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Predicting Vascular Plant Richness in a
Heterogeneous Wetland Using Spectral and Textural

Features and a Random Forest Algorithm
Julián Cabezas, Mauricio Galleguillos, and Jorge F. Perez-Quezada

Abstract—A method to predict vascular plant richness using
spectral and textural variables in a heterogeneous wetland is
presented. Plant richness was measured at 44 sampling plots in a
16-ha anthropogenic peatland. Several spectral indices, first-order
statistics (median and standard deviation), and second-order sta-
tistics [metrics of a gray-level co-occurrence matrix (GLCM)]
were extracted from a Landsat 8 Operational Land Imager image
and a Pleiades 1B image. We selected the most important variables
for predicting richness using recursive feature elimination and
then built a model using random forest regression. The final model
was based on only two textural variables obtained from the GLCM
and derived from the Landsat 8 image. An accurate predictive ca-
pability was reported (R2 = 0.6; RMSE = 1.99 species), high-
lighting the possibility of obtaining parsimonious models using
textural variables. In addition, the results showed that the mid-
resolution Landsat 8 image provided better predictors of richness
than the high-resolution Pleiades image. This is the first study to
generate a model for plant richness in a wetland ecosystem.

Index Terms—Gray-level co-occurrence matrix (GLCM), Land-
sat, peatland, Pleiades, remote sensing, textural variables.

I. INTRODUCTION

THE relationship between plant richness in ecosystems and
the benefits they provide human beings has become the fo-

cus of attention in recent years [1]. One of the main challenges
is the assessment of local variations using plant species richness
as an indicator of biodiversity [2]. Environmental managers
require continuous and detailed information of these indicators.
In this sense, Earth observation systems are an optimal option
for measuring the status and trends of biodiversity at different
spatial scales [3].

Remote sensing has been widely used for plant richness
modeling. Several studies have developed predictive models
of species richness considering reflectance values or spectral
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indices of a single pixel, such as NDVI or DVI [4]. However,
other studies have shown that spectral and spatial heterogeneity
can be better predictors of plant richness [5]. This idea is
based on the spectral variation hypothesis (SVH) [6], which
states that spectral heterogeneity is positively correlated with
species richness, because a more heterogeneous area can host
a wider variety of ecological niches and habitats, increasing
the possibility of finding a greater number of different species.
Applying this hypothesis, Viedma et al. [7] tested several re-
flectance values and textural metrics obtained from a QuickBird
image (2.4-m spatial resolution, 4 bands) as predictors of plant
richness in a burned area of central Spain. Other authors, such
as Nagendra et al. [8], have used the standard deviation of the
NDVI or the metrics obtained from a gray-level co-occurrence
matrix (GLCM) [9] as spatial heterogeneity metrics [7]. More
examples of the use of spatial heterogeneity as a proxy of
biodiversity can be found in Rocchini et al. [5].

Most of the work concerning richness predictions based on
using remote sensing has been done for forested ecosystems
[4], [7]–[9]. In wetland ecosystems, spatial predictions have not
yet been documented, despite the fact that, in these ecosystems,
there is a considerable number of flora species with strong
singularity [10]. In addition, wetlands around the world are
often under threatened scenarios (almost half of all wetland
areas have been lost due to human activities) [10]. The closest
study related to this topic was presented by Rocchini [11] about
Montepulciano Lake, where the author explored the relation-
ships between textural variables and species richness with no
predictive model presented.

When working with biodiversity and remote sensing, spectral
and spatial resolutions are important factors to consider [5].
Rocchini [11] showed that spectral heterogeneity derived from
the reflectance values of a high-spatial-resolution QuickBird
image and a Landsat ETM+ image (30-m spatial resolution,
6 bands) performed similarly when predicting plant richness,
inferring that the higher spectral resolution of the Landsat
compensates for its lower spatial resolution. Following a dif-
ferent approach, Stickler et al. [12] showed that the best model
for habitat prediction was the one that combined Landsat and
QuickBird data.

The random forest regression algorithm (RF) is a method
created by Breiman [13] that builds large amounts of boot-
strapped trees to obtain an average result [14]. The use of this
methodology is frequent in land cover classification studies [15]
but somewhat less frequent in regression analyses, mainly used
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Fig. 1. Location of the study site in the north of Chiloé Island in southern
Chile. The white squares represent the location of the sampling plots. SDBS
property is on the southern side of the wetland.

for the prediction of aboveground biomass [16]. The ability of
this method to handle large data sets [17] makes it suitable for
predicting richness using a large number of different textural
variables and indices.

This evidence suggests that a combination of high spatial
resolution and the inclusion of multispectral data (the latter
used for building vegetation indices) and the use of the spec-
tral heterogeneity concept (through the extraction of textural
data) can produce an acceptable prediction of plant richness in
heterogeneous wetland ecosystems. The objective of this study
was to develop a method for predicting plant richness at a local
scale, using a recursive feature elimination procedure (RFE)
and the capability of an RF algorithm that can handle large
amounts of textural data to generate a parsimonious model, i.e.,
selecting only the most relevant predictors.

II. METHODS

A. Study Area

The study area is a 16-ha wetland, located in the north of
Chiloé Island in Chile (41◦52′ S, 73◦40′ W). This ecosystem
has its origins in the cutting and burning of a Tepualia stipularis
forest, leaving a poorly drained soil colonized by different
species. The study area is located in a temperate climate with a
strong ocean influence, with a two-month dry period during the
summer; the average annual temperature is 10 ◦C, and the mean
annual precipitation ranges from 2000 to 2500 mm.

The wetland is divided into two types of management: a con-
servation management area with 5.5 ha located inside the Senda
Darwin Biological Station (SDBS; Fig. 1) and a productive
management area that covers the rest of the peatland (10.5 ha).
In the latter area, Sphagnum moss is harvested on a nonindus-
trial scale for commercial purposes, while this area is also used
for grazing by four oxen. The particular characteristics of this
ecosystem along with the different management activities have
produced the formation of different microsites dominated by
shrubs, competitive grasses, or weeds [18], causing a strong
heterogeneity in this wetland.

TABLE I
INDICES CALCULATED FROM THE LANDSAT 8

OLI AND PLEIADES 1B IMAGE

B. Field and Remote Sensing Variables

A systematic sampling of vascular plant richness was per-
formed, creating a 60-m grid, which resulted in 44 sampling
points where 2 × 2 m quadrants were sampled (Fig. 1). The
sampling was done during the summer (January 2014).

Vascular plant richness (expressed as the number of species)
was modeled using predictors derived from remote sensing.
These predictive variables were obtained using an image
from the Operational Land Imager (OLI) sensor onboard the
Landsat 8 satellite, taken on December 24, 2013, and a second
image from Pleiades 1B taken on January 28, 2014. The two
images were radiometrically corrected using the gain and offset
values given in the metadata of each of the images, and an
atmospheric correction was applied using the Fast Line-of-sight
Atmospheric Adjustment of Spectral Hypercubes (FLAASH)
algorithm with the values for the atmospheric variables given
by the MODTRAN4 algorithm for this zone [19]. All of the
image preprocessing was performed using the software ENVI
5.1 (Exelis Visual Information Solutions, Boulder, CO, USA).

The predictive variables were the reflectance values for all
bands from both images and several indices and transformations
obtained from them (Table I); for each one, textural variables
were calculated using a window of 3 × 3 pixels for the Pleiades
and Landsat images. By using this window size, the Pleiades
textural variables could account for microvariations around the
sampling plot, whereas the Landsat variables could account for
macrovariations produced, for example, by different manage-
ment regimes in the wetland [18]. As per Mairota et al. [20],
we separated the textural variables into first- and second-order
statistical parameters. For the former, we used the median and
standard deviation of the pixels in the window, calculated using
the focal statistics tool in ArcGis 10 (ESRI, Redlands, CA,
USA). As second-order statistical parameters, we calculated the
GLCM metrics mean, variance, homogeneity, contrast, correla-
tion, second moment, and dissimilarity. This resulted in a total
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of 533 predictor variables. The value for each sample point was
extracted using bilinear interpolation.

C. Selection of Variables

A feature selection procedure was performed to select only
the most relevant variables using an RFE algorithm. The RFE is
a recursive method that ranks variables according to a measure
of importance (in this case the measure of importance of RF
regression [13]); then, the least important variable is deleted,
and a measure of accuracy is calculated (in this case the root-
mean-square error or RMSE). This algorithm was implemented
using a tenfold cross-validation to stabilize the selection [26],
obtaining the relation between the RMSE and the number of
predictors and also obtaining the most important variables at each
step. This procedure is implemented in the caret package of the
software R. The RFE-RF has been used for classification, espe-
cially in cases with a large number of predictor variables, and is
related to other disciplines, as, for example, in Granitto etal. [27],
where the authors proved that the combination of these methods
produced models with low multicollinearity.

We sought a model with low RMSE and low number of
variables; thus, we followed the guidelines suggested by Hair
et al. [28], which are the following: the number of observations
must not be < 5 per predictor, and ideally, the number of obser-
vations should be between 15 and 20 per explanatory variable.
Once we obtained the first subset of variables that fulfilled these
indications, we tested the correlation between variables using
Pearson’s correlation coefficient (R). Then, we selected the
pairs of predictors with absolute R value > 0.6 and eliminated
the least important one by one (according to the importance
ranking given by RFE-RF).

D. Prediction of Richness and Validation Procedure

Once the final subset of variables was obtained, an RF
regression was performed. With the predicted richness values,
we calculated the coefficient of determination (R2), RMSE,
and relative RMSE (RRMSE) (estimated by dividing the RMSE
by the mean of the observations). Also, the bias of the model
was calculated as one minus the slope of a regression of the
predicted and the observed values, without the intercept.

To evaluate the quality of the model, we used a bootstrapping
technique with 1000 iterations. On each iteration, the data were
divided into train and test subsets, with an average of 36.2%
of the data to test the model, calculating the RMSE and R2 of
the test subset in every iteration to plot their distribution [29].
All of the statistical analyses were carried out with the
R 3.1.2 software (R Core Team, 2014).

III. RESULTS AND DISCUSSION

A. Selection of Variables

Following the recommendations of Hair et al. [28] and the
number of observations in our study (n = 44), the number of
variables should have been lower than eight, and the ideal num-
ber is around three. When the RFE was applied, a preliminary

Fig. 2. RFE. The preliminary number of variables (n = 7) is marked with a
red circle.

TABLE II
VARIABLES SELECTED FOR PREDICTING VASCULAR PLANT RICHNESS

number of seven variables were chosen because, in this step,
the RMSE was minimized (Fig. 2). The analysis showed high
correlation values (R > 0.6) between five pairs of predictor
variables, so five variables were eliminated, yielding a final
number of two variables (Table II). Obtaining a model with
only two variables is significant because, even though RF can
deal with a large number of predictors, the performance of the
model can decrease with a large number of noisy variables [14].

All of the final selected predictors were textural variables
derived from the GLCM (contrast and variance; Table II). This
confirms the power of this method to characterize the spatial
heterogeneity of the image, providing good proxies for habitat
spatial heterogeneity and, consequently, for plant richness [20].
These variables are textural metrics of normalized differences
between bands from the Landsat image. This coincides with
the results of Mohammadi and Shataee [4], who showed that
the texture metrics of spectral indices perform better than the
texture metrics of single bands. Also, this result confirms the
idea behind the SVH, showing that spectral heterogeneity is re-
lated to richness. In this case, the GLCM metrics worked better
than other characterizations of spatial biodiversity, such as the
standard deviation of the reflectance, used by Palmer et al. [6]
when they first proposed the SVH.

Our results are similar to Nagendra et al. [8], showing that,
for predicting richness, the variables obtained from Landsat
were chosen over the variables obtained from the higher spatial
resolution images from Pleiades because it increases the pixel-
to-pixel variation. This can be due to the fact that one of the
selected predictors includes the SWIR bands (which are not
available in the Pleiades image), where the water absorption
is stronger, making this band suitable to differentiate wetland
conditions [30]. The fact that all of the selected variables were
extracted from Landsat can be explained because an overly
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Fig. 3. Model adjustment and validation. Panel (a) shows the observed versus
predicted values; panels (b)–(d) show the distribution after 1000 bootstrapping
iterations for R2 (b), RMSE (c), and bias (d).

sharp resolution can overestimate the spatial variation, being in-
fluenced by shadows produced by the objects on the terrain [5].

B. Model Validation

The final model showed a good prediction capability, with an
R2 of 0.6, an RMSE of 1.99 species (20.84% of the mean),
a bias of 3.45%, and a slight tendency to overestimate the
total richness [Fig. 3(a)]. The distribution of the bootstrapped
values of these metrics showed a low probability of obtaining
a low adjustment, with most of the values close to the mean
[Fig. 3(b)–(d)].

This is the first model for plant richness prediction in a
wetland ecosystem. The prediction of this model surpasses the
model constructed with the mean NDVI and the SD of the
NDVI by Gillespie [31], with an R2 of 0.44 in the tropical dry
forest of Florida (USA). Our model has a similar R2 compared
with the model for predicting tree richness reported by Moham-
madi and Shataee [4] in the Hyrcanian forest of Iran (adjusted
R2 = 0.59). In a similar way, Ceballos et al. [32] constructed a
model for richness prediction using hyperspectral and LiDAR
data from a Mediterranean forest in Chile, obtaining good
results (R2 = 0.59). Using the same data set, Lopatin et al. [29]
achieved better results (R2 = 0.64) by processing LiDAR data
with an object-based image analysis. The present model was
achieved only with the usage of remote sensing variables, and
it has high prediction performance with 21% of inaccuracy.
This model could be potentially improved by using additional
variables (e.g., topography) to obtain even better results.

IV. CONCLUSION

A parsimonious model has been obtained using only two
textural variables for predicting vascular plant richness in a

heterogeneous wetland. The results showed the possibility of
using RFE-RF and a correlation analysis for effective feature
selection, achieving easily interpretable results. Furthermore,
second-order textural variables (derived from GLCM), com-
bined with spectral indices, showed a good prediction capability
of the vascular plant richness, representing the first documented
predictive model for wetland ecosystems. Finally, we have
found that the mid-resolution image (Landsat 8) provided good
predictors of plant richness in this kind of ecosystem, leav-
ing open the opportunity of such research for larger spatial
extensions.
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