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Application of a Combined Optical–Passive
Microwave Method to Retrieve Soil Moisture
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Abstract—This work presents the calibration and evaluation
of an optical–passive microwave method for retrieving soil mois-
ture (SM) at regional scale using remote sensing and reanalysis
data. Several data sets were used, such as the bipolarized bright-
ness temperature provided by SM and Ocean Salinity (SMOS)
L3 brightness temperature product, the Normalized Difference
Vegetation Index (NDVI) from moderate resolution imaging
spectroradiometer (MODIS), the soil temperature and water con-
tent of the first 0–7 cm of depth from the ERA-Interim reanal-
ysis, and 13 land cover classes obtained from the ECOCLIMAP
database. The method was applied over Chile between 28◦S and
43◦S for 2010–2012. The data set was used to calibrate and eval-
uate a semiempirical approach for estimating SM, first by using
only the data from SMOS and ERA-Interim and then also includ-
ing the MODIS vegetation indicator. Results were analyzed for
every land cover class using the determination coefficient (r2), the
coefficients obtained from the regressions, and the unbiased root-
mean-square difference (ubRMSD). Results showed an increase in
the average r2 for all classes when a vegetation index was used in
the calibration of the approach. The increases in r2 ranged from
3% for the crop class, to 49% for the closed shrubland class. The
ubRMSD presented a decrease in its value of up to 1% m3/m3 for
the woodlands, open shrublands, and woody shrublands classes
and up to 2% m3/m3 for the closed shrubland class. These results
contribute to the use of single linear and semiempirical regres-
sions to estimate SM at regional scale based on SMOS L-band
bipolarized brightness temperature.

Index Terms—ERA-Interim, Moderate Resolution Imaging
Spectroradiometer (MODIS), Normalized Difference Vegetation
Index (NDVI), Soil Moisture and Ocean Salinity (SMOS), Soil
Moisture (SM).

I. INTRODUCTION

S OIL MOISTURE (SM) plays a key role in meteorological
and hydrological forecasting as it determines the evapo-

ration process between land surface and the atmosphere. Over
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the last few decades, new technologies have been developed
for performing SM estimates at different spatial and temporal
scales. SM estimates can help determine the partitioning of pre-
cipitation into runoff, infiltration and surface storage, as well
as the portioning of incoming solar radiation and long-wave
radiation into outgoing long-wave radiation, latent heat flux,
ground heat flux, and sensible heat flux [1]. Furthermore, SM
maps at global or continental scales are crucial input for cli-
mate change studies [2], surface–atmosphere interactions [3],
weather forecasting [4] and agriculture applications [5], among
others. Therefore, the need for reliable SM information has
motivated many scientists to generate SM estimates from land
surface modeling, remote sensing techniques, or a combination
of both through land data assimilation systems [6].

Above all other methods for estimating SM at global scale,
the ones based on remote sensing techniques have experienced
the most significant improvements in recent decades. In fact,
a high number of studies have been conducted to obtain SM
from spaceborne microwave instruments [7]–[9]. Microwave
remote sensing is capable of providing quantitative information
about the water content of a shallow near surface layer [10],
particularly in the low-frequency microwave region from 1 to
10 GHz. For instance, the Scanning Multichannel Microwave
Radiometer (SMMR) operated on Nimbus-7 between 1978 and
1987 (6.6 GHz and above) [11], the Special Sensor Microwave
Imager (SSM/I), launched in 1987 (19 GHz and above) [12], the
Advanced Microwave Scanning Radiometer-Earth (AMSR-E)
observation system (on board on Aqua satellite working from
6.9 to 89 GHz) [8], Windsat (from 6.8 to 37 GHz) [13], the
Advanced Scatterometer [14], and the scatterometer on board
the European Remote Sensing Satellite (ERS-1 and 2, working
at 5.3 GHz). At L-band (1.4 GHz), the SM in the first few cen-
timeters of soil significantly impacts the measured brightness
temperature in about 2 K per 1% of volumetric SM over bare
soil [15], [16]. Moreover, L-band microwaves have the advan-
tage of being insensitive to the effects of both clouds and the
Earth’s atmosphere [17]. Because of this, L-band radiometry
has proven to be one of the most promising remote sens-
ing techniques for monitoring SM over land surface at large
scales [18].

Radiometric L-band satellite measurements were initially
tested by the Skylab mission between January 1973 and July
1974 [19]. More recently, new passive satellite missions work-
ing on the L-band microwave range have been developed in
order to improve the surface SM estimates and ocean salinity
at global scale [17], [18], [20]. The most recent L-band mission
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currently in orbit is the SM Active Passive (SMAP) mission
[21] launched in January 2015. The SMAP mission was orig-
inally planned to combine radar and radiometer measurements
in order to estimate SM; however, on July 2015, the radar
stopped transmitting due to an anomaly that involved the radar’s
high power amplifier, and since then SMAP has continued to
work with data from the radiometer only. Another recent L-
Band mission is the SM and Ocean Salinity (SMOS) mission
launched in November 2009, which was specially designed
for monitoring SM by acquiring passive microwave data at a
suitable frequency for SM retrieval, providing global maps of
SM every three days at a nominal spatial resolution better than
43 km with an accuracy goal of 0.04 m3/m3 [22].

The SMOS surface SM data are generated by the SMOS
Level-2 algorithm. These routines are an iterative approach that
aims to minimize a cost function whose main component is the
sum of the squared weighted differences between measured and
modeled TB data for a collection of incidence angles [18]. The
measured TB is obtained by SMOS and the upwelling set of
TB values is simulated using the L-band Microwave Emission
of the Biosphere Model (L-MEB) [23]. The L-MEB model
uses the tau-omega (τ-ω) microwave emission model previ-
ously calibrated over a wide range of land covers defined in
the ECOCLIMAP database [24].

In the τ-ω model, the optical depth of the vegetation
layer (τ) is physically related to its water content [19] or
Leaf Area Index (LAI) [25], and the vegetation single scatter
albedo (ω) is neglected or parameterized for site-dependent
cases. Recent works have demonstrated the high correlation
between τ and optical/near infrared vegetation indices such
as the Normalized Difference Vegetation Index (NDVI) or the
Enhanced Vegetation Index (EVI) [26]. The τ-ω approach
has been tested over several land cover at in situ and global
scales, considering the vegetation parameter as an indicator of
the vegetation optical depth [23], [25]–[28]. These optical/IR
vegetation indices can be derived from in situ observations
and remote sensing data. For instance, geostationary data from
sensors such as the one on the Geostationary Operational
Environmental Satellite (GOES), or the Spinning Enhanced
Visible and Infrared Imager (SEVIRI) on the METEOSAT
Second Generation Satellite (MSG), and data from polar
orbit sensors such as Landsat 7 Enhanced Thematic Mapper
Plus (ETM+), Landsat 8 Operational Land Imager (OLI),
the moderate resolution imaging spectroradiometer (MODIS)
on board the TERRA and AQUA, and the Advanced Very
High Resolution Radiometer (AVHRR) on board the National
Oceanic and Atmospheric Administration (NOAA) platforms.

One approach that considers vegetation indices in the τ-ω
model was proposed in [28] and uses the NDVI as an indi-
cator of τ. However, this approach has only been tested with
in situ data from the SMOSREX site [29], and an evaluation
of the model over regional scales has not yet been performed.
Although several studies have demonstrated the potential of
other vegetation indices at local and regional scales [26], [27],
[30], the use of a semiempirical approach to estimate SM at
regional scale is necessary in order to test its performance at and
also to quantify the impact of a vegetation index in its respective
calibration and evaluation of retrievals. Therefore, the aim of

this work is to analyze SM retrieved at regional scales, from an
originally in situ derived optical–passive microwave semiem-
pirical approach, by using remote sensing and reanalysis data
from central and southern Chile. The structure of this work
is detailed as follows. Section II presents the study area and
data used. Section III shows the method used to calibrate and
evaluate the model over central and southern Chile, results of
which are presented in Section IV. Finally, Section V presents
the discussion and conclusion of this work.

II. STUDY AREA AND DATA ACQUISITION

A. Chilean Central Zone

The study area is located between 28◦–43.5◦ S and 69.5◦–
74.5◦ W. Within the study area, three zones with distinct
land cover and climatic characteristics were defined. In the
northern zone, the predominant climatic conditions are of a
semiarid type, and it is mostly covered by sparse vegetation
and shrublands. The central zone, which is the country’s most
agriculturally productive zone, is covered by several types
of crops, forests, and bare soil areas, and has warm-summer
Mediterranean climatic conditions. Finally, the southern zone
is mostly covered by forests and grasslands, and has temper-
ate and oceanic climatic conditions. Fig. 1 shows the study
area and selected climatic diagrams that illustrate the range of
precipitation and average temperatures.

B. Data

Different sources of data were used for the calibration
and evaluation of the optical–passive microwave semiempiri-
cal approach (Table I). The data used in this work cover the
period between January 1, 2010 and December 31, 2012, and is
detailed in the following.

1) Moderate Resolution Imaging Spectroradiometer: The
MOD13Q1 V5 Vegetation Index product [31] was used as a
vegetation indicator. This product includes the 16-day com-
posite NDVI determined from red and near-infrared reflectance
values at a spatial resolution of 0.25 km. The product is gener-
ated using the maximum value compositing (MVC) technique,
in which the highest NDVI value from a 16-day time window is
selected for every pixel in order to reduce the presence of cloud
contaminated or atmospherically affected observations.

2) SM and Ocean Salinity: Vertically and horizontally
polarized L-band brightness temperatures at 42.5◦ were
obtained from SMOS Level-3 data at both ascending and
descending orbits. The SMOS L3 Brightness Temperature daily
product (TBL3) delivers global L-Band brightness tempera-
tures at a resolution of 25 km and at different viewing angles
[18]. For this work, the SMOS L3 RE02 version delivered
in the Equal-Area Scalable Earth Grid [32] was used. Since
the calibration of the optical–passive microwave semiempiri-
cal approach depends on SMOS brightness temperature, it was
decided not to use the SMOS SM product, as the intercompari-
son of SM derived from dependent data sets could generate an
autoregressive problem.
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Fig. 1. Study area and 25-km2 pixels used in this work. The climatic diagrams show the range of precipitation and mean temperature in the study area.

TABLE I
LIST OF DATA SETS USED

3) ERA Interim: The ERA-Interim reanalysis produced by
the European Centre for Medium-Range Weather Forecasts
(ECMWF) is a reliable source of meteorological data for
scientific research and development [33]. ERA-Interim data
are available from 1979 to present day and includes global
meteorological data at different temporal and spatial resolu-
tions. For this work, two different ERA-Interim products were
used: 1) the STL1 soil temperature at the first layer of depth
(0–7 cm) product and 2) the VSWL1 volumetric soil water
layer 1 (i.e., the water content between the surface and the first
7 cm of soil) product. Both data sets have a spatial resolution
of 0.125◦ × 0.125◦ and a temporal resolution of 3 h. Several
works have compared SM estimates from microwave remote
sensing and in situ observations, demonstrating the quality of
ERA-Interim SM products [6], [34], [35].

4) ECOCLIMAP: The ECOCLIMAP database [24] was
generated from previously available land cover maps, climatic
data, and information from AVHRR, and delivers global land
cover maps of 215 classes defined by areas of homogeneous
vegetation at a spatial resolution of 1 km × 1 km [36]. The

ECOCLIMAP database is used in the SMOS L2 SM retrieval
algorithm, and so it was selected to test the performance of the
semiempirical approach per land cover class. Classes analyzed
in this work are: Crops (C.), closed shrubland (C. S.), deciduous
forest (D. F.), evergreen forest (E. F.), grasslands (G.), mixed
forest (M. F.), open shrubland (O. S.), rocks (R.), woodlands
(W.), and woody shrubland (W. S.).

III. METHOD

A. Semiempirical Method

The semiempirical regressions used in this work are based
on the τ-ω model applied over vegetation covers [37]. The
p-polarized brightness temperature Tb(θ, p) is written as a
function of the single scattering albedo ω(θ, p), the vegeta-
tion optical depth τ(θ, p), the soil reflectivity ΓS(θ, p), the
downward atmospheric and galactic brightness temperatures
TbSKY ↓

θ , and the soil TE
S and vegetation TE

V effective temper-
atures as in the following equation:
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Tb (θ, p) = (1− ω) (1− γ) (1− γΓS (θ, p))TE
V

+ γ (1− ΓS (θ, p))TE
S + TbSKY ↓

θ ΓS (θ, p) γ2

(1)

where γ = γ(θ, p) is the p-polarized transmissivity of the vege-
tation layer, which can be expressed as a function of the optical
depth, and the incidence angle θ as in the following equation:

γ (θ, p) = exp

(
−τ (θ, p)

cos (θ)

)
. (2)

Some simplification, such as considering the effective soil
and vegetation temperatures as equal (TE

S = TE
V = TC) [38]

and neglecting the effects of the upward and downward atmo-
spheric emission [39], can be introduced without inducing
significant errors.

Reference [39] initially developed a semiempirical approach
assuming that the single-scattering albedo effects can be
neglected, which is generally a good approximation for L-band
[40]. It is important to note, however, that as the vegetation
constituents approach lengths similar or larger than the used
wavelengths (such as trees and stem-dominated agricultural
vegetation), the effects of the scattering albedo become more
significant [41]–[43]. With this in mind, (1) can be written as
the following:

Tb (θ, p) = TC

(
1− ΓS (θ, p) γ2

)
. (3)

The surface emissivity e(θ, p), which is defined as e(θ, p) =
Tb(θ, p)/TC can be written the following:

e (θ, p) = 1− ΓS (θ, p) γ2. (4)

Soil reflectivity can be assumed to be proportional to surface
SM (wS) according to the following equation:

ΓS (θ, p) ∼= Ap (θ)wS (5)

where ws is the SM and Ap(θ) is a site-dependent coefficient
that implicitly accounts for the sensor configuration and all the
soil characteristics that determine soil emission: mainly soil
texture, structure and surface roughness, among others. Thus,
by replacing (5) in (3), the SM can be written as a function of
the vegetation optical thickness, surface effective temperatures,
and bipolarized brightness temperature. Reference [39] tested
(5) over barren areas. However, [28] adapted this approach for
a vegetated area including a vegetation indicator as described in
the following equation:

log (ws) = a+ b (ln (1− Γ (θ,H))) + c (ln (1− Γ (θ, V )))

+ d ∗V eg (6)

where a, b, c, and d are the regression coefficients, Γ is the hor-
izontally (H) and vertically (V ) polarized L-band microwave
reflectivity defined as Γ = 1− (Tb/TC), where Tb and Tc are
the L-band brightness temperature and the effective tempera-
ture, respectively, and Veg is a surface vegetation indicator. So,
(6) can be rewritten as

log (ws) = a

(
log

(
1− Tb (θ,H)

Tc

))

+ b

(
log

(
1− Tb (θ, V )

Tc

))
+ c (V eg) + d. (7)

Equation (7) was tested over the SMOSREX site by [29]
using the NDVI as a vegetation indicator and obtained signifi-
cantly improved results in SM estimation. The SMOSREX site
features an L-band multiangular bipolarized field radiometer
[44], in situ SM and temperature sensors at several soil depths, a
near-infrared radiometer, and other meteorological instruments
installed for monitoring other biophysical parameters.

B. Data Processing

The ERA-Interim VSWL1 and STL1 products, and the
NDVI from MODIS were resampled to the spatial resolution
of the SMOS pixels (25× 25 km) using an averaging filter. In
order to maintain the correct classification of the ECOCLIMAP
data set, a majority filter was used to obtain the values of
the new pixels instead. With the resampled data, a time series
between January 2010 and December 2012 of TB, VSWL1,
STL1, and NDVI was generated for each pixel of the study
area. In order to match the SMOS TB data to the rest of the
observations, those closest to the SMOS overpass time were
selected.

The SMOS TB data were then filtered from the data
set using the polarization ratio index defined as PR =
(Tb (V )− Tb (H)) / (Tb (V ) + Tb (H)), where Tb(V ) and
Tb(H) are the vertically and horizontally polarized brightness
temperatures. The PR index allows to identify anomalies in
the microwave signal, such as those produced by frozen soil
[29], water intercepted in the vegetation [45], and Tb(H) values
greater than Tb(V ) values [28]. In this work, data points with a
PR index lower than 0.02 were filtered out as in [28] and [45].

C. Calibration and Evaluation (CAL/EVAL) of the
Semiempirical Approach

Using the filtered data series, a statistical calibration process
was carried out to obtain the regression (a, b, c, and d) and
determination (r2) coefficients between SM, TB, ST, and NDVI.
In order to test for the effects of the NDVI on the approach,
(7) was the first calibrated setting VEG = 0 (SM(VEG=0)) to
only consider the TB and ST as predictors of SM. Next,
the VEG predictor was set equal to the NDVI from MODIS
(SM(VEG=NDVI)), and a new set of correlation and calibration
coefficients was obtained. The two set of coefficients (VEG = 0
and VEG = NDVI) were then compared to evaluate if the inclu-
sion of remotely sensed NDVI improved the calibration of the
approach. This procedure was carried out independently for
2010–2012 and analyzed by land cover class.

The evaluation of the SM retrievals consisted on the compar-
ison of the estimates obtained (SM(VEG=0) and SM(VEG=NDVI))
for each independent year against the SM product provided by
ERA. The magnitude of the improvements was evaluated using
both the determination coefficient (r2), and the unbiased root-
mean-square difference (ubRMSD) defined as σ2, where σ is
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the standard deviation of the differences between the estimated
and the observed values [46]. The ubRMSD metric was selected
because it is not compromised by biases that might exist in the
mean or by the amplitude of fluctuations in the retrieval [47].
The evaluation was carried using the data from the years, which
are not considered in the calibration and for each of the land
cover classes.

IV. RESULTS

A. Data Processing

The land cover classes obtained after the aggregation of the
original ECOCLIMAP classes, along with the mean and stan-
dard deviation of NDVI for the whole data period are shown
in Fig. 2. The NDVI did not show any strong variation dur-
ing the period used to calibrate or evaluate the semiempirical
method. Besides from some outliers located on the coastline of
Chile, the remainder of pixels exhibits a low temporal variation.
The magnitude of the NDVI follows the latitudinal gradient
between semiarid conditions to the rainforest climate, with
values ranging from almost 0.0 to 0.9.

With regard to the aggregation of the ECOCLIMAP data,
results showed that in the northern zone of the study area,
the most common classes are open and closed shrublands;
for the central zone, the main classes are woody grasslands,
woodlands, and evergreen needleleaf forests, along with a few
cropland pixels and a single urban class pixel that corresponds
to the city of Santiago. Finally, the main classes left in the
southern zone after the aggregation method are mixed forest,
evergreen needleleaf forest, and deciduous broadleaf forests,
along with a few inland water pixels that correspond to lakes
present in this zone.

The total and filtered data points available for each one of the
land cover classes by calibration and evaluation year are shown
in Table II. This table presents the high influences of the selec-
tion criteria over the land cover classes. The proportion between
the total and filtered data for each year is equivalent, although
there are some land cover classes in which the valid data points
show an important reduction, such as evergreen forest or open
shrublands, which might be explained by the effects of snow
cover or by the SMOS quality flags.

B. Calibration

1) Determination Coefficient: The spatial distribution of
the determination coefficients obtained by the regressions in
which the vegetation indicator was set equal to zero and by
those that included the NDVI from MODIS is shown in Fig. 3.

The use of NDVI seems to improve the obtained r2 from
the statistical calibrations for each pixel between 8% and 20%,
depending on the land cover (Fig. 4). On average, the improve-
ments when using the NDVI in terms of r2 for the calibration
of the method are 23% for the northern zone of the study
area, which is mainly covered by open, closed, and woody
shrublands. The central zone, covered by woody shrublands,
crops, and evergreen forests, showed an average improvement
of 10%. Finally, for the southern zone of the study area covered
by different forest classes, the average improvement was 8%.

Fig. 2. Mean NDVI with standard deviation over the data period (2010–2012),
and ECOCLIMAP classes after aggregation to 25 km × 25 km.

Similar results were obtained for single years (not shown),
which suggests a high improvement in r2 for all classes when
the NDVI from MODIS is included in the calibration of (7).
In fact, for every land cover class of the study area, the r2

increased when the NDVI from MODIS was considered in the
semiempirical method. For calibration year 2010, the wood-
land, evergreen, deciduous, and mixed forest classes showed an
average increase in the r2 of 13%, 10%, 7%, and 10%, respec-
tively. In the case of crops and grasslands classes, the average
r2 increase was 3% and 14%, respectively. As for the closed,
open, and woody shrubland classes, the average r2 increase was
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TABLE II
NUMBER OF TOTAL AND VALID DATA POINTS BY YEAR AND LAND

COVER CLASS

Fig. 3. Spatial distribution of the mean determination coefficient obtained from
the calibration of the semiempirical approach when setting VEG = 0 and
VEG = MOD13Q1.

Fig. 4. Mean coefficient of determination boxplots for the regressions using
VEG = 0 and VEG = MOD13Q1. Outliers are shown as circles.

estimated at 30%, 49%, and 15%, respectively. The rock classes
showed an average increase of 5%. During calibration year
2011, the woodland, evergreen, deciduous, and mixed forest
classes showed an increase in the average r2 of 10%, 18%, 5%,
and 11%, respectively. For the crops and grassland classes, the
average r2 increase was 3% and 4%, respectively. The closed,
open, and woody shrubland classes presented an average r2

increase of 19%, 28%, and 10%, respectively. The rock classes
showed an average increase of 6%.

Finally, for calibration year 2012, the woodland, evergreen,
deciduous, and mixed forest classes showed an increase in the
average r2 of 7%, 6%, 4%, and 9%, respectively. In the case
of crops and grasslands classes, the average r2 increase was
3% and 12%, respectively. As for the closed, open, and woody
shrubland classes, the average r2 increase was 16%, 15%, and
7%, respectively. The rock classes showed an average increase
of 15%.

2) Regression Coefficients: The spatial distribution of the
coefficients obtained from the regressions that did not include
the NDVI (VEG = 0) and those that considered the NDVI from
MODIS (VEG = NDVI) are shown in Fig. 5.

Coefficients “a” and “b” [coefficients associated with TB(H)
and TB(V), respectively] do not show differences in their spa-
tial pattern when the NDVI from MODIS was included in the
calibration of the semiempirical approach. However, a decrease
in the magnitude of both coefficients can be observed. As for
coefficient “c” (NDVI), no high spatial differences between the
three calibration years were observed, despite some isolated
cases in the northern area. Coefficient “d” showed the highest
changes in its spatial pattern when the NDVI was considered in
the calibration, especially in the central area.

The boxplots of the regression coefficients by land cover
class are shown in Fig. 6. The magnitude of coefficient “a”
decreased for land cover class when the NDVI from MODIS
was used in the semiempirical approach. The highest range in
the coefficient “a” values for every calibration year was shown
by the open shrubland classes. This result might be explained
by the heterogeneous spatial distribution of this class, which
has pixels from the coast all the way up to the Andes mountain
range. Coefficient “b” did not show strong differences in magni-
tude between the regressions that did not consider a vegetation
index and those that considered the NDVI from MODIS. This
could be attributed to the interaction between the vertically
polarized signal and the vertical structure of each land cover
class [39], which in the case of crops can vary depending on the
species and agricultural management. Coefficient “c” showed
the highest magnitudes of all the coefficients. For the three cal-
ibration years, the “c” coefficient maintained a similar range by
land cover class, which was greater in the shrubland classes.
This effect on the NDVI coefficient can be attributed to the het-
erogeneous spatial distribution of these land cover classes. All
classes showed an increase in the range of coefficient “d” when
the NDVI was included in the calibration of the semiempirical
approach. The magnitude of coefficient “d” by land cover class
held steady for all the calibration years, showing the lowest
values in the open and closed shrubland classes.
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Fig. 5. Spatial distribution of mean regression coefficients (top row) with standard deviation (bottom row).
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Fig. 6. Boxplots of averaged coefficients. (a) Top-left, (b) top-right, (c) bottom-left, and (d) bottom-right of the regressions with VEG = 0 and VEG = MOD13Q1
by land cover class. Outliers are shown as circles and the red dotted line shows the 0 value.

C. Evaluation

1) Determination Coefficient: The r2 of the evaluation also
showed an improvement when the NDVI from MODIS was
included in the approach in comparison to when VEG was set
equal to zero (Fig. 7). This is noticed for several land cover
classes, such as closed shrublands, evergreen needleleaf forest,
mixed forest, open shrubland, and rocks. The rest of the land
cover classes also show a slight improvement when using the
NDVI from MODIS, although it is not statistically significant
(p < 0.05). Furthermore, for classes such as grasslands, wood-
lands or woody shrublands, the minimum limit of the boxplot
is higher when using the NDVI, though similar values were
obtained in the maximum limit. The rock class displays an
unusual behavior, which might be attributed to its location in
the Andes Mountains, where the seasonal rainfall can generate
a low vegetation cover. In the case of crops, the phenological
stage cannot be evidenced in the aggregated pixels and therefore
mixed information from the NDVI can affect the semiempirical
approach in terms of its r2.

2) Unbiased Root-Mean-Square Difference: The ubRMSD
obtained between the reference SM values and the SM esti-
mates calculated using the coefficients from the regressions
with VEG = 0 and VEG = MOD13Q1 by land cover class are
shown in Fig. 8. Results show that if the NDVI from MODIS
is included in the calibration of the semiempirical approach,
the ubRMSD decreases by up to 0.01 m3/m3 for the wood-
lands, open shrubland, and woody shrubland classes and up to
0.02 m3/m3 for the closed shrubland classes.

These results are significant and similar to the improvements
obtained in [28] at in situ level. The rest of the land cover

Fig. 7. Boxplots of mean coefficient of determination obtained between the
SM reference values from ERA-Interim and the SM estimates using VEG = 0
and VEG = MOD13Q by land cover class for calibration year 2010 (evalua-
tion years 2011 and 2012), 2011 (evaluation years 2010 and 2012), and 2012
(evaluation years 2010 and 2011). Outliers are shown as circles.
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Fig. 8. Boxplots of ubRMSD obtained between the SM reference values from
ERA-Interim and the SM estimates using VEG = 0 and VEG = MOD13Q by
land cover class. For calibration year 2010 (evaluation years 2011 and 2012),
2011 (evaluation years 2010 and 2012), and 2012 (evaluation years 2010 and
2011). Outliers are shown as circles.

classes also show a decrease in the ubRMSD magnitude when
the NDVI from MODIS was included in the semiempirical
approach; however, these decreases were less than 0.01 m3/m3.
On the other hand, the mixed forest class exhibited pixels in
which the ubRSMD increased by up to 0.01 m3/m3 when
the NDVI was included in the semiempirical approach, which
could be explained by the heterogeneous spatial distribution of
this class. Despite the fact that the use of NDVI improves the
calibration in terms of r2, the magnitude of these improvements
is not necessary related to the obtained ubRMSD, since the veg-
etation phenological stage could influence the SM estimations.

3) Time Series: To evidence the behavior of SM estimated
by setting VEG = 0 and VEG = MOD13Q1, Figs. 9 and 10
show the SM estimation for two different land cover classes.
Fig. 9 shows a closed shrubland class pixel time series with the
temporal behavior of SM estimated without using a vegetation
index in the calibration of the semiempirical approach, and
using the NDVI from MODIS. The temporal series shows that
SM estimated using the NDVI has a temporal pattern sim-
ilar to that of the reference SM given by the ERA-Interim
VSWL1 product. The SM values exhibit a similar behavior
in the case of extreme values (i.e., those related to precipita-
tion events) and it is possible to characterize a dry and wet
period related to the minimum and maximum NDVI values.

Fig. 9. Time series of SM and NDVI for calibration years 2010 (top), 2011
(middle), and 2012 (bottom). The time series belongs to a closed shrubland
pixel located in coordinates 30◦54′57.04′′ S and 71◦1′25.86′′ O.

Fig. 10. Time series of SM and NDVI for calibration years 2010 (top), 2011
(middle), and 2012 (bottom). The time series belongs to a woodland pixel
located in coordinates 34◦53′31.18′′ S, and 72◦5′2.96′′ O.

For 2012, a decrease in NDVI magnitude is evidenced which
could be related to a decrease in rainfall; although this decrease
did not influence the SM retrievals for 2010 and 2011 NDVI-
based approach. Indeed, the best correlation was obtained when
comparing ERA-Interim VSWL1 to SM(VEG = MOD13Q1),
noticing a wet/dry season also related with the magnitude of the
NDVI for those years.
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On the other hand, Fig. 10 shows the temporal behavior
of a woodland pixel. Even though the use of NDVI in the
semiempirical approach slightly improved the SM estimates in
comparison to when no vegetation index was considered, in
extreme cases (mid of 2011), it is possible to see that the use
of NDVI in the semiempirical approach might not improve the
quality of the SM estimates. In this specific case, an event of
unusually low NDVI shown in the Woodland time series could
be produced by a particularly cloudy period which could not be
excluded by the 16-day time composite product.

V. DISCUSSION AND CONCLUSION

The use of NDVI in the calibration of the semiempirical
approach significantly improves the SM estimates for some of
the land cover classes of the study area. This application shows
that the approach proposed in [28] can be applied to regional
scales and it is a contribution to the interaction between data
from different sources such as L-band microwaves, information
from the optical range, and data from reanalysis. Previously,
[30] showed the usefulness of semiempirical methods for the
estimation of SM using different data sources; however, those
estimates were made only over a single pixel. Moreover, this
work presents the improvements in the calibration and evalua-
tion of the semiempirical approach not only at regional scale,
but also over different land cover classes.

In [28], the NDVI was compared with the LAI. Parrens et al.
[27] showed that there was a significant improvement in the
calibration and evaluation of the semiempirical method when
the LAI was included as a vegetation indicator. Nevertheless,
one of the most significant differences between the NDVI and
LAI is related to the method used to estimate each vegetation
indicator. Whereas NDVI is the same algorithm for every red
and NIR band, the LAI can change according to the kind of
sensor and algorithm proposed [48], [49]. This could introduce
an additional source of uncertainty related to the estimation of
the vegetation indicator and not to the semiempirical approach
by itself.

For this work, two polarizations and one observation angle
were considered for the brightness temperature data. Previous
works have tested multiangularity as an additional source
of information for semiempirical methods [25], [28], [39].
However, in order to consider the maximum amount of data
possible for calibration and evaluation of the semiempirical
approach, only information at 42.5◦ was considered in this
work.

Regarding the land cover class, the ECOCLIMAP data base
has been previously used in studies related to the estimation
of SM at different spatial resolutions [26], [50]–[52]. However,
some slight discrepancies occurred between the actual land
cover classes in Chile and the ones in the ECOCLIMAP data
base. Nevertheless, it is also important to note that the homog-
enization of land cover classes to a specific study area is a
complex work that demands a more detailed analysis. This is
shown by previous studies related to the discrepancies of sev-
eral land cover databases and in situ validation [53]. The use
of different global land cover classes to analyze SM retrievals

is still a challenge and future works will account for the use of
land cover classes from updated or local data base instead of
global thematic land cover classes.

The calibration of the algorithm was carried out by taking
into account information from different soil depths, such as
brightness temperature from SMOS (0–4 cm), vegetation index
(surface), and SM and temperature from reanalysis (0–7 cm).
However, the SM retrieved by the semiempirical approach was
obtained for 0–7 cm, since the ERA-Interim SM product used
for the calibration is modeled at this soil depth. However, the
representativeness of the soil depth can change following the
SM data used in the calibration. This is the key for further
application at regional or global scale where the soil depth can
influence the SM retrievals for the evaluation or even the vali-
dation procedures. Moreover, it is necessary to account that if
the differences in soil depths are considered, SMOS and ERA-
Interim SM values can be compared, but not quantitatively
evaluated because the soil water content might be different.

In terms of calibration and evaluation year, the methodology
proposed in this manuscript is consistent in terms of the statis-
tical coefficients obtained to estimate SM at regional scale. The
spatialized coefficients did not present significant differences
between the calibration years, which seem to be consistent for
the calibration over a wide range of land covers or for global
scale. The calibration of this coefficient can be assimilated to
obtain an operational routine for SM retrievals for regional to
global scale and also for different land cover types.

The combined optical–passive microwave approach has been
tested by using remote sensing and reanalysis data. The evalu-
ation of the semiempirical approach by the analysis of the r2

showed that all the studied land cover classes had improve-
ments in the SM estimation when the NDVI from MODIS
was included as a vegetation indicator in the semiempiri-
cal approach. The land cover classes that showed the highest
improvements when the NDVI was included in the approach
were the open and closed shrubland classes with an improve-
ment of 49% and 30%, respectively. These results are in
accordance with the ones found by the analysis of the ubRMSD,
in which the biggest improvements were obtained by the same
land cover classes.

The results obtained in this work suggest that for cer-
tain land cover classes, the analyzed semiempirical approach
can improve the SM estimates by up to 0.02 m3/m3. This
approach, applicable to other spatial scales, might also be
a useful resource for other spatial missions, such as SMAP
launched in January 2015. Finally, it is important to note that
the estimation of SM values from the semiempirical optical–
passive microwave synergic approach allows for the generation
of new sources of information concerning one of the earth’s
most crucial variables.
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