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Abstract: We characterize, by means of the definition of a generalized distance,
the differences and similarities between binary nanoclusters. To define analyt-
ically, and to compute numerically this distance, we have generalized an orig-
inal concept that was introduced for pure clusters. Since the diversity of clus-
ter conformations grows exponentially with their size, and becomes even larger
when the cluster atoms are of more than one species, we limit our attention to
small ones. Thus, to illustrate and analyze our distance definition we charac-
terize the Lennard-Jones (LJ) minimum energy conformations of two- and three-
dimensional (2D and 3D) binary clusters, for 5 ≤ 𝑁 ≤ 12, where𝑁 is the number
of atoms of the cluster. In addition, when varying the LJ potential parameters, we
find that the number of minima decreases as the range of the potential of one of
the species is increased, and confirm that minimal energy conformations adopt
a well defined core-shell configuration.
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1 Introduction
Formore thanadecadebimetallic clusters haveattractedmuchattention, because
of their potential applications in catalysis, optical, magnetic, electric and me-
chanical nanodevices. The possibility of fine-tuning their properties is enhanced
when both size and composition are varied. However, the structural characteriza-
tion, necessary for a precise understanding of their properties, becomes a prob-
lem, since the enormous amount of structural conformations of a pure cluster
is significantly increased by the combinatorial possibilities of binary ones [1–3].
Therefore, the search forminimal energy configurations has to be approached fol-
lowing a strategy that i) insures the diversity of the local minimal energy confor-
mations, that is, howmanynon-equivalent configurations are obtained as the two
species are mixed; and, ii) balances reasonable computation times and the “cer-
tainty” of not loosing potentially important conformations.

Binary Lennard–Jones (BLJ) clusters have been studied for some time. Doye
and Meyer [4] already in 2005, using Basin-Hopping [5], found global minimum
configurations for BLJ clusters of up to 100 atoms. Later on Molayem et al. in-
vestigated the stability ofNi

𝑚
Ag
𝑛
bimetallic nanoalloys for 2 ≤ 𝑚 + 𝑛 ≤ 60 also

using basin hopping [6]. Cassioli et al. [7] found new minimal energy conforma-
tions and confirmed results found much earlier by Munro et al. [8]. Dieterich and
Hartke [9] analyzed 38 atombinary clusters, finding stableminima for fcc like con-
formations. Kolossváry and Bowers [10] found 17 new putative minima for these
type clusters. Marques and Pereira [11] implemented a hybrid embedded atom ap-
proach with which they found a new global minimum of an 𝑁 = 38 binary, for
𝑅 = 𝜎

𝐵𝐵
/𝜎
𝐴𝐴

= 1.05, where 𝜎
𝐴𝐴

and 𝜎
𝐵𝐵

are related to the position of the min-
ima of the respective LJ potentials. Sicher et al. [12] used a modifiedminimal hop-
ping scheme to find a large amount of new minima. Tao et al. [13] implemented
a modified heuristic algorithm to discover 12 new putative minima. Rondina and
Da Silva [14] modified the Basin-Hopping Monte Carlo to study BLJ clusters for
5 ≤𝑁≤ 100, andobtainednew results for31 ≤𝑁≤ 94. Very recently Takeuchi [15]
exploredminimal energy configurations for the rather large values of1.4 ≤ 𝑅 ≤ 2.0

finding complicated structural growth patterns.
In this paper we study the configuration diversity of the local minimal energy

conformations. In other words how to accurately discriminate between two non-
equivalent structures. This problem has been studied mainly for single species
clusters and for periodic systems, which has led to the development of several
strategies [16–20]. We now examine some of them, and choose the one best fitted
for generalization to include several atomic species.
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In this context the characterizationof two conformations as equal or different
is a key element. Lee et al. [16] introduced the following definition for the distance
between two configurations, 𝛼 and 𝛽, of a pure cluster:

𝑑(𝛼, 𝛽) = ∑

𝑚

𝑚[2 |𝐻
𝛼
(1, 𝑚) − 𝐻

𝛽
(1, 𝑚)| + |𝐻

𝛼
(2, 𝑚) − 𝐻

𝛽
(2, 𝑚)|] , (1)

where𝐻
𝛼
(1, 𝑚) [𝐻

𝛼
(2, 𝑚)] is the histogram of the number of cluster atoms that

have𝑚 atoms in the first [second] shell of the configuration 𝛼. To specify the shell
radii they used the nearest-neighbor and next-nearest-neighbor bulk distances.
However, in this way the first and second neighbor distances are rather arbitrarily
defined.

Cheng and Fournier [17] instead put forward a distance based on physical de-
scriptors. It incorporates six of them, that correspond to structural parameters and
they are the following: the coordination of an atom 𝑐

𝑘
as the number of atoms

inside a sphere of radius 𝑑max, centered around atom 𝑘. Four descriptors 𝐷 are
based on 𝑐

𝑘
; the average (𝐷

1
), themean square deviation (𝐷

2
), theminimum (𝐷

3
),

and the maximum (𝐷
4
), of 𝑐
𝑘
. The remaining two (𝐷

5
and𝐷

6
) measure the devia-

tion from spherical symmetry, towards oblate or prolate structures, and are given
by

𝐷
5
=
(𝐼
𝑐
− 𝐼
𝑏
)
2

+ (𝐼
𝑏
− 𝐼
𝑎
)
2

+ (𝐼
𝑎
− 𝐼
𝑐
)
2

𝐼
2

𝑎
+ 𝐼
2

𝑏
+ 𝐼
2

𝑐

, (2)

𝐷
6
=
2𝐼
𝑏
− 𝐼
𝑎
− 𝐼
𝑐

𝐼
𝑎

, (3)

where 𝐼
𝑥𝑥
, 𝐼
𝑦𝑦
and 𝐼
𝑧𝑧
are the eigenvalues of the inertia tensor ordered from largest

to smallest, (𝐼
𝑎
, 𝐼
𝑏
and 𝐼
𝑐
), and thus satisfy 𝐼

𝑎
≥ 𝐼
𝑏
≥ 𝐼
𝑐
.

Next, the descriptor distance 𝑑(𝛼, 𝛽) between the configurations 𝛼 and 𝛽 is
defined as

𝑑(𝛼, 𝛽) = [

[

6

∑

ℓ=1

(𝐷
𝛼

ℓ
− 𝐷
𝛽

ℓ
)
2

(𝐷
ℓ,max − 𝐷

ℓ,min)
2

]

]

1/2

, (4)

where 𝐷
ℓ,max (𝐷ℓ,min) is the maximum (minimum) of the descriptor ℓ among the

𝛼 and 𝛽 clusters. The denominator of Equation (4) normalizes the distance, to in-
sure that all descriptors have the sameweight. Rogan et al. [18] based onmoments
of inertia of the clusters, showed that this distance is useful, for example to dis-
criminate among prolate and oblate conformations. In 2013 Goedecker et al. [19]
introduced an interesting and novel distance concept based on differential geom-
etry concepts.
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The distance put forward by Grigoryan et al. [20] in 2003 has been used suc-
cessfully in minimization algorithms, like the one described by Rogan et al. [21,
22]. Analytically, this distance reads

𝐷(𝛼, 𝛽) = [
2

𝑁(𝑁 − 1)

𝑁(𝑁−1)/2

∑

𝑖=1

(𝑑
(𝛼)

𝑖
− 𝑑
(𝛽)

𝑖
)
2

]

1/2

, (5)

where, 𝑑(𝛼)
𝑖

is the sorted list of𝑁(𝑁− 1)/2 interatomic pair distances of cluster 𝛼
(and similarly for 𝛽). 𝐷(𝛼, 𝛽) has the significant advantage of being translation-
ally and rotationally invariant, and furthermore it is fast and simple to evaluate.

Since the main goal of this paper is to study and characterize the diversity of
the minimal energy of binary nanocluster conformations, we limit our examples
to rather small clusters. In particular, we employ the ones obtained from the im-
plementation of a BLJ potential. Our contribution is organized as follows: after
this introduction, in Section 2 we provide details of the computational methods
that we use. In Section 3 we generalize the distance between clusters concept of
Equation (5) to properly describe binary systems, and define the BLJ potential. In
Section 4 we present our results and the paper is closed with Section 5, where we
summarize and draw the main conclusions.

2 Computational methods
Rogan et al. [21] proposed a strategy to find a diverse set of low lying local min-
ima, as well as the global minimum. To do so, the fast inertial relaxation engine
(FIRE) algorithmwasmassively used as an efficient local minimizer [23]. This pro-
cedure turns out to be quite good to reach the global minimum, and also most of
the local minima. We have chosen to use the FIRE algorithm to obtain the mini-
mal energy structures, because it is strictly local, it does not get stuck in transi-
tion states, and it is very fast. Our procedure, to obtain the energy minima for an
𝑁 atom cluster, and which is somewhat different from other FIRE applications,
is setup by generating at random a set of 3𝑁 coordinates, in a cubic box of edge
length 3.75 Å, which we denominate the “initial configuration” or “seed”. Each
one of these seeds is allowed to evolve by means of the FIRE algorithm, until the
largest absolute value of the force, acting on every single atom, is less than a pre-
determined required accuracy, in this case 10−10𝜖/𝜎. We repeat this process 107

times for each cluster. Then, by means of an extension of the similarity criterion
put forward by Grigoryan and Springborg [20], we obtain the final set of different
minima for a given𝑁, a given concentration and a given BLJ potential, which is
controlled by changing a single parameter.
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3 Binary clusters

3.1 The distance between binary clusters

While our main objective is to study the diversity of binary systems, we first have
to develop the concept of distance. Therefore, we now extend the distance put
forward by Grigoryan et al. [20] to describe a cluster with more than one atomic
species. To do so we order the cluster interatomic distances in a similar way as
Valle and Oganov [24, 25]. That is, we first list, from largest to smallest, the𝑁

𝐴𝐴

separations of the atoms of species 𝐴 of the conformation 𝛼, denoted as 𝑑(𝛼,𝐴)
𝑖

;
next we do the same for species 𝐵. Finally, we also order the 𝑁

𝐴𝐵
interatomic

distances between the two different species. This creates a new configuration dis-
tance vector of𝑁

𝐴𝐴
+ 𝑁
𝐵𝐵

+ 𝑁
𝐴𝐵

= 𝑁(𝑁 − 1)/2 components. Analytically, the
distance between conformations 𝛼 and 𝛽 is given by

𝐷(𝛼; 𝛽) = √
2

𝑁(𝑁 − 1)
[

𝑁
𝐴𝐴

∑

𝑖=1

(𝑑
(𝛼,𝐴)

𝑖
− 𝑑
(𝛽,𝐴)

𝑖
)
2

+

𝑁
𝐵𝐵

∑

𝑖=1

(𝑑
(𝛼,𝐵)

𝑖
− 𝑑
(𝛽,𝐵)

𝑖
)
2

+

𝑁
𝐴𝐵

∑

𝑖=1

(𝑑
(𝛼,𝐴𝐵)

𝑖
− 𝑑
(𝛽,𝐴𝐵)

𝑖
)

2

]

1/2

, (6)

where𝐴𝐵 denotes the geometrical distance between different species atoms, and
the criterion for two binary clusters being equal is that 𝐷(𝛼; 𝛽) ≤ 𝐷

𝑐
, where 𝐷

𝑐

is a critical value. Furthermore, this generalization of the distance by Grigoryan
et al. [20] can be readily extended to clusters of three or more species, and for any
number of atoms.

3.2 Binary Lennard–Jones potential

To test our procedurewe limit our attention to BLJ clusters. The species are labeled
as𝐴 or 𝐵, and𝑁 = 𝑁

𝐴
+ 𝑁
𝐵
. Atoms 𝑖 and 𝑗 interact through the pair potential

𝑣(𝑖, 𝑗) = 4𝜀
𝑆,𝑆

󸀠 [(
𝜎
𝑆,𝑆

󸀠

𝑟
𝑖𝑗

)

12

− (
𝜎
𝑆,𝑆

󸀠

𝑟
𝑖𝑗

)

6

] , (7)

where 𝑆 and 𝑆󸀠 label the atomic species (𝑆 and 𝑆󸀠 correspond to species 𝐴 or 𝐵),
𝜀
𝑆,𝑆

󸀠 is the depth of the potential well, and 2
1/6

𝜎
𝑆,𝑆

󸀠 is the equilibrium distance.
Here and throughout we report our energies in units of 𝜀, and lengths in 𝜎 units.
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The total energy of the cluster is given by

𝐸 = ∑

𝑖<𝑗

𝑣(𝑖, 𝑗) . (8)

Moreover, as already implemented by several authors [4, 7, 11], we adopt 𝜀
𝐴𝐴

=

𝜀
𝐵𝐵

= 𝜀
𝐴𝐵

= 𝜀
𝐵𝐴

= 1, and

𝜎
𝑆,𝑆

󸀠 =

{{{{{

{{{{{

{

𝜎
𝐴𝐴

if 𝑆 = 𝑆
󸀠

= 𝐴 ,

𝜎
𝐵𝐵

if 𝑆 = 𝑆
󸀠

= 𝐵 ,

𝜎
𝐴𝐴

+ 𝜎
𝐵𝐵

2
if 𝑆 ≠ 𝑆

󸀠

.

Additionally, if we adopt 𝜎
𝐴𝐴

= 1, and define 𝑅 = 𝜎
𝐵𝐵
/𝜎
𝐴𝐴
, we have

𝜎
𝑆,𝑆

󸀠 =

{{{{{

{{{{{

{

1 if 𝑆 = 𝑆
󸀠

= 𝐴 ,

𝑅 if 𝑆 = 𝑆
󸀠

= 𝐵 ,

1 + 𝑅

2
if 𝑆 ≠ 𝑆

󸀠

.

(9)

If we assume 𝑇 = 𝜖
𝐴𝐴
/𝜖
𝐵𝐵

≠ 1 we can investigate the effects due to different
potential depths. In fact, we report below on calculations for 𝑅 = 1.0, 𝑇 = 1.0 in
the majority of cases. However, we also explored the case 𝑅 = 1.0, 𝑇 = 1.5 for
a specific example.

4 Results
As already discussed the problem of the diversity of conformations of binary clus-
ters seems far from solved, thus allowing new ideas and techniques to be devel-
oped and tested. As already proposed in Rogan et al. [21], we present both 3D and
2D minimum energy configurations, the latter being specially useful when dis-
cussing small 𝑁 clusters which may assume planar conformations, as it is well
known that Au for example, for 𝑁 ≤ 12 is planar, a result that DFT treatments
yield but that phenomenological potentials do not obtain [26, 27]. Here we calcu-
late the diversity of the sets ofminimaas a function of𝑅.We investigate clusters of
5 ≤𝑁≤ 12 atoms for𝑅 = 1.0, 1.4, 1.6, 1.8, 2.0, and 2.4 for all possible atomic com-
positions (0 ≤ 𝑁

𝐴
≤ 𝑁). Themain problemwe tackle and solve here is to properly

discriminate among the non-equivalent decorations of the minima. Moreover, for
𝑅 = 1 we recover the results already obtained for 2D and 3D structures with the
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Table 1: Number of local minimaNLM of 3D and 2D structures, obtained with the Lennard–Jones
potential. The number 1510∗ was first reported in Rogan et al. [21] as well as the number of 2D
minima.

# of atoms 3D-NLM 2D-NLM

5 1 1

6 2 3

7 4 4

8 8 9

9 21 16

10 64 36

11 170 70

12 515 160

13 1510
∗

337

Figure 1: Two possible non-equivalent decorations of the same cluster.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Δdimer

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

E R = 1.0

R = 1.4

R = 1.6

R = 1.8

R = 2.0

R = 2.2

R = 2.4

Figure 2: Plot of the total dimer energy 𝐸 as a function of separation of the dimer atoms Δ dimer.
The dashed line corresponds to an 𝐴𝐴 dimer; the solid lines plots correspond to 𝐵𝐵 dimers for
various 𝑅 values. Here and throughout energies are in units of 𝜖 and distance in units of 𝜎.
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Figure 3: Number of local minimaNLM of 3D BLJ structures obtained for several 𝑅 values, as
a function of the number of 𝐵 atoms.

LJ potential, that are summarized on Table 1, and obtain the non-equivalent dec-
orations. Two possible non-equivalent decorations are illustrated in Figure 1, and
this underlines the importance of the proper definition of the distance concept,
since the energy is not sufficient to discriminate properly.

Using thepotential givenbyEquation 7,whichessentiallymodifies the atomic
radius of species𝐵, we start by confirming the results by Takeuchi [15]. In Figure 2
we display as a reference, with dashed lines, the 𝑅 = 1 plot which corresponds
to the original LJ potential for species 𝐴; the solid lines are for 𝐵𝐵 dimers. The
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Figure 4:Minimal energy conformations for𝑁
𝐴
= 𝑁

𝐵
= 6, for different 𝑅 values. The gray

spheres are 𝐴 type atoms. The core-shell structure is quite apparent, as well as the
configuration change between 𝑅 = 2.2 and 𝑅 = 2.4.

 0  2  4  6  8  10
R=1.0, T=1.0

 0

 2

 4

 6

 8

 10

R
=

1.
0,

 T
=

1.
5

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

Figure 5: Illustration of the distance
between the different structures, as given
by the color code given on the right side,
for 𝑅 = 1 and two different values of 𝑇.

other plots illustrate the dimer energy for other 𝑅 values. However, as 𝑅 grows,
so does the range of the potential, and the position of the energy minimum [28].
The simple atomic volume change, as specified by the 𝑅 values, has a significant
impact on the number of minima of the potential, as shown in Figure 3.

Since our focus is on the diversity Figure 3 illustrates our central result: the
number ofminimaNLM for the all possible values of𝑁𝐴 and𝑁𝐵, obtained starting
from random 3D conformations. The first feature that becomes apparent is that
the number of minima of the BLJ structures is significantly larger than in the pure
cluster case. Figure 3 also shows that as𝑅 grows the number ofminimadecreases,
as a function of𝑁

𝐵
. Moreover, for even𝑁 values the symmetry is restored as𝑁

increases.
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Figure 6: Number of local minimaNLM of 2D BLJ structures obtained for several 𝑅 values, as
a function of the number of 𝐵 atoms. It is noticed that the non-symmetrical plot, especially
notorious for𝑁 = 5, is due to the fact that when the range of the potential varies it allows for
different minima to emerge, since the minimum energy interatomic distances change.

Whenwe compare the number of globalminimawith the ones in the literature
they are in full agreement [15]. Moreover, we obtained a set of different minima,
for each 𝑅, which can reach up to 105 for𝑁 = 12.

As mentioned above we have to use the distance between clusters concept
because the cluster energy is insufficient to discriminate among minimal energy
clusters. For example, for 𝑅 = 1 𝐴

4
𝐵
2
has the same energy as𝐴

2
𝐵
4
, and it is the

decoration that makes the difference. Here, and also from now on, we use the no-
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Figure 7: Top view of the minimal energy conformations of 2D structures for𝑁
𝐴
= 𝑁

𝐵
= 6, and

several 𝑅 values. The gray spheres that constitute the core are 𝐴 type atoms. The core-shell
structure is quite apparent.

tation 𝐴
𝑥
𝐵
𝑦
where 𝑥 is the number of 𝐴 atoms, and 𝑦 that of 𝐵 ones. It is worth

noticing that for 𝑅 = 1.4 there are 8minima for 𝐴
4
𝐵
2
and 9 for 𝐴

2
𝐵
4
. This is re-

lated to the core-shell structure of theminimumenergy conformations, which has
alreadybeen reported [15].Moreover, it is of interest that for𝑁 ≥10and for𝑅 > 2.0

there is a variation in the maximal number of minima. In the𝑁 = 12 case the 𝐴
atoms in the core change their ordering from a square base bipyrarmid to a differ-
ent structure, as illustrated in Figure 4, that has an energy of 0.4 below the global
LJ
6
minimum.
When similar calculations are carried out for 𝑅 = 1 but 𝑇 = 1.5 the number

of local minima for𝑁 = 6 does not change. That is, the number of minima in this
case is not affected by the change in the potential depth. However, the way the
structures order in energy does change. This is illustrated in Figure 5 where it is
observed that the same minima simply reorder, but keep their topology.

The FIRE minimization procedure is strictly local [23], and thus well suited to
study planar minimal energy structures by generating at random 2D seeds, and
allowing them to evolve freely. The results obtained in this way are illustrated in
Figure 6. As expected, there are much less 2D than 3D minima, a result already
reached by Rogan et al. [21, 22, 29, 30].Moreover, the plots for the various𝑅 values
are smoother than for 3D, with less anomalies and exceptions, but keeping the
core-shell arrangement, as illustrated in Figure 7.
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5 Conclusions
The problemof the diversity of binary nanoclusters has been investigated employ-
ing Lennard–Jones type potentials. In order to fully and precisely characterize the
minimal energy conformations the energy turns out to be insufficient to discrimi-
nate among the various minima. Therefore, we introduced a generalization of the
distance between cluster introduced by Grigoryan et al. [20], which is able to de-
scribe clusters of an arbitrary number of atoms and of atomic species. The diver-
sity of the minima is obtained by a systematic examination of the set of minimal
energy structures, as the BLJ 𝜎 parameters are varied, andmainly as a function of
the ratio 𝑅, that is given in Equation 9.

As 𝑅 increases the number of minima decreases, both in 2D and 3D. This is
due to the fact that as 𝑅 grows the interatomic distances also grow, and the sec-
ondnearest neighbor interactionsbecome relevant, thus adding constraints to the
problem. In addition, this also implies that segregation is energetically favorable,
with𝐴 typeatoms forminga core, and the𝐵 ones a shell, consistentwith the larger
effective radius of the latter. This was also recently observed by Takeuchi [15]. In-
spection of Figures 3 and 6 underlines the fact that the binary cluster distance con-
cept is necessary to differentiate between equal energy conformations, like𝐴

4
𝐵
2

and𝐴
2
𝐵
4
, for𝑅 = 1. Moreover, we also investigated the and𝑅 = 1.0,𝑇 = 1.5 case

and observed that the same minima simply reorder, but keep their topology.
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