides a characterization of the conditional density
function, and therefore, it accounts for the full dynamic of the underlying stock return; and
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third, it always produces positive probabilities, which assures that the density function is
properly defined.1

The SNP model has been studied in asset pricing applications modeling stock returns,2

but much less used for the specific purpose of option pricing. In the context of option val-
uation, the SNP model has also been studied by León, Mencı́a, and Sentana (2009), and
used as benchmark model by Lim, Martin, and Martin (2005). Our work, however, differs
from them in several dimensions. First, in these studies, the SNP model is combined with
a constant volatility assumption, whereas we explore a richer SNP model with time-varying
GARCH volatility and time-varying polynomial coefficients. Christoffersen, Heston, and
Jacobs (2006), Christoffersen et al. (2009) and Christoffersen et al. (2010) argue that in
order to reduce observed biases in option prices, both assumptions are necessary: non-
normal distribution and time-varying volatility. Second, as suggested by Gallant and Tauchen
(2008), we use information criteria to identify the best model, instead of selecting a pre-
determined specification. Finally, we use a more extended sample of options covering 16
years in a weekly basis, making it more suitable to identify the time-series dynamic of the
model.3

We estimate the parameters of the model using a non-linear least square (NLS) method
that minimizes the weighted squared distance between option prices observed in the market
and those prices delivered by our SNP pricing model. After assuming that the conditional
risk-neutral density function of the model belongs to the SNP class with GARCH variance,
we can use this calibration approach to retrieve the risk-neutral parameters of the model and
compute the information criteria needed to identify the best model. We estimate and test
the performance of the model using daily S&P 500 index option data for the period 1996–
2011. As required, we combine return data with the panel of option contracts and expect
that the use of both sources of information improves the efficiency of our estimates.4 Our
dataset is built aiming to cover the longest possible time period, as in this way we are able
to better capture the dynamic of the conditional risk-neutral density function, but keep
the computational burden in the estimation of the models at manageable levels. Thus, our
dataset contains 15 contracts for each of the 772 Wednesdays available in the period from
1996 to 2011. These 15 contracts are the closest to the 5 predetermined levels of moneyness
(0.96, 0.98, 1, 1.02, 1.04) and 3 maturity levels. The trade-off between the time coverage
versus the cross-sectional coverage in option dataset has been discussed by Ait-Sahalia and
Lo (1998) and García, Ghysels, and Renault (2010).

The option pricing performance of the model is evaluated, in-sample and out-of-sample,
against 5 benchmark models: the standard Black–Scholes model, the implied volatility model
(IVF) proposed by Dumas et al. (1998), an extended IVF model proposed by Gonçalves and
Guidolin (2006), the SNP model with constant volatility study by León et al. (2009), and
the volatility model with the short-run and long-run component model of Christoffersen

1Jondeau and Rockinger (2001) and Jackwerth (2004) point out that alternative models based on polynomial
expansions, may not necessarily preserve the integrity of the probability distribution, producing negative probabilities
in some intervals of the domain.
2Among the asset pricing applications are Gallant and Tauchen (1989, 1992), Gallant, Rossi, and Tauchen (1992,
1993), Gallant, Hansen, and Tauchen (1990), Gallant, Hsieh, and Tauchen (1991), Tauchen, Zhang, and Liu
(1996), Harrison and Zhang (1999) and Zhang (2000). More recently, in the context of the Efficient Method of
Moments (EMM) of Gallant and Tauchen (1996), the SNP model has been used extensively as an auxiliary model.
See a full list of references in George Tauchen’s EMM website.
3For example, Lim et al. (2005) fit their model to a sample of options in a single day.
4The NLS approach has been used by Engle and Mustafa (1992), Bakshi et al. (1997), Chernov and Ghysels
(2000), Pan (2002), Christoffersen and Jacobs (2004a, 2004b), Christoffersen et al. (2008), among others.
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et al. (2008). The performance of the SNP option pricing model with GARCH volatility is
competitive when compared with the benchmark models. In-sample, the SNP pricing model
outperforms all the benchmark models, reducing the biases of the Black–Scholes model
by 70%. The out-of-sample performance of the models is evaluated using a rolling window
setup, and two forecasting horizons: 1-week and 4-weeks. As with the evaluation in-sample,
the SNP model produces reasonable prices out-of-sample. For the 1-week horizon, the first-
stage SNP models outperform all benchmark models, but the component volatility model
of Christoffersen et al. (2008); whereas for the 4-week horizon, the first-stage SNP model
again produces lower pricing errors than any of the benchmark models considered. Overall,
we provide evidence that an option model accounting for deviation of normality and time-
varying volatility, produces a better empirical performance than other competitive option
models. Our results show that both features of the conditional distribution of the S&P 500
index must be taken into account in order to produce reasonable prices for the contracts
written on index.

The rest of the paper is organized as follows. In Section 2, the SNP model is introduced.
In Section 3, the closed-form option price formula of the model is presented. The dataset is
described in Section 4. The SNP-GARCH model is estimated in Section 5. In Section 6, we
report the in-sample and the out-sample performance of the model. Finally, we conclude in
Section 7.

2. THE SNP CONDITIONAL DENSITY

Let {yt}Tt=−L be a time-series realization of variable of interest, in our case the S&P 500 index
log-returns. Let xt ≡ (yt−1, . . ., yt−L) be a vector of L lagged values of yt. Let zt ≡ (yt − �x)/�x
be a local-scaled transformation of yt,where�x and �x are the location and the scale function,
respectively. The location function, which depends on Lu lags of yt, is defined as �xt = b0 +∑Lu
i=1 biyt−i, whereas the scale function, �xt , is characterized by a GARCH process, which

depends on L = max(Lr, Lg) lags of yt : �xt = c0 + ∑Lr
i=1 ci

∣∣yt−i − �xt−i−1

∣∣ + ∑Lg
i=1 di�xt−i .

The inclusion of a GARCH structure in volatility is justified for at least for two reasons:
first, GARCH option models have been successful in reducing index option biases as shown
by Christoffersen et al. (2004, 2008, 2010); and second, it reduces the likelihood of suffering
of overparametrization problem due to large polynomial expansion.5

We assume that the distribution of zt, conditional on its history xt, belongs to the SNP
class proposed by Gallant and Tauchen (1989)

h(zt|xt, �) = [P(zt, xt)]
2 �(zt)∫

[P(s, xt)]
2 �(s) ds

, (1)

where P(zt, xt) is an Hermite polynomial of order (Kz, Kx). The polynomial term is squared
to assure positiveness, and the whole expression is scaled by a proportionality constant,
which assures that the conditional density integrates to one. �() is the probability density
function of a normal random variable. Given that the first term of the polynomial expansion
is the identity matrix, the first term of the SNP conditional density corresponds to a normal
distribution. Higher polynomial terms, then, capture deviation from normality.6

5See Liu and Zhang (1998) for a discussion on overparametrization in the context of SNP models.
6As the polynomial order increases to infinity, the estimated conditional density function converges to the true
conditional density function.
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Following León et al. (2009), the polynomial term may take the form:

P(zt, xt) =
Kz∑
i=0

vi(xt)Hi(zt). (2)

Let v(xt) = (v0(.) v1(.) . . .vKz(.))
′ be a time-varying vector such that v(xt)′v(xt) defines the re-

quired proportionality constant
∫

[P(s, zt)]
2 �(s)ds, and Hi(zt) is a normalized Hermite poly-

nomial of order i.7 Each element of the vector vi(xt) takes the form:

vi(xt) = a0,i +
Kx∑
k=1

Lp∑
j=1

ak,j,iy
k
t−j. (3)

Kz and Kx are the two key parameters of the model: Kz defines to what extent the conditional
density function deviates from normality, whereas Kx defines the extent to which this relation
varies through time. If Kx > 0, v(xt) varies through time, and then, the full conditional
distribution does. Lp is a parameter defining the number of lags to be included in v(xt).

As specified, the conditional SNP-GARCH density function has three possible channels
of time dependency: the location function, �x, the scale function , �x, and the vector vi(xt).

3. OPTION PRICING UNDER THE SNP CONDITIONAL
DENSITY FUNCTION

3.1. Pricing

In this subsection, we derive a closed-form formula for pricing index option when log-returns
are SNP distributed with GARCH volatility. The pricing formula derivation closely follows
from León et al. (2009), so further details can be found in that article. We start by specifying
the dynamic of log returns under the physical measure, then, an stochastic discount factor
with exponential affine form is introduced such that the dynamic under the risk-neutral
measure is recovered. Interestingly, the model form is the same under both measures.

Assume that, under the physical measure, P, the price of a stock at time T > t can be
written as a function of the current stock price St and the time to maturity � = T − t as
follows:

ST = St exp

[(
�t − (�t)2

2

)
� + �t

√
�z∗t

]
, (4)

where �t and �t are the location and scale function defined above. The coefficients �t and �t
represents the mean and the volatility of the log returns, yT ≡ log

(
ST
St

)
, conditional on the

information set known at t. The random variable z∗t is a standardized SNP variable with shape
parameters vt. It is assumed that zt = a(vt) + b(vt)xPt , where xPt has an SNP distribution as
well. The terms a(vt) and b(vt) are defined such that zt has a zero mean and unit variance.8

Under these assumptions, we have that yT = ıt + �tx
P,where ıt =

(
�t − (�t)2

2

)
� + �t

√
�a(vt)

7Hi(zt) is defined recursively as follows as H0(zt) = 1, H1(zt) = zt and Hi(zt) = ztHi−1(zt)−
√
i−1Hi−2(zt)√
i

for i � 2.
8In particular, a(vt) ≡ −�′

x(1)√
�x(2)

and b(vt) ≡ 1√
�x(2)

,where �′
x(n) and �x(n) are the uncentered and centered moments

of order nth.
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and �t = �tb(vt). Let Mt,T be an exponential affine stochastic discount factor

Mt,T = exp(˛tyT + ˇt�). (5)

León et al. (2009) establish the conditions under which the stochastic discount factor
Mt,T satisfies the required arbitrage-free conditions for pricing. Then, using standard results
in option pricing based on the Radon–Nykodym derivative, the risk-neutral measure is de-
fined as fQ(yT) = exp(rt�)Mt,Tf

P(yT).9 If the asset price ST is given by (4) under the real
measure P, where the distribution of its log-return between t and T is a SNP of order KZ
with shape parameter vt, the asset price under the risk-neutral measure Q is

ST = St exp

⎡⎢⎣
⎛⎜⎝�Qt −

(
�
Q
t

)2

2

⎞⎟⎠ � + �
Q
t

√
��∗
t

⎤⎥⎦, (6)

where

�Q = �t + �2
t

2

(
b(vt)
b(�t)

)2

− 1 + �2
t√
�

[
a(vt) − a(�t)

b(vt)
b(�t)

]
+ ˛t�

2
t b

2(vt)

�
Q
t = �tb(vt)/b(�t)

and �∗
t is a standardized SNP variable of order Kz with shape parameters �t = (�0t, . . ., �kzt)

′
such that

�it =
Kz∑
k=1

vkt
(k− i)!

√
k!
i!

(˛t�Pt)k−i.

Finally, the option price is obtained using proposition 9 in León et al. (2009).

Proposition 1. The price at time t of a European call option with strike K written on the
stock ST defined by (6) under the risk neutral measure is

CSNPt = StPQ1[x > dt|It] − K exp(−rt�)PQ[x > dt|It]

9If the conditional distribution of log-returns is SNP of order KZ (5) satisfies the arbitrage-free conditions
E(Mt,T exp(rt�)) = 1 and E(Mt,T exp(yT )) = 1 if and only if

2KZ∑
k=0

	k(vt)(˛t�t)k√
k!

= exp
[
−˛tıt − 1

2
˛2
t �

2
t − ˇt� − rt�

]
and

2KZ∑
k=0

	k(vt)(1 + ˛t)k�kt√
k!

= exp
[
−(1 + ˛t)ıt − 1

2
(1 + ˛t)2�2

t − ˇt�

]
.

The unknowns ˛t and ˇt can be recovered solving these two equations.
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where,

PQ[x > dt|It] = 
(−dt) + �(dt)
2Kz∑
k=1

	k(�t)√
k
Ht−1(dt),

PQ1[x > dt|It] = exp(−rt� + ıQt)
2Kz∑
k=0

	k(�t)I
∗
k,t,

I∗k,t = 1√
k

exp(�Qtdt)Hk−1(dt)�(dt) + �Qt√
k
I∗k−1,t,

I∗0,t = exp(�2
Qt
/2)
(�Qt − dt),

ıQt =

⎛⎜⎝�Qt −
(
�
Q
t

)2

2

⎞⎟⎠ � + a(�t)�
Q
t �,

dt = log(K/St) − ıQt
�Qt

; and �Qt = b(�t)�t(�t)
√
�.

�() is the normal distribution function and 
() is the cumulative normal distribution func-
tion. This closed-form price reduces to the Black–Scholes formula when the parameters Kz
and Kx are set to zero. As long as Kz and Kx take positive values, the SNP conditional density
captures complex underlying dynamics, including conditional heteroskedasticity, fat tails,
skewness, among other empirical features.

3.2. Hedging

Even though our focus is on the pricing performance of the SNP model, a brief discus-
sion about hedging is worth deserved, before moving forward.10 It can be shown that the
SNP option price (CSNPt ) and the Black–Scholes option price (CBS) are related through the
equation

CSNPt = CBSt + ˇ3tskt + ˇ4t(kut − 3) + o(�Q 2
t,� ),

where,

ˇ3t =
(

1
3!

)
St�
Q
t,�(�

Q
t,� − d1t)�(d1t) +

(
1
3!

)
K exp(−rt�)�(d1t)�

Q 2
t,� ,

ˇ4t =
(

1
4!

)
St�
Q
t,�(d

2
1t − 3d1�

Q
t,� − 1)�(d1t),

d1t =
log

(
St
K

)
+

(
rt + �

Q 2
t,�

2

)
�
Q
t,�

√
�

.

10We thanks a referee for suggesting us incorporating this point.
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In this context, the delta hedging of the model is given by

∂CSNPt

∂St
� ∂CBSt

∂St
+ ∂̌ 3t

∂St
skt + ∂̌ 4t

∂St
(kut − 3),

where skt is the conditional skewness and kut is conditional kurtosis.11 This result shows that
the SNP model’s delta hedging converges to the BS model’s delta hedging, 
(d1t), when the
underlying process is normal. Otherwise, given the magnitude of the derivatives, we would
expect that the SNP model’s delta hedge be slightly above BS model’s delta hedge. The
precise magnitude of the hedging should be clarified, however, in a more detailed empirical
exercise that we left for future research.

4. DATA

We use a dataset of option contracts written on the S&P 500 index collected from Ivy
Optionmetrics Database.12,13 The data are available daily and covers the period from January
1996 to April 2011.

Following Ait-Sahalia and Lo (1998), and in order to cope with issues related to miss-
recording and potential liquidity biases, we applied several filters on the raw data. In par-
ticular, we deleted contracts with: (i) implied volatilities higher than 70% (ii) option prices
less than $1/8, (iii) a time-to-maturity of less than 6 days and more than 365 days, and (iv)
less than 10 transactions per day.14 In order to deal with the unobservability of expected
dividends paid by the index, we follow Ait-Sahalia and Lo (1998), which derived the im-
plied expected dividend rate using both the spot-future parity and the put-call parity. We
also drop those contracts violating standard arbitrage conditions in option markets.15 The
continuously compounded risk-free interest rate is proxied by a series of zero-coupon yield
rates provided by Ivy Optionmetrics. We interpolate this series in order to match each of the
maturities in the sample.

11The derivatives are

∂̌ 3t

∂St
=

(
1
3!

)
�
Q 2
t,� �(d1t) +

(
1
3!

)
St�
Q 2
t,�

∂�(d1t)
∂d1t

∂d1t

∂S
−
(

1
3!

)
�
Q
t,�d1t�(d1t)

−
(

1
3!

)
St�
Q
t,�

∂d1t

∂S
�(d1t) −

(
1
3!

)
St�
Q
t,�d1t

∂�(d1t)
∂d1t

∂d1t

∂S

+
(

1
3!

)
K exp(−rt�) ∂�(d1t)

∂d1t

∂d1t

∂S
�
Q 2
t,� ,

∂̌ 4t
∂St

=
(

1
4!

)
�
Q 2
t,�

(
(d2

1t − 3d1�
Q
t,� − 1)�(d1t) + St

(
2d1t

∂d1t
∂S − 3�Qt,�

∂d1t
∂S

)
�(d1t)

+St(d2
1t − 3d1�

Q
t,� − 1) ∂�(d1t)

∂d1t

∂d1t
∂S

)
,

and

∂d1t

∂S
= 1

St�
Q
t,�

√
�
.

12Ivy Optionmetrics database is a comprehensive dataset containing information for the entire US listed index and
stocks options. The data are available online through the Wharton research data services (WRDS).
13S&P 500 index option data have been used by Baski et al. (1997), Dumas et al. (1998), Ait-Sahalia and Lo
(1998), Heston and Nandi (2000), Ait-Sahalia, Wang, and Yared (2001), Christoffersen et. al. (2006, 2008,
2011), among others.
14There are many quotes in the original dataset with no transactions registered.
15In particular, we drop those contracts in which c(St, X, �, r, ıt,� ) ≥ max(St − K, S∗

t − Ke−r� ) and p(St, X, �, r, ıt,� ) ≥
max(K − St, Ke

−r� − S∗
t ), where S∗

t is the net of dividend implied spot index.
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TABLE I
Summary Statistics for S&P 500 Index’s Option Contracts

Variable Mean Standard Deviation Median Min. Max. Skew. Kurt.

Option price (C,$) 36.5 24.7 33.5 0.1 184.5 0.7 3.3
Implied volatility (�,%) 20.7 7.6 19.6 6.9 69.5 1.4 6.3
Days to maturity (�) 57.8 44.1 51 7 338 2.0 9.8
S&P 500 index price (S,$) 1,140.4 210.0 1,152.2 592.1 1,561.7 −0.4 2.6
S&P 500 return (%) 0.1 4.1 0.3 −23.8 25.9 −0.3 8.4
Strike price (K,$) 1,149.7 216.4 1,160 600 1,675 −0.3 2.5
Interest rate (r,%) 3.5 2.2 3.9 0.2 7.0 −0.2 1.5

Number of observations 10,829

Note. Our sample covers the period January, 1996–April, 2011. It includes, for each of the 772 Wednesdays in the sample, the
5 closest contracts to the pre-defined moneyness levels 0.96, 0.98, 1, 1.02, 1.04, for the three maturity levels with less missing
values. Option prices are calculated as the average value of the highest closing bid price and the lowest closing ask price. S&P
500 index has been adjusted by discounting future expected dividends (see the details of the adjustment procedure in the main
text). Interest rates are the continuously compounded zero-coupon yield rates provided by Optionmetrics, and interpolated to
match the maturities in the dataset.

Despite being available at daily frequency, our analysis only considers contracts for
one day of the week, Wednesday, reflecting the choice made in other studies. See for ex-
ample Dumas et al. (1998) and Heston and Nandi (2000) and Christoffersen et al. (2008,
2010) and Christoffersen, Heston, and Jacobs (2011). Three reasons justify this choice.
First, and most importantly, it reduces the number of contracts in the sample, facilitating
computation. Second, Wednesday is the day of the week less likely to be a holiday. Third, it
is less likely to observe biases associated with the day-of-the-week effect or the weekend ef-
fects on Wednesdays, as it would be the case in Mondays and Fridays, for example. For each
Wednesday, we select the closest contracts to 5 predetermined levels of moneyness (0.96,
0.98, 1, 1.02, 1.04), defined as the ratio between the strike price of the contract and the
future price of the S&P 500 index, and 3 levels of maturities; those with less missing values.
Thus, our final sample contains 15 contracts in each of the 772 Wednesdays in the sample.

It is worth noting that our sample selection procedure aims to covering the longest time
span in order to better capture the dynamic of conditional risk-neutral density function, and
therefore, be able to produce accurate option price estimates. This choice, however, comes
at the cost of losing cross-sectional representativeness. Ait-Sahalia and Lo (1998) and Garcı́
a et al. (2010) discuss about the trade-off between covering the time dimension versus the
cross-sectional dimension in option prices dataset.

Table I reports summary statistics for our final sample.16 Table II reports the average
option price and the average implied volatility by moneyness and maturity levels in our
sample.

5. ESTIMATION OF THE SNP MODEL

In this section, we describe the non-linear least squared procedure to estimate the risk-
neutral density function, we identify the best specification for the SNP model using the
searching strategy proposed by Gallant and Tauchen (2008), and then, we report the esti-
mates of our selected model.

16Missing values explain the difference between the theoretical and the effective number of observations in our
sample.
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TABLE II
Selected Statistics by Maturity and Moneyness

0.96 0.98 1 1.02 1.04 Total

Average option price ($)

Short-term 57.8 39.7 25.2 15.2 8.9 29.4
Medium-term 75.2 57.9 45.1 36.4 27.0 48.9
Long-term 102.9 90.3 77.3 66.3 60.1 80.0
Total 64.3 46.4 32.4 22.6 15.4 36.5

Average implied volatility (%)

Short-term 23.5 21.4 19.9 19.0 18.3 20.4
Medium-term 22.9 21.3 20.5 21.1 20.4 21.3
Long-term 23.8 23.7 22.9 23.4 23.1 23.4
Total 23.3 21.4 21.1 19.7 19.0 20.7

Note. Short-term includes those contracts expiring up to 60 days, medium-term includes those expiring between 61 and 180
days, and long-term includes those expiring between 181 and 365 days. Moneyness is defined as the ratio between the strike
price and the future index price.

5.1. Estimation of the Risk-Neutral Density Function

Under the assumption of absence of arbitrage opportunities in the market, the price of
an option contract is the discounted value, under the risk-neutral density function, of the
expected payoffs at maturity. Using this result, we can estimate the parameters of the risk-
neutral conditional density function by minimizing the difference between a set of observed
option prices in the market and the theoretical prices associated with the model. Thus, the
estimated coefficients, �̂, are such that

�̂1 = arg min
�

1
TN

T∑
t=1

N∑
i=1

(
Ci,t −CSNPi,t (�)

)2
, (7)

where T is the number of days in our sample and N is the total number of contracts per
day (in our case, T = 772 and N = 15). Ci,j is the option price observed in the market and
CSNPi,j is the theoretical option price delivered by the SNP model, for a contract with the same

characteristics. The subscript 1 in �̂1 stands for first stage estimates. Second-stage estimates,
�̂2, comes from minimizing the following expression

�̂2 = arg min
�

1
TN

T∑
t=1

N∑
i=1

(
Ci,t −CSNPi,t (�)

)
�̂−1

(
Ci,t −CSNPi,t (�)

)
, (8)

where �̂ ≡ e(�̂1)e(�̂1)′ is the variance–covariance matrix of the first-stage pricing errors, e(�̂1).
This estimation procedure relies on two assumptions : the use of squared $ pricing

errors in (7), and the use of �̂ in (8). Regarding the first assumption, $ pricing errors have
the advantage that they are computational stable, are easy to interpret and, due to our
sample selection procedure, they do not suffer of the heterosckedasticity problem associated
to the use of relatively wide range of option prices across maturity and moneyness described
by Christoffersen and Jacobs (2004a, 2004b). On the other hand, the estimation is biased
towards option contracts with high valuations (long-run contracts). This problem, however,
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is mitigated to some extent as more than 60% of the contracts in our data belong to the
short-term category (less than 60-days).

Regarding the second assumption, the use of �̂ is justified by the efficiency gains in the
parameter estimation associated to the fact that more accurate priced contracts, in the first
stage, are overweighted. Our procedure resembles the standard two-stage GMM estimation
process. Huang and Wu (2004) argue that this procedure depends on the exact model being
estimated, and therefore, it could be problematic to some extent. As an alternative, Huang
and Wu (2004) propose to approximate the variance of the pricing error with the variance
of the option price, as a percentage of the index level. However, this approximation is exact
in processes in which the conditional return distribution does not vary over time. In our
application, however, the SNP-GARCH distribution is time varying, and therefore, the use
of this alternative approach may not be suitable. Overall, bear in mind that our estimates
should be interpreted taking into consideration these limitations.17

5.2. Selection of the Best Specification

Gallant an Tauchen (2008) propose an identification strategy that combines a particular
search path and the use of information criteria. The suggested search path first identifies
the number of lags in the location equation, Lu, which is increased until the autoregressive
process for the mean is obtained. Second, keeping fixed the optimal level of Lu from the first
stage, the lags in the variance equation (Lr and Lg) are increased until the best (G)ARCH
process is identified. Third, keeping fixed the optimal values of the previous two stages,
the number of Hermite polynomials, Kz, is increased to find the best semi-nonparametric
specification. Finally, Kx and Lp are increased, determining if a fully nonlinear specification
is called for. Gallant and Tauchen (2008) emphasize that this model selection strategy does
not necessarily produce the overall preferred model, according to a particular information
criterion, however, it has been successful in finding reasonable approximations of the true
density function in previous applications using the SNP method.

The best model specification is selected by minimizing the Bayesian Information Cri-
terion (BIC), defined as:

BIC = s(�̂) + 1
2
n�

NT
log(NT),

where s(�̂) is the minimized squared option pricing errors that define the optimal �̂ in (7)
and (8), respectively; n� is the number of model parameters and NT is the total number of
observations. Note that we identify the best model using the estimated parameters retrieved
from option contracts. In Table III, we reports our results. For the sake of completeness,
we also report the Akaike information criterion, however, our selection is based on the BIC
as it provides the more parsimonious model. In this way, we reduce a possible overfitting
problem. We report first-stage and second-stage AIC and BIC.

The preferred SNP model is

Lu = 0, Lr = 1, Lg = 1, Kz = 4, Kx = 2, Lp = 1,

with first-stage and second-stage BIC of 1.8914 and 1.9151, respectively. The selected model
exhibits a particularly rich dynamic, characterized by a 4th order Hermite polynomial expan-
sion, and an additional time-varying channel given by Kx = 2.

17We thank a referee for bringing these points into the discussion.
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TABLE III
Best SNP Model According to Information Criteria Implied by Options

Lu Lr Lg Kz Kx Lp � AIC (1) BIC (1) AIC (2) BIC (2)

0 0 0 0 0 0 2 2.1803 2.1804 2.1849 2.1850
1 0 0 0 0 0 3 2.1806 2.1812 2.1852 2.1858

0 1 1 0 0 0 4 1.9222 1.9229 1.9308 1.9315

0 1 1 1 0 0 5 1.9028 1.9037 1.9309 1.9318
0 1 1 2 0 0 6 1.9013 1.9029 1.9361 1.9372
0 1 1 3 0 0 7 1.9007 1.9020 1.9381 1.9394
0 1 1 4 0 0 8 1.9006 1.9021 1.9378 1.9393
0 1 1 5 0 0 9 1.9008 1.9025 1.9388 1.9405

0 1 1 4 1 1 13 1.8906 1.8930 1.9238 1.9262
0 1 1 4 2 1 18 1.8880 1.8914 1.9217 1.9151
0 1 1 4 3 1 23 1.8891 1.8934 1.9216 1.9259

0 0 0 1 0 0 3 2.1823 2.1829 2.3924 2.3930
0 0 0 2 0 0 4 2.1787 2.1794 2.2464 2.2471
0 0 0 3 0 0 5 2.1786 2.1795 2.2389 2.2399
0 0 0 4 0 0 6 2.1805 2.1812 2.2362 2.2373
0 0 0 5 0 0 7 2.1788 2.1799 2.2178 2.2191
0 0 0 6 0 0 8 2.1784 2.1799 2.2240 2.2255

Note. Lu is the number of lags in the mean equation, Lr is the number of lags in the ARCH part of the variance, Lg is the
number of lags in the GARCH part of the variance, Kz is the degree of the normalized Hermite polynomial in the SNP model, Kx
is the degree of the polynomial defining the structure of the integration function v, and Lp is the number of lags in the integration
function v. � is the total number of parameters to be estimated. AIC(1) and AIC(2) are the Akaike information criterion obtained
from the first and second stage SNP estimators, respectively. BIC(1) and BIC(2) are the Schwarz information criterion obtained
from the first and second stage SNP estimators, respectively.

To identify the best model, Gallant and Tauchen (2008) advise to start the search with
Kz = 4.This advice is adhered to and we do not stop the search at Kz = 3 for example, where
the BIC is slightly lower (1.9020) than the BIC of the model with Kz = 4 (1.9021).

The model has a constant mean (Lu = 0) and the variance is characterized by a
GARCH(1,1) structure. The gains associated to the inclusion of the GARCH(1,1) term are
clear when we compared, for example, the models with and without this term, in the case of
Lu = 0 andKz = 4. The BICs are 1.9021 and 2.1812, respectively. It is important, from a em-
pirical point of view, to validate the inclusion of the GARCH variance in our model in order to
confirm the documented success of GARCH option pricing models in the literature. See for
example, Heston and Nandi (2000) and Christoffersen et al. (2006, 2008, 2011). Because
the SNP-GARCH model encompasses the simple GARCH (1,1) option model, we would
expect further performance gains of this model.

5.3. NLS Estimates of the Preferred SNP Model

In Table IV, we report the NLS estimates of the prefer model. In the first column, we report
first-stage estimates, whereas in the second column we report second stage estimates. The
preferred model contains 18 parameters. The estimated mean coefficient is close to zero and
not significant.18 In the GARCH(1,1) variance equation, the constant term is again close to

18The statistical significance of the parameters is verified using the inverse of the outer product of the gradient
vector, evaluated at the minimized value, as standard errors.
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TABLE IV
Estimated Coefficients of the Preferred SNP Model

(Lu = 0, Lr = 1, Lg = 1, Kz = 4, Kx = 2, Lp = 1)

First stage Second stage

Mean equation b0 0.0003 0.0003
Variance equation c0 0.0006 0.0007

c1 0.0521∗ 0.0701∗
d1 0.8956∗ 0.8552∗

Hermite polynomial a1 3.4348∗ 3.5525∗
a2 −0.7931∗ −0.8336∗
a3 −0.0043∗ −0.0057∗
a4 −0.2559∗ −0.2652∗
a5 −1.4585∗ −1.5203∗
a6 −3.5e-05 0.4200
a7 0.1065∗ 0.1138∗
a8 0.2347∗ 0.1068∗
a9 −0.0052∗ −0.0080∗
a10 −0.3252∗ −0.3392∗
a11 −1.9484∗ −1.9319∗
a12 0.0058∗ 0.0072∗
a13 0.2153∗ 0.2317∗
a14 0.7406∗ 0.8078∗

Note. The coefficients are estimated minimizing the squared option pricing errors produced by the preferred model. In the
first stage, pricing errors are equally weighted in the minimization process, whereas in the second stage, the pricing errors are
weighted by the inverse of variance–coveriance matrix estimated in the first stage. *Significant at 95%.

zero and insignificant, but the ARCH and the GARCH terms are both statistically significant.
The variance is stationary as the sum of these two coefficients is less than 1. The coefficients
of the Hermite polynomial are all significant, except for the sixth coefficient, indicating that
the model is statistical valid.

Considering that the estimated coefficients of the polynomial expansion do not neces-
sarily have an economic meaning on their own, a plot of the estimated conditional risk-neutral
density function backed by these coefficients is more informative. In Figure 1 we report the
1-period ahead conditional density, using the estimates from the first-stage estimator. As a
reference, we also plot a normal density function with the same mean and variance. The
figure shows that the estimated conditional SNP density function has thicker tails than the
normal distribution, indicating that the SNP model assigns higher probabilities to extreme
events than the normal distribution does. Furthermore, we observe that the estimated density
has negative skewness, indicating that negative events are more likely to occur than positive
ones. Thus, the SNP model provides a more realistic estimate of the conditional density
function of the S&P 500 log-returns than the normal case.

6. OPTION PRICING RESULTS

In this section, we study the pricing performance of the SNP model identified and estimated
in the previous section. In particular, we compare the in-sample and the out-of-sample fit
of the SNP option pricing model against several benchmark models. The out-of-sample
evaluation is completed using a rolling window framework, for two forecasting horizons: 1
week and 4 weeks ahead.
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FIGURE 1
Estimated Conditional 1-Period Ahead SNP Distribution

Note. The figure shows the estimated conditional 1-period ahead distribution of the preferred SNP
model (Lu = 0, Lr = 1, Lg = 1, Kz = 4, Kx = 2, Lp = 1). A normal distribution with the same mean and
variance is superimposed as reference (dashed line). [Color figure can be viewed in the online issue,
which is available wileyonlinelibrary.com.]

6.1. Benchmark Models

We study 5 benchmark models: the Black–Scholes model; the implied volatility function
(IVF) model of Dumas et al. (1998), sometimes referred as practitioner Black-Sholes; an
extended version of the IVF model proposed by Gonçalves and Guidolin (2006); a constant-
volatility version of the SNP model studied by León et al. (2009); and finally, a conditional
volatility model with short-run and long-run components, proposed by Christoffersen et al.
(2008).

6.1.1. Implied volatility function model

The IVF model is an ad-hoc procedure that smooths BS implied volatilities across money-
ness, maturities, and cross-product or squared values of these two terms. The procedure,
originally introduced by Dumas et al. (1998), has shown remarkable success in fitting the
cross-section of option prices; surpassing many alternatives specifications proposed in the
literature. The model does not require the imposition of any additional assumptions either
on the distribution of the stock index or on the preferences of the investors. Its ability to
produce accurate option prices forecasts, in a relatively straightforward and simple way, is
its main advantage.

The estimation procedure consists on running an OLS regression between the (log
of) implied volatilities and moneyness (Mi), 19 time-to-maturity (�i), an additional terms

19Dumas et al. (1998) use a time-adjusted moneyness level, defined as

(
K
S∗ −1

)
√
T

, where K is the strike price, S∗ is

the dividend-adjusted spot price and T is the time to maturity.
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involving these two variables. In particular, we use the following functional form:

ln(�i) = ˇ0 + ˇ1Mi + ˇ2M
2
i + ˇ3�i + ˇ4(Mi�i) + εi.

The estimated model is used to recover the fitted prices for each of the contracts in the
dataset.

6.1.2. Gonçalves and Guidolin (2006)’s model

Gonçalves and Guidolin (2006) propose an extended IVF model, explicitly recognizing that
the implied volatility surface is time-varying. Thus, for each day in the sample, the esti-
mation procedure consists of building a time-series of daily OLS beta estimates, {ˇt}772

t=1 =
{(ˇ0,t, ˇ1,t, ˇ2,t, ˇ3,t, ˇ4,t)′}772

t=1. Then, a VAR model to the estimated betas is fitted:

̂̌
t = �+

P∑
J=1


̂̌
t−j + ut, (9)

where ut ∼ i.i.d N(0, �). The estimated dynamic model is used to forecast betas, which are
used later to price options.

6.1.3. SNP model with constant volatility

León et al. (2009) study the performance of a SNP model with constant volatility to price S&P
500 index options. In particular, they identified the following model as the best performer
model in their study: Lu = 0, Lr = 0, Lg = 0, Kz = 4, Kx = 0, Lp = 0. We study this model
in order to verify if a richer specification produces more accurate option pricing estimates.20

6.1.4. Volatility model with short-run and long-run components

Christoffersen et al. (2008) introduce an option valuation model with long-run and short-run
volatility components. This model constitutes a good benchmark because is a type of GARCH
option pricing model that outperforms other well-known GARCH models, like the Heston
and Nandi (2000)’s model. The model builds on Engle and Lee (1999) and Heston and
Nandi (2000). The model, under the risk-neutral measure, is characterized by the following
return dynamics in discrete time:

Rt+1 ≡ ln(St+1) − ln(St) = r − 1
2
ht+1 +

√
ht+1z

∗
t+1 z∗t+1 ∼ N(0,1)

ht+1 = qt+1 + ˜̌∗(ht − qt) + ˛v∗1,t
qt+1 = ω + �∗qt + ϕv∗2,t, (10)

where (ht − qt) is the short run component, qt is the long run component and v∗i,t, for
i = {1,2}, are mean-zero innovations. This specification assures that the log-return of the
asset equals the risk-free interest rate. Moreover, the variance of the log-returns under both

20León et al. (2009) also study SNP models with Kz = 2 and Kz = 3. Both of them produce a worst pricing perfor-
mance than the SNP model with Kz = 4.
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measures coincides. Under this structure, the price at time t of a European call option with
strike price K that expires at time T is

CCJOW = St

(
1
2

+ 1
�

∫ ∞

0
Re

[
K−i�f ∗(t, T; i� + 1)

i�Ster(T−t)

]
d�

)
−Ke−r(T−t)

(
1
2

+ 1
�

∫ ∞

0
Re

[
K−i�f ∗(t, T; i�)

i�

]
d�

)
, (11)

where f ∗(t, T; i�) is the conditional characteristic function of the ln(St) under the risk-
neutral measure. The function Re(·) takes the real value of the argument. Christoffersen
et al. (2008) show that the characteristic function takes the form f (t, T;�) = S

�
t exp(At +

B1,t(ht+1 − qt+1) + B2,t), where At, B1,t and B2,t are recursive coefficients21.

6.2. Measures of Statistical Fit

To assess the forecasting ability of the fitted models (in-sample and out-of-sample), we com-
pute 2 standard statistical measures: the root mean squared error (RMSE) and the mean
absolute error (MAE). For a sample of option contracts for T days, containing N contracts
per day, these measures are defined as

RMSE =
√√√√ 1
TN

T∑
t=1

N∑
i=1

(Ct,i − ĈModelt,i (�̂))2

MAE = 1
TN

T∑
t=1

N∑
i=1

∣∣∣Ct,i − ĈModelt,i (�̂)
∣∣∣ ,

where Ct,i is the market price of the option contract i at day t, and ĈModelt,i is the price
delivered by a particular option pricing model for a contract with the same characteristics
(time-to-maturity, strike price, underlying stock price) as the one observed in the market.

6.3. In-Sample Fit Results

In Table V, we report the relative in-sample performance of the models, with respect to the
Black–Scholes model. In particular, each value in the table corresponds to the ratio between
the performance measure of a particular model and the performance of the BS model. A
number smaller than 1 indicates that the model has a better performance than the BS model.
In the limit, a ratio of 0, would indicate that the model produces a perfect fit. The first result
is that both the first-stage and the second-stage SNP model considerably outperform the BS
model. For example, in the case of the first-stage SNP model, the RMSE is 0.31, and the
MAE is 0.25. These numbers indicate that the SNP model only produces 30% and 25% of
the mispricing of the BS model. In other words, it reduces the relative in-sample biases by
approximately 69% and 75%. Similar results are obtained for the second-stage SNP model,
where the RMSE and MAE are 0.32 and 0.27, respectively.

21The exact definition of each of these recursive coefficients is given by Equation (25) in Christoffersen et al.
(2008).
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TABLE V
In-Sample Fit of the SNP Model and Benchmark Models

SNP (First stage) RMSE 0.31
MAE 0.25

SNP (Second stage) RMSE 0.32
MAE 0.27

Implied volatility function RMSE 0.31
MAE 0.34

Goncalves and Guidolin (2006) RMSE 0.40
MAE 0.38

León et al. (2009) SNP Kz = 4 RMSE 0.44
MAE 0.39

Christoffersen et al. (2008) RMSE 0.32
MAE 0.27

Note. The table shows the relative in-sample performance of several option pricing models and the Black–Scholes (BS) model.
In each cell, the ratio between the performance measures of the evaluated model and the BS model is reported. RMSE is the
root mean squared error and MAE is the mean absolute error. SNP is the preferred Semi-nonparametric model with GARCH
(1,1) variance introduced in this study. In particular, it corresponds to the case (Lu = 0, Lr = 1, Lg = 1, Kz = 4, Kx = 2, Lp = 1).
The implied volatility function (IVF) model corresponds to the model introduced by Dumas et. al (1998), where in a first stage, the
following regression is run, ln(�i ) = ˇ0 + ˇ1Mi + ˇ2M

2
i + ˇ3�i + ˇ4(Mi �i )+ εi , and in a second stage, options are priced using the

predicted implied volatilities obtained from the model. In the above specification, �i is the implied volatility, Mi is a time-adjusted
measure of moneyness, �i is the time to maturity in days, and εi is an error term. Goncalves and Guidolin (2006)’s model extends
the Dumas et al. (1998) model, using a VAR model in the second stage to modeling the dynamic of the estimated beta coefficients,
and then use this model to price options. León et al. (2009) is a SNP model, which is a simplified version of our preferred model.
In particular, it corresponds to the case (Lu = 0, Lr = 0, Lg = 0, Kz = 4, Kx = 0, Lp = 0). Christoffersen et. al (2008) is an option
pricing model with long-run and short-run volatility components. In particular, it corresponds to the persistent component model
described in the paper.

A second result is that the first-stage SNP model is the best performing model among all
the studied models. In terms of RMSE, only the IVF model has the same performance, 0.31.
In terms of MAE, it delivers the higher value, 0.25. Other models are competitive as well,
especially the Christoffersen et al. (2008) model. However, the SNP model is still slightly
superior. It is worth noting that the SNP-GARCH model outperforms the constant variance
SNP model of León et al. (2009). This result corroborates that the Hermite polynomial
expansion must be combined with a time-varying volatility in order to produce accurate
option prices estimates. Christoffersen et al. (2006) made the same point from a theoretical
perspective. Finally, the performance of the IVF is reasonable as well, with RMSE of 0.31
and MAE of 0.34.

In Table VI, we report the in-sample performance estimates by moneyness and matu-
rity levels. Our results show that both the first-stage and second-stage SNP models produce
reasonable in-sample performance across all moneyness and maturity levels, when com-
pared with the benchmark models. For example, for short-term contracts with moneyness
of 0.96 (in-the money calls and out-of-the-money puts), the RMSE are 0.36 in both SNP
models, 0.57 for the IVF model, 0.46 for the Gonçalves-Guidolin model, and 0.53 for the
constant-volatility SNP model. Only the Christoffersen et al. (2008) model produces a better
performance than the SNP model, with a RMSE of 0.28. Similar results are obtained for
at-the money medium-term contracts. The SNP models produce RSME of 0.24 and 0.26,
respectively. These numbers compared with values of 0.34, 0.35 and 0.27 for the Gonçalves
and Guidolin (2006)’s model, the constant-volatility SNP model, and the Christoffersen et al.
(2008) model, respectively. In this case, only the IVF model produces a superior performance,
with a RMSE of 0.19.
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TABLE VI
In-Sample Fit of the SNP Model and Benchmark Models by Maturity and Moneyness

Moneyness

0.96 0.98 1 1.02 1.04

SNP (First stage) Short-term RMSE 0.36 0.29 0.26 0.39 0.51
MAE 0.31 0.24 0.19 0.31 0.45

Medium-term RMSE 0.30 0.24 0.24 0.33 0.41
MAE 0.26 0.21 0.19 0.24 0.32

Long-term RMSE 0.25 0.20 0.25 0.28 0.46
MAE 0.21 0.17 0.18 0.19 0.29

SNP (Second stage) Short-term RMSE 0.36 0.30 0.27 0.40 0.53
MAE 0.33 0.26 0.21 0.33 0.49

Medium-term RMSE 0.31 0.27 0.26 0.33 0.42
MAE 0.27 0.23 0.21 0.26 0.35

Long-term RMSE 0.29 0.23 0.28 0.29 0.46
MAE 0.25 0.19 0.21 0.22 0.32

Implied volatility function Short-term RMSE 0.57 0.42 0.32 0.44 0.64
MAE 0.63 0.44 0.31 0.48 0.83

Medium-term RMSE 0.28 0.23 0.19 0.22 0.29
MAE 0.28 0.22 0.19 0.22 0.31

Long-term RMSE 0.21 0.17 0.16 0.16 0.18
MAE 0.19 0.16 0.14 0.15 0.18

Goncalves and Guidolin (2006) Short-term RMSE 0.46 0.38 0.31 0.39 0.51
MAE 0.50 0.36 0.27 0.38 0.54

Medium-term RMSE 0.41 0.37 0.34 0.36 0.48
MAE 0.39 0.35 0.31 0.35 0.48

Long-term RMSE 0.50 0.41 0.45 0.44 0.55
MAE 0.46 0.37 0.41 0.43 0.56

León et al. (2009) SNP Kz = 4 Short-term RMSE 0.53 0.44 0.37 0.53 0.67
MAE 0.49 0.39 0.30 0.45 0.65

Medium-term RMSE 0.45 0.37 0.35 0.45 0.56
MAE 0.39 0.33 0.30 0.39 0.50

Long-term RMSE 0.32 0.28 0.30 0.38 0.58
MAE 0.27 0.24 0.24 0.30 0.44

Christoffersen et al. (2008) Short-Term RMSE 0.28 0.26 0.24 0.35 0.46
MAE 0.24 0.22 0.19 0.29 0.43

Medium-term RMSE 0.28 0.28 0.27 0.34 0.42
MAE 0.25 0.24 0.23 0.29 0.38

Long-term RMSE 0.42 0.36 0.37 0.40 0.48
MAE 0.40 0.32 0.35 0.39 0.46

Note. The table presents the relative in-sample performance of several option pricing models for 3 maturity categories: short-
term (<60 days), medium-term (61–180 days) and long-term (181–365 days), and 5 moneyness categories, where moneyness
is defined as the ratio between the strike price of the contract and the future price of the S&P 500 index. A description of the
models is given in Table V.

Again, we observe that the SNP model with GARCH(1,1) volatility produces better
results than the constant volatility SNP model, across all the moneyness and maturity lev-
els considered. When we compare the performance of the IVF model and the Gonçalves
and Guidolin (2006)’s model, we observe that the Gonçalves and Guidolin (2006)’s model
produces better in-sample results than the IVF model for short-term contracts. This re-
sult is reversed in medium-term contracts, however. Finally, these results confirm that
the Christoffersen et al. (2008) model is the most challenging benchmark. This model out-



234 Guidolin and Hansen

TABLE VII
Out-of-Sample Fit of the SNP Model and Benchmark Models, 1 Week and 4 Weeks Ahead

1 week 4 weeks

SNP (First stage) RMSE 0.62 0.66
MAE 0.58 0.63

SNP (Second stage) RMSE 0.72 0.77
MAE 0.68 0.74

Implied volatility function RMSE 1.00 1.11
MAE 0.92 0.99

Goncalves and Guidolin (2006) RMSE 0.92 0.99
MAE 0.80 0.96

León et al. (2009) SNP Kz = 4. RMSE 0.98 0.98
MAE 0.98 0.99

Christoffersen et al. (2008) RMSE 0.51 0.89
MAE 0.47 0.69

Note. The table reports the relative out-of-sample performance of several option pricing models with respect to the BS model,
1 week and 4 weeks ahead. The out-of-sample performance measures of the models is computed using a 5-year rolling window
setup. A description of the models is given in Table V.

performs the SNP model in the case of short-term contracts. However, the SNP produces
smaller RMSE and MAE in some medium-term categories.

6.4. Out-of-Sample Fit Results

In the previous subsection, we have shown that the SNP option pricing model has good in-
sample properties. However, we aim at identifying a model also able to produce good option
price forecasts, out-of-sample. A model producing reasonable forecasts could be used for
investment and hedging purposes. We turn to that evaluation here.

We evaluate the models using a 5-year rolling window framework. The first window,
containing 260 Wednesdays, starts in January 1996 and ends in December 2000. We estimate
the models in this window, and then we compute the 1-week and 4-week forecasts. Thereafter,
we move the window 1 period forward, and we re-estimate the models and compute the
forecasts again. We continue moving the window forward until the end of our sample. We
repeat this process 508 times. Finally, the performance measures are computed as averages
across windows.

In Table VII, we report our out-of-sample results. For the 1-week forecasting horizon,
the SNP model produces a RMSE of 0.62 and a MAE of 0.58. The SNP model outperforms
all the benchmark models but Christoffersen et al. (2008) model. For example, the IVF
model produces RMSE and MAE of 1.00 and 0.92, respectively. Because this evaluation
is relative to the performance of the BS model, these numbers indicate that the IVF model
performance is quite similar to the BS performance, out-of-sample. The Gonçalves-Guidolin
(2006) model produces slightly better results than the IVF model, but worse than the SNP
model, with RMSE and MAE of 0.92 and 0.80, respectively. The constant-volatility SNP
model also produces poor results when compared with our SNP model. The model with
long-run and short-run volatility components of Christoffersen et al. (2008) shows the best
performance at the 1-week forecasting horizon. Its RMSE is 0.51 and its MAE is 0.47, well
below the numbers of the SNP model.
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TABLE VIII
Out-of-Sample Fit of the SNP Model and Benchmark Models by Maturity and Moneyness

(1 week ahead)

Moneyness

0.96 0.98 1 1.02 1.04

SNP (First stage) Short-term RMSE 0.61 0.59 0.59 0.62 0.65
MAE 0.69 0.58 0.53 0.54 0.55

Medium-term RMSE 0.63 0.63 0.58 0.60 0.65
MAE 0.69 0.64 0.55 0.52 0.54

Long-term RMSE 0.68 0.62 0.68 0.64 0.67
MAE 0.74 0.62 0.61 0.62 0.63

SNP (Second stage) Short-term RMSE 0.68 0.68 0.68 0.71 0.73
MAE 0.79 0.68 0.67 0.68 0.69

Medium-term RMSE 0.69 0.71 0.65 0.67 0.71
MAE 0.78 0.73 0.63 0.62 0.64

Long-term RMSE 0.72 0.69 0.73 0.75 0.78
MAE 0.79 0.67 0.71 0.75 0.80

Implied volatility function Short-term RMSE 0.89 0.80 0.77 0.70 0.78
MAE 1.05 0.88 0.78 0.71 0.76

Medium-term RMSE 1.00 0.98 0.96 0.92 1.13
MAE 1.08 1.01 0.95 0.88 1.00

Long-term RMSE 1.92 1.27 1.65 1.16 2.30
MAE 1.62 1.27 1.48 1.14 1.90

Goncalves and Guidolin (2006) Short-term RMSE 0.72 0.74 0.68 0.60 0.62
MAE 0.93 0.82 0.73 0.65 0.64

Medium-term RMSE 0.73 0.83 0.78 0.74 0.76
MAE 0.87 0.91 0.84 0.80 0.82

Long-term RMSE 0.82 0.89 1.03 1.14 1.03
MAE 0.97 1.04 1.17 1.30 1.36

León et al. (2009) SNP Kz = 4 Short-term RMSE 0.97 1.00 1.00 1.00 1.02
MAE 1.07 1.03 0.97 0.96 1.00

Medium-term RMSE 0.92 0.97 0.97 1.00 1.03
MAE 0.95 0.97 0.96 0.99 1.02

Long-term RMSE 0.74 0.79 0.84 0.92 0.98
MAE 0.84 0.83 0.85 0.97 1.01

Christoffersen et al. (2008) Short-term RMSE 0.23 0.26 0.26 0.28 0.35
MAE 0.25 0.26 0.27 0.29 0.38

Medium-term RMSE 0.25 0.26 0.34 0.31 0.33
MAE 0.27 0.27 0.33 0.30 0.34

Long-term RMSE 0.38 0.40 0.51 0.47 0.49
MAE 0.41 0.40 0.50 0.45 0.50

Note. The table presents the relative out-of-sample performance, 1-week ahead, of several option pricing models for 3 maturity
categories: short-term (<60 days), medium-term (61–180 days) and long-term (181–365 days), and 5 moneyness categories,
where moneyness is defined as the ratio between the strike price of the contract and the future price of the S&P 500 index. The
out-of-sample performance measure of the models is computed using a 5-year rolling window setup. A description of the models
is given in Table V.

The forecasting evaluation at the 4-week horizon confirms the ability of the SNP model
in producing reasonable out-of-sample forecasts. A first point to note is that, as expected,
the forecasting ability of the models is reduced at longer horizons: consistently across mod-
els, the 4-week forecast performance is worse than the 1-week forecasting performance. In
relative terms, we observe that the SNP model is quite competitive when compared with the
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TABLE IX
Out-of-Sample Fit of the SNP Model and Benchmark Models by Maturity and Moneyness

(4 weeks ahead)

Moneyness

0.96 0.98 1 1.02 1.04

SNP (First stage) Short-term RMSE 0.70 0.67 0.68 0.72 0.73
MAE 0.72 0.62 0.58 0.58 0.58

Medium-term RMSE 0.69 0.69 0.65 0.66 0.72
MAE 0.74 0.69 0.60 0.57 0.59

Long-term RMSE 0.68 0.62 0.64 0.68 0.77
MAE 0.76 0.64 0.61 0.65 0.67

SNP (Second stage) Short-Term RMSE 0.77 0.76 0.77 0.80 0.80
MAE 0.84 0.73 0.73 0.74 0.73

Medium-term RMSE 0.75 0.77 0.74 0.74 0.80
MAE 0.83 0.79 0.71 0.69 0.72

Long-term RMSE 0.70 0.65 0.69 0.75 0.82
MAE 0.77 0.60 0.62 0.70 0.78

Implied volatility function Short-term RMSE 1.01 0.92 0.86 0.82 0.95
MAE 1.11 0.94 0.86 0.80 0.87

Medium-term RMSE 0.97 0.99 0.97 1.01 1.40
MAE 1.07 1.02 0.98 0.94 1.07

Long-term RMSE 2.38 2.15 1.68 2.78 2.93
MAE 2.13 1.78 1.57 2.02 2.18

Goncalves and Guidolin (2006) Short-term RMSE 0.79 0.80 0.74 0.73 0.74
MAE 1.01 0.90 0.81 0.76 0.75

Medium-term RMSE 0.77 0.86 0.83 0.80 0.81
MAE 0.91 0.94 0.90 0.85 0.86

Long-term RMSE 0.96 0.95 1.00 1.20 1.04
MAE 1.06 1.05 1.07 1.32 1.36

León et al. (2009) SNP Kz = 4 Short-term RMSE 0.98 1.00 1.00 1.00 1.02
MAE 1.07 1.03 0.97 0.96 1.00

Medium-term RMSE 0.92 0.96 0.97 1.00 1.04
MAE 0.95 0.97 0.96 0.99 1.02

Long-term RMSE 0.75 0.79 0.82 0.93 0.99
MAE 0.85 0.84 0.83 0.97 1.03

Christoffersen et al. (2008) Short-term RMSE 0.40 0.47 0.46 0.68 0.68
MAE 0.48 0.50 0.49 0.63 0.67

Medium-term RMSE 0.98 0.78 1.27 0.88 0.83
MAE 1.08 0.89 1.27 0.91 0.93

Long-term RMSE 0.66 0.69 0.68 0.74 0.52
MAE 0.89 0.87 0.84 0.91 0.76

Note. The table presents the relative out-of-sample performance, 4-week ahead, of several option pricing models for 3 maturity
categories: short-term (between the strike price of the contract and the future price of the S&P 500 index. The out-of-sample
performance measure of the models is computed using a 5-year rolling window setup. A description of the models is given in
Table V.

benchmark models. Actually, at this forecast horizon, the performance of the SNP model is
superior to the one of Christoffersen et al. (2008) model. The SNP model produces RMSE
and MAE of 0.66 and 0.63, whereas the Christoffersen et al. (2008) model produces values of
0.89 and 0.69. Regarding the other models, we obtain similar results to those for the 1-week
forecasting horizon. The SNP model outperforms the IVF model, the Gonçalves-Guidolin
(2006) model, and the constant-volatility SNP model. Also, we observed that the first-stage
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SNP estimates yield better out-of-sample results than second-stage SNP estimates at both
forecasting horizons.

Similar to the in-sample evaluation, we evaluate the out-of-sample performance of the
models across moneyness and maturity categories. Our results are reported in Tables VIII
and IX. For the 1-week horizon, we find that the first-stage SNP model outperforms, across
moneyness and maturity levels, the IVF model, the Gonçalves-Guidolin (2006) model, and
the constant volatility SNP model. With regards to this last model, the evidence favors a more
general specification in order to obtain reliable option prices forecasts. As before, we also find
that the first-stage SNP model is superior to the second-stage SNP model. The performance
results of Christoffersen et al. (2008) model are particularly good and outperform the SNP
model. The best results of this model are obtained in the short-term category. For the 4-week
forecasting horizon, we obtain similar results to those of the 1-week horizon, but now, the
SNP model outperforms the Christoffersen et al. (2008) model for medium-term and long-
term contracts. For short-term contracts, we observe the same pattern reported above, where
the SNP model is outperformed by the Christoffersen et al. (2008) model. With regards to
the other models, we again obtain that first-stage SNP estimates outperform the second-stage
SNP model, the IVF model, Gonçalves-Guidolin (2006) model, and the constant-volatility
model, across moneyness and maturity levels.

7. CONCLUSIONS

This study evaluates the empirical performance of a semi-nonparametric model with time-
varying volatility in pricing S&P 500 index option contracts. In particular, we assume that
the conditional risk-neutral density function of the index is characterized by an Hermite
polynomial expansion and by a GARCH structure that accounts for time-varying variance of
log returns. Furthermore, the model allows for time-varying polynomial coefficients, incor-
porating an extra channel of time dynamic.

The empirical performance of the model is evaluated in-sample and out-of-sample
against 5 benchmark models in the period 1996–2011. In-sample, the first-stage SNP model
produces the best results among all the studied models, reducing the Black–Scholes biases
by 70%, approximately. Out-of-sample, the results are promising as well. For the 1-week hori-
zon, the first-stage SNP model outperforms all the benchmark models except the long-run
and short-run volatility model of Christoffersen et al. (2008). For the 4-week horizon, again,
the SNP model outperformed all the competing models. This evidence highlights the impor-
tance of incorporating both non-normalities and time-varying volatilities simultaneously in
pricing index options as suggested by Christoffersen et al. (2006).

For future research, it would be interesting to evaluate the SNP-GARCH model using
alternative measures of performance such as hedging measures, to evaluate the performance
of investment strategies with options, using stock options instead of index options, using
alternative benchmark models like option GARCH with jumps models, among others.
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