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1. Introduction and basic definitions

Markov chains are used to model a variety of phenomena and one is accustomed to
estimate its transition probability P in order to simulate and understand the underline
probabilistic structure. Nevertheless, there are some situations where a direct measure-
ment of P is not available. For example, this happens in electrical networks, where P is
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related to the resistances of the network (see for example [10] section 2.7). Instead, we
can measure the potential W of the Markov chain, which is the mean expected number
of visits per site (assuming the chain is transient). These two matrices are related by
W = (I — P)~%, so in principle one can model W instead of P. The main drawback of
this approach is that structural restrictions for potentials are difficult to state (this is
part of the inverse M-matrix problem).

In this article, we show how to handle this problem under the extra hypothesis that
the incidence graph of W~! is a tree. In the nomenclature of Klein [15], W~! is a
treediagonal. This is the case of a linear tree like Birth and Death chains and some
networks like the electric power distribution system. In Theorem 2.5, we show that to
reconstruct the chain it is enough to measure the potential at edges and nodes of the tree.
The unique restrictions on those numbers are given by the 2 x 2 determinants associated
with every edge. On the other hand, Theorem 2.2 (see also Corollary 2.3) provides an
explicit formula to compute P from W. The complexity of this formula is linear in the
number of nodes in the tree. More explicitly, if W is an n x n matrix, then the algorithm
obtained from this formula, uses at most 11n operations (products, divisions and sums)
to compute W~!. Notice here that while W~! is an sparse matrix, W itself is a full
matrix (under irreducibility W > 0).

For the sake of completeness, we recall that a matrix @ is an M-matrix if it is a
Z-maftrix, that is, the off diagonal elements are nonpositive, ) is nonsingular and the
entries of its inverse Q! are nonnegative. We refer to [13] section 2.5 for a set of equiv-
alent conditions that characterize M-matrices. It is worth mentioning that the diagonal
entries of an M-matrix are positive. On the other hand, a relevant sufficient condition for
a Z-matrix @ to be an M-matrix, is that @ is nonsingular and row diagonally dominant,
that is, for all ¢ the row sum Zj Qi > 0.

In Theorem 2.7 we characterize, in an algorithmic way, those positive matrices whose
inverses are M-matrices supported on a tree. The associated algorithm is developed in
Appendix B, which provides the tree associated with W ! with a complexity bounded
by %nQ.

As a complement, Theorem 2.1 provides a description of a potential associated with
a Markov chain supported on a tree. This is done in terms of ultrametric matrices.
A sufficient condition is that U = diag(1./W,,) Wdiag(1./W,,) is an ultrametric matrix.
On the other hand, in the symmetric case, a necessary and sufficient condition is that
W is the Hadamard product of tree ultrametric matrices, plus condition (2.2). As tree
ultrametric matrices are simple to construct, this result provides a simple way to describe
general Markov chains on trees.

In [9], we have proved that every potential of a random walk on {1, - - -, n} with nearest
neighbor transitions, is the product of a positive diagonal matrix with a matrix which is
the Hadamard product of two ultrametric matrices. This is equivalent to representing the
inverse of a tridiagonal and row diagonally dominant M-matrix as such product. This
was done in the symmetric case in [12]. In our setting, we shall see that we require one
ultrametric matrix per extremal point of the set (on the tree) where the chain is losing
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mass. This explains why for nearest neighbor random walks, we needed two ultrametric
matrices (in some simple cases we needed just one).

Finally, in Theorem 2.8 we study stability properties for these matrices under
Hadamard products and powers. In particular we show that if W, Z are two inverse
treediagonal M-matrices associated with the same tree T, then their Hadamard product
W ® Z is also an inverse treediagonal M-matrix associated with T.

To continue, let us recall the definition of a potential matrix.

Definition 1.1. A nonnegative and nonsingular matrix W is said to be a potential if
M = W~ is a row diagonally dominant M-matrix.

The inverse of a potential matrix W is a row diagonally dominant M-matrix, so there
exist a transient substochastic matrix P and a constant k such that W1 = k(I— P). In
particular, W is proportional to the potential (in the probabilistic sense) of the Markov
chain associated with P, which is U = (I — P)~!. This matrix represents the expected
number of visits for this Markov chain. Indeed, since P is transient, the series > -, P™
is finite and U = (I — P)~! = 3 _  P™. Hence, if we consider (X,,) a Markov chain
whose transition kernel is P then

Uy =) Pi=) Ei(l;(Xn) =E (Z ]lj(X”)> :

n

where E; is the mean expected value when the starting condition is Xy = 4, and 1;(x) is
the function that takes the value 1 when x = j and 0 otherwise.
Since U and W are proportional we conclude that for all i # j

Wij = fIy Wi, (1.1)

where f}

quantity can be described using the hitting time 7; = inf{n > 0 : X,, = j}, which is

€ [0,1] is the probability that the chain ever visits j starting from ¢. This

the first random time the chain visits j (we put 7; = oo for those realizations where the
chain never visits j). Then,

fi?/ =P;(1; < 00).

In the sequel we define f}V = 1, in order that (1.1) is satisfied for all i, j.
In particular if W is a potential, then W is column pointwise diagonally dominant,
that is for all 4, j

Wij < Wjj.

If W is symmetric, we get it is also row pointwise diagonally dominant. Also, we point
out that W > 0 if and only if the associated chain is irreducible, or equivalently, the
incidence graph of W~ is connected.
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Remark 1.1. There is a subtle difference between W being a potential and W~! =1 — P,
for some substochastic matrix P. Of course the latter is a special case of the former.
To give a probabilistic representation of a general potential matrix, one has to use a
continuous time Markov chain X = (X, : ¢t € R™). This process is like a Markov chain
but jumps from one site to another after certain exponentially distributed random times.
Again, W;; represents the mean total time spent by X at site j, starting from ¢ (see [10]
Section 2.3.1).

Recall that a graph G = (V,€) is a set of vertices or nodes V and a set of edges
E CV x V. When there is no possible confusion we shall not distinguish between i € G
and i € V. Also, we shall not distinguish between (i,j) € G and (i,5) € £.

Definition 1.2. Given an M-matrix M with inverse W, the graph G = G(W), denotes
the incidence graph of M, that is, (¢,7) € G if and only if M;; # 0. We shall say that G
is the graph associated with W (and M).

On the other hand, we say that a node ¢ is a root of W (or M) if }°, M;; # 0. The
set of roots of W is denoted by Z(W).

The unique solution to Wy = 1, that is up = M1, is called the right signed equilibrium
potential of W and it will be denoted by py . The support of uy is the set of nodes
{i: (pw): # 0}, which is exactly the set of roots for W. The total mass of uy is denoted

by jiw = pyy L.

Since the diagonal elements of an M-matrix are positive G(WW) always contains the
loop (i,1) for all i € V. Also, we point out that in principle G(W) is a directed graph.
Nevertheless, we shall consider mainly the case where T = G(W) is a tree. In particular
(i,7) € T means that both ng # 0 and Wﬁl = 0. This is slightly different from what
is done in [15] or [19], where the graph considered is defined as (i,7) € G(W™!) if and
only if ng # 0 or Wﬂl # 0. However, if G(W) is a tree and W ! is irreducible (or
equivalently W > 0) both concepts coincide.

If (uw); > 0 then M is row diagonally dominant at row i. Hence, the right signed
equilibrium measure pyy is nonnegative if and only if W ! is row diagonally dominant.
In this case we say that py is the right equilibrium potential of W.

We point out that when W is a potential the decomposition of W=! = k(I — P) is
not unique, but the connections determined by P out of the diagonal are well defined:
i # j are connected in one step, that is P;; > 0, if and only if (¢, j) € G(W). Thus G(W)
represents the graph of transitions for the underline Markov chain. We notice that i is a
root (as defined before) if P is defective at i, that is

> Pj<1. (1.2)

Hence, the Markov chain loses mass exactly at the roots of W.
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Fig. 1. A tree T and a subset .

A tree T = (V,€) is a non-oriented, connected graph without simple cycles. Unless
we say the contrary, we assume that for every i € V the loop (i,i) € £. In what follows T
will denote indistinctly the tree, the set of nodes and the set of arcs, unless it is necessary
to do the distinction.

For a pair of different nodes i,j € T we can distinguish a particular path that joins
these two points. Namely, the geodesic between ¢ and j, which is the shortest path
in T that connects them. We denote by geody(i,7) this path, which is characterized by
geody (4, 5) = {io =14, - -,1p = j} where all nodes are different and two consecutive nodes
are neighbors in T. The length of this path is denoted by dr(i,j) = p. By convention we
assume geodp(i,4) = {i} and dr(i,4) = 0. A node ¢ € T is called a leaf if it has a unique
(immediate) neighbor in T, that is, a unique j € T such that dr(i,j) = 1. The set of
leaves of T is denoted by .Z(T). Notice that if T has exactly two leaves then it is a path
(a linear tree).

We also denote ¢ ~ j to mean that ¢ # j and (i, j) € T or equivalently that dr(4,7) = 1.

We shall need the following concept

Definition 1.3. Given a set &/ C T, we say that i € &7 is extremal in .o/ if
Vk,l € o, i € geody(k,l) = [i =k ori=1I].

We denote by ext(«) the set of extremal points of </. We also denote by T(%/) the
smallest subtree of T that contains & and we call it the tree generated by .o/.

Notice that T(ezt(=)) = T(&), ext(T(<)) = ext(«/) and ext(T) = Z(T).

Example 1.1. Consider the tree given in Fig. 1 and &« = {2,4,5,6,7,8}.
Then, ext(e/) = {4,6,8} and T(&) = {1,2,4,5,6,7,8}.

Another important concept for this article is the notion of ultrametric matrix, which
we recall in the next definition (see [16]).

Definition 1.4. A symmetric nonnegative matrix U is ultrametric if for all 7, j, k we have

Uij Z min{Uik, Ukj}
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In particular, if ¢ = j we obtain that

Ui > max{Uy, : k€ I,k #i}
If this last inequality is strict for all ¢ then U is said to be strictly ultrametric.
2. Main results

In this section we establish the main results of this article. Some of them require a
precise study of ultrametric matrices on trees, which we postpone to the next section.
We shall see there are two types of them. What we call class 1 (see Definition 3.2) are
the ones that have a unique root, that is, a unique node where the associated Markov
chain is losing mass.

Theorem 2.1. Assume that W is an inverse M -matriz, whose graph T = G(W) is a tree.
Then:

(i) There exist diagonal matrices F, E such that FW is a potential, WE is a symmetric
inverse M -matrixz and furthermore we can choose them such that FWE is a sym-
metric potential. Since F, E are diagonal matrices then T is the graph associated
with FW,EW FWE. If W is symmetric we can take E = F. On the other hand,
if W is a potential we can take F = 1.

(ii) For any node r € T the matriz

U = diag(1./We,) Wdiag(1./We)

is a class 1 tree ultrametric matriz such that T = G(U) and whose unique root is r;

(iii) Assume now W is a symmetric potential with set of roots Z(W). For every { €
ext(Z(W)) there exists a nonsingular class 1 tree ultrametric matriz Uy with T =
G(U,) and a unique root at £, such that

W = ® Uy.
Leext(R(W))

That is, W is the Hadamard product of class 1 tree ultrametric matrices.

The decomposition given in (7) bears some similarities with the decomposition given
in Theorem 3.4 [19] (see also this article for further references, in particular the works
[11] and [14]). We notice that in the case of a linear tree, that is W' is a tridiagonal
matrix then the result was shown in [12] (see [18,19,9]).

As a sort of converse we have the following result, in which we also provide a formula
for W1 in terms of the entries of W.
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Theorem 2.2. Assume T is a tree and o/ C T. Take for every { € o/ a nonsingular class 1
tree ultrametric matriz Uy with root at ¢ and G(Uy) = T. Then,

(i) W= © U is a symmetric inverse M-matriz and G(W) = T.
lead

(ii) For every t ¢ T(«/) the corresponding row sum of W= is 0 and for every t €
ext(/) the row sum is strictly positive. Therefore, we have the relation

ext() CZ W) C T()
and ext(Z(W)) = ext(f).

(iii) W1 is given by the formula

-1 _ 1 Wit Wi
Wii — Wi <1 + Z thWiiWitWti> ’

tidy(3,t)=1
—1 Wi, . N
Wi = —wowi—wowp if dr(i,j) =1,

(iv) A necessary and sufficient condition for W to be a potential is that Wly(uy is a
potential. Using (2.1) this is equivalent to having for all i

1 Wit Wi
> g 1— . 2.2
i , Wit Wi — Wi Wy ( Wi‘) (22)
tidy(3,t)=1

S

Moreover, the roots of W are those nodes i € I, for which there is strict inequality
in (2.2).

Remark 2.1. Ultrametric matrices are pointwise diagonally dominant. So, if W is the
Hadamard product of ultrametric matrices, then W is also pointwise diagonally domi-
nant. This shows that the right hand side of (2.2) is nonnegative. Also notice that we
have stated formula (2.1) and condition (2.2) as if W is not symmetric. We have done it
in this way because they extend to the case where W is not symmetric.

Remark 2.2. The decomposition given in Theorem 2.1 (%) (or Theorem 2.2 (7)) could be
used to simulate symmetric inverse M-matrices whose associated graphs are trees. In fact,
consider T a tree, &/ C T and simulate for every £ € o/ an ultrametric matrix Uy, whose
inverse is supported on T and has a unique root at £. This is done efficiently because
ultrametric matrices require only a set of weights that are increasing in the rooted tree
(T, ) (see Section 3). Then, multiply these matrices in the sense of Hadamard, which is
a simple matrix operation, to obtain the desired inverse M-matrix. From the theoretical
point of view, this decomposition allows us to show that the Hadamard product of inverse
M-matrices, whose associated graphs are the same tree, is again an inverse M-matrix
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(see Theorem 2.8 (iv)). This is an interesting fact because on the one hand there are
not very many known algebraic stability properties for inverse M-matrices or potentials,
and on the other hand the Hadamard product of inverse M-matrices is not in general
an inverse M-matrix.

Formula (2.1) is an extension of (3.1) and (3.4) (below), which cover the case of a tree
ultrametric matrix. This type of formula also appeared in [1] and [19]. In the ultrametric
case there is a simple probabilistic proof of it, see Remark 3.2. This together with the
representation given in Theorem 2.1 (4) provides a probabilistic insight of the algebraic
identity (2.1).

Using Theorem 2.1 (i) and (2.1), we obtain a formula for the inverse of an M-matrix
supported on a tree (we generalize this corollary in Section 6, Lemma 6.2).

Corollary 2.3. Assume that W = M~! where M is an M-matriz whose incidence graph
is the tree T. Then

-1 _ 1 Wit Wi
Wii T W 1+ Z Wit Wi =Wt Wi | 2
trdp(irt)=1

—1 Wij . . (2.3)
Wi_j = W Wi =W, Wi if dr(i,j) =1,

Wt =0, if de(i, j) > 1.

The following results will give conditions for a positive matrix W to be an inverse
M-matrix such that G(W) is a tree.

Theorem 2.4. Assume that A is a nonsingular positive matriz, such that the incidence
graph of its inverse T = G(A) is a tree. Then, the following are equivalent

1 is an M-matriz;

“A]] AijAji >0 fO?” all 1 # j,’

il — AijAji >0 for all i,j such that dr(i,j) = 1;

Under any of these equivalent conditions, A is a potential if and only if (2.2) holds, that
is for all i

1 Azt Ati
> 1-— .
Aii - Z AttAn - AztAtz ( Au)

t: d'ﬂ‘(l t

The main characterization of inverse M-matrices and potentials whose associated
graph is a tree, is given by the next result.

Theorem 2.5. Assume that T is a tree. To every edge (i,7) € T,i # j, we associate two
positive numbers X;;, X;;. To every node i € T we also associate a positive number X;.
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We assume that the 2 x 2 determinant X X;; — X Xj; is positive, for all i # j such
that (i,7) € T. Consider the matriz defined by

Xii ifi=k
Xik ifi #k,(i,k)eT
Wi, = -1y (2.4)
[[ === | Xi,_,x otherwise,
p=1 tptp

where in the last case geody(i, k) ={i =1ig ~ i1 ~ -+ ~ig_1 ~ig =k} and ¢ > 2.
Then, W is an inverse M-matriz and G(W) = T. Moreover, W is a potential if and
only if (2.2) holds, namely, for all i

Z | X
XttX XZtXt’L Xu .

Conversely, assume that W is an inverse M-matriz and its associated graph T =
G(W) is a tree. Then, all the 2 x 2 principal minors of W are positive and W satisfies
(2.4) for all i,k € T, where X;; = Wi; and X;; = W;j;, whenever dr(i,j) = 1.

The main assumption of the last two theorems is that we know in advance the tree T.
In Section 7, we study an algorithm that produces this tree directly from the matrix W
(see also Appendix B). The main technical tool to analyze this algorithm is given in
Lemma 7.2. This is done in terms of the symmetric matrix R = R(W) defined as R;; =
M If W is a potential of a random walk on a tree, then R;; represents the probability
that éicarting from ¢ the chain returns to ¢ after visiting j: R;; = P;(1; < 00)P;(1; < 00)
(this quantity is symmetric in 4, j). Roughly speaking two nodes i # j are neighbors in T
if this quantity is large

Ri; > max{R; Ry; : k#1i,j}.

Definition 2.6. Consider a positive matrix W and denote R = R(W). For i # j we denote
iKJVj whenever R;; > max{R;xRy;; k # 1,7}

The next result is the basis of the algorithm we propose.

Theorem 2.7. Assume W is a positive matriz and let R = R(W). We also assume that
every 2 X 2 principal minor of W is positive. The matriz W is an inverse M -matriz and
G(W) is a tree if and only if

(i) for alli there exists j such that i Vrzj;
(if) if i~ § and if we denote K = {k: Rii > Ry;}, J = K°, then

Wi, Wi
Wri=Wgki———+W;5, Wik = Wy, W

Wik.
W“WJ] ®
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Moreover, the tree T = G(W) is given by the relation Vrg, that is, for i # j we have
(i,j) e T i

The next result is devoted to some stability properties of inverse treediagonal
M-matrices under Hadamard powers and products. Recall that for o > 1, the Hadamard
power W (%) of an inverse M-matrix is always an inverse M-matrix. This was shown in
[2,3,6] (see also [7] for some generalizations). As was shown in Theorem 2.9 in [9], in the
case of inverse tridiagonal M-matrices, this result is also true when a > 0.

Theorem 2.8. Assume W is an inverse M -matriz, with order n, whose associated graph
T =G(W) is a tree.

(i) For all a > 0, the Hadamard power W) s also an inverse M-matriz whose graph
is the same tree T.

(ii) For o < 0, the matriz W®) is nonsingular, its inverse C = C(«) is supported on T
and the following properties hold
(ii.1) sign(det(W(®)) = (=1)"*1;
(ii.2) if n > 2, then for alli,j we have

<0 ifi=j
Cijis ¢ >0 if dr(i,j) =1;
=0 otherwise

(ii.3) If W is symmetric then the eigenvalues of W(®) are negative, except for the
principal one A\ which is positive and with maximal absolute value.
(iii) Also, if a > 1 and W is a potential, then W) s also a potential. Even more,
if W=t =1 — P for some substochastic kernel supported on T, then (W(O‘))_1 =
I — Q(«) for some substochastic kernel Q(«) also supported on T.
(iv) Finally, if Z is another inverse M-matriz such that G(Z) =T, then W © Z is an
inverse M -matriz for which G(W ® Z) =T.

3. Ultrametric matrices on trees

In this section we summarize and complete the known results about ultrametric ma-
trices that are (proportional to) potentials of Markov chains on trees. We shall see there
are two types of such ultrametric matrices, according to whether the associated Markov
chain has one or two roots (see also [17] and [19]).

Given a tree T and a node r € T, the hight of 7 € T is denoted as h,.(¢) = dr(i,r) and
the hight of T is defined as H, = max{h,.(i) : i € T}. For i € T we denote by S,.(i) =
{jeT: (i,5) € T,h(j) = hy(i) + 1} the set of immediate descendants of i. For a node
i # r we denote by i~ the unique node in geody(i,7) such that i € S,.(i~). Notice that the
leaves of T, with the exception probably of r, are those nodes 7 € T for which S,.(z) = 0.
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Fig. 2. The subtree of T, in Example 1.1, that hangs from 5 as seen from 1 on the left and as seen from 7 on
the right.

Given a node v € V we denote by T,[v] the tree that hangs from v as seen from r,
which is the subtree of T on the set of nodes {i € V : v € geody(i,7)}. We point out
that T,[r] = T. Finally, given two nodes ¢,j in T we define by in J the unique point
in geodr(i,7) N geody(j,r) which has maximal hight (w.r.t. r). Notice that PN =i
and iAr = r. Also notice that T, [z/r\]] is a subtree of T that contains both 4, j
(and it is the minimal subtree in some sense with this property). We point out that
h.(e),H,,S,(e),T,[e] and A depend on r (see Fig. 2).

Recall that in the language of graph Theory r is called also a root, which is quite
different from the concept we have considered above. While in some cases both concepts
will agree they are not necessarily the same. To emphasize the difference, when it is
needed, we shall refer to r as a probabilistic root when it satisfies (1.2), that is r € Z(W).

In the next results we shall characterize the class of ultrametric matrices that are
potential matrices of random walks on trees. To describe this class we need the following
definitions.

Definition 3.1. Assume that T = (V, ) is a tree and r € V is a fixed node. A real function
F: ACV — Rissaid to be r-increasing if for all 4, j € A such that i € geody(j,r) then
F(i) < F(j).

An r-increasing function F' is an increasing function on each branch of T as seen
hanging from r.

Definition 3.2. Consider:

o Atree T = (V,€) and nodes r,s € V, not necessarily different, such that (r,s) € £
(recall that loops are allowed edges);

e A function F': V — R, such that F|r [ is r-increasing and F’

o A number 0 < ¢ < min{F(i) : i € V}.

T,[s] I8 s-increasing;

Then, the matrix U defined as
F (i/r\j) if 4, j € Ty[r]

U;,; = s
K F(z’/\j) if 4, § € T,[s]
a otherwise

is called a tree ultrametric matrix with characteristic (T, r, s, F, a).
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If r # s but @ = F(r) we have F is r-increasing. Similarly, if » # s and a = F(s)
then F' is s-increasing. Also, when r = s we have F is r-increasing. In these cases we say
that U is in class 1 and its characteristic is denoted by (T, r, F') (respectively (T, s, F')).
When 7 # s and 0 < a < min{F(7) : i € V} we say that U is in class 2.

Remark 3.1. As we shall see classes 1 and 2 refer to the number of roots of U1 (see
Theorem 3.4 (i.2) and Theorem 3.5 (i.2)). Of course one can consider class p, as the set of
ultrametric matrices with p roots. But then, according to Theorem 3.7 and Corollary 3.8,
the set of roots is a complete graph, implying that for p > 3 the underline graph of U !
cannot be a tree.

Notice that the function F' is obtained from the diagonal of U simply by F'(i) = Uy;.
This class of matrices is a special subclass of what Nabben in [19] called tree structure.
See Theorem 3.5 and Corollary 3.6 in the cited paper, where a representation of a non-
singular matrix U of tree structure, is done in terms of Hadamard products of special
matrices.

It is not hard to prove that every tree ultrametric matrix is an ultrametric matrix.
We shall prove that every nonsingular ultrametric matrix U, that is the potential of a
random walk on a tree, is a tree ultrametric matrix. Moreover, U has one or two roots.
In the first case U is in class 1. If we denote its characteristic (T, r, F'), then Z(U) = {r},
that is, the support of py is {r} and py = je, = ﬁer, where e, is the vector whose
components are all zero, except the one associated with r, which is one. We also notice
that in this case the row in U associated with r is constant and its value is F'(r), which
is the minimum value of F. In the second case, U is in class 2 and Z(U) = {r, s}, where
the characteristic of U is (T,r, s, F, a).

We shall use several times the following simple lemma.

Lemma 3.3. Assume that T is a tree and U is a class 1 tree ultrametric matriz with
characteristic (T,r,F). If L. C T is a subtree, then U|L is a class 1 tree ultrametric
matriz with characteristic (L, s,G) where s € L is the closest point to r and G = F|L.

If U,V are two class 1 tree ultrametric matrices with characteristics (T,r,F) and
(T,r,G), then U®V is a class 1 tree ultrametric matriz with characteristic (T,r, FG).
Similarly, for any o > 0 the matriz U is a class 1 tree ultrametric matriz with char-
acteristic (T, r, F).

Every matrix U of class 2 is obtained from two matrices of class 1 and an extra
number a in the following way. Assume that I and M are two disjoint trees. Assume
that X and Y are two class 1 tree ultrametric matrices with characteristic (L, r, G) and
(M, s, H), respectively, and 0 < a < min{G(r), H(s)}. Consider the tree T constructed
by joining I and M through the edge (r, s), then the matrix described by blocks as

= (1 7)



C. Dellacherie et al. / Linear Algebra and its Applications 501 (2016) 125-161 135

is a class 2 tree ultrametric matrix with characteristic (T,r, s, F, a), where

L [G() ifielL
F(Z){H(i) ifieM’

The class 1 tree ultrametric matrices are an extension of the class of weighted tree
ultrametric matrices introduced in [4], where F' is defined from the weight function by
the relation F'(i) = w(h,(7)). In this way F'(i) only depends on the hight of i. We shall
denote by (T, r,w) the characteristic of a weighted tree ultrametric matrix. Notice that
w:{0,---, H,(T)} — RT is an increasing function. The next result is essentially proved
in Theorem 2 in the cited paper (see also formulas (2.2) in [8]).

Theorem 3.4.

(i) Assume that U is a class 1 tree ultrametric matriz with characteristic (T,r, F') then

(i.1) U is nonsingular if and only if F is strictly r-increasing, that is if i €
geodr(j,7) and i # j then F(i) < F(j);

(i.2) If U is nonsingular then U is a potential with G(U) =T, r is the unique root

of U and
Uii:lljjj S ST(])
71 oA .
Ujj=Usi 17 € 5:(3) if i #
1 1 . .
— + > =7
Ui—U._._ Ui —Usi
U;' = T kesim (3.1)
Ujj_—lUM 2 j €85.(r) o
1 1 i ifi=r.
U, T Uo-Urr I T d
keSS, (r)

(ii) Assume T is a tree and P is an irreducible symmetric substochastic matriz supported
by T and stochastic except at a unique node r € T, that is for all i # r the row sum
YiPj=1and} ; Py <1. ThenU = (I—P)~ ! is a class 1 tree ultrametric matriz
with characteristic (T,r, F) where F(i) = Uy for all i. The following is a formula
for F in terms of P

F(r)=(1-3%,;Py)~"

p—1
F(j) = F(r) + t;)(Pitml)_l, (3.2)
where geody(j,r) = {io=1r,---,ip = j}.

Remark 3.2. Let us give a probabilistic insight to Formula (3.1). So, consider j a successor
of i. Take k # i a neighbor of j. The tree structure implies that any path starting at k
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must cross j until reaching the root r. Therefore, Py(7; < oo0) = 1 and we obtain
Ukj = Uj;. Similarly, one has Uj; = U;;. Then, the equation > U, U, k_jl = 1 implies that
k

1 1
Uiz'Uij +UijUkj = 1.
i

Since U~ does not lose mass at j, we conclude Ul;jl + Ui;I = 0, proving that
k#i

Now, we shall give a characterization of class 2 tree ultrametric matrices (see also
Theorem 3.5 in [17] for the non-symmetric case).

Theorem 3.5.

(i) Assume that U is a class 2 tree ultrametric matriz with characteristic (T, r, s, F,a) or
equivalently, after a suitable permutation of rows and columns if necessary, defined

by blocks as
X a
U= 3.3
( a Y) ’ (3.3)
where:

o X is a class 1 matriz with characteristic (L,r,G), L = Ts[r], G = Flr 5

o Y is a class 1 tree ultrametric matriz with characteristic (M, s, H), M =
TT’[‘SLH - F|Tr[s];

o 0<a<min{G(r),H(s)}.

Then,

(i.1) U is nonsingular if and only if X and Y are nonsingular, which is equivalent

to F|r [y being strictly r-increasing and F|p, 15 being strictly s-increasing.
(i.2) If U is nonsingular, then U is a potential with G(U) = T. The set of roots
of U is Z(U) = {r,s}. A formula for U~' is the same as in (3.1) except for:

_1 _ USS 1
U, = UrrUss—UZ, + 2 Ujj—Urr
T JESK(r)ig#ts
-1 _ Upr 1
R o
JES(s);j#r

-1 _ —U,s
Us = oo, 2oz

As a converse we have.
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(ii) Consider a tree T and a symmetric irreducible substochastic matriz P supported
by T. Assume that P is stochastic except at the nodes r # s € T, that is,

Vigrs » Py=1, and Y P <1,y Py <L
J J J

If (r,s) € T then U = (I — P)~! is a tree ultrametric matriz with characteristic
(T,r, s, F,a) where F(i) = Uy for alli and a = Ups < min{F (i) : i € T}. Hence, U
is a class 2 tree ultrametric matriz.

The following is a formula for F and a in terms of P:

First compute o = (1 =3 ., Prj)~ V=1 =D it Py;)~! and then

F(s) = B _ _ aBPp

F(r) = T—aB(P)? = T=aB (P2

a
1—afB(Prs)??

F(j) = F(z) + Z( Piyin) ™ (3-5)

j € Tslr] and z = s if j € T,[s].

Proof. (i) We shall use the inverse of a matrix by blocks. We assume that X is of
order m and Y is of order n. We denote by 1,,,1, the vectors of ones of sizes m,n
respectively. Also we denote by e,,es the vectors of size m,n respectively with zero
components except at r, s where they have a one. The basic properties to find U~! are
Xe, = F(r)Lly,Yes = F(s)1,. Hence, similarly to (3.3), we decompose U !

Ul = (ZF, i) (3.6)

We have I' = (X — 1,,10,)7 1, 2/ = —aY 11,1/, T. We notice that

F()

2

~ a
X=X-—1,1
F(s) 7™

is a class 1 tree ultrametric matrix with characteristic (L,r, G — F(s))

Since G — % > 0, the matrix X is nonsingular if and only if G — % is strictly
r-increasing, which is equivalent to G being strictly r-increasing. This fact and formula
(3.1) give the formula for T'. In particular, one has U, as in (3.4). In a similar way, we
obtain U_.!.

On the other hand, to compute z, we notice that

<X - %Mﬂ;ﬂ) er = E()F(s) —a® Tin-
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This fact yields

—a
!/ /
2= = €56,

F(r)F(s) — a?

and we obtain U} = FiyF(s—az from where (3.4) holds.
According to what we have proved and Theorem 3.4, G(U) is the tree obtained from
the two trees I and M that are connected by adding the edge (r, s). Finally, we obtain

that 3, Uigl =0 for all i # r,s and

U — -U
Ul = ——5 >0, U} - UemUn oy
; " UrrUss - UES Z UrrUss UES
proving that Z(U) = {r, s}.

(i) The hypotheses made on P ensure that I— P is nonsingular. Again we decompose
this matrix by blocks as

]Im - Q 7Prsere/
I-P= .
< —Psesel. I, —R )

@ and R are irreducible substochastic matrices supported by I and M respectively.
Moreover @ is stochastic except at r and R is stochastic except at s. Thus, Theorem 3.4
shows that I,,, — @ and I, — R are nonsingular and their inverses are class 1 tree ultrametric
matrices. The first block of U = (I — P)~! is

X = [In— Q— Plesel (I — B)lesel]
Notice that
I, - R)1,= |1 —ZPSJ es = —es.
J#T

Therefore we obtain
X = []Im — (Q + BPfsere’T)]7

The matrix Q + BP2e,¢!. is nonnegative and stochastic at every i # r. The row sum at r
is

> P+ B8P ZP”er”l—PZP <N P+P.<l.

J#s J#s s J#s

The conclusion is that @ + SP2e,e). is stochastic except at r. Since this matrix is
supported by the tree I we obtain that X is a class 1 tree ultrametric matrix with
characteristic (L, r, G). A formula for G is given by (3.2)
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_1 o
Gir)=(1- Y P;—BP%) = T=aBPZ>
J#s ’
. r=l -1
G(]) = G(T) + tzo (Pitit+1) y
where geodr(j,r) = geody (j,r) = {io =7, ,ip =5} if j € T[r] =L.

In the same way, Y is a class 1 tree ultrametric matrix with characteristic (M, s, H)
and H is computed similarly to G. In particular H(s) =

X A
7= (x v)

with A = Pr(I, — Q) terelY. Since (I, — Q)1m = 2e, and €)Y = H(s)1], we get
A =al,,1, with

B
1—aBP? *
Finally,

O‘ﬁPrs

a=H(s)Prsa = 7= 57

On the other hand, from aP,; < 1 and SP,s < 1, we conclude that a < min{G(r), H(s)}
and the result is proved. O

As a corollary of Theorem 2.1 we have the following result.

Corollary 3.6. If U is a class 2 ultrametric matrix with roots r,s, then there exist two
class 1 ultrametric matrices V, Z, with roots r and s respectively, such that

U=V0oZ

See Appendix A where we provide an explicit decomposition of U as the product of
two class 1 ultrametric matrices.

To finish the characterization of ultrametric matrices supported by a tree, we need
the following theorem (see [4], Theorem 2 and also [5] for some generalizations). This
result says that every ultrametric matrix is the restriction of some weighted tree matrix.
This representation gives information on the graph of the given ultrametric matrix.

Theorem 3.7. Given any ultrametric matriz V. on a set I, there exists (a minimal)
extension U, which is a weighted tree ultrametric matriz with characteristic (T,r,w),
such that I C T and V = Ul;. V is nonsingular if and only if w is strictly increasing
and positive. In this case V is a potential matriz and the roots of V are characterized as

1€ Z(V) <= geody(i,r)NI = {i}.

Also, ifi # j € Z(V) then V”_1 < 0, that is, the roots of V are all connected in G(V).
More generally, for i # j € I we have Vlj_1 < 0 if and only if geodr(i,5) NI = {i,j}.
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Corollary 3.8. Assume U is a nonsingular ultrametric matriz supported on a tree T.
Then, the set of roots of U is a singleton or it consists of two points r,s which are
neighbors in T. In the first case U is in class 1 and in the second case U is in class 2.

Proof. According to Theorem 3.7, the set of roots of U forms a complete subgraph of T.
Then either this set is a singleton or it consists of two neighboring nodes. 0O

4. Proof of Theorem 2.1

(i) Assume that W~! = M is an M-matrix supported on the tree T. First, let us
find a diagonal matrix F' such that FW is a potential. For that purpose it is enough
to take any nonnegative vector x € R", which is not 0, and consider F}; = ﬁ (this
is well defined because Wx > 0). Then FWx = 1, which means that (FW)~! is an
M-matrix and (FW)~'1 =z > 0, that is (FW)~! is a row diagonally dominant matrix.
In summary, FW is a potential. Notice also that G(FW) = G(W), because a diagonal
matrix does not change this graph. On the other hand if W is a potential we can take
F =1, which corresponds to « = uyy, the equilibrium potential of W.

We now show how to construct a positive diagonal matrix E such that WE is a
symmetric inverse M-matrix supported on the same tree T. Further, if W is a potential
we show that WE is again a potential. This will finish the proof of (7).

For the moment fix a vertex r € T. We define the following diagonal matrix L: L, =1

and for ke T

p—1 M s
Te,e
Ly, = I | L SRS 0,
=0 T Tter1ste

where the geodesic from r to k is r =i, -+, %p = k.
Now, we take i # k neighbors in T. We assume without loss of generality that
geody(r, k) passes through i, that is geody(r, k) = {io =7, ,ip—1 = 1,4, = k}. Hence,

M;

Ly, = Liima

or equivalently L;;M;, = LgpMy;. Now, the fact that M is supported on T shows that
LM is a symmetric M-matrix, which is supported on T. Thus, its inverse WL™! is a
symmetric inverse M-matrix. If M is row diagonally dominant, this means W is a po-
tential, then A1 > 0, but then again LM1 > 0, which shows that W L~! is a symmetric
potential.

(#) Consider the matrix U = diag(1./We,)Wdiag(1./W,,), which is the matrix given
by



C. Dellacherie et al. / Linear Algebra and its Applications 501 (2016) 125-161 141

We claim this is a symmetric potential. Indeed, as we have proved in (¢) there is a
diagonal matrix G such that WG is symmetric. This implies that, for all s, ¢

W‘;tht = Wts Gss .

In particular, W, G, = W,.sGss, or equivalently Gs3 = G %S” (the value of G, is
free). Now, from W;;G;; = W;;Gy;, we obtain

Wir
W

Wi Grp )
7 W’l"i

= WjiGrr
showing that U is symmetric. The fact that U~! is an M-matrix is straightforward. So,
we need to show that U ! is a row diagonally dominant matrix or equivalently the unique
solution to Uy = 1 is a nonnegative vector p. This follows from the fact Ue, = WLM]l,
where e, is the vector whose components are all zeros, except the one at position 7,
which is 1. So, U is a symmetric potential and it has a unique root at r.

On the other hand, G(U) = G(W) = T is a tree, that is, U is proportional to the
potential of a symmetric Markov chain on the tree T that loses mass only at the point r.
According to Theorem 3.4 (i) U is a class 1 tree ultrametric matrix.

(7ii) We assume that W is a symmetric potential. In particular, W=! = k(I — P),
where k£ > 0 is a constant, P is a substochastic matrix supported by T. Without loss of
generality we assume that k = 1. We denote by X = (X,,, : m € N) the Markov chain
with transition kernel P. We also denote by 7 = min{m > 0 : X,,, ¢ I} the absorption
time for this chain, which is finite almost surely because X is transient. Also, we denote
by 7, = min{m > 0: X,,, = k}, the hitting time of k € T.

We prove the result by induction on n, the order of W. We notice that for n < 3 the
tree T is a path and the result is obtained form Theorem 2.1 in [9]. So in what follows
we assume the result is true for potentials of order smaller or equal to n — 1 and n > 4.

We shall distinguish two main cases: (I) assume there is a leaf t ¢ Z(W), and (II)
Z(T) czW).

(I) Consider . = T\ {t}, which is a tree because t is a leaf. The matrix Z = W] satisfies
the induction hypothesis, because it is the potential of the induced Markov chain on L,
which has a symmetric transition kernel supported on the tree L. This induced Markov
chain consists simply in recording the visits to L for the original chain (see Section 2.2,
Proposition 2.22 in [10]). Hence, for every ¢ € ext(#(Z)) there exists a class 1 tree
ultrametric matrix V4, of order n—1, supported by L. whose unique root is £ and such that

Z = ©) Ve.
leext(Z(2))
We extend each one of these matrices to dimension n. We call these extensions (Up : £ €
ext(#(Z)), which are obtained by adding a row and a column associated with ¢ as follows

(‘/5)51 if 4 7£ t
0, if i = t,

(Ui = (Ue)ir = {
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where s is the unique neighbor of ¢ in T. For the moment we demand that
O > (Vi)ss = max{(Ve)s : i € L}.

We notice that s € geody(t, k) for any k # ¢. From this observation, it is straightforward
to show that if V; has characteristic (L, ¢, Fy) then U, has characteristic (T, ¢, G¢), where
Gy is the extension of Fy to T given by Gy(t) = 6,. Since Gy is a strictly (-increasing
function, we deduce that Uy, is proportional to a symmetric potential of a Markov chain
in T with a unique root ¢. Hence, Uy is a class 1 tree ultrametric matrix. Let us prove
that for some selection of 0, : ¢ € ext(#(Z)), we have

W = ® Uy.
leext(R(Z))

We only have to prove that equality holds at entries (¢,7). On the one hand, if ¢ # ¢, we
have

Wi =Py(rs <oo)Wa=Wa= [ W= [ Oda= ] @Uou

Leext(R(Z)) Leext(R(Z)) Leext(R(Z))

In this equality we have used the fact that ¢ is not a root of W, which implies that the
chain associated with W and starting at ¢ visits s with probability 1. The same argument
shows that (Us)s; = (Uyp)es for all i # t.

On the other hand, notice that Wy = Ps(1p < 00)Wy < Wy, because there is a
path starting from s, that does not pass through ¢ and that reaches some root of W.
So, Ps(1: < o0) < 1. The symmetry of W implies that Wy, = Wy, = Wy, Hence,

Wi > Wss = IT  (Va)ss, so it is possible to choose 8, : £ € ext(Z(Z)) to fit the
Leext(R(2))
value

W= [] 0

Leext(Z(Z))
The result is proven in case (I) by noticing that ext(#(Z)) = ext(Z(W)), because
R(Z)=RW).

(IT) In this case all leaves of T are roots for W and ext(Z(W)) = Z(T). For the moment,
we fix a node a € T, which is not a leaf. Take any leaf ¢, which is at a maximal distance
from a, and consider s its unique neighbor. Then, the set

o ={0e L(T): de(s,0) =1} = {t1, -, t,}

contains ¢ and has cardinal p > 1.
We consider the subtree . = T\ &7, for which s must be a leaf, otherwise it contradicts
the maximality of ¢. It is clear that Z(L) = {s}U.Z(T)\ & and Z(T) = 4/ U.L(L)\ {s}.
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We take Z = Wy, which corresponds to the potential of the induced Markov chain on L.
This induced Markov chain is denoted by Y = (Y;,, : m € N). Its transition probability
kernel @ is for i, € L

P;(Y1 = j) = Qi; = P;(X returns to L, before absorption, at j).

Notice that Q;; = P;; for all (4,5) # (s,s), which proves that @ is supported on L.
The nodes where this induced chain loses mass are those where the original chain losses
mass in L plus the node s. The latter case holds true because, for the original chain, the
probability that the first transition starting from s reaches t is Py > 0, which gives the
following lower bound for the row sum of Z~1 at row s (notice that t ¢ L)

> Zs_k1 = P4(Y is absorbed in one step)
keL

> Py P:(X is absorbed in one step) = Py > Wtjfl > 0.
EET

Hence, the roots of Z are the roots of W in L plus s which implies that ext(Z(Z2)) =
Z(LL). Then, the induction hypothesis implies that

Z= 0 V,
teZ(L)

for some collection of class 1 tree ultrametric matrices V; : £ € Z(L). Each V; has a
unique root at £ and G(V;) = L. For £ € £ (L), such that £ # s, let U, be the following
extension of Vp: Uyl = Vp and

(Ve)s; ified,jel
(Uo)ij = (Ue)ji = § Va)ss i€ o, je o\ {i}
B0 ifizjed,

with the restriction that 6y; > (Vp)ss for all @ € 7. If the characteristic of V4 is (L, ¢, Fy),
then the characteristic of Uy is (T, ¢, G¢) where Gy is the extension of F; given by G (i) =
0¢; for i € o7. It is straightforward to show that Gy is a strictly f-increasing function
on T.

The extension for Vy is more complicated. This matrix will generate p new matrices
that we denote by U, : k= 1,---,p. All of them agree on L and are given by the 1/p
Hadamard power of Vi, that is, (U, )|L = VAYP) Tn order to define these extensions we
consider oy, =Py, (7, < o0) < 1, for k=1,---,p. Then, Uy, is defined as

(Vi)sb? ifieo\{tx},j €T\ {i}
Ur)is = U )ji = { oy (Va)slP ifi=tg,jeT
O, ifi=j ed\{tk},

with the restriction that 6;,: > (Vs)iép, fori=1,---,pand [l # k.
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Each Uy, is a class 1 tree ultrametric matrix. Indeed, if the characteristic of V; is
(L,s, Fs) then Uy, has characteristic (T,, Gy, ) where Gy, is given by: Gy |L = e
Gy, (tr) = ag, Fs(s)Y/P and Gy, () = 01,4, > G, (s) = Fsl/p(s) > Gy, (ti), for ¢ # ty.
The function Gy, is strictly ti-increasing in T.

Take now I' = Uy. We shall prove that W =T for some choice of

©
Le2(T)

{Ort, : trots € ot # 01} J{Ou, : £ € L)\ {s},t € o/}

For that purpose, consider first ¢,j € L. Then,

Ty= [[ Wy =1Vl T iy= [I Ve)ij =2 =wy.
(e (T) e L (L), b#s teL(L)
Now, we consider i =t € &/, j € L

Lyj = a, (Vs)is{p H (VS)iép H (Vl)sj = Quy, H (Vl>5j'

tied I£k e LL\{s} te£(L)

The last equality follows from the fact that (Vs)s; = (V5)ss. Hence, we get
Ptkj = athsj = atkWsj = Ptk (TS < OO)WSj = Wtkj~
When i =ty,j =t € o7,k # [, we obtain

Ftktl = atkatl(‘/s)ss H (w)ss = atkatl H (W)SS = atkatl ZSS
LeL(L)\{s} teZ (L)

= atkathss = Ptk (TS < OO)]Ptl (TS < OO)WSS = IF)tk (’TS < OO)thS
= Ptk (TS < OO)Wstl = Wtktl'

We are finally left with the case i = j =t

]'—‘tktk = atk [(VS)SS]l/p H et],tk H altk

ti€a \ty, teL(L)\{s}

We notice that given the restrictions satisfied by the family of parameters 6, then

Ftktk > atk H (W)SS = atk WSS = WtkS'
e (L)

On the other hand Wy, = Py(1t, < 00)Wy,t, < Wy,t,. This last inequality follows from
the fact that s is connected to £ # ti, a root of W, with a path that does not pass
throughout ti. Therefore, Ps(7¢, = 00) > Py(10 < 71, )Pe(7t, = 00) > 0. Thus, there is a
possible choice of 6,4, : 1 # k and 0y, : £ € L(L) \ {s} such that I'y,;, = W;,¢, and
the result is shown. 0O
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5. Proof of Theorem 2.2

The idea of the proof is first to show (7) by induction on n, the cardinality of T. Then,
use again induction for (i) and (4¢) and some computations done while proving (7).

Notice that the result is obvious when n < 2. Also, the case where the cardinal of &7
is one is direct because in this case W is ultrametric. So, in what follows we assume that
n >3 and || > 2.

() Since every Uy is an inverse M-matrix, then they are positive definite and there-
fore W is also a positive definite matrix and a fortiori nonsingular. Moreover, every
principal submatrix of W, associated with an index set J C T, is nonsingular and it is
the Hadamard product of class 1 tree ultrametric matrices, which are the corresponding
blocks of the matrices (Uy : £ € o). Maybe the index set <7 is not a subset of J, never-
theless we can reparametrize these blocks with a subset of J (see Lemma 3.3). We shall
use this fact to compute the inverse of W by blocks.

Take any leaf ¢ € T and consider the subtree L = T \ {¢}. We denote by s € T, s # ¢,
the unique neighbor of ¢ in T. After a permutation, if necessary, we can assume that W

a w
w=(1 %)

where the first row of W is the one associated with ¢. For any i # ¢ we have (Up)y =

can be decomposed in blocks like

Pi(7¢ < 00)(Us)si- Here 7¢ is the hitting time of s for the Markov chain associated

S
with Up. In particular we have

—~

Ul)ts

P, (7 < 00) = ,
t( ) ) (Ul)ss

and we conclude that
Wi = w; = aZs; = aWy,

where v = 1= =[], Pe(tf < o00) <1

ss

The inverse by blocks of W is
0 —abe!
Wl = ( aves ) (5.1)

—afes Z71 + a20e,el,

j— 1 —_— WSS
where 0 = Tt T W W
the result will follow, that is W ! is an M-matrix. Notice that by induction the incidence
graph of W~ is T.

That € is positive follows from the fact that the 2 x 2 determinant

Wy W,
thWSS - WSQt = ‘ <Wti WSt ) ‘
S 8Ss

which we shall prove is positive and the first part of

is positive because W is positive definite. This shows part (7).
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In what follows, that is in the proof of (i), (iii), we need to study when o = 1 or
a < 1. For this purpose, we consider to different cases according to the fact that ¢ belongs
or not to 7, but still ¢ is a leaf of T.

Case t ¢ /. In this situation we have that P,(1¢ < 0o) = 1 for all £ € &7, that is a = 1,
because ¢ is not the root of Uy. For the same reason we have (Up)y > (Up)st = (Ur)ss
and therefore

a = th = H (Ué)tt > H (Uf)ss = Zss-

led led

Thus, a > o?Z.s = Zs, and W is an M-matrix, whose row sums are the same as the
ones for Z~!, on the common rows, and the row sum associated with ¢ is 0.

Case t € o/. Here, Py(7! < 00) = 1 for all £ € & \ {t} and a = P,(7! < 00) < 1. As
before

a= Wy = (Up)u H[eg{\{t}(Ue)tt = (Ut)ts erg{\{t}(Ue)tt
= a<Ut>ss ngd\{t}(Ué)tt > a<Ut>ss ngg{\{t}(Ul)ss = aZss > 042Zss-

The row sum for W' associated with ¢ is positive, and the row sums of W~! are the
same as the ones corresponding to Z !, except at the row associated with s, which can
have any sign.

Recall that we can express 6, « in terms of W as
_ Wts Wss

f=— 5
Wss, thWss - WtQS

«

Now, we are in a position to continue with the proof of parts () and (éiz).

(#) In case T(&/) = T the result is already proven, because in this situation there is
nothing to prove for t ¢ T(«/) and if ¢ € ext(</) then ¢ is a leaf of T, hence the row sum
of W1 at the row associated with ¢ is positive. So, in this case (7i) holds.

Now, we consider the situation where T () is a proper subtree of T. We show that the
row sums of (Wly()) ! and W' at rows associated with nodes in T(</) are the same
and the row sums of W~1 at the other nodes are 0. Indeed, consider Ly = T(«/) and
take any node u € T such that dy(u,Lg) = 1. Then, u is a leaf of the tree L1 = Lo U {u}
and u ¢ <. Then, the row sums of (W|y,)~! and (W|y,)~! are the same at nodes in Lg
and the row sum of (W|g,)~! at the row associated with u is 0. We continue adding
nodes in this way and the claim is shown.

In particular, if ¢ ¢ T(</) we conclude that the corresponding row sum of W~1 is 0.
On the other hand if ¢ € ext(o/), then t is a leaf for T(%/) and then the row sum of
(Wneer)) ™' at the row associated with ¢ is positive, which implies the same is true
for W1

This also shows that if W) is a potential, so is W, proving the first part of (iv).
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(ii7) Now, we prove formula (2.1). Since W1 is supported on T, we have Wigl =0if
dr(i,j) > 1. The inverse by blocks formula (5.1) and induction will show the result. If T
has cardinal 1 or 2, one checks easily the desired formula in this case. So we assume that
T has cardinal at least 3. In this situation if ¢, j are neighbors, then there exists a leaf ¢
different from 4, j. Denote L = T\ {¢}, which is a tree. Z = W/, is again a Hadamard
product of class one ultrametric matrices. Using Lemma 3.3 we can assume that this
product is indexed by a subset of L. So by induction, formula (2.1) holds for Z~! and
in particular this matrix is supported by L. Therefore from (5.1), we get

Wi

Wil=zl=-o__ "9
! W;iWii = W

ij %

If dp(t,i) > 1 and dr(t,5) > 1, we obtain again ng = Zigl and ijl = Z;jl, which
proves the formula in this case.

The only extra instance to be analyzed is when dr(t,7) = 1 < dr(¢,7) or dr(t,7) =1 <
dr(t,7). Both situations are similar and we only consider the first one. In the notation
of equation (5.1) we have s = 4, and again W;jl = ngl. On the other hand W;;' =
Zﬁl + o2 which gives

1 W2, W2
Wwil=—" 4+ ki + ti
v i ke]L:dLZ(i,k)—l Wik W3 — WEW, W W2 — WEWy,

proving the desired result.
(iv) Follows from formula (2.1). O

6. Matrices compatible with a tree

In the first part of this section we shall study some properties that are deduced from
the hypothesis that the incidence graph for the inverse of a matrix is a tree. Then, we
prove Theorem 2.4 and Theorem 2.5. In this section, we still denote ¢ ~ j whenever
(i,j) € G and i # 7, even if G is not a tree.

Definition 6.1. A matrix A with no zeroes in the diagonal is said to be compatible with
the tree T if

Vi~nj Ay #0. (6.1)
Vi~ AuAjy— AijAj #0. (6.2)

For all i ~ j consider K = {k: i € geody(k,j)} and J = {l: j € geody(¢,i)}, then

AiiAHAKiAjJa Ajk = AiAjj

JJ

AK.] = AJjAZ'K. (63)
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In what follows given a graph G, we denote by G~ the subgraph outside the diagonal.

Lemma 6.2. Assume that A is compatible with the tree T. Then, A is nonsingular,
G~ (A) =T~ and formula (2.1) holds for A=, namely

-1 _ itAti
Aii - A (1 + ttz AftAuA7fAf1>

-1 _ Ay e (6.4)
i’ =~ m e i g

-1 _ ip . . . .
Aij =0, ifi £j and i~ j.

Proof. Let B be the matrix given by the right hand side in (6.4). The result is proven
as soon as we show that BA = I. In what follows we denote A;p = A;; Apr — Aip Ar;. We
first compute

zAkz _Aik
BA);; = Bi; Ais BZAZ—l k Ap = 1.

In order to show that (BA);, = 0, for £ # i, we shall use more closely the compatibility
relations of A and T. Counsider j # 4, the unique neighbor of i in geod(i,£) (if £ ~ i then
ji=49.

(BA)i¢ = BijAir + BijAje + Z BirAge.
ke~ k#j

From relation (6.3) in Definition 6.1, we have for k ~ i,k # j

Akz Ai j
A 2 Ay, A= =L A,
ke = A Au A, je
Hence,
Az@
(BA)i = By Aig + BijAjr + 1. > BiuAp
it ki

= By Ay + BijAj — ﬁ_ZBijAji + fl—if > BirAki
kevi

= Bz]AgZ Bl]Aji + %:f (B”A” + kz BlkA]ﬂ)

y i Aji A
— _ 'LJ Jv .. . A
= BijAje ijAji = BijAji — A Ay Bij Aje Ay

' —AijAje A;
_ i A. _ — T4 Aje A
=, Aie (1 A ) - = Ay T oAy =0

1%

This shows the desired formula for A=1. O

Lemma 6.3. Assume that A is nonsingular and G=(A) = T, where T is a tree. We
further assume that the diagonal elements of A are not 0. Then A is compatible with T.
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Proof. We first assume the extra hypothesis that the diagonal of A~! contains no zeroes,

that is, for all ¢ one has A;tl # 0. At the end of the proof we remove this extra hypothesis

by a perturbation argument. Let us start by showing property (6.3) in Definition 6.1.
If i ~ j then, after a permutation of rows and columns, the inverse of A has the form

r Alef]
H= it .
(Aj_ilfjeé 0 ) 7 (6.5)

where e, is the vector of size p = |K| with entries all 0, except the one associated
with ¢ € K, which is a 1 (similarly for f;, which has size ¢ = |.J|). On the other hand
I = A;(:LK,Q = A;} Using that A;-l is not zero, we can apply Gauss algorithm to
reduce H to the form (in one iteration)

i (r Aijieifjf>
0 Q ’

showing that I' is nonsingular. Similarly, 2 is nonsingular too.
The inverse of H, which is a permutation of rows and columns of A, is

D FE
-1 _
(D F)

Using the Schur’s complement we obtain that

F=A;x = _Aj_ilgfj el = w,

where v = Gf; = Ay; € RP and v = —A;il(F_l)’ei € RY. Thus, we obtain for all
tec J ke K that Ay, = Ayjvi. In particular we have A, = Aj;vk, which implies that
A,
Ay, = A—“Ajk. (6.6)
JJ
Similarly, one has F = —A;ilQ_lfjegD = z(A;ix)’, where z = —Aj_ilQ_lfj. Thus,
Ahk = ZhAik and therefore
Api
App, = — Aige.
he = Ak

Take j in place of h in this equality and replacing it in (6.6), we obtain Ajx =
A ij’?—jzjin k- The other part is shown similarly.

We shall prove (6.1) and (6.2) in Definition 6.1, using an inductive argument. We
assume that both properties are true, whenever Z is a nonsingular matrix of order smaller
or equal to n, G (Z) is a tree and the inverse of Z has no zeroes in the diagonal. For
n = 1,2 both properties are straightforward to prove. So, assume that A is a nonsingular
matrix of order n +1 >3, G~ (A) = T~, for some tree T, and A~! has no zeroes in the
diagonal.



150 C. Dellacherie et al. / Linear Algebra and its Applications 501 (2016) 125-161

In what follows we fix s a leaf in T and ¢ the unique neighbor of s. We shall prove that
Agt # 0. From relation (6.3), we have for all £ # s (notice that K = {s} and J =T\ {s})

Ast

As
sl — Att

Ay

So, Agy = ’g:: A;y and if Ay = 0, we obtain that Ags = %Ats, proving that rows s,t
are proportional, which is not possible. Hence Ag; # 0. On the other hand if Ay = 0, we
conclude that A;; = 0, which implies that A has the block structure (after a permutation

(i )
A Ayg )

This shows that A;l = 0, which is not possible, because s, ¢ are neighbors in T.

of rows and columns)

As in the first part of this proof, we consider the decomposition by blocks given
by (6.5), where now I' = A_.l. Hence we obtain that

O Astl A;e

A A
Q _ Q _ ASSl t t

ftft - ( )JJ - Assl

ftft7

is nonsingular and supported by the tree L = T \ {s}. Its inverse is (Q)~! = A,; = G.
The main problem for the induction is that € could be 0. So, we perturb this matrix
by € in the diagonal and consider

Q(e) = Q + o,

where [ is the identity of order n. Now, for small enough € > 0, this matrix is nonsingular,
it is supported by L and the diagonal elements are all nonzero. Thus we can apply the
inductive argument to its inverse

G(e) = (ﬁ +e) TP =G+ eG) =G — G + EG° —

Notice also that for small € > 0 the diagonal elements of G(¢) are not 0. The induction
shows that G(e) is compatible with I and therefore we can apply formula (6.4) to G(e)
to get for all k ~ [ in L

Akl(€)G(€)kl = _ﬁ(e)kl = _ﬁkl = Q= —A,;ll.
Passing to the limit € — 0 we obtain
Ay Ay = —Ay' #0,

because we have assumed that G~ (A) = T, which means that A;,' # 0. This shows both
properties (6.1) and (6.2) hold for G and then the same is true for A.
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Now, we remove the extra hypotheses we have made by a similar perturbation argu-
ment as done before. For that purpose, consider € > 0 small enough, such that A=! + €I
is still nonsingular, and all the diagonal entries of this matrix are nonzero. We consider
A(e) = (A7! + €)1, which is

Al )= (A +e) ' = Al +eA) ' = A— A2 + 4% — ...

Notice that G~ (A(e)) = G (A) = T~ and if we take e small enough, the diagonal
elements of A(e) are not zero. Hence, (6.1) and (6.2) are satisfied for A(e). Once again,
formula (6.4) is valid for A(e)~!. To finish the proof, it is enough to let € converge
to 0. O

6.1. Proof of Theorem 2.)

Clearly (i) = (4i) = (ii7). So, it is enough to show that (i) = (3).

From formula (6.4) we have that A~! is a Z-matrix. Since A is a positive matrix, we
conclude that A~! is an M-matrix.

Finally, A=! is row diagonally dominant if and only if

At 2 Ay,

jrvi
which is equivalent to (2.2) (see formula (6.4)). The proof is finished. O

6.2. Proof of Theorem 2.5

Assume that W is defined by Formula (2.4). If we interpret an empty product as 1,
then the second case in the definition of W is a special case of the third. According
to Lemma 6.2 and Theorem 2.4, the result is shown as soon as we prove that W is
compatible with T. Under the assumptions made on X, this is equivalent to proving
that (6.3) holds for all ¢ ~ j.

So, we take k € K = {0 : i € geodp(¢,5)},t € J ={s: j € geody(s,i)} and we
compute Wy. From the definition of W we get:
_ Wk Wi
- Wi W

Wks st’

and we obtain

W -
Wk = Wi Wy
KJ Wb, KiWjJg

Similarly, we show that

Wi
Wik = ——2 W W
JK Wiinj JjVViK,

and the result is shown.
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Conversely, assume that W is an inverse M-matrix, with associated graph T. The 2 x 2
principal minors of an inverse M-matrix are always positive, so we only need to show that
relation (2.4) holds. In a first place we assume that W is symmetric. So, we can use the
multiplicative decomposition given in Theorem 2.1 (%), to further reduce the problem to
the case when W is a class 1 ultrametric matrix. We denote by 7 the root associated to .
Let i = 4,---,iq = j be the geodesic in T joining the different points 7,j. We denote
by i, the unique point in this geodesic closest to r. Then, ultrametricity shows that

Wi, iy =Wi, i, =Wi i, =W forp=1,---s
Wi, iy = Wiy 1y s forp=s+1,---,q

In particular, we have

q71 |/1/, .
1p 1,0p . lp—1,lp—1 W R W
1q 1,J - 1q 1,8g—1 - ls5ls T 13

zp,zp p=st1 ip,ip

This shows the result under the extra hypothesis that W is symmetric. Now, Theo-
rem 2.1 (¢) shows the existence of a diagonal matrix F, such that WE is a symmetric
inverse M-matrix, associated to the same tree. The property holds for WE which shows
that

LB — ’p 1,0p 1pazp
WZ]EJJ - Zq 1,J J] H w. E. ’

ipstp Hip,ip

and the result is shown. 0O
7. An algorithm: Proof of Theorem 2.7

In this section we develop the algorithm we have proposed that determines whether a
matrix is compatible with a tree. This algorithm gives necessary and sufficient conditions
for a positive matrix, to be an inverse M-matrix supported on a tree. This together with
condition (2.2) will give a characterization of potentials associated with random walks
on trees. In what follows we assume that W is a positive matrix. Some of the results
can be extended to more general situations, but we prefer to focus on the problem of
characterizing potentials. So, if W is an inverse M-matrix, then G(W) is connected.

Recall that given the matrix A, we associate the following symmetric matrix R = R(A)

Ay Ay

iy = A“AJJ

Lemma 7.1. Assume that W is an inverse M-matriz and G(A) = T is a tree. Then
R = R(W) satisfies:

(i) For alli we have Ry; =1, and for alli#j 0 < R;; < 1;
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(ii) if k € geody(i,j), then
Rij = Rk Ry;;

(iii) for ¢ # j we have i ~ j if and only if R;; > max{R;,Ry; : k #1,j};
(iv) assume that i ~ j, then i € geody(k, j) if and only if Ry; > Ri;.

Remark 7.1. Under the assumptions of the previous lemma, it can be proved that
d(i,j) = —log(R;;) is a distance in T compatible with the tree structure. In partic-
ular, property () simply reads as k € geody(i,j) then d(i,j) = d(i, k) + d(k, 7).

Proof of Lemma 7.1. First notice that there is a diagonal matrix F' such that FW is a
potential (this is a general result about inverse M-matrices see for example [13]). It is
straightforward to show that R(FW) = R(W). Since we also have G(FW) = G(W), we
can assume without loss of generality that W is a potential. We denote by X = (X, :
n € N) the associated Markov chain and P its transition kernel.

(2). Since W;; = Pi(1; < 00)Wj;, we get for ¢ # j that 0 < R;; = Pi(1; < 00)Pj(1; <
00) < 1. Let us prove that R;; < 1. Since the Markov chain associated with W is

transient, there must exist at least on node r that loses mass (a root): P+ > Py < 1.
k~r
One of the two alternatives must be true: j € geody(i,7) or i € geody(j,r). In the former

case P;(7; < 00) < 1 because there is a path that connects j and r that does not visit 4,
namely geodr(j,r) and then

]Pj(Ti :OO) 2]P)j(Tr <Ti) <1_Prr_zprk> > 0.
k~r

The other case is similar, and (7) is shown.
(#i). Assume that k € geody(i,7) and k # i, 7, so, every path that connects ¢ and j
must pass through k. Then, the strong Markov property shows that

]P)i(’rj < OO) = Pi(’rk <7 < OO) = ]P)Z(Tk < Tj)Pk(Tj < OO) = Pl(’rk < OO)P]C(T]' < OO)
The last equality holds, because 73, < 7; is equivalent to 7, < oo under P;. Similarly,
P;(1; < 00) = Pj(1 < 00)Pg(1; < 0),

which shows that R;; = R, Ry;.

(#7). If ¢ # j and R;; > max{R;yRy; : k # 4, J}, then according to (i) there cannot
exist k € geody(i,j) different from ¢, j, that is i ~ j. Conversely, assume that i ~ j. Take
any k # 1,j. Without loss of generality we can assume j € geody(i, k), which implies
that R, = R;; R;, and therefore

RikRkj = Rinij < Rij,

because k # j implies Ry; < 1.
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(7v). Assume that i € geody(k, j) then
Ry; = RiiRij < Ryy.

On the other hand, assume that ¢ ~ j and Ri; < Rjg;. Then clearly k # j. If j €
geodr(k,i), we obtain as before

Ry < Ryj,

which is a contradiction. Hence, since T is a tree and ¢ ~ j, we conclude that i €
geody(k, 7). The result is shown. O

The following result is the basis for the algorithm we propose.

Lemma 7.2. Assume A is a positive matriz and R = R(A). We also assume that every
2 x 2 principal minor of A is positive. The matriz A is compatible with a tree if and only

if

(i) for alli there exists j such that z'réj;
(ii) z'fiféj and if we denote K = {k: Ry; > Ry;}, J = K¢, then
A;j Aj;

Ay = Ak Aig, Ay = Ay —1—
KJ KA”A” iJ, ATk JiniAjj

Aik
Moreover, a tree T compatible with A is given by the relation ré, that is, for i # j we
have

(i,j) e T < i 2.

Proof. Assume first that A is compatible with the tree T. Then from Lemma 6.2, A is
nonsingular, G~ (A) = T~ (outside the diagonal) and formula (6.4) holds for the inverse.
Then, since A > 0 and every 2 X 2 minor is also positive we conclude that A is an inverse
M-matrix. Hence, the diagonal elements of A~! are positive and then G(A) = T.

Now, we can apply Lemma 7.1 (¢if) to conclude that iéj is equivalent to (i,5) € T,
for all i # j, showing that () holds. From the definition of compatibility we deduce that

for i 2 j, which is equivalent to i ~ j in T, we obtain that

A
Agg =Agi——Aj5, Ajx = Ajj——
’ T Ay

A”AJ] AiK7

where K = {k : i € geody(k,j)} and J = K°. Part (i) will follow as soon we prove that
K = {k: Ry > Ry;}. This is obtained from (¢v) in Lemma 7.1 and the implication is
proved.
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Conversely, we assume that A is positive, that every 2 x 2 minor is positive and (1), (%)
hold. We need to show that A is compatible with a tree. Actually, this is equivalent to
showing that 2 is induced by a tree. We show this property by induction on n, the order
of A.

The result is true when n = 1,2. So, we assume it is true whenever the order of
the matrix is smaller or equal to n and we show it holds true, when the order of A is
n+1> 3. Let us denote I = {1,---,n+ 1} and we fix some 7 € I.

From part (i) there exists at least one j # i such that i2 J. Since the minor A;A;; —
A;;Aji > 0 we deduce that R;; <1 = R;; and then K = {k: Ry; > Ry;} is not empty
because it contains at least i. The same argument shows that J = K¢ is not empty and
contains at least j.

We claim that the matrices Ax g, Ay, which are of order at most n, satisfy the
induction hypothesis. Let us show this is true for B = Agg. Clearly, this matrix is
positive and every 2 x 2 principal minor is also positive. So, we prove it satisfies (4), ().
First notice that R(B) = Rxk. Fix some ¢ € K and consider ¢t € K such that

Rys = max{Ry, : h € K\ {{}}.

Then, for any h € K \ {{,t} we have Ry > RypRp:, because Ry < 1. This shows B
satisfies (7).

Now, assume that Egt, of course for ¢,t € K, that is
Ry > max{RysRst : s € K\ {{,t}}.
Using that A satisfies (i¢), we have for all r € I\ K
Ry Ry = ReiRip ReiRiy = Ryi Ry R, < ReiRiy < Ryy.

The last inequality follows from the fact that ¢ € K. The equality holds only when ¢ = i
or t = i. Hence, we have proved that /¢ At In particular by (i) satisfied for A, we get
Apt Ate

Arg =Ape——Am, Ag = Agpi———A
LH Le g A, 1t AHL Ht g4 el

where L = {s €I: Ry > Ry} and H=T\L. Now,let L=LNK ={s€ K: Ry >
Ry} and H = K\ L= KnNH, then

B[t Btf

Big = BiethH» Bpi = Bm%Bm-

This shows that B = Ak i satisfies the induction hypothesis. Then, there exists a tree Ly
such that for all £ # ¢ elements of K

(4,t) e Ly =8
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In order to prove that C = A;; also satisfies the induction hypothesis is enough to show
that J = {k : Ry, < Ry;}. In order to show this representation for J, consider k € J
and then use (7) satisfied by A to get
A Apsi
Aip = "L A, A= =L A5
TOATY AT
Hence, R;;, = R;j R, < Rj;, and the claim is shown.
The matrix C' also satisfies the induction hypothesis and therefore there exists a
tree Lo such that for all r # s elements of J

(r,s) €Ly & r<s.

To finish the proof consider the tree T which is obtained by joining IL;, Ly through the
edge (4, 7). Let us show that T is compatible with A, that is for all p # ¢ in [

A
(r,q) €T p~q.

This is clear if p,q € K or p,q € J. So, the last case to consider is p € K,q € J and
(p,q) # (i,7). In this situation (p,q) ¢ T. On the other hand, if p # i we use that
R,, = RpiR;q to conclude that —\(pfé q). If ¢ # j the conclusion is similar. The result is
shown. 0O

Proof of Theorem 2.7. The necessity of (i), (i) follows from Lemma 6.3 and Lemma 7.2.

Conversely, assume conditions (i), (#) hold. Then, according to Lemma 7.2 the ma-
trix W is compatible with a tree. Now, from Lemma 6.2 we have W' is supported on
that tree and formula (6.4) holds for W~!, showing that W is an inverse M-matrix. O

8. Proof of Theorem 2.8

Properties (¢), (i), (fv) are shown as in Theorem 2.9 in [9]. The main tool we use
is the existence of two diagonal matrices D,ﬁ such that U = DWD is a class 1 tree
ultrametric matrix.

For part () the main difficulty is to show that W(®) is nonsingular and its inverse is
supported on T. First notice that W(®) = (W())(=1) and W) is an inverse M-matrix
whose inverse is supported on T. Thus, we can assume without loss of generality that
a=-—1.

The matrix A = W1 is a positive matrix. Each principal minor of order 2 is

_ = <0.
WiWijj  WiiWyi  WuWji Wi Wi
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To conclude that A is compatible with T, we assume that i ~ j. Using that W is
compatible with T we have

Wiy = L WixeiWiy, Wog = W, Wig,
KJ W, kiWir, Wik WaW,, JiWik

where K ={k € T : i € geody(k,j)} and J = K°. It is direct to show that

Ay Ay,
Y ApiAig, Asg = A
A”Ajj Ki4ljJ, JK A” Iy

Agy = AjjAix.

From Lemma 6.3 and formula (6.4), we conclude that A is nonsingular, its inverse satisfies
(ii.2), that is the off diagonal elements of C = A~! are nonnegative. Since A is a positive
matrix then diagonal elements of C' must be negative. Also, C is supported by T.

Now we prove that sign(det(A)) = (—1)"*L. For that purpose we consider two positive
diagonal matrices such that U = DWFE is a class 1 tree ultrametric matrix. Obviously
the sign of the determinant of U(~1) and A is the same. So let us prove the claim for
U1 This is done by induction and we suppose that the property is true for matrices
of order smaller than n —1 > 1 and we show it for matrices of order n. Using a couple of
extra diagonal matrices, we can assume that U has a unique root r, which is a leaf of T.
After a suitable permutation of rows and columns we can assume that U has a block

UTT Urrﬂl
U‘(an 1% >

where 1 is a vector of ones of size n — 1 and V is a class 1 tree ultrametric matrix,

structure as

supported by the tree L = T\ {r} and it has a unique root at s € L, the unique neighbor
of 7 in T (see Lemma 3.3). Notice that Vye = V51’ and Vi = Ugs > U,... Hence,

g _ (YU /U’
/U1 VvED

To avoid any confusion we denote I' = V(=) Then,

1 1
-1y — _ -1 (-1)
det(U) = 7~ (1 go1T 1) det(V 1),

But, the structure of I' = V(=1 shows that ["'1 = V,se, = U,zes. Therefore, we
conclude that

1 U
1— —1T11=1- =%

rr rr

<0

and then sign(det(U(—1))) = —sign(det(V(=1)), proving the claim.
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The proof of (ii.3) follows from Cauchy’s Interlace Theorem for eigenvalues, the
Perron—Frobenious Theorem and induction. For details see the proof of Theorem 2.9
in[9. O
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Appendix A. A decomposition for class 2 ultrametric matrices

Consider U a class 2 ultrametric matrix with characteristic (T,r, s, F,a). We shall
give an explicit possible decomposition U = V © Z where V, Z are class 1 ultrametric
matrices. Recall that r, s are the roots of U. We can assume that the elements of U are
greater than 1. For that, it is enough to multiply U by a large constant.

Also we assume that U has the block structure

U— A/ a]lpll; 7
a]lqjlp B

where A = Ulr,,B = Ulr,, p and ¢ are the sizes of trees Ty = T,[r], T2 = T,[s].
We also recall that A, B are nonsingular class 1 ultrametric matrices and a = U,s <
min{U,,, Uss}. The root of A is r and the root of B is s, which in particular implies that
min{A} = U,.,., min{B} = Uss.

Now, we decompose V and Z similarly. We assume that V' has a unique root at r and
Z at s

V= |41 ) Vrrjlpﬂ; , 7 — VA ) Zssﬂpjl; )
‘/Tr]lqﬂp ‘/2 Zss]lqﬂp Z2

We point out that V., = (V1) = min{V'} and similarly Zs; = (Z2)ss = min{Z}. We
propose to search for a solution where Vi = A@ 7, = A0~ and V, = BB¥) 7, =
B1=P) with the restriction that 0 < «, 8 < 1.

The restrictions on these numbers are

Ve = U < UP, =V,
Zy=UP <UL =27,
a="U,s =V Zes =UXULP.

rr Ss
If there is a solution to this problem, then it is straightforward to check that V,Z are
class 1 ultrametric matrices, and U = V ® Z. Without loss of generality we can assume
that U,, < Ugs. Then, the restrictions are
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log(UW
Oogirsy < B

log(Uy.-) log(U,r)
1= loi(Ubb) +aggmsy <5

_ o log(Urr) _ log(Uss)
ﬂ — log(Uss) + 1 log(Uss)

It is straightforward to verify that for every 0 < a < 1 there exists a solution to this
problem (notice that U,s < U, < Uss). So, there are infinite many ways to decompose U.

Appendix B. An algorithm to compute T

Here we propose an algorithm that decides when a positive matrix W has an in-
verse W1, which is an M-matrix supported on a tree. This algorithm is based on
Theorem 2.7 and Theorem 2.5.

The first step is to compute R, which costs %n2 products and divisions.

Step 0. Set Iy =1, pg = n and

(1) Vi e I, Fo(i) = min {j 1j €argmax{R;; : k€ Ip\ {Z}}}, check R; g, < 1;

Ko(i) ={k € lo: Rir > R gy(i)r}, compute |Ko(i);

(2) L1 ={t: [Ko(t)| =1}, set pr = [Ly], verify p1 > 2;
Wij

Wik = ’
(3) Vi € L1,k € In,j = _Fo(i) verify that { " %ﬂ I
ki = W, Wij.

(4) Vi € Ly put (i, #o(i)) € T, and set Iy = Iy \ L;.

L1 is the set of leaves in case W ™! is supported on a tree. The cost for each subpart
is: (1) 2n?, (2) n, (3) 6p1n, (4) 3p1 (here we do not distinguish between products, divisions
and sums). The total cost for step 0 is 2n? + 6p1n + n + 3p;.

Remark B.1. An important property to verify is: For ¢ € £; one should have #y(i) ¢ £,
(unless n = 2). Indeed, take k different from ¢ and j = _#,(i). Then, from (3) we obtain

Wi Wi _ WiiWii Wi Wi
WiiWiie  WiuW; Wi Wiy

R, = = Rinjk < Rjk, (B.l)

because R;; < 1. Now, assume that j € £, and consider £ = _#y(j). If £ # i we get as
above that R;; = Rj; < Ry = Ry, contradicting the optimality of j in (1). Thus, the
only possibility is that i = _#y(j), but then similarly to (B.1) we get

R < Ry,

which is in contradiction with (B.1). The conclusion is that _#(i) ¢ L.
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The next important observation is that if W' is an M-matrix supported on a tree T,
then (Wp,1,)~! is again an M-matrix supported on T\ £;. This allows us to proceed as

follows.
Step 1.

(1) define L= { (i) i€ Ly} C I (candidate set of leaves);
Z1(i) = min {j s jeargmax{R;,: kel \ {z}}},

Ki(i) ={k € l: Rir > R 4,41}, compute |K1(i)l;

(2) Vi e L5 recompute

3) Ly ={i¢€ Ly |K1(i)| = 1}, set pa = |La], verify py > 2;

, , , , Wik = 72 Wik;
(4) Vi € Lo,k € I \ {i}, with j = _#(¢), verify that W
Wi = 37 Wi

(5) Vi € Lo put (i, fl(l)) €T, and set Iy = I \,Cg

The cost for this step is: (1) p1, (2) 3p1(n—p1), (3) p1, (4) 6p2(n—p1), (5) 3p2 and the total
cost for step 1 is

3(n — p1)(p1 + 2p2) + 2p1 + 3p2.
Continue until step ¢ for which
g < 1. (B.2)

At this stage there are two possibilities. If |I,| = 0 then £, = I,_q, with [I,_1| > 2.
According to Remark B.1 this is only possible if |I,_1| = 2. Hence, p, =2, ¢ _ ppy =n
and the number of edges in T is n — 1, because in step ¢ — 1 there are 2 nodes and 1
edge.

On the other hand, if |I,| =1, then |£4] = |I;—1| — 1 and ! _, pp, = n — 1, which
gives again n — 1 edges.

Thus, if the algorithm stops at (B.2) it provides a graph T, which has no cycles and
it has n — 1 edges, so it is a tree. To show that W is compatible with T we use (2.4) in
Theorem 2.5, that is, we need to show

r—1

Wi, i,

Wi, = <H W) Wi, ik,
8:1 sts

where geody(i k) = {i = ig ~ 43 ~ -+ ~ i1 ~ i, = k} and r > 2. This property is
proved using induction on the length of the geodesic between ¢ and k.
Finally, the total cost of the algorithm is bounded by

q—1
Cost < 3n® +2n* + 6pin+n+3p1+ > 3(n— s¢) (pe + 2pes1) + 2pe + 3pesa
/=1
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q—1
< %nQ —|—6p1n+n+3ne;pg +2pe1 < In? 4+ 6(n — 1)n+ n+ 9In?

< 3Tp?

¢
where sg =, | Dm.
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