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In this article we characterize inverse M -matrices and poten-
tials whose inverses are supported on trees. In the symmetric 
case we show they are a Hadamard product of tree ultramet-
ric matrices, generalizing a result by Gantmacher and Krein 
[12] done for inverse tridiagonal matrices. We also provide an 
algorithm that recognizes when a positive matrix W has an 
inverse M -matrix supported on a tree. This algorithm has 
quadratic complexity. We also provide a formula to compute 
W−1, which can be implemented with a linear complexity. Fi-
nally, we also study some stability properties for Hadamard 
products and powers.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction and basic definitions

Markov chains are used to model a variety of phenomena and one is accustomed to 
estimate its transition probability P in order to simulate and understand the underline 
probabilistic structure. Nevertheless, there are some situations where a direct measure-
ment of P is not available. For example, this happens in electrical networks, where P is 
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related to the resistances of the network (see for example [10] section 2.7). Instead, we 
can measure the potential W of the Markov chain, which is the mean expected number 
of visits per site (assuming the chain is transient). These two matrices are related by 
W = (I − P )−1, so in principle one can model W instead of P . The main drawback of 
this approach is that structural restrictions for potentials are difficult to state (this is 
part of the inverse M -matrix problem).

In this article, we show how to handle this problem under the extra hypothesis that 
the incidence graph of W−1 is a tree. In the nomenclature of Klein [15], W−1 is a
treediagonal. This is the case of a linear tree like Birth and Death chains and some 
networks like the electric power distribution system. In Theorem 2.5, we show that to 
reconstruct the chain it is enough to measure the potential at edges and nodes of the tree. 
The unique restrictions on those numbers are given by the 2 ×2 determinants associated 
with every edge. On the other hand, Theorem 2.2 (see also Corollary 2.3) provides an 
explicit formula to compute P from W . The complexity of this formula is linear in the 
number of nodes in the tree. More explicitly, if W is an n ×n matrix, then the algorithm 
obtained from this formula, uses at most 11n operations (products, divisions and sums) 
to compute W−1. Notice here that while W−1 is an sparse matrix, W itself is a full 
matrix (under irreducibility W > 0).

For the sake of completeness, we recall that a matrix Q is an M -matrix if it is a 
Z-matrix, that is, the off diagonal elements are nonpositive, Q is nonsingular and the 
entries of its inverse Q−1 are nonnegative. We refer to [13] section 2.5 for a set of equiv-
alent conditions that characterize M -matrices. It is worth mentioning that the diagonal 
entries of an M -matrix are positive. On the other hand, a relevant sufficient condition for 
a Z-matrix Q to be an M -matrix, is that Q is nonsingular and row diagonally dominant, 
that is, for all i the row sum 

∑
j Qij ≥ 0.

In Theorem 2.7 we characterize, in an algorithmic way, those positive matrices whose 
inverses are M -matrices supported on a tree. The associated algorithm is developed in 
Appendix B, which provides the tree associated with W−1 with a complexity bounded 
by 37

2 n2.
As a complement, Theorem 2.1 provides a description of a potential associated with 

a Markov chain supported on a tree. This is done in terms of ultrametric matrices. 
A sufficient condition is that U = diag(1./W•r) Wdiag(1./Wr•) is an ultrametric matrix. 
On the other hand, in the symmetric case, a necessary and sufficient condition is that 
W is the Hadamard product of tree ultrametric matrices, plus condition (2.2). As tree 
ultrametric matrices are simple to construct, this result provides a simple way to describe 
general Markov chains on trees.

In [9], we have proved that every potential of a random walk on {1, · · · , n} with nearest 
neighbor transitions, is the product of a positive diagonal matrix with a matrix which is 
the Hadamard product of two ultrametric matrices. This is equivalent to representing the 
inverse of a tridiagonal and row diagonally dominant M -matrix as such product. This 
was done in the symmetric case in [12]. In our setting, we shall see that we require one 
ultrametric matrix per extremal point of the set (on the tree) where the chain is losing 
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mass. This explains why for nearest neighbor random walks, we needed two ultrametric 
matrices (in some simple cases we needed just one).

Finally, in Theorem 2.8 we study stability properties for these matrices under 
Hadamard products and powers. In particular we show that if W, Z are two inverse 
treediagonal M -matrices associated with the same tree T, then their Hadamard product 
W � Z is also an inverse treediagonal M -matrix associated with T.

To continue, let us recall the definition of a potential matrix.

Definition 1.1. A nonnegative and nonsingular matrix W is said to be a potential if 
M = W−1 is a row diagonally dominant M -matrix.

The inverse of a potential matrix W is a row diagonally dominant M -matrix, so there 
exist a transient substochastic matrix P and a constant k such that W−1 = k(I −P ). In 
particular, W is proportional to the potential (in the probabilistic sense) of the Markov 
chain associated with P , which is U = (I − P )−1. This matrix represents the expected 
number of visits for this Markov chain. Indeed, since P is transient, the series 

∑
m≥0 P

m

is finite and U = (I − P )−1 =
∑

m≥0 P
m. Hence, if we consider (Xn) a Markov chain 

whose transition kernel is P then

Uij =
∑
n

Pn
ij =

∑
n

Ei(1j(Xn)) = Ei

(∑
n

1j(Xn)
)
,

where Ei is the mean expected value when the starting condition is X0 = i, and 1j(x) is 
the function that takes the value 1 when x = j and 0 otherwise.

Since U and W are proportional we conclude that for all i �= j

Wij = fW
ij Wjj , (1.1)

where fW
ij ∈ [0, 1] is the probability that the chain ever visits j starting from i. This 

quantity can be described using the hitting time τj = inf{n ≥ 0 : Xn = j}, which is 
the first random time the chain visits j (we put τj = ∞ for those realizations where the 
chain never visits j). Then,

fW
ij = Pi(τj < ∞).

In the sequel we define fW
ii = 1, in order that (1.1) is satisfied for all i, j.

In particular if W is a potential, then W is column pointwise diagonally dominant, 
that is for all i, j

Wij ≤ Wjj .

If W is symmetric, we get it is also row pointwise diagonally dominant. Also, we point 
out that W > 0 if and only if the associated chain is irreducible, or equivalently, the 
incidence graph of W−1 is connected.
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Remark 1.1. There is a subtle difference between W being a potential and W−1 = I −P , 
for some substochastic matrix P . Of course the latter is a special case of the former. 
To give a probabilistic representation of a general potential matrix, one has to use a 
continuous time Markov chain X = (Xt : t ∈ R

+). This process is like a Markov chain 
but jumps from one site to another after certain exponentially distributed random times. 
Again, Wij represents the mean total time spent by X at site j, starting from i (see [10]
Section 2.3.1).

Recall that a graph G = (V, E) is a set of vertices or nodes V and a set of edges 
E ⊂ V × V. When there is no possible confusion we shall not distinguish between i ∈ G

and i ∈ V. Also, we shall not distinguish between (i, j) ∈ G and (i, j) ∈ E .

Definition 1.2. Given an M -matrix M with inverse W , the graph G = G(W ), denotes 
the incidence graph of M , that is, (i, j) ∈ G if and only if Mij �= 0. We shall say that G
is the graph associated with W (and M).

On the other hand, we say that a node i is a root of W (or M) if 
∑

j Mij �= 0. The 
set of roots of W is denoted by R(W ).

The unique solution to Wμ = 1, that is μ = M1, is called the right signed equilibrium 
potential of W and it will be denoted by μW . The support of μW is the set of nodes 
{i : (μW )i �= 0}, which is exactly the set of roots for W . The total mass of μW is denoted 
by μ̄W = μ′

W1.

Since the diagonal elements of an M -matrix are positive G(W ) always contains the 
loop (i, i) for all i ∈ V. Also, we point out that in principle G(W ) is a directed graph. 
Nevertheless, we shall consider mainly the case where T = G(W ) is a tree. In particular 
(i, j) ∈ T means that both W−1

ij �= 0 and W−1
ji �= 0. This is slightly different from what 

is done in [15] or [19], where the graph considered is defined as (i, j) ∈ G(W−1) if and 
only if W−1

ij �= 0 or W−1
ji �= 0. However, if G(W ) is a tree and W−1 is irreducible (or 

equivalently W > 0) both concepts coincide.
If (μW )i ≥ 0 then M is row diagonally dominant at row i. Hence, the right signed 

equilibrium measure μW is nonnegative if and only if W−1 is row diagonally dominant. 
In this case we say that μW is the right equilibrium potential of W .

We point out that when W is a potential the decomposition of W−1 = k(I − P ) is 
not unique, but the connections determined by P out of the diagonal are well defined: 
i �= j are connected in one step, that is Pij > 0, if and only if (i, j) ∈ G(W ). Thus G(W )
represents the graph of transitions for the underline Markov chain. We notice that i is a 
root (as defined before) if P is defective at i, that is∑

j

Pij < 1. (1.2)

Hence, the Markov chain loses mass exactly at the roots of W .
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Fig. 1. A tree T and a subset A .

A tree T = (V, E) is a non-oriented, connected graph without simple cycles. Unless 
we say the contrary, we assume that for every i ∈ V the loop (i, i) ∈ E . In what follows T
will denote indistinctly the tree, the set of nodes and the set of arcs, unless it is necessary 
to do the distinction.

For a pair of different nodes i, j ∈ T we can distinguish a particular path that joins 
these two points. Namely, the geodesic between i and j, which is the shortest path 
in T that connects them. We denote by geod

T
(i, j) this path, which is characterized by 

geod
T
(i, j) = {i0 = i, · · · , ip = j} where all nodes are different and two consecutive nodes 

are neighbors in T. The length of this path is denoted by dT(i, j) = p. By convention we 
assume geod

T
(i, i) = {i} and dT(i, i) = 0. A node i ∈ T is called a leaf if it has a unique 

(immediate) neighbor in T, that is, a unique j ∈ T such that dT(i, j) = 1. The set of 
leaves of T is denoted by L (T). Notice that if T has exactly two leaves then it is a path 
(a linear tree).

We also denote i ∼ j to mean that i �= j and (i, j) ∈ T or equivalently that dT(i, j) = 1.
We shall need the following concept

Definition 1.3. Given a set A ⊂ T, we say that i ∈ A is extremal in A if

∀k, l ∈ A , i ∈ geod
T
(k, l) ⇒ [i = k or i = l].

We denote by ext(A ) the set of extremal points of A . We also denote by T(A ) the 
smallest subtree of T that contains A and we call it the tree generated by A .

Notice that T(ext(A )) = T(A ), ext(T(A )) = ext(A ) and ext(T) = L (T).

Example 1.1. Consider the tree given in Fig. 1 and A = {2, 4, 5, 6, 7, 8}.
Then, ext(A ) = {4, 6, 8} and T(A ) = {1, 2, 4, 5, 6, 7, 8}.

Another important concept for this article is the notion of ultrametric matrix, which 
we recall in the next definition (see [16]).

Definition 1.4. A symmetric nonnegative matrix U is ultrametric if for all i, j, k we have

Uij ≥ min{Uik, Ukj}.
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In particular, if i = j we obtain that

Uii ≥ max{Uik : k ∈ I, k �= i}

If this last inequality is strict for all i then U is said to be strictly ultrametric.

2. Main results

In this section we establish the main results of this article. Some of them require a 
precise study of ultrametric matrices on trees, which we postpone to the next section. 
We shall see there are two types of them. What we call class 1 (see Definition 3.2) are 
the ones that have a unique root, that is, a unique node where the associated Markov 
chain is losing mass.

Theorem 2.1. Assume that W is an inverse M -matrix, whose graph T = G(W ) is a tree. 
Then:

(i) There exist diagonal matrices F, E such that FW is a potential, WE is a symmetric 
inverse M -matrix and furthermore we can choose them such that FWE is a sym-
metric potential. Since F, E are diagonal matrices then T is the graph associated 
with FW , EW , FWE. If W is symmetric we can take E = F . On the other hand, 
if W is a potential we can take F = I.

(ii) For any node r ∈ T the matrix

U = diag(1./W•r) Wdiag(1./Wr•)

is a class 1 tree ultrametric matrix such that T = G(U) and whose unique root is r;
(iii) Assume now W is a symmetric potential with set of roots R(W ). For every � ∈

ext(R(W )) there exists a nonsingular class 1 tree ultrametric matrix U� with T =
G(U�) and a unique root at �, such that

W = �
�∈ext(R(W ))

U�.

That is, W is the Hadamard product of class 1 tree ultrametric matrices.

The decomposition given in (iii) bears some similarities with the decomposition given 
in Theorem 3.4 [19] (see also this article for further references, in particular the works 
[11] and [14]). We notice that in the case of a linear tree, that is W−1 is a tridiagonal 
matrix then the result was shown in [12] (see [18,19,9]).

As a sort of converse we have the following result, in which we also provide a formula 
for W−1 in terms of the entries of W .
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Theorem 2.2. Assume T is a tree and A ⊂ T. Take for every � ∈ A a nonsingular class 1 
tree ultrametric matrix U� with root at � and G(U�) = T. Then,

(i) W = �
�∈A

U� is a symmetric inverse M -matrix and G(W ) = T.

(ii) For every t /∈ T(A ) the corresponding row sum of W−1 is 0 and for every t ∈
ext(A ) the row sum is strictly positive. Therefore, we have the relation

ext(A ) ⊂ R(W ) ⊂ T(A )

and ext(R(W )) = ext(A ).
(iii) W−1 is given by the formula

W−1
ii = 1

Wii

(
1 +

∑
t:dT(i,t)=1

WitWti

WttWii−WitWti

)
,

W−1
ij = − Wij

WjjWii−WijWji
, if dT(i, j) = 1,

W−1
ij = 0, if dT(i, j) > 1. (2.1)

(iv) A necessary and sufficient condition for W to be a potential is that W |T(A ) is a 
potential. Using (2.1) this is equivalent to having for all i

1
Wii

≥
∑

t:dT(i,t)=1

Wit

WttWii −WitWti

(
1 − Wti

Wii

)
. (2.2)

Moreover, the roots of W are those nodes i ∈ I, for which there is strict inequality 
in (2.2).

Remark 2.1. Ultrametric matrices are pointwise diagonally dominant. So, if W is the 
Hadamard product of ultrametric matrices, then W is also pointwise diagonally domi-
nant. This shows that the right hand side of (2.2) is nonnegative. Also notice that we 
have stated formula (2.1) and condition (2.2) as if W is not symmetric. We have done it 
in this way because they extend to the case where W is not symmetric.

Remark 2.2. The decomposition given in Theorem 2.1 (iii) (or Theorem 2.2 (i)) could be 
used to simulate symmetric inverse M -matrices whose associated graphs are trees. In fact, 
consider T a tree, A ⊂ T and simulate for every � ∈ A an ultrametric matrix U�, whose 
inverse is supported on T and has a unique root at �. This is done efficiently because 
ultrametric matrices require only a set of weights that are increasing in the rooted tree 
(T, �) (see Section 3). Then, multiply these matrices in the sense of Hadamard, which is 
a simple matrix operation, to obtain the desired inverse M -matrix. From the theoretical 
point of view, this decomposition allows us to show that the Hadamard product of inverse 
M -matrices, whose associated graphs are the same tree, is again an inverse M -matrix 
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(see Theorem 2.8 (iv)). This is an interesting fact because on the one hand there are 
not very many known algebraic stability properties for inverse M -matrices or potentials, 
and on the other hand the Hadamard product of inverse M -matrices is not in general 
an inverse M -matrix.

Formula (2.1) is an extension of (3.1) and (3.4) (below), which cover the case of a tree 
ultrametric matrix. This type of formula also appeared in [1] and [19]. In the ultrametric 
case there is a simple probabilistic proof of it, see Remark 3.2. This together with the 
representation given in Theorem 2.1 (ii) provides a probabilistic insight of the algebraic 
identity (2.1).

Using Theorem 2.1 (i) and (2.1), we obtain a formula for the inverse of an M -matrix 
supported on a tree (we generalize this corollary in Section 6, Lemma 6.2).

Corollary 2.3. Assume that W = M−1 where M is an M -matrix whose incidence graph 
is the tree T. Then ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

W−1
ii = 1

Wii

(
1 +

∑
t:dT(i,t)=1

WitWti

WttWii−WitWti

)
,

W−1
ij = − Wij

WjjWii−WijWji
, if dT(i, j) = 1,

W−1
ij = 0, if dT(i, j) > 1.

(2.3)

The following results will give conditions for a positive matrix W to be an inverse 
M -matrix such that G(W ) is a tree.

Theorem 2.4. Assume that A is a nonsingular positive matrix, such that the incidence 
graph of its inverse T = G(A) is a tree. Then, the following are equivalent

(i) A−1 is an M -matrix;
(ii) AiiAjj −AijAji > 0 for all i �= j;
(iii) AiiAjj −AijAji > 0 for all i, j such that dT(i, j) = 1;

Under any of these equivalent conditions, A is a potential if and only if (2.2) holds, that 
is for all i

1
Aii

≥
∑

t:dT(i,t)=1

Ait

AttAii −AitAti

(
1 − Ati

Aii

)
.

The main characterization of inverse M -matrices and potentials whose associated 
graph is a tree, is given by the next result.

Theorem 2.5. Assume that T is a tree. To every edge (i, j) ∈ T, i �= j, we associate two 
positive numbers Xij , Xji. To every node i ∈ T we also associate a positive number Xii. 
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We assume that the 2 × 2 determinant XiiXjj − XijXji is positive, for all i �= j such 
that (i, j) ∈ T. Consider the matrix defined by

Wik =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Xii if i = k

Xik if i �= k, (i, k) ∈ T(
q−1∏
p=1

Xip−1ip

Xipip

)
Xiq−1k otherwise,

(2.4)

where in the last case geod
T
(i, k) = {i = i0 ∼ i1 ∼ · · · ∼ iq−1 ∼ iq = k} and q ≥ 2.

Then, W is an inverse M -matrix and G(W ) = T. Moreover, W is a potential if and 
only if (2.2) holds, namely, for all i

1
Xii

≥
∑
t:t∼i

Xit

XttXii −XitXti

(
1 − Xti

Xii

)
.

Conversely, assume that W is an inverse M -matrix and its associated graph T =
G(W ) is a tree. Then, all the 2 × 2 principal minors of W are positive and W satisfies 
(2.4) for all i, k ∈ T, where Xii = Wii and Xij = Wij, whenever dT(i, j) = 1.

The main assumption of the last two theorems is that we know in advance the tree T. 
In Section 7, we study an algorithm that produces this tree directly from the matrix W

(see also Appendix B). The main technical tool to analyze this algorithm is given in 
Lemma 7.2. This is done in terms of the symmetric matrix R = R(W ) defined as Rij =
WijWji

WiiWjj
. If W is a potential of a random walk on a tree, then Rij represents the probability 

that starting from i the chain returns to i after visiting j: Rij = Pi(τj < ∞)Pj(τi < ∞)
(this quantity is symmetric in i, j). Roughly speaking two nodes i �= j are neighbors in T

if this quantity is large

Rij > max{RikRkj : k �= i, j}.

Definition 2.6. Consider a positive matrix W and denote R = R(W ). For i �= j we denote
i W∼ j whenever Rij > max{RikRkj ; k �= i, j}.

The next result is the basis of the algorithm we propose.

Theorem 2.7. Assume W is a positive matrix and let R = R(W ). We also assume that 
every 2 × 2 principal minor of W is positive. The matrix W is an inverse M -matrix and 
G(W ) is a tree if and only if

(i) for all i there exists j such that i W∼ j;
(ii) if i W∼ j and if we denote K = {k : Rki > Rkj}, J = Kc, then

WKJ = WKi
Wij

WiiWjj
WjJ , WJK = WJj

Wji

WiiWjj
WiK .
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Moreover, the tree T = G(W ) is given by the relation W∼, that is, for i �= j we have

(i, j) ∈ T ⇔ i
W∼ j.

The next result is devoted to some stability properties of inverse treediagonal 
M -matrices under Hadamard powers and products. Recall that for α ≥ 1, the Hadamard 
power W (α) of an inverse M -matrix is always an inverse M -matrix. This was shown in 
[2,3,6] (see also [7] for some generalizations). As was shown in Theorem 2.9 in [9], in the 
case of inverse tridiagonal M -matrices, this result is also true when α > 0.

Theorem 2.8. Assume W is an inverse M -matrix, with order n, whose associated graph 
T = G(W ) is a tree.

(i) For all α > 0, the Hadamard power W (α) is also an inverse M -matrix whose graph 
is the same tree T.

(ii) For α < 0, the matrix W (α) is nonsingular, its inverse C = C(α) is supported on T

and the following properties hold
(ii.1) sign(det(W (α))) = (−1)n+1;
(ii.2) if n ≥ 2, then for all i, j we have

Cij is

⎧⎨⎩
< 0 if i = j

> 0 if dT(i, j) = 1
= 0 otherwise

;

(ii.3) If W is symmetric then the eigenvalues of W (α) are negative, except for the 
principal one λ1 which is positive and with maximal absolute value.

(iii) Also, if α ≥ 1 and W is a potential, then W (α) is also a potential. Even more, 
if W−1 = I − P for some substochastic kernel supported on T, then 

(
W (α))−1 =

I −Q(α) for some substochastic kernel Q(α) also supported on T.
(iv) Finally, if Z is another inverse M -matrix such that G(Z) = T, then W � Z is an 

inverse M -matrix for which G(W � Z) = T.

3. Ultrametric matrices on trees

In this section we summarize and complete the known results about ultrametric ma-
trices that are (proportional to) potentials of Markov chains on trees. We shall see there 
are two types of such ultrametric matrices, according to whether the associated Markov 
chain has one or two roots (see also [17] and [19]).

Given a tree T and a node r ∈ T, the hight of i ∈ T is denoted as hr(i) = dT(i, r) and 
the hight of T is defined as Hr = max{hr(i) : i ∈ T}. For i ∈ T we denote by Sr(i) =
{j ∈ T : (i, j) ∈ T, hr(j) = hr(i) + 1} the set of immediate descendants of i. For a node 
i �= r we denote by i− the unique node in geod

T
(i, r) such that i ∈ Sr(i−). Notice that the 

leaves of T, with the exception probably of r, are those nodes i ∈ T for which Sr(i) = ∅.
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Fig. 2. The subtree of T, in Example 1.1, that hangs from 5 as seen from 1 on the left and as seen from 7 on 
the right.

Given a node v ∈ V we denote by Tr[v] the tree that hangs from v as seen from r, 
which is the subtree of T on the set of nodes {i ∈ V : v ∈ geod

T
(i, r)}. We point out 

that Tr[r] = T. Finally, given two nodes i, j in T we define by i 
r
∧ j the unique point 

in geod
T
(i, r) ∩ geod

T
(j, r) which has maximal hight (w.r.t. r). Notice that i 

r
∧ i = i

and i 
r
∧ r = r. Also notice that Tr

[
i
r
∧ j

]
is a subtree of T that contains both i, j

(and it is the minimal subtree in some sense with this property). We point out that 
hr(•), Hr, Sr(•), Tr[•] and 

r
∧ depend on r (see Fig. 2).

Recall that in the language of graph Theory r is called also a root, which is quite 
different from the concept we have considered above. While in some cases both concepts 
will agree they are not necessarily the same. To emphasize the difference, when it is 
needed, we shall refer to r as a probabilistic root when it satisfies (1.2), that is r ∈ R(W ).

In the next results we shall characterize the class of ultrametric matrices that are 
potential matrices of random walks on trees. To describe this class we need the following 
definitions.

Definition 3.1. Assume that T = (V, E) is a tree and r ∈ V is a fixed node. A real function 
F : A ⊂ V → R is said to be r-increasing if for all i, j ∈ A such that i ∈ geod

T
(j, r) then 

F (i) ≤ F (j).

An r-increasing function F is an increasing function on each branch of T as seen 
hanging from r.

Definition 3.2. Consider:

• A tree T = (V, E) and nodes r, s ∈ V, not necessarily different, such that (r, s) ∈ E
(recall that loops are allowed edges);

• A function F : V → R+ such that F |Ts[r] is r-increasing and F |Tr[s] is s-increasing;
• A number 0 < a ≤ min{F (i) : i ∈ V}.

Then, the matrix U defined as

Uij =

⎧⎪⎨⎪⎩
F

(
i
r
∧ j

)
if i, j ∈ Ts[r]

F
(
i
s
∧ j

)
if i, j ∈ Tr[s]

a otherwise
is called a tree ultrametric matrix with characteristic (T, r, s, F, a).
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If r �= s but a = F (r) we have F is r-increasing. Similarly, if r �= s and a = F (s)
then F is s-increasing. Also, when r = s we have F is r-increasing. In these cases we say 
that U is in class 1 and its characteristic is denoted by (T, r, F ) (respectively (T, s, F )). 
When r �= s and 0 < a < min{F (i) : i ∈ V} we say that U is in class 2.

Remark 3.1. As we shall see classes 1 and 2 refer to the number of roots of U−1 (see 
Theorem 3.4 (i.2) and Theorem 3.5 (i.2)). Of course one can consider class p, as the set of 
ultrametric matrices with p roots. But then, according to Theorem 3.7 and Corollary 3.8, 
the set of roots is a complete graph, implying that for p ≥ 3 the underline graph of U−1

cannot be a tree.

Notice that the function F is obtained from the diagonal of U simply by F (i) = Uii. 
This class of matrices is a special subclass of what Nabben in [19] called tree structure. 
See Theorem 3.5 and Corollary 3.6 in the cited paper, where a representation of a non-
singular matrix U of tree structure, is done in terms of Hadamard products of special 
matrices.

It is not hard to prove that every tree ultrametric matrix is an ultrametric matrix. 
We shall prove that every nonsingular ultrametric matrix U , that is the potential of a 
random walk on a tree, is a tree ultrametric matrix. Moreover, U has one or two roots. 
In the first case U is in class 1. If we denote its characteristic (T, r, F ), then R(U) = {r}, 
that is, the support of μU is {r} and μU = μ̄er = 1

F (r)er, where er is the vector whose 
components are all zero, except the one associated with r, which is one. We also notice 
that in this case the row in U associated with r is constant and its value is F (r), which 
is the minimum value of F . In the second case, U is in class 2 and R(U) = {r, s}, where 
the characteristic of U is (T, r, s, F, a).

We shall use several times the following simple lemma.

Lemma 3.3. Assume that T is a tree and U is a class 1 tree ultrametric matrix with 
characteristic (T, r, F ). If L ⊂ T is a subtree, then U |L is a class 1 tree ultrametric 
matrix with characteristic (L, s, G) where s ∈ L is the closest point to r and G = F |L.

If U, V are two class 1 tree ultrametric matrices with characteristics (T, r, F ) and 
(T, r, G), then U � V is a class 1 tree ultrametric matrix with characteristic (T, r, FG). 
Similarly, for any α > 0 the matrix U (α) is a class 1 tree ultrametric matrix with char-
acteristic (T, r, Fα).

Every matrix U of class 2 is obtained from two matrices of class 1 and an extra 
number a in the following way. Assume that L and M are two disjoint trees. Assume 
that X and Y are two class 1 tree ultrametric matrices with characteristic (L, r, G) and 
(M, s, H), respectively, and 0 < a < min{G(r), H(s)}. Consider the tree T constructed 
by joining L and M through the edge (r, s), then the matrix described by blocks as

U =
(
X a

)

a Y
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is a class 2 tree ultrametric matrix with characteristic (T, r, s, F, a), where

F (i) =
{
G(i) if i ∈ L

H(i) if i ∈ M
.

The class 1 tree ultrametric matrices are an extension of the class of weighted tree 
ultrametric matrices introduced in [4], where F is defined from the weight function by 
the relation F (i) = w(hr(i)). In this way F (i) only depends on the hight of i. We shall 
denote by (T, r, w) the characteristic of a weighted tree ultrametric matrix. Notice that 
w : {0, · · · , Hr(T)} → R

+ is an increasing function. The next result is essentially proved 
in Theorem 2 in the cited paper (see also formulas (2.2) in [8]).

Theorem 3.4.

(i) Assume that U is a class 1 tree ultrametric matrix with characteristic (T, r, F ) then
(i.1) U is nonsingular if and only if F is strictly r-increasing, that is if i ∈

geod
T
(j, r) and i �= j then F (i) < F (j);

(i.2) If U is nonsingular then U is a potential with G(U) = T, r is the unique root 
of U and

U−1
ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1
Uii−Ujj

: i ∈ Sr(j)
−1

Ujj−Uii
: j ∈ Sr(i)

1
Uii−Ui−i−

+
∑

k∈Sr(i)

1
Ukk−Uii

: i = j

⎫⎪⎪⎬⎪⎪⎭ if i �= r;

−1
Ujj−Urr

: j ∈ Sr(r)
1

Urr
+

∑
k∈Sr(r)

1
Ukk−Urr

: j = r

⎫⎬⎭ if i = r.

(3.1)

(ii) Assume T is a tree and P is an irreducible symmetric substochastic matrix supported 
by T and stochastic except at a unique node r ∈ T, that is for all i �= r the row sum ∑

j Pij = 1 and 
∑

j Prj < 1. Then U = (I −P )−1 is a class 1 tree ultrametric matrix 
with characteristic (T, r, F ) where F (i) = Uii for all i. The following is a formula 
for F in terms of P

F (r) = (1 −
∑

j Prj)−1

F (j) = F (r) +
p−1∑
t=0

(Pitit+1)−1, (3.2)

where geod
T
(j, r) = {i0 = r, · · · , ip = j}.

Remark 3.2. Let us give a probabilistic insight to Formula (3.1). So, consider j a successor 
of i. Take k �= i a neighbor of j. The tree structure implies that any path starting at k
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must cross j until reaching the root r. Therefore, Pk(τj < ∞) = 1 and we obtain 
Ukj = Ujj . Similarly, one has Uji = Uii. Then, the equation 

∑
k

UjkU
−1
kj = 1 implies that

UiiU
−1
ij + Ujj

∑
k �=i

U−1
kj = 1.

Since U−1 does not lose mass at j, we conclude 
∑
k �=i

U−1
kj + U−1

ij = 0, proving that

U−1
ij = 1

Uii − Ujj
.

Now, we shall give a characterization of class 2 tree ultrametric matrices (see also 
Theorem 3.5 in [17] for the non-symmetric case).

Theorem 3.5.

(i) Assume that U is a class 2 tree ultrametric matrix with characteristic (T, r, s, F, a) or 
equivalently, after a suitable permutation of rows and columns if necessary, defined 
by blocks as

U =
(
X a

a Y

)
, (3.3)

where:
• X is a class 1 matrix with characteristic (L, r, G), L = Ts[r], G = F |Ts[r];
• Y is a class 1 tree ultrametric matrix with characteristic (M, s, H), M =

Tr[s], H = F |Tr [s];
• 0 < a < min{G(r), H(s)}.
Then,
(i.1) U is nonsingular if and only if X and Y are nonsingular, which is equivalent 

to F |Ts[r] being strictly r-increasing and F |Tr[s] being strictly s-increasing.
(i.2) If U is nonsingular, then U is a potential with G(U) = T. The set of roots 

of U is R(U) = {r, s}. A formula for U−1 is the same as in (3.1) except for:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

U−1
rr = Uss

UrrUss−U2
rs

+
∑

j∈Sr(r);j �=s

1
Ujj−Urr

U−1
ss = Urr

UrrUss−U2
rs

+
∑

j∈Ss(s);j �=r

1
Ujj−Uss

U−1
rs = −Urs

UrrUss−U2
rs
.

(3.4)

As a converse we have.
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(ii) Consider a tree T and a symmetric irreducible substochastic matrix P supported 
by T. Assume that P is stochastic except at the nodes r �= s ∈ T, that is,

∀i �= r, s
∑
j

Pij = 1, and
∑
j

Prj < 1,
∑
j

Psj < 1.

If (r, s) ∈ T then U = (I − P )−1 is a tree ultrametric matrix with characteristic 
(T, r, s, F, a) where F (i) = Uii for all i and a = Urs < min{F (i) : i ∈ T}. Hence, U
is a class 2 tree ultrametric matrix.
The following is a formula for F and a in terms of P :
First compute α = (1 −

∑
j �=s Prj)−1, β = (1 −

∑
j �=r Psj)−1 and then

F (r) = α
1−αβ(Prs)2 , F (s) = β

1−αβ(Prs)2 , a = αβPrs

1−αβ(Prs)2 ,

F (j) = F (z) +
p−1∑
t=0

(Pitit+1)−1, (3.5)

j ∈ Ts[r] and z = s if j ∈ Tr[s].

Proof. (i) We shall use the inverse of a matrix by blocks. We assume that X is of 
order m and Y is of order n. We denote by 1m, 1n the vectors of ones of sizes m, n
respectively. Also we denote by er, es the vectors of size m, n respectively with zero 
components except at r, s where they have a one. The basic properties to find U−1 are 
Xer = F (r)1m, Y es = F (s)1n. Hence, similarly to (3.3), we decompose U−1 as

U−1 =
(

Γ z

z′ Λ

)
. (3.6)

We have Γ = (X − a2

F (s)1m1′
m)−1, z′ = −aY −11n1′

mΓ. We notice that

X̃ = X − a2

F (s)1m1′
m

is a class 1 tree ultrametric matrix with characteristic (L, r, G − a2

F (s) ).
Since G − a2

F (s) > 0, the matrix X̃ is nonsingular if and only if G − a2

F (s) is strictly 
r-increasing, which is equivalent to G being strictly r-increasing. This fact and formula 
(3.1) give the formula for Γ. In particular, one has U−1

rr as in (3.4). In a similar way, we 
obtain U−1

ss .
On the other hand, to compute z, we notice that(

X − a2
1m1′

m

)
er = F (r)F (s) − a2

1m.

F (s) F (s)
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This fact yields

z′ = −a

F (r)F (s) − a2 ese
′
r

and we obtain U−1
rs = −a

F (r)F (s)−a2 from where (3.4) holds.
According to what we have proved and Theorem 3.4, G(U) is the tree obtained from 

the two trees L and M that are connected by adding the edge (r, s). Finally, we obtain 
that 

∑
j U

−1
ij = 0 for all i �= r, s and

∑
j

U−1
rj = Urr − Urs

UrrUss − U2
rs

> 0,
∑
j

U−1
sj = Uss − Urs

UrrUss − U2
rs

> 0,

proving that R(U) = {r, s}.
(ii) The hypotheses made on P ensure that I −P is nonsingular. Again we decompose 

this matrix by blocks as

I− P =
(

Im −Q −Prsere
′
s

−Prsese
′
r In −R

)
.

Q and R are irreducible substochastic matrices supported by L and M respectively. 
Moreover Q is stochastic except at r and R is stochastic except at s. Thus, Theorem 3.4
shows that Im−Q and In−R are nonsingular and their inverses are class 1 tree ultrametric 
matrices. The first block of U = (I − P )−1 is

X =
[
Im −Q− P 2

rsere
′
s(In −R)−1ese

′
r

]−1
.

Notice that

(In −R)1n =

⎛⎝1 −
∑
j �=r

Psj

⎞⎠ es = 1
β
es.

Therefore we obtain

X =
[
Im −

(
Q + βP 2

rsere
′
r

)]−1

The matrix Q +βP 2
rsere

′
r is nonnegative and stochastic at every i �= r. The row sum at r

is ∑
j �=s

Prj + βP 2
rs =

∑
j �=s

Prj + Prs
Prs

1 −
∑
j �=s

Prj
≤

∑
j �=s

Prj + Prs < 1.

The conclusion is that Q + βP 2
rsere

′
r is stochastic except at r. Since this matrix is 

supported by the tree L we obtain that X is a class 1 tree ultrametric matrix with 
characteristic (L, r, G). A formula for G is given by (3.2)
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G(r) =
(
1 −

∑
j �=s

Prj − βP 2
rs

)−1 = α
1−αβP 2

rs
,

G(j) = G(r) +
p−1∑
t=0

(
Pitit+1

)−1
,

where geod
T
(j, r) = geod

L
(j, r) = {i0 = r, · · · , ip = j} if j ∈ Ts[r] = L.

In the same way, Y is a class 1 tree ultrametric matrix with characteristic (M, s, H)
and H is computed similarly to G. In particular H(s) = β

1−αβP 2
rs

.
Finally,

U =
(
X A

A′ Y

)
,

with A = Prs(Im − Q)−1ere
′
sY . Since (Im − Q)1m = 1

αer and e′sY = H(s)1′
n we get 

A = a1m1n with

a = H(s)Prsα = αβPrs

1 − αβP 2
rs

.

On the other hand, from αPrs < 1 and βPrs < 1, we conclude that a < min{G(r), H(s)}
and the result is proved. �

As a corollary of Theorem 2.1 we have the following result.

Corollary 3.6. If U is a class 2 ultrametric matrix with roots r, s, then there exist two 
class 1 ultrametric matrices V, Z, with roots r and s respectively, such that

U = V � Z.

See Appendix A where we provide an explicit decomposition of U as the product of 
two class 1 ultrametric matrices.

To finish the characterization of ultrametric matrices supported by a tree, we need 
the following theorem (see [4], Theorem 2 and also [5] for some generalizations). This 
result says that every ultrametric matrix is the restriction of some weighted tree matrix. 
This representation gives information on the graph of the given ultrametric matrix.

Theorem 3.7. Given any ultrametric matrix V on a set I, there exists (a minimal) 
extension U , which is a weighted tree ultrametric matrix with characteristic (T, r, w), 
such that I ⊂ T and V = U |I . V is nonsingular if and only if w is strictly increasing 
and positive. In this case V is a potential matrix and the roots of V are characterized as

i ∈ R(V ) ⇐⇒ geod
T
(i, r) ∩ I = {i}.

Also, if i �= j ∈ R(V ) then V −1
ij < 0, that is, the roots of V are all connected in G(V ). 

More generally, for i �= j ∈ I we have V −1
ij < 0 if and only if geod

T
(i, j) ∩ I = {i, j}.
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Corollary 3.8. Assume U is a nonsingular ultrametric matrix supported on a tree T. 
Then, the set of roots of U is a singleton or it consists of two points r, s which are 
neighbors in T. In the first case U is in class 1 and in the second case U is in class 2.

Proof. According to Theorem 3.7, the set of roots of U forms a complete subgraph of T. 
Then either this set is a singleton or it consists of two neighboring nodes. �
4. Proof of Theorem 2.1

(i) Assume that W−1 = M is an M -matrix supported on the tree T. First, let us 
find a diagonal matrix F such that FW is a potential. For that purpose it is enough 
to take any nonnegative vector x ∈ R

n, which is not 0, and consider Fii = 1
(Wx)i (this 

is well defined because Wx > 0). Then FWx = 1, which means that (FW )−1 is an 
M -matrix and (FW )−11 = x ≥ 0, that is (FW )−1 is a row diagonally dominant matrix. 
In summary, FW is a potential. Notice also that G(FW ) = G(W ), because a diagonal 
matrix does not change this graph. On the other hand if W is a potential we can take 
F = I, which corresponds to x = μW , the equilibrium potential of W .

We now show how to construct a positive diagonal matrix E such that WE is a 
symmetric inverse M -matrix supported on the same tree T. Further, if W is a potential 
we show that WE is again a potential. This will finish the proof of (i).

For the moment fix a vertex r ∈ T. We define the following diagonal matrix L: Lrr = 1
and for k ∈ T

Lkk =
p−1∏
�=0

Mi�,i�+1

Mi�+1,i�

> 0,

where the geodesic from r to k is r = i0, · · · , ip = k.
Now, we take i �= k neighbors in T. We assume without loss of generality that 

geod
T
(r, k) passes through i, that is geod

T
(r, k) = {i0 = r, · · · , ip−1 = i, ip = k}. Hence,

Lkk = Lii
Mik

Mki
,

or equivalently LiiMik = LkkMki. Now, the fact that M is supported on T shows that 
LM is a symmetric M -matrix, which is supported on T. Thus, its inverse WL−1 is a 
symmetric inverse M -matrix. If M is row diagonally dominant, this means W is a po-
tential, then M1 ≥ 0, but then again LM1 ≥ 0, which shows that WL−1 is a symmetric 
potential.

(ii) Consider the matrix U = diag(1./W•r)Wdiag(1./Wr•), which is the matrix given 
by

Uij = Wij
.

WirWrj
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We claim this is a symmetric potential. Indeed, as we have proved in (i) there is a 
diagonal matrix G such that WG is symmetric. This implies that, for all s, t

WstGtt = WtsGss.

In particular, WsrGrr = WrsGss, or equivalently Gss = Grr
Wsr

Wrs
(the value of Grr is 

free). Now, from WijGjj = WjiGii, we obtain

WijGrr
Wjr

Wrj
= WjiGrr

Wir

Wri
,

showing that U is symmetric. The fact that U−1 is an M -matrix is straightforward. So, 
we need to show that U−1 is a row diagonally dominant matrix or equivalently the unique 
solution to Uμ = 1 is a nonnegative vector μ. This follows from the fact Uer = 1

Wrr
1, 

where er is the vector whose components are all zeros, except the one at position r, 
which is 1. So, U is a symmetric potential and it has a unique root at r.

On the other hand, G(U) = G(W ) = T is a tree, that is, U is proportional to the 
potential of a symmetric Markov chain on the tree T that loses mass only at the point r. 
According to Theorem 3.4 (ii) U is a class 1 tree ultrametric matrix.

(iii) We assume that W is a symmetric potential. In particular, W−1 = k(I − P ), 
where k > 0 is a constant, P is a substochastic matrix supported by T. Without loss of 
generality we assume that k = 1. We denote by X = (Xm : m ∈ N) the Markov chain 
with transition kernel P . We also denote by τ = min{m ≥ 0 : Xm /∈ I} the absorption 
time for this chain, which is finite almost surely because X is transient. Also, we denote 
by τk = min{m ≥ 0 : Xm = k}, the hitting time of k ∈ T.

We prove the result by induction on n, the order of W . We notice that for n ≤ 3 the 
tree T is a path and the result is obtained form Theorem 2.1 in [9]. So in what follows 
we assume the result is true for potentials of order smaller or equal to n − 1 and n ≥ 4.

We shall distinguish two main cases: (I) assume there is a leaf t /∈ R(W ), and (II) 
L (T) ⊂ R(W ).

(I) Consider L = T \{t}, which is a tree because t is a leaf. The matrix Z = W |L satisfies 
the induction hypothesis, because it is the potential of the induced Markov chain on L, 
which has a symmetric transition kernel supported on the tree L. This induced Markov 
chain consists simply in recording the visits to L for the original chain (see Section 2.2, 
Proposition 2.22 in [10]). Hence, for every � ∈ ext(R(Z)) there exists a class 1 tree 
ultrametric matrix V�, of order n −1, supported by L whose unique root is � and such that

Z = �
�∈ext(R(Z))

V�.

We extend each one of these matrices to dimension n. We call these extensions (U� : � ∈
ext(R(Z)), which are obtained by adding a row and a column associated with t as follows

(U�)ti = (U�)it =
{

(V�)si if i �= t
θ� if i = t,
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where s is the unique neighbor of t in T. For the moment we demand that

θ� > (V�)ss = max{(V�)si : i ∈ L}.

We notice that s ∈ geod
T
(t, k) for any k �= t. From this observation, it is straightforward 

to show that if V� has characteristic (L, �, F�) then U� has characteristic (T, �, G�), where 
G� is the extension of F� to T given by G�(t) = θ�. Since G� is a strictly �-increasing 
function, we deduce that U� is proportional to a symmetric potential of a Markov chain 
in T with a unique root �. Hence, U� is a class 1 tree ultrametric matrix. Let us prove 
that for some selection of θ� : � ∈ ext(R(Z)), we have

W = �
�∈ext(R(Z))

U�.

We only have to prove that equality holds at entries (t, i). On the one hand, if i �= t, we 
have

Wti = Pt(τs < ∞)Wsi = Wsi =
∏

�∈ext(R(Z))

(V�)si =
∏

�∈ext(R(Z))

(U�)si =
∏

�∈ext(R(Z))

(U�)ti.

In this equality we have used the fact that t is not a root of W , which implies that the 
chain associated with W and starting at t visits s with probability 1. The same argument 
shows that (U�)si = (U�)ti for all i �= t.

On the other hand, notice that Wst = Ps(τt < ∞)Wtt < Wtt, because there is a 
path starting from s, that does not pass through t and that reaches some root of W . 
So, Ps(τt < ∞) < 1. The symmetry of W implies that Wst = Wts = Wss. Hence, 
Wtt > Wss =

∏
�∈ext(R(Z))

(V�)ss, so it is possible to choose θ� : � ∈ ext(R(Z)) to fit the 

value

Wtt =
∏

�∈ext(R(Z))

θ�.

The result is proven in case (I) by noticing that ext(R(Z)) = ext(R(W )), because 
R(Z) = R(W ).

(II) In this case all leaves of T are roots for W and ext(R(W )) = L (T). For the moment, 
we fix a node a ∈ T, which is not a leaf. Take any leaf t, which is at a maximal distance 
from a, and consider s its unique neighbor. Then, the set

A = {� ∈ L (T) : dT(s, �) = 1} = {t1, · · · , tp}

contains t and has cardinal p ≥ 1.
We consider the subtree L = T \A , for which s must be a leaf, otherwise it contradicts

the maximality of t. It is clear that L (L) = {s} ∪L (T) \A and L (T) = A ∪L (L) \{s}. 
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We take Z = W |L, which corresponds to the potential of the induced Markov chain on L. 
This induced Markov chain is denoted by Y = (Ym : m ∈ N). Its transition probability 
kernel Q is for i, j ∈ L

Pi(Y1 = j) = Qij = Pi(X returns to L, before absorption, at j).

Notice that Qij = Pij for all (i, j) �= (s, s), which proves that Q is supported on L. 
The nodes where this induced chain loses mass are those where the original chain losses 
mass in L plus the node s. The latter case holds true because, for the original chain, the 
probability that the first transition starting from s reaches t is Pst > 0, which gives the 
following lower bound for the row sum of Z−1 at row s (notice that t /∈ L)∑

k∈L

Z−1
sk = Ps(Y is absorbed in one step)

≥ PstPt(X is absorbed in one step) = Pst

∑
k∈T

W−1
tk > 0.

Hence, the roots of Z are the roots of W in L plus s which implies that ext(R(Z)) =
L (L). Then, the induction hypothesis implies that

Z = �
�∈L (L)

V�,

for some collection of class 1 tree ultrametric matrices V� : � ∈ L (L). Each V� has a 
unique root at � and G(V�) = L. For � ∈ L (L), such that � �= s, let U� be the following 
extension of V�: U�|L = V� and

(U�)ij = (U�)ji =

⎧⎨⎩
(V�)sj if i ∈ A , j ∈ L

(V�)ss if i ∈ A , j ∈ A \ {i}
θ�i if i = j ∈ A ,

with the restriction that θ�i > (V�)ss for all i ∈ A . If the characteristic of V� is (L, �, F�), 
then the characteristic of U� is (T, �, G�) where G� is the extension of F� given by G�(i) =
θ�i for i ∈ A . It is straightforward to show that G� is a strictly �-increasing function 
on T.

The extension for Vs is more complicated. This matrix will generate p new matrices 
that we denote by Utk : k = 1, · · · , p. All of them agree on L and are given by the 1/p
Hadamard power of Vs, that is, (Utk)|L = V

(1/p)
s . In order to define these extensions we 

consider αtk = Ptk(τs < ∞) < 1, for k = 1, · · · , p. Then, Utk is defined as

(Utk)ij = (Utk)ji =

⎧⎨⎩ (Vs)1/pss if i ∈ A \ {tk}, j ∈ T \ {i}
αtk(Vs)1/pss if i = tk, j ∈ T

θtki if i = j ∈ A \ {tk},

with the restriction that θtktl > (Vs)1/pss , for l = 1, · · · , p and l �= k.
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Each Utk is a class 1 tree ultrametric matrix. Indeed, if the characteristic of Vs is 
(L, s, Fs) then Utk has characteristic (T, tk, Gtk) where Gtk is given by: Gtk |L = F

1/p
s ; 

Gtk(tk) = αtkFs(s)1/p and Gtk(tl) = θtktl > Gtk(s) = F
1/p
s (s) > Gtk(tk), for tl �= tk. 

The function Gtk is strictly tk-increasing in T.
Take now Γ = �

�∈L (T)
U�. We shall prove that W = Γ for some choice of

{θtktl : tk, tl ∈ A , tk �= tl}
⋃

{θ�tk : � ∈ L (L) \ {s}, tk ∈ A }.

For that purpose, consider first i, j ∈ L. Then,

Γij =
∏

�∈L (T)

(U�)ij = [(Vs)1/pij ]p
∏

�∈L (L),� �=s

(V�)ij =
∏

�∈L (L)

(V�)ij = Zij = Wij .

Now, we consider i = tk ∈ A , j ∈ L

Γtkj = αtk(Vs)1/pss

∏
tl∈A ,l �=k

(Vs)1/pss

∏
�∈L (L)\{s}

(V�)sj = αtk

∏
�∈L (L)

(V�)sj .

The last equality follows from the fact that (Vs)sj = (Vs)ss. Hence, we get

Γtkj = αtkZsj = αtkWsj = Ptk(τs < ∞)Wsj = Wtkj .

When i = tk, j = tl ∈ A , k �= l, we obtain

Γtktl = αtkαtl(Vs)ss
∏

�∈L (L)\{s}
(V�)ss = αtkαtl

∏
�∈L (L)

(V�)ss = αtkαtlZss

= αtkαtlWss = Ptk(τs < ∞)Ptl(τs < ∞)Wss = Ptk(τs < ∞)Wtls

= Ptk(τs < ∞)Wstl = Wtktl .

We are finally left with the case i = j = tk

Γtktk = αtk [(Vs)ss]1/p
∏

tl∈A \tk

θtltk
∏

�∈L (L)\{s}
θ�tk

We notice that given the restrictions satisfied by the family of parameters θ, then

Γtktk > αtk

∏
�∈L (L)

(V�)ss = αtkWss = Wtks.

On the other hand Wstk = Ps(τtk < ∞)Wtktk < Wtktk . This last inequality follows from 
the fact that s is connected to � �= tk, a root of W , with a path that does not pass
throughout tk. Therefore, Ps(τtk = ∞) > Ps(τ� < τtk)P�(τtk = ∞) > 0. Thus, there is a 
possible choice of θtltk : l �= k and θ�tk : � ∈ L (L) \ {s} such that Γtktk = Wtktk and 
the result is shown. �
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5. Proof of Theorem 2.2

The idea of the proof is first to show (i) by induction on n, the cardinality of T. Then, 
use again induction for (ii) and (iii) and some computations done while proving (i).

Notice that the result is obvious when n ≤ 2. Also, the case where the cardinal of A
is one is direct because in this case W is ultrametric. So, in what follows we assume that 
n ≥ 3 and |A | ≥ 2.

(i) Since every U� is an inverse M -matrix, then they are positive definite and there-
fore W is also a positive definite matrix and a fortiori nonsingular. Moreover, every 
principal submatrix of W , associated with an index set J ⊂ T, is nonsingular and it is 
the Hadamard product of class 1 tree ultrametric matrices, which are the corresponding 
blocks of the matrices (U� : � ∈ A ). Maybe the index set A is not a subset of J , never-
theless we can reparametrize these blocks with a subset of J (see Lemma 3.3). We shall 
use this fact to compute the inverse of W by blocks.

Take any leaf t ∈ T and consider the subtree L = T \ {t}. We denote by s ∈ T, s �= t, 
the unique neighbor of t in T. After a permutation, if necessary, we can assume that W
can be decomposed in blocks like

W =
(

a w′

w Z

)
,

where the first row of W is the one associated with t. For any i �= t we have (U�)ti =
Pt(τ �s < ∞)(U�)si. Here τ �s is the hitting time of s for the Markov chain associated 
with U�. In particular we have

Pt(τ �s < ∞) = (U�)ts
(U�)ss

,

and we conclude that

Wti = wi = αZsi = αWsi,

where α = Wts

Wss
=

∏
�∈A Pt(τ �s < ∞) ≤ 1.

The inverse by blocks of W is

W−1 =
(

θ −αθe′s
−αθes Z−1 + α2θese

′
s

)
, (5.1)

where θ = 1
a−α2Zss

= Wss

WttWss−W 2
st

, which we shall prove is positive and the first part of 
the result will follow, that is W−1 is an M -matrix. Notice that by induction the incidence 
graph of W−1 is T.

That θ is positive follows from the fact that the 2 × 2 determinant

WttWss −W 2
st =

∣∣∣∣(Wtt Wst

Wst Wss

)∣∣∣∣
is positive because W is positive definite. This shows part (i).
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In what follows, that is in the proof of (ii), (iii), we need to study when α = 1 or 
α < 1. For this purpose, we consider to different cases according to the fact that t belongs 
or not to A , but still t is a leaf of T.

Case t /∈ A . In this situation we have that Pt(τ �s < ∞) = 1 for all � ∈ A , that is α = 1, 
because t is not the root of U�. For the same reason we have (U�)tt > (U�)st = (U�)ss
and therefore

a = Wtt =
∏
�∈A

(U�)tt >
∏
�∈A

(U�)ss = Zss.

Thus, a > α2Zss = Zss and W−1 is an M -matrix, whose row sums are the same as the 
ones for Z−1, on the common rows, and the row sum associated with t is 0.

Case t ∈ A . Here, Pt(τ �s < ∞) = 1 for all � ∈ A \ {t} and α = Pt(τ ts < ∞) < 1. As 
before

a = Wtt = (Ut)tt
∏

�∈A \{t}(U�)tt = (Ut)ts
∏

�∈A \{t}(U�)tt

= α(Ut)ss
∏

�∈A \{t}(U�)tt > α(Ut)ss
∏

�∈A \{t}(U�)ss = αZss > α2Zss.

The row sum for W−1 associated with t is positive, and the row sums of W−1 are the 
same as the ones corresponding to Z−1, except at the row associated with s, which can 
have any sign.

Recall that we can express θ, α in terms of W as

α = Wts

Wss
, θ = Wss

WttWss −W 2
ts

.

Now, we are in a position to continue with the proof of parts (ii) and (iii).
(ii) In case T(A ) = T the result is already proven, because in this situation there is 

nothing to prove for t /∈ T(A ) and if t ∈ ext(A ) then t is a leaf of T, hence the row sum 
of W−1 at the row associated with t is positive. So, in this case (ii) holds.

Now, we consider the situation where T(A ) is a proper subtree of T. We show that the 
row sums of (W |T(A ))−1 and W−1 at rows associated with nodes in T(A ) are the same 
and the row sums of W−1 at the other nodes are 0. Indeed, consider L0 = T(A ) and 
take any node u ∈ T such that dT(u, L0) = 1. Then, u is a leaf of the tree L1 = L0 ∪ {u}
and u /∈ A . Then, the row sums of (W |L0)−1 and (W |L1)−1 are the same at nodes in L0

and the row sum of (W |L1)−1 at the row associated with u is 0. We continue adding 
nodes in this way and the claim is shown.

In particular, if t /∈ T(A ) we conclude that the corresponding row sum of W−1 is 0. 
On the other hand if t ∈ ext(A ), then t is a leaf for T(A ) and then the row sum of 
(W |T(A ))−1 at the row associated with t is positive, which implies the same is true 
for W−1.

This also shows that if W |T(A ) is a potential, so is W , proving the first part of (iv).
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(iii) Now, we prove formula (2.1). Since W−1 is supported on T, we have W−1
ij = 0 if 

dT(i, j) > 1. The inverse by blocks formula (5.1) and induction will show the result. If T
has cardinal 1 or 2, one checks easily the desired formula in this case. So we assume that 
T has cardinal at least 3. In this situation if i, j are neighbors, then there exists a leaf t
different from i, j. Denote L = T \ {t}, which is a tree. Z = W |L is again a Hadamard 
product of class one ultrametric matrices. Using Lemma 3.3 we can assume that this 
product is indexed by a subset of L. So by induction, formula (2.1) holds for Z−1 and 
in particular this matrix is supported by L. Therefore from (5.1), we get

W−1
ij = Z−1

ij = − Wij

WjjWii −W 2
ij

If dT(t, i) > 1 and dT(t, j) > 1, we obtain again W−1
ii = Z−1

ii and W−1
jj = Z−1

jj , which 
proves the formula in this case.

The only extra instance to be analyzed is when dT(t, i) = 1 < dT(t, j) or dT(t, j) = 1 <
dT(t, i). Both situations are similar and we only consider the first one. In the notation 
of equation (5.1) we have s = i, and again W−1

jj = Z−1
jj . On the other hand W−1

ii =
Z−1
ii + α2θ which gives

W−1
ii = 1

Wii
+

∑
k∈L:dL(i,k)=1

W 2
ki

WkkW 2
ii −W 2

kiWii
+ W 2

ti

WttW 2
ii −W 2

tiWii

proving the desired result.
(iv) Follows from formula (2.1). �

6. Matrices compatible with a tree

In the first part of this section we shall study some properties that are deduced from 
the hypothesis that the incidence graph for the inverse of a matrix is a tree. Then, we 
prove Theorem 2.4 and Theorem 2.5. In this section, we still denote i ∼ j whenever 
(i, j) ∈ G and i �= j, even if G is not a tree.

Definition 6.1. A matrix A with no zeroes in the diagonal is said to be compatible with 
the tree T if

∀ i ∼ j Aij �= 0. (6.1)

∀ i ∼ j AiiAjj −AijAji �= 0. (6.2)

For all i ∼ j consider K = {k : i ∈ geod
T
(k, j)} and J = {� : j ∈ geod

T
(�, i)}, then

AKJ = Aij

AiiAjj
AKiAjJ , AJK = Aji

AiiAjj
AJjAiK . (6.3)
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In what follows given a graph G, we denote by G− the subgraph outside the diagonal.

Lemma 6.2. Assume that A is compatible with the tree T. Then, A is nonsingular, 
G

−(A) = T
− and formula (2.1) holds for A−1, namely⎧⎪⎪⎪⎨⎪⎪⎪⎩

A−1
ii = 1

Aii

(
1 +

∑
t:t∼i

AitAti

AttAii−AitAti

)
,

A−1
ij = − Aij

AjjAii−AijAji
, if i ∼ j,

A−1
ij = 0, if i �= j and i � j.

(6.4)

Proof. Let B be the matrix given by the right hand side in (6.4). The result is proven 
as soon as we show that BA = I. In what follows we denote Δik = AiiAkk −AikAki. We 
first compute

(BA)ii = BiiAii +
∑
k∼i

BikAki = 1 +
∑
k∼i

AikAki

Δik
+

∑
k∼i

−Aik

Δik
Aki = 1.

In order to show that (BA)i� = 0, for � �= i, we shall use more closely the compatibility 
relations of A and T. Consider j �= i, the unique neighbor of i in geod

T
(i, �) (if � ∼ i then 

j = �).

(BA)i� = BiiAi� + BijAj� +
∑

k∼i,k �=j

BikAk�.

From relation (6.3) in Definition 6.1, we have for k ∼ i, k �= j

Ak� = Aki

Aii
Ai�, Ai� = Aij

Ajj
Aj�.

Hence,

(BA)i� = BiiAi� + BijAj� + Ai�

Aii

∑
k∼i,k �=j

BikAki

= BiiAi� + BijAj� − Ai�

Aii
BijAji + Ai�

Aii

∑
k∼i

BikAki

= BijAj� − Ai�

Aii
BijAji + Ai�

Aii

(
BiiAii +

∑
k∼i

BikAki

)
= BijAj� − Ai�

Aii
BijAji + Ai�

Aii
= BijAj� − AijAji

AiiAjj
BijAj� + Ai�

Aii

= −Aij

Δij
Aj�

(
1 − AijAji

AiiAjj

)
+ Ai�

Aii
= −AijAj�

AiiAjj
+ Ai�

Aii
= 0

This shows the desired formula for A−1. �
Lemma 6.3. Assume that A is nonsingular and G−(A) = T

−, where T is a tree. We 
further assume that the diagonal elements of A are not 0. Then A is compatible with T.
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Proof. We first assume the extra hypothesis that the diagonal of A−1 contains no zeroes, 
that is, for all t one has A−1

tt �= 0. At the end of the proof we remove this extra hypothesis 
by a perturbation argument. Let us start by showing property (6.3) in Definition 6.1.

If i ∼ j then, after a permutation of rows and columns, the inverse of A has the form

H =
(

Γ A−1
ij eif

′
j

A−1
ji fje

′
i Ω

)
, (6.5)

where ei is the vector of size p = |K| with entries all 0, except the one associated 
with i ∈ K, which is a 1 (similarly for fj , which has size q = |J |). On the other hand 
Γ = A−1

KK , Ω = A−1
JJ . Using that A−1

ii is not zero, we can apply Gauss algorithm to 
reduce H to the form (in one iteration)

H̃ =
( Γ A−1

ij eif
′
j

0 Ω̃

)
,

showing that Γ is nonsingular. Similarly, Ω is nonsingular too.
The inverse of H, which is a permutation of rows and columns of A, is

H−1 =
(
D E

F G

)
.

Using the Schur’s complement we obtain that

F = AJK = −A−1
ji Gfj e

′
iΓ−1 = uv′,

where u = Gfj = AJj ∈ R
p and v = −A−1

ji (Γ−1)′ei ∈ R
q. Thus, we obtain for all 

� ∈ J, k ∈ K that A�k = A�j vk. In particular we have Ajk = Ajjvk, which implies that

A�k = A�j

Ajj
Ajk. (6.6)

Similarly, one has F = −A−1
ji Ω−1fje

′
iD = z(AiK)′, where z = −A−1

ji Ω−1fj . Thus, 
Ahk = zhAik and therefore

Ahk = Ahi

Aii
Aik.

Take j in place of h in this equality and replacing it in (6.6), we obtain AJK =
AJj

Aji

AiiAjj
AiK . The other part is shown similarly.

We shall prove (6.1) and (6.2) in Definition 6.1, using an inductive argument. We 
assume that both properties are true, whenever Z is a nonsingular matrix of order smaller 
or equal to n, G−(Z) is a tree and the inverse of Z has no zeroes in the diagonal. For 
n = 1, 2 both properties are straightforward to prove. So, assume that A is a nonsingular 
matrix of order n + 1 ≥ 3, G−(A) = T

−, for some tree T, and A−1 has no zeroes in the 
diagonal.
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In what follows we fix s a leaf in T and t the unique neighbor of s. We shall prove that 
Δst �= 0. From relation (6.3), we have for all � �= s (notice that K = {s} and J = I \{s})

As� = Ast

Att
At�.

So, AsJ = Ast

Att
AtJ and if Δst = 0, we obtain that Ass = Ast

Att
Ats, proving that rows s, t

are proportional, which is not possible. Hence Δst �= 0. On the other hand if Ast = 0, we 
conclude that AsJ = 0, which implies that A has the block structure (after a permutation 
of rows and columns) (

Ass 0
AJs AJJ

)
.

This shows that A−1
st = 0, which is not possible, because s, t are neighbors in T.

As in the first part of this proof, we consider the decomposition by blocks given 
by (6.5), where now Γ = A−1

ss . Hence we obtain that

Ω̃ = Ω − A−1
st A

−1
ts

A−1
ss

ftf
′
t = (A−1)JJ − A−1

st A
−1
ts

A−1
ss

ftf
′
t ,

is nonsingular and supported by the tree L = T \ {s}. Its inverse is (Ω̃)−1 = AJJ = G. 
The main problem for the induction is that Ω̃tt could be 0. So, we perturb this matrix 
by ε in the diagonal and consider

Ω̃(ε) = Ω̃ + εI,

where I is the identity of order n. Now, for small enough ε > 0, this matrix is nonsingular, 
it is supported by L and the diagonal elements are all nonzero. Thus we can apply the 
inductive argument to its inverse

G(ε) = (Ω̃ + εI)−1 = G(I + εG)−1 = G− εG2 + ε2G3 − · · ·

Notice also that for small ε > 0 the diagonal elements of G(ε) are not 0. The induction 
shows that G(ε) is compatible with L and therefore we can apply formula (6.4) to G(ε)
to get for all k ∼ l in L

Δkl(ε)G(ε)kl = −Ω̃(ε)kl = −Ω̃kl = −Ωkl = −A−1
kl .

Passing to the limit ε → 0 we obtain

ΔklAkl = −A−1
kl �= 0,

because we have assumed that G−(A) = T, which means that A−1
kl �= 0. This shows both 

properties (6.1) and (6.2) hold for G and then the same is true for A.
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Now, we remove the extra hypotheses we have made by a similar perturbation argu-
ment as done before. For that purpose, consider ε > 0 small enough, such that A−1 + εI

is still nonsingular, and all the diagonal entries of this matrix are nonzero. We consider 
A(ε) = (A−1 + εI)−1, which is

A(ε) = (A−1 + εI)−1 = A(I + εA)−1 = A− εA2 + ε2A3 − · · · .

Notice that G−(A(ε)) = G
−(A) = T

− and if we take ε small enough, the diagonal 
elements of A(ε) are not zero. Hence, (6.1) and (6.2) are satisfied for A(ε). Once again, 
formula (6.4) is valid for A(ε)−1. To finish the proof, it is enough to let ε converge 
to 0. �
6.1. Proof of Theorem 2.4

Clearly (i) ⇒ (ii) ⇒ (iii). So, it is enough to show that (iii) ⇒ (i).
From formula (6.4) we have that A−1 is a Z-matrix. Since A is a positive matrix, we 

conclude that A−1 is an M -matrix.
Finally, A−1 is row diagonally dominant if and only if

A−1
ii ≥

∑
j∼i

−Aij ,

which is equivalent to (2.2) (see formula (6.4)). The proof is finished. �
6.2. Proof of Theorem 2.5

Assume that W is defined by Formula (2.4). If we interpret an empty product as 1, 
then the second case in the definition of W is a special case of the third. According 
to Lemma 6.2 and Theorem 2.4, the result is shown as soon as we prove that W is 
compatible with T. Under the assumptions made on X, this is equivalent to proving
that (6.3) holds for all i ∼ j.

So, we take k ∈ K = {� : i ∈ geod
T
(�, j)}, t ∈ J = {s : j ∈ geod

T
(s, i)} and we 

compute Wks. From the definition of W we get:

Wks = Wki

Wii

Wij

Wjj
Wjs,

and we obtain

WKJ = Wij

WiiWjj
WKiWjJ .

Similarly, we show that

WJK = Wji

WiiWjj
WJjWiK ,

and the result is shown.
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Conversely, assume that W is an inverse M -matrix, with associated graph T. The 2 ×2
principal minors of an inverse M -matrix are always positive, so we only need to show that 
relation (2.4) holds. In a first place we assume that W is symmetric. So, we can use the 
multiplicative decomposition given in Theorem 2.1 (iii), to further reduce the problem to 
the case when W is a class 1 ultrametric matrix. We denote by r the root associated to W . 
Let i0 = i, · · · , iq = j be the geodesic in T joining the different points i, j. We denote 
by is, the unique point in this geodesic closest to r. Then, ultrametricity shows that

Wip−1,ip = Wip,ip = Wis,is = Wij for p = 1, · · · , s
Wip−1,ip = Wip−1,ip−1 for p = s + 1, · · · , q.

In particular, we have

Wiq−1,j

q−1∏
p=1

Wip−1,ip

Wip,ip

= Wiq−1,iq−1

q−1∏
p=s+1

Wip−1,ip−1

Wip,ip

= Wis,is = Wij .

This shows the result under the extra hypothesis that W is symmetric. Now, Theo-
rem 2.1 (i) shows the existence of a diagonal matrix E, such that WE is a symmetric 
inverse M -matrix, associated to the same tree. The property holds for WE which shows 
that

WijEjj = Wiq−1,jEjj

q−1∏
p=1

Wip−1,ipEip,ip

Wip,ipEip,ip

,

and the result is shown. �
7. An algorithm: Proof of Theorem 2.7

In this section we develop the algorithm we have proposed that determines whether a 
matrix is compatible with a tree. This algorithm gives necessary and sufficient conditions 
for a positive matrix, to be an inverse M -matrix supported on a tree. This together with 
condition (2.2) will give a characterization of potentials associated with random walks 
on trees. In what follows we assume that W is a positive matrix. Some of the results 
can be extended to more general situations, but we prefer to focus on the problem of 
characterizing potentials. So, if W is an inverse M -matrix, then G(W ) is connected.

Recall that given the matrix A, we associate the following symmetric matrix R = R(A)

Rij = AijAji

AiiAjj
.

Lemma 7.1. Assume that W is an inverse M -matrix and G(A) = T is a tree. Then 
R = R(W ) satisfies:

(i) For all i we have Rii = 1, and for all i �= j 0 < Rij < 1;
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(ii) if k ∈ geod
T
(i, j), then

Rij = RikRkj ;

(iii) for i �= j we have i ∼ j if and only if Rij > max{RikRkj : k �= i, j};
(iv) assume that i ∼ j, then i ∈ geod

T
(k, j) if and only if Rki > Rkj .

Remark 7.1. Under the assumptions of the previous lemma, it can be proved that 
d(i, j) = − log(Rij) is a distance in T compatible with the tree structure. In partic-
ular, property (ii) simply reads as k ∈ geod

T
(i, j) then d(i, j) = d(i, k) + d(k, j).

Proof of Lemma 7.1. First notice that there is a diagonal matrix F such that FW is a 
potential (this is a general result about inverse M -matrices see for example [13]). It is 
straightforward to show that R(FW ) = R(W ). Since we also have G(FW ) = G(W ), we 
can assume without loss of generality that W is a potential. We denote by X = (Xn :
n ∈ N) the associated Markov chain and P its transition kernel.

(i). Since Wij = Pi(τj < ∞)Wjj , we get for i �= j that 0 < Rij = Pi(τj < ∞)Pj(τi <
∞) ≤ 1. Let us prove that Rij < 1. Since the Markov chain associated with W is 
transient, there must exist at least on node r that loses mass (a root): Prr +

∑
k∼r

Prk < 1. 

One of the two alternatives must be true: j ∈ geod
T
(i, r) or i ∈ geod

T
(j, r). In the former 

case Pj(τi < ∞) < 1 because there is a path that connects j and r that does not visit i, 
namely geod

T
(j, r) and then

Pj(τi = ∞) ≥ Pj(τr < τi)
(

1 − Prr −
∑
k∼r

Prk

)
> 0.

The other case is similar, and (i) is shown.
(ii). Assume that k ∈ geod

T
(i, j) and k �= i, j, so, every path that connects i and j

must pass through k. Then, the strong Markov property shows that

Pi(τj < ∞) = Pi(τk < τj < ∞) = Pi(τk < τj)Pk(τj < ∞) = Pi(τk < ∞)Pk(τj < ∞).

The last equality holds, because τk < τj is equivalent to τk < ∞ under Pi. Similarly,

Pj(τi < ∞) = Pj(τk < ∞)Pk(τi < ∞),

which shows that Rij = RikRkj .
(iii). If i �= j and Rij > max{RikRkj : k �= i, j}, then according to (ii) there cannot 

exist k ∈ geod
T
(i, j) different from i, j, that is i ∼ j. Conversely, assume that i ∼ j. Take 

any k �= i, j. Without loss of generality we can assume j ∈ geod
T
(i, k), which implies 

that Rik = RijRjk and therefore

RikRkj = RijR
2
kj < Rij ,

because k �= j implies Rkj < 1.
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(iv). Assume that i ∈ geod
T
(k, j) then

Rkj = RkiRij < Rki.

On the other hand, assume that i ∼ j and Rkj < Rki. Then clearly k �= j. If j ∈
geod

T
(k, i), we obtain as before

Rki < Rkj ,

which is a contradiction. Hence, since T is a tree and i ∼ j, we conclude that i ∈
geod

T
(k, j). The result is shown. �

The following result is the basis for the algorithm we propose.

Lemma 7.2. Assume A is a positive matrix and R = R(A). We also assume that every 
2 ×2 principal minor of A is positive. The matrix A is compatible with a tree if and only 
if

(i) for all i there exists j such that i A∼ j;
(ii) if i A∼ j and if we denote K = {k : Rki > Rkj}, J = Kc, then

AKJ = AKi
Aij

AiiAjj
AjJ , AJK = AJj

Aji

AiiAjj
AiK .

Moreover, a tree T compatible with A is given by the relation A∼, that is, for i �= j we 
have

(i, j) ∈ T ⇔ i
A∼ j.

Proof. Assume first that A is compatible with the tree T. Then from Lemma 6.2, A is 
nonsingular, G−(A) = T

− (outside the diagonal) and formula (6.4) holds for the inverse. 
Then, since A > 0 and every 2 ×2 minor is also positive we conclude that A is an inverse 
M -matrix. Hence, the diagonal elements of A−1 are positive and then G(A) = T.

Now, we can apply Lemma 7.1 (iii) to conclude that i A∼ j is equivalent to (i, j) ∈ T, 
for all i �= j, showing that (i) holds. From the definition of compatibility we deduce that 
for i A∼ j, which is equivalent to i ∼ j in T, we obtain that

AKJ = AKi
Aij

AiiAjj
AjJ , AJK = AJj

Aji

AiiAjj
AiK ,

where K = {k : i ∈ geod
T
(k, j)} and J = Kc. Part (ii) will follow as soon we prove that 

K = {k : Rki > Rkj}. This is obtained from (iv) in Lemma 7.1 and the implication is 
proved.
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Conversely, we assume that A is positive, that every 2 ×2 minor is positive and (i), (ii)
hold. We need to show that A is compatible with a tree. Actually, this is equivalent to 
showing that A∼ is induced by a tree. We show this property by induction on n, the order 
of A.

The result is true when n = 1, 2. So, we assume it is true whenever the order of 
the matrix is smaller or equal to n and we show it holds true, when the order of A is 
n + 1 ≥ 3. Let us denote I = {1, · · · , n + 1} and we fix some i ∈ I.

From part (i) there exists at least one j �= i such that i A∼ j. Since the minor AiiAjj −
AijAji > 0 we deduce that Rij < 1 = Rii and then K = {k : Rki > Rkj} is not empty 
because it contains at least i. The same argument shows that J = Kc is not empty and 
contains at least j.

We claim that the matrices AKK , AJJ , which are of order at most n, satisfy the 
induction hypothesis. Let us show this is true for B = AKK . Clearly, this matrix is 
positive and every 2 × 2 principal minor is also positive. So, we prove it satisfies (i), (ii). 
First notice that R(B) = RKK . Fix some � ∈ K and consider t ∈ K such that

R�t = max{R�h : h ∈ K \ {�}}.

Then, for any h ∈ K \ {�, t} we have R�t > R�hRht, because Rht < 1. This shows B
satisfies (i).

Now, assume that � B∼ t, of course for �, t ∈ K, that is

R�t > max{R�sRst : s ∈ K \ {�, t}}.

Using that A satisfies (ii), we have for all r ∈ I \K

R�rRrt = R�iRirRriRit = R�iRitR
2
ir < R�iRit ≤ R�t.

The last inequality follows from the fact that i ∈ K. The equality holds only when � = i

or t = i. Hence, we have proved that � A∼ t. In particular by (ii) satisfied for A, we get

ALH = AL�
A�t

A��Att
AtH , AHL = AHt

At�

A��Att
A�L,

where L = {s ∈ I : Rs� > Rst} and H = I \ L. Now, let L̃ = L ∩K = {s ∈ K : Rs� >

Rst} and H̃ = K \ L̃ = K ∩H, then

BL̃H̃ = BL̃�

B�t

B��Btt
BtH̃ , BH̃L̃ = BH̃t

Bt�

B��Btt
B�L̃.

This shows that B = AKK satisfies the induction hypothesis. Then, there exists a tree L1
such that for all � �= t elements of K

(�, t) ∈ L1 ⇔ �
B∼ t.
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In order to prove that C = AJJ also satisfies the induction hypothesis is enough to show 
that J = {k : Rki < Rkj}. In order to show this representation for J , consider k ∈ J

and then use (ii) satisfied by A to get

Aik = Aij

Ajj
Ajk, Aki = Akj

Ajj
Aji.

Hence, Rik = RijRjk < Rjk and the claim is shown.
The matrix C also satisfies the induction hypothesis and therefore there exists a 

tree L2 such that for all r �= s elements of J

(r, s) ∈ L2 ⇔ r
C∼ s.

To finish the proof consider the tree T which is obtained by joining L1, L2 through the 
edge (i, j). Let us show that T is compatible with A, that is for all p �= q in I

(p, q) ∈ T ⇔ p
A∼ q.

This is clear if p, q ∈ K or p, q ∈ J . So, the last case to consider is p ∈ K, q ∈ J and 
(p, q) �= (i, j). In this situation (p, q) /∈ T. On the other hand, if p �= i we use that 
Rpq = RpiRiq to conclude that ¬(p A∼ q). If q �= j the conclusion is similar. The result is 
shown. �
Proof of Theorem 2.7. The necessity of (i), (ii) follows from Lemma 6.3 and Lemma 7.2.

Conversely, assume conditions (i), (ii) hold. Then, according to Lemma 7.2 the ma-
trix W is compatible with a tree. Now, from Lemma 6.2 we have W−1 is supported on 
that tree and formula (6.4) holds for W−1, showing that W is an inverse M -matrix. �
8. Proof of Theorem 2.8

Properties (i), (iii), (iv) are shown as in Theorem 2.9 in [9]. The main tool we use 
is the existence of two diagonal matrices D, D̂ such that U = DWD̂ is a class 1 tree 
ultrametric matrix.

For part (ii) the main difficulty is to show that W (α) is nonsingular and its inverse is 
supported on T. First notice that W (α) = (W (−α))(−1) and W (−α) is an inverse M -matrix 
whose inverse is supported on T. Thus, we can assume without loss of generality that 
α = −1.

The matrix A = W (−1) is a positive matrix. Each principal minor of order 2 is

1 − 1 = WijWji −WiiWjj
< 0.
WiiWjj WijWji WiiWjjWijWji
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To conclude that A is compatible with T, we assume that i ∼ j. Using that W is 
compatible with T we have

WKJ = Wij

WiiWjj
WKiWjJ , WJK = Wji

WiiWjj
WJjWiK ,

where K = {k ∈ T : i ∈ geod
T
(k, j)} and J = Kc. It is direct to show that

AKJ = Aij

AiiAjj
AKiAjJ , AJK = Aji

AiiAjj
AJjAiK .

From Lemma 6.3 and formula (6.4), we conclude that A is nonsingular, its inverse satisfies 
(ii.2), that is the off diagonal elements of C = A−1 are nonnegative. Since A is a positive 
matrix then diagonal elements of C must be negative. Also, C is supported by T.

Now we prove that sign(det(A)) = (−1)n+1. For that purpose we consider two positive 
diagonal matrices such that U = DWE is a class 1 tree ultrametric matrix. Obviously 
the sign of the determinant of U (−1) and A is the same. So let us prove the claim for 
U (−1). This is done by induction and we suppose that the property is true for matrices 
of order smaller than n − 1 ≥ 1 and we show it for matrices of order n. Using a couple of 
extra diagonal matrices, we can assume that U has a unique root r, which is a leaf of T. 
After a suitable permutation of rows and columns we can assume that U has a block 
structure as

U =
(

Urr Urr1′

Urr1 V

)
,

where 1 is a vector of ones of size n − 1 and V is a class 1 tree ultrametric matrix, 
supported by the tree L = T \{r} and it has a unique root at s ∈ L, the unique neighbor 
of r in T (see Lemma 3.3). Notice that Vs• = Vss1′ and Vss = Uss > Urr. Hence,

U (−1) =
(

1/Urr 1/Urr 1′

1/Urr 1 V (−1)

)
.

To avoid any confusion we denote Γ = V (−1). Then,

det(U (−1)) = 1
Urr

(
1 − 1

Urr
1′Γ−11

)
det(V (−1)).

But, the structure of Γ = V (−1) shows that Γ−11 = Vsses = Usses. Therefore, we 
conclude that

1 − 1
Urr

1′Γ−11 = 1 − Uss

Urr
< 0

and then sign(det(U (−1))) = −sign(det(V (−1))), proving the claim.
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The proof of (ii.3) follows from Cauchy’s Interlace Theorem for eigenvalues, the 
Perron–Frobenious Theorem and induction. For details see the proof of Theorem 2.9 
in [9]. �
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Appendix A. A decomposition for class 2 ultrametric matrices

Consider U a class 2 ultrametric matrix with characteristic (T, r, s, F, a). We shall 
give an explicit possible decomposition U = V � Z where V, Z are class 1 ultrametric 
matrices. Recall that r, s are the roots of U . We can assume that the elements of U are 
greater than 1. For that, it is enough to multiply U by a large constant.

Also we assume that U has the block structure

U =
(

A a1p1′
q

a1q1′
p B

)
,

where A = U |T1 , B = U |T2 , p and q are the sizes of trees T1 = Ts[r], T2 = Tr[s]. 
We also recall that A, B are nonsingular class 1 ultrametric matrices and a = Urs <

min{Urr, Uss}. The root of A is r and the root of B is s, which in particular implies that 
min{A} = Urr, min{B} = Uss.

Now, we decompose V and Z similarly. We assume that V has a unique root at r and 
Z at s

V =
(

V1 Vrr1p1′
q

Vrr1q1′
p V2

)
, Z =

(
Z1 Zss1p1′

q

Zss1q1′
p Z2

)
.

We point out that Vrr = (V1)rr = min{V } and similarly Zss = (Z2)ss = min{Z}. We 
propose to search for a solution where V1 = A(α), Z1 = A(1−α) and V2 = B(β), Z2 =
B(1−β), with the restriction that 0 < α, β < 1.

The restrictions on these numbers are

Vrr = Uα
rr < Uβ

ss = Vss,

Zss = U1−β
ss < U1−α

rr = Zrr,

a = Urs = VrrZss = Uα
rrU

1−β
ss .

If there is a solution to this problem, then it is straightforward to check that V, Z are 
class 1 ultrametric matrices, and U = V � Z. Without loss of generality we can assume 
that Urr ≤ Uss. Then, the restrictions are
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α log(Urr)
log(Uss) < β,

1 − log(Urr)
log(Uss) + α log(Urr)

log(Uss) < β,

β = α log(Urr)
log(Uss) + 1 − log(Urs)

log(Uss) .

It is straightforward to verify that for every 0 < α < 1 there exists a solution to this 
problem (notice that Urs < Urr ≤ Uss). So, there are infinite many ways to decompose U .

Appendix B. An algorithm to compute T

Here we propose an algorithm that decides when a positive matrix W has an in-
verse W−1, which is an M -matrix supported on a tree. This algorithm is based on 
Theorem 2.7 and Theorem 2.5.

The first step is to compute R, which costs 3
2n

2 products and divisions.
Step 0. Set I0 = I, p0 = n and

(1) ∀i ∈ I0

⎧⎪⎨⎪⎩ J0(i) = min
{
j : j ∈ argmax{Rik : k ∈ I0 \ {i}}

}
, check RiJ0(i) < 1;

K0(i) = {k ∈ I0 : Rik > RJ0(i)k}, compute |K0(i)|;

(2) L1 = {t : |K0(t)| = 1}, set p1 = |L1|, verify p1 ≥ 2;

(3) ∀i ∈ L1, k ∈ I0, j = J0(i) verify that
{
Wik = Wij

Wjj
Wjk;

Wki = Wji

Wjj
Wkj .

(4) ∀i ∈ L1 put (i,J0(i)) ∈ T, and set I1 = I0 \ L1.

L1 is the set of leaves in case W−1 is supported on a tree. The cost for each subpart 
is: (1) 2n2, (2) n, (3) 6p1n, (4) 3p1 (here we do not distinguish between products, divisions 
and sums). The total cost for step 0 is 2n2 + 6p1n + n + 3p1.

Remark B.1. An important property to verify is: For i ∈ L1 one should have J0(i) /∈ L1
(unless n = 2). Indeed, take k different from i and j = J0(i). Then, from (3) we obtain

Rik = WikWki

WiiWkk
= WijWji

WiiWjj

WjkWkj

WjjWkk
= RijRjk < Rjk, (B.1)

because Rij < 1. Now, assume that j ∈ L1 and consider � = J0(j). If � �= i we get as 
above that Rij = Rji < R�i = Ri�, contradicting the optimality of j in (1). Thus, the 
only possibility is that i = J0(j), but then similarly to (B.1) we get

Rjk < Rik,

which is in contradiction with (B.1). The conclusion is that J0(i) /∈ L.
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The next important observation is that if W−1 is an M -matrix supported on a tree T, 
then (WI1I1)−1 is again an M -matrix supported on T \ L1. This allows us to proceed as 
follows.
Step 1.

(1) define L̂2 = {J0(i) : i ∈ L1} ⊆ I1 (candidate set of leaves);

(2) ∀i ∈ L̂2 recompute

⎧⎪⎨⎪⎩ J1(i) = min
{
j : j ∈ argmax{Rik : k ∈ I1 \ {i}}

}
;

K1(i) = {k ∈ I1 : Rik > RJ1(i)k}, compute |K1(i)|;

(3) L2 = {i ∈ L̂2 : |K1(i)| = 1}, set p2 = |L2|, verify p2 ≥ 2;

(4) ∀i ∈ L2, k ∈ I1 \ {i}, with j = J1(i), verify that
{
Wik = Wij

Wjj
Wjk;

Wki = Wji

Wjj
Wkj .

(5) ∀i ∈ L2 put (i,J1(i)) ∈ T, and set I2 = I1 \ L2.

The cost for this step is: (1) p1, (2) 3p1(n −p1), (3) p1, (4) 6p2(n −p1), (5) 3p2 and the total 
cost for step 1 is

3(n− p1)(p1 + 2p2) + 2p1 + 3p2.

Continue until step q for which

|Iq| ≤ 1. (B.2)

At this stage there are two possibilities. If |Iq| = 0 then Lq = Iq−1, with |Iq−1| ≥ 2. 
According to Remark B.1 this is only possible if |Iq−1| = 2. Hence, pq = 2, 

∑q
m=1 pm = n

and the number of edges in T is n − 1, because in step q − 1 there are 2 nodes and 1
edge.

On the other hand, if |Iq| = 1, then |Lq| = |Iq−1| − 1 and 
∑q

m=1 pm = n − 1, which 
gives again n − 1 edges.

Thus, if the algorithm stops at (B.2) it provides a graph T, which has no cycles and 
it has n − 1 edges, so it is a tree. To show that W is compatible with T we use (2.4) in 
Theorem 2.5, that is, we need to show

Wik =
(

r−1∏
s=1

Wis−1is

Wisis

)
Wir−1k,

where geod
T
(i, k) = {i = i0 ∼ i1 ∼ · · · ∼ ir−1 ∼ ir = k} and r ≥ 2. This property is 

proved using induction on the length of the geodesic between i and k.
Finally, the total cost of the algorithm is bounded by

Cost ≤ 3
2n

2 + 2n2 + 6p1n + n + 3p1 +
q−1∑

3 (n− s�) (p� + 2p�+1) + 2p� + 3p�+1

�=1
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≤ 7
2n

2 + 6p1n + n + 3n
q−1∑
�=1

p� + 2p�+1 ≤ 7
2n

2 + 6(n− 1)n + n + 9n2

≤ 37
2 n2,

where s� =
∑�

m=1 pm.

References

[1] P. Cartier, Fonctions harmoniques sur un arbre, Symp. Math., vol. IX, Academic Press, 1972, 
pp. 203–270.

[2] S. Chen, A property concerning the Hadamard powers of inverse M -matrices, Linear Algebra Appl. 
381 (2004) 53–60.

[3] S. Chen, Proof of a conjecture concerning the Hadamard powers of inverse M -matrices, Linear 
Algebra Appl. 422 (2007) 477–481.

[4] C. Dellacherie, S. Martínez, J. San Martín, Ultrametric matrices and induced Markov chains, Adv. 
in Appl. Math. 17 (1996) 169–183.

[5] C. Dellacherie, S. Martínez, J. San Martín, Description of the sub-Markov kernel associated with 
generalized ultrametric matrices. An algorithmic approach, Linear Algebra Appl. 318 (2000) 1–21.

[6] C. Dellacherie, S. Martínez, J. San Martín, Hadamard functions of inverse M -matrices, SIAM J. 
Matrix Anal. Appl. 31 (2) (2009) 289–315.

[7] C. Dellacherie, S. Martínez, J. San Martín, Hadamard functions that preserve inverse M -matrices, 
SIAM J. Matrix Anal. Appl. 33 (2) (2012) 501–522.

[8] C. Dellacherie, S. Martínez, J. San Martín, Ultrametric and tree potential, J. Theoret. Probab. 
22 (2) (2009) 311–347.

[9] C. Dellacherie, S. Martínez, J. San Martín, The class of inverse M -matrices associated with random 
walks, SIAM J. Matrix Anal. Appl. 34 (2) (2013) 831–854.

[10] C. Dellacherie, S. Martínez, J. San Martín, Inverse M -Matrices and Ultrametric Matrices, Lecture 
Notes in Math., vol. 2118, Springer, 2014.

[11] M. Fiedler, Some characterizations of symmetric inverse M -matrices, Linear Algebra Appl. 275/276 
(1998) 179–187.

[12] F.R. Gantmacher, M.G. Krein, Oszillationsmatrizen, Oszillationskerne und kleine Schwingungen 
mechanischer Systeme, Akademie-Verlag, Berlin, 1960.

[13] R. Horn, C. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.
[14] S.J. Kirkland, M. Neumann, B.L. Shader, Distances in weighted trees and group inverse of Laplacian 

matrices, SIAM J. Matrix Anal. Appl. 18 (1997) 827–841.
[15] D.J. Klein, Treediagonal matrices and their inverses, Linear Algebra Appl. 42 (1982) 109–117.
[16] S. Martínez, G. Michon, J. San Martín, Inverses of ultrametric matrices are of Stieltjes types, SIAM 

J. Matrix Anal. Appl. 15 (1994) 98–106.
[17] S. Martínez, J. San Martín, X. Zhang, A class of M -matrices whose graphs are trees, Linear Mul-

tilinear Algebra 52 (5) (2004) 335–347.
[18] J.J. McDonald, R. Nabben, M. Neumann, H. Schneider, M.J. Tsatsomeros, Inverse tridiagonal 

Z-matrices, Linear Multilinear Algebra 45 (1998) 75–97.
[19] R. Nabben, On Green’s matrices of trees, SIAM J. Matrix Anal. Appl. 22 (4) (2001) 1014–1026.

http://refhub.elsevier.com/S0024-3795(16)30011-8/bib63617274696572s1
http://refhub.elsevier.com/S0024-3795(16)30011-8/bib63617274696572s1
http://refhub.elsevier.com/S0024-3795(16)30011-8/bib6368656E32303034s1
http://refhub.elsevier.com/S0024-3795(16)30011-8/bib6368656E32303034s1
http://refhub.elsevier.com/S0024-3795(16)30011-8/bib6368656E32303037s1
http://refhub.elsevier.com/S0024-3795(16)30011-8/bib6368656E32303037s1
http://refhub.elsevier.com/S0024-3795(16)30011-8/bib64656C6C31393936s1
http://refhub.elsevier.com/S0024-3795(16)30011-8/bib64656C6C31393936s1
http://refhub.elsevier.com/S0024-3795(16)30011-8/bib64656C6C32303030s1
http://refhub.elsevier.com/S0024-3795(16)30011-8/bib64656C6C32303030s1
http://refhub.elsevier.com/S0024-3795(16)30011-8/bib64656C6C32303039s1
http://refhub.elsevier.com/S0024-3795(16)30011-8/bib64656C6C32303039s1
http://refhub.elsevier.com/S0024-3795(16)30011-8/bib64656C6C32303131s1
http://refhub.elsevier.com/S0024-3795(16)30011-8/bib64656C6C32303131s1
http://refhub.elsevier.com/S0024-3795(16)30011-8/bib64656C6C3230313162s1
http://refhub.elsevier.com/S0024-3795(16)30011-8/bib64656C6C3230313162s1
http://refhub.elsevier.com/S0024-3795(16)30011-8/bib64656C6C32303133s1
http://refhub.elsevier.com/S0024-3795(16)30011-8/bib64656C6C32303133s1
http://refhub.elsevier.com/S0024-3795(16)30011-8/bib6C6962726F444D534D32303134s1
http://refhub.elsevier.com/S0024-3795(16)30011-8/bib6C6962726F444D534D32303134s1
http://refhub.elsevier.com/S0024-3795(16)30011-8/bib666965646C657231393938s1
http://refhub.elsevier.com/S0024-3795(16)30011-8/bib666965646C657231393938s1
http://refhub.elsevier.com/S0024-3795(16)30011-8/bib67616E746D616368657231393630s1
http://refhub.elsevier.com/S0024-3795(16)30011-8/bib67616E746D616368657231393630s1
http://refhub.elsevier.com/S0024-3795(16)30011-8/bib484As1
http://refhub.elsevier.com/S0024-3795(16)30011-8/bib6B69726B6C616E6431393937s1
http://refhub.elsevier.com/S0024-3795(16)30011-8/bib6B69726B6C616E6431393937s1
http://refhub.elsevier.com/S0024-3795(16)30011-8/bib6B6C65696Es1
http://refhub.elsevier.com/S0024-3795(16)30011-8/bib6D617274696E657A31393934s1
http://refhub.elsevier.com/S0024-3795(16)30011-8/bib6D617274696E657A31393934s1
http://refhub.elsevier.com/S0024-3795(16)30011-8/bib6D617274696E657A32303034s1
http://refhub.elsevier.com/S0024-3795(16)30011-8/bib6D617274696E657A32303034s1
http://refhub.elsevier.com/S0024-3795(16)30011-8/bib6D63646F6E616C6431393938s1
http://refhub.elsevier.com/S0024-3795(16)30011-8/bib6D63646F6E616C6431393938s1
http://refhub.elsevier.com/S0024-3795(16)30011-8/bib6E616262656E32303031s1

	Potentials of random walks on trees
	1 Introduction and basic deﬁnitions
	2 Main results
	3 Ultrametric matrices on trees
	4 Proof of Theorem 2.1
	5 Proof of Theorem 2.2
	6 Matrices compatible with a tree
	6.1 Proof of Theorem 2.4
	6.2 Proof of Theorem 2.5

	7 An algorithm: Proof of Theorem 2.7
	8 Proof of Theorem 2.8
	Acknowledgements
	Appendix A A decomposition for class 2 ultrametric matrices
	Appendix B An algorithm to compute T
	References


