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Summary

The human insulin receptor (IR) exists in two isoforms that differ by the ab-
sence (IR-A) or the presence (IR-B) of a 12-amino acid segment encoded by
exon 11. Both isoforms are functionally distinct regarding their binding affini-
ties and intracellular signalling. However, the underlying mechanisms related
to their cellular functions in several tissues are only partially understood. In
this review, we summarize the current knowledge in this field regarding the
alternative splicing of IR isoform, tissue-specific distribution and signalling
both in physiology and disease, with an emphasis on the human placenta in
gestational diabetes mellitus (GDM). Furthermore, we discuss the clinical
relevance of IR isoforms highlighted by findings that show altered insulin
signalling due to differential IR-A and IR-B expression in human placental
endothelium in GDM pregnancies. Future research and clinical studies focused
on the role of IR isoform signalling might provide novel therapeutic targets
for treating GDM to improve the adverse maternal and neonatal outcomes.
Copyright © 2015 John Wiley & Sons, Ltd.
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Introduction

Appreciation of the role of insulin in D-glucose homeostasis began with its dis-
covery in 1922 [1]. The ability of insulin to induce D-glucose uptake [2] results
from activating specific cell surface receptors on target tissues [3–5]. Insulin
triggers the translocation of isoform 4 of the D-glucose transporter (GLUT4)
to the plasma membrane in insulin-sensitive tissues [6,7]. However, both the
physiological and pathophysiological impact of insulin signalling, considering
the diversity of tissues, such as adipose tissue and skeletal muscle, upon which
this hormone acts, is not clearly understood [8]. The insulin receptor (IR)
exists in two splice variants, that is, IR A (IR-A) or B (IR-B), depending on
the absence or presence of a 12-amino acid segment (encoded by exon 11) at
the C-terminal of the extracellular α-subunit [5,9–11]. IR-A and IR-B are
functionally distinct regarding their binding affinities for insulin, receptors
internalization, receptors recycling time and intracellular signalling [12].
Additionally, IR-A and IR-B are expressed in a highly tissue-specific manner in
humans, with IR-B as the dominant isoform in classical insulin-sensitive tissues,
such as skeletal muscle, adipose tissue and liver, whereas IR-A is predominantly
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expressed in cancer tissue, brain, haematopoietic cells,
foetal tissue and the placenta [13].

Although a comprehensive understanding of the mecha-
nisms underlying insulin action in the placenta is emerging,
insulin impact in the human foetoplacental unit is
addressed, showing modulation of a wide range of cellular
processes, such as D-glucose [14,15], nucleoside [16–19],
and amino acid [20–23] transport, placental growth [24],
angiogenesis [25] and modulation of the expression of pla-
cental genes, both in trophoblast and endothelial cells [26].
Extensive experimental and clinical evidence indicates that
gestational diabetes mellitus (GDM), characterized by
D-glucose intolerance with onset or first recognition during
pregnancy [27], is associated with placental defective insu-
lin signalling [28,29] and elevated plasma adenosine in
human umbilical veins [16,18]. Interestingly, adenosine
and insulin cause concentration-dependent relaxation of
umbilical vein rings, an effect that is less effective in GDM
compared with normal pregnancies [16]. These findings
suggest that these molecules might play crucial roles in
regulating the vascular haemodynamics of human foeto-
placental circulation under physiological conditions or
insulin resistance states, such as GDM [29].

The biological effects of insulin are mediated by the
activation of IR-A and IR-B in human umbilical vein
endothelial cells (HUVECs) [17] and human placental
microvascular endothelial cells (hPMECs) [18]. In these
cell types, as in other mammalian cells, insulin-mediated
activation of IR-A is associated with a mitogenic, p44
and p42 kDa mitogen-activated protein kinases (p44/
42mapk)-mediated phenotypes, whereas IR-B activation is
associated with a metabolic, phosphatidylinositol 3-kinase
(PI3K)/Akt-mediated phenotype [17,29], raising new
questions regarding the complex interplay between
insulin signalling and human foetoplacental vasculature.
In this review, we summarize the current knowledge
regarding IR isoforms, focusing on their alternative spli-
cing, expression, ligand binding and signalling in several
tissues, with special emphasis on human foetoplacental
vascular function. New molecular mechanisms associated
with defective insulin signalling in GDM and therapeutic
considerations are also discussed.

Insulin receptor gene and alternative
splicing

The 22-exon gene encoding the human IR (INSR) is
located in chromosome 19 and was first cloned and
vsequenced in 1985 [5,9]. Subsequently, the presence of
two isoforms, which differ by the absence (IR-A) or inclu-
sion (IR-B) of 12 amino acids generated by alternative
splicing of exon 11, a 36 base-pair exon, was described

[10,11]. The regions of intron 10 and exon 11 involved
in the alternative splicing of the INSR have been identified
[30,31]. The splicing factors serine/arginine-rich protein
20 (SRp20) and serine/arginine-rich splicing factor 1
(SRSF1) increase exon 11 inclusion, whereas CUG-repeat
binding protein 1 (CUG-BP1) causes exon skipping. Thus,
the relative ratios of SRp20 and SRSF1 to CUG-BP1 in
different cell types determine the degree of exon inclusion
associated with stabilization of an RNA secondary struc-
ture that regulates IR alternative splicing [31]. Binding
of muscleblind-like 1 protein to the conserved element
in human intron 11 promotes IR exon 11 inclusion
[32,33]. In this context, the characterization of the mech-
anism by which muscleblind-like 1 protein activates inclu-
sion of IR exon 11 suggests the involvement of U2 small
nuclear ribonucleoprotein auxiliary factor 65 kDa subunit
(U2AF65) [34]. However, heterogeneous nuclear ribonu-
cleoproteins (hnRNPs) have also been associated with
the alternative splicing of IR. Inclusion of exon 11 is
promoted by the subtype hnRNPF, whereas hnRNPA1 is
associated with its exclusion [35]. Altogether, these
mechanisms of inclusion and exclusion of exon 11 in the
IR transcript result in structural and ligand binding affin-
ity differences between both isoforms [12].

Insulin receptor isoforms structure
and tissue distribution

The IR protein is a heterotetramer composed of two extra-
cellular α-subunits and two transmembrane β-subunits.
The α-chains and β-chains are both synthesized from
unique mRNA, which is constituted by 22 exons. INSR
mRNA encodes a protein of 1370 amino acids
(~154 kDa), which is cleaved by furin into an α-subunit
(723 amino acids, ~130 kDa) and a β-subunit (620 amino
acids, ~95 kDa). The extracellular portion of IR includes
the complete α-chain and a portion of 194 residues of
the β-chain, whereas the cytoplasmic domain is composed
of the other 403 residues of the β-chain, which contains
the tyrosine kinase activity. Ligand binding to the IR
α-subunit stimulates tyrosine kinase activity intrinsic to
the β-subunit of the receptor (Figure 1) [42–45]. These
topics have been recently covered in an excellent and
comprehensive review [46].

The alternative splicing of exon 11 in the expression of
IR-A and IR-B results in structural and therefore func-
tional differences between the isoforms. The 12-amino
acid segment confers different insulin ligand binding
properties to the IR isoforms, showing that insulin associ-
ation and dissociation from IR-A is faster than from IR-B
[47–49]. Subsequently, several experimental approaches
have been used for calculating the half maximal inhibitory
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concentration (IC50) values for ligand binding to IR iso-
forms. Insulin-like growth factor 1 (IGF-1) receptor-null
(R�) mouse embryonic fibroblasts cells expressing IR-A
(R�/IR-A) showed that IR-A, but not IR-B, is a high-
affinity receptor for IGF-2 (IC50~3 nmol/L) that binds
with similar IC50 to the classical IGF receptor 1 (IGFR-1)
[50]. IR-A/IR-B hybrids are randomly formed and exhibit
different ligand binding to insulin, IGF-1 and IGF-2 [51].
Moreover, given the high degree of homology, the insulin
and IGF-1 half-receptors (composed of one α-subunit and
one β-subunit) can form heterodimers, leading to the

formation of insulin/IGF-1 hybrid receptors (Hybrid-Rs)
[12]. IR-A and IR-B also form hybrids with IGFR-1, of
which hybrid IGFR-1/IR-B receptors (Hybrid-RsB) have
high affinity only for IGF-1, whereas hybrid IGFR-1/IR-A re-
ceptors (Hybrid-RsA) not only have higher affinity for IGF-1
but also bind IGF-2 and insulin [52]. However, studies in
Chinese hamster ovary cells suggest that IR-A–IGFR-1 and
IR-B–IGFR-1 hybrids have similar, relatively low affinity
binding for insulin and relatively high affinity for IGF-1 and
IGF-2 [53]. Additionally, similar findings were reported for
IR-A–IGFR-1 and IR-B–IGFR-1 hybrids in baby hamster

Figure 1. Insulin receptor gene, alternative splicing and tissue-specific distribution. Upper panel. The insulin receptor gene (INSR) is
located in chromosome 19 and contains 22 exons. Exclusion or inclusion of exon 11 at the INSR mRNA, which belongs to the insulin
receptor α-subunit (subunit A), generates two insulin receptor isoforms, IR-A or IR-B, respectively, that differ by a 12-amino acid
fragment at this subunit with a full insulin receptor β-subunit (subunit B) derived from exons 12–22. IR-A binds insulin and insu-
lin-like growth factor 2 (IGF-2), whereas IR-B binds only insulin. Lower panel. IR-A is predominantly expressed in differentiated
human intestinal epithelium, placental vascular cells, brain, ovary, and several types of cancer. IR-B is mainly expressed in skeletal
muscle, liver, kidney, adipose tissue, and thyroid gland. From [16,36–41]
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kidney cells [54]. Thus, the possibility that regulation of the
IR isoforms expression has implications in both insulin and
IGFs signalling under physiological and pathological condi-
tions is uncertain. Table 1 summarizes the currently available
data regarding IR isoforms, hybrids receptors and ligand spec-
ificity related to insulin, IGF-1 and IGF-2 in mammalian cells.

The IR promoter contains multiple transcription sites
and positive/negative regulatory elements [11,61–64],
suggesting that its expression is highly regulated in cells
in a developmental-specific and tissue-specific manner
[12]. Although typical insulin-responsive tissues include
the liver, adipose tissue and skeletal muscle, IR is ubiqui-
tously expressed in mammalian tissues; however, the
inclusion/exclusion of exon 11 is differentially regulated
in various tissues [12]. In human adult mammalian tis-
sues associated with the metabolic effects of insulin, such
as the liver, skeletal muscle, adipose tissue and kidney, the
IR-B/IR-A mRNA ratio is predominant, whereas in foetal
and cancer tissues where insulin acts as mitogenic agent,
the IR-A/IR-B mRNA ratio predominates (Figure 1 and
Table 2). Nevertheless, IR-A mRNA expression predomi-
nates in rat and mouse extensor digitorum longus and

soleus skeletal muscles [36], suggesting that tissue distri-
bution is not completely conserved among species. It was
also reported that the IR-A/IR-B mRNA ratios are con-
served in the liver and brain in mice, rats and pigs
[36]; however, this is not the case in the skeletal muscle
and adipose tissue, agreeing with findings in humans
[10], rhesus monkeys [49] and sheep [73]. Because each
tissue is composed of several morphologically and func-
tionally heterogeneous cells, that is, skeletal muscle
(slow-twitch and fast-twitch fibres), endothelium (micro-
vascular and macrovascular endothelial cells) and heart
(cardiomyocytes and fibroblasts), findings regarding the
expression of IR isoforms cannot be extrapolated without
considering the framework of the specific cell types and
tissues. The concept that IR isoform tissue distribution
is well-conserved among species and therefore is likely
to have distinctive functional roles may have to be
reconsidered and explored for clearer and better therapy
protocols, as recently discussed for patients with GDM
requiring insulin therapy [29]. The latter is based on
the fact that from a physiological and pathophysiological
point of view, the relative abundance of the IR isoforms
could be essential in regulating these receptor-specific
mitogenic/metabolic actions of insulin in target tissues.

Insulin receptor isoforms signalling in
physiology and disease

The biochemical processes related to insulin binding/
activation of IR and its complex signal transduction
networks that regulate diverse cellular function have been
well-documented [44,132]. Insulin binds to the extracel-
lular IR α-subunit, promoting its conformational change,
which subsequently generates autophosphorylation of
the IR β-subunit. The activated IR tyrosine kinase phos-
phorylates several intracellular substrates, including IR
substrate (IRS) and the Src homology 2 domain contain-
ing (Shc) family members serving as docking proteins
for downstream signalling [133]. Tyrosine phosphoryla-
tion of the IRS family members at multiple sites provides
docking sites for effectors containing Shc domains that
recognize different phosphotyrosine residues, including
PI3K and the growth factor receptor-bound protein 2
(Grb-2). Thus, two major signalling pathways mediate
metabolic or mitogenic effects in response to PI3K and
Grb-2 activation, respectively [132,133]. The PI3K/Akt
branch of insulin signalling regulates D-glucose metabo-
lism (D-glucose uptake, gluconeogenesis and glycogen
synthesis) in skeletal muscle, adipose tissue and liver
[8]. Moreover, increased activity of this signalling branch
caused by insulin leads to increased nitric oxide produc-
tion and vasodilatation in the vascular endothelium

Table 1. IC50 values for ligand binding to insulin receptor iso-
forms and hybrids

Receptor Insulin IGF-1 IGF-2 Reference

IR-A 0.8 — 3.0 [50]
0.9 41 — [48]
2.8 120 18 [55]
0.2 >30 0.9 [52]
0.3 9.0 2.2 [53]
0.5 65 6.2 [56]
0.4 68 — [57]
0.8 — — [58]
0.9 80 3.3 [59]
1.2 26 5.9 [60]

IR‐B 1.1 — 24 [50]
1.6 390 — [48]
1.4 366 68 [55]
0.3 >30 11 [52]
0.5 90 10 [53]
0.6 171 47 [56]
0.5 >100 — [57]
0.7 — — [58]
1.0 >100 36 [59]
0.6 41 12 [60]

IGFR-1/IR-A 3.7 0.3 0.6 [52]
IGFR-1/IR-B >100 2.5 15
IGFR-1/IR-A 70 0.5 0.7 [53]
IGFR-1/IR-B 76 0.3 0.3
IGFR-1/IR-A 2.6 0.02 — [54]
IGFR-1/IR-B 2.8 0.01 —

IR-A/IR-B 1.0 >50 10 [51]

Half maximal inhibitory concentration (IC50) values (given in nM) were
obtained using different experimental approaches (ligand competi-
tion assay or bioluminescence resonance energy transfer (BRET), intact
cells or solubilized receptors, incubation at 4 °C or room temperature
and 125I-insulin, Eu-labelled insulin or 125I-insulin-like growth factor
(IGF-1) as tracer). IGF-1, insulin-like growth factor 1; IGF-2, insulin-like
growth factor 2; IR-A, insulin receptor A; IR-B, insulin receptor B;
IGFR-1, IGF receptor 1; �, not determined.
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Table 2. Insulin receptor isoforms expression, signalling and related pathologies

Reported evidence References

Relative expression and tissue distribution
IR-B> IR-A in post-mitotic and differentiated cells from human intestinal epithelium at the villus
IR-A> IR-B in proliferating and undifferentiated cells from post-mitotic and differentiated cell from human intestinal
epithelium at the crypt

[37]

IR-A> IR-B in mouse aortic VSMCs [65]
IR-B> IR-A in mature human osteoblasts [66]
IR-A> IR-B in human osteoblast precursors
IR-A= IR-B in hPMECs from normal pregnancies [18]
IR-A> IR-B in human astrocytes [39]
IR-A> IR-B in rat and mouse brain, spleen, skeletal muscle (extensor digitorum longus and soleus) [36]
IR-B> IR-A in rat and mouse epididymal adipose tissue, liver and kidney
IR-A= IR-B in rat and mouse mesenteric and retroperitoneal adipose tissue, and heart
IR-A> IR-B in HUVECs from normal pregnancies [16]
IR-B> IR-A in adult and prenatal mouse liver [67]
IR-B> IR-A in human thyroid [40]
IR-B> IR-A in differentiated mouse mammary gland [68]
IR-A> IR-B in rat skeletal muscle (soleus and white quadriceps) pancreas and rat pre-adipocytes [69]
IR-B> IR-A in rat liver, epididymal white adipose tissue, brown adipose tissue, and kidney
IR-A> IR-B in human ovarian follicles [70]
IR-A> IR-B in human mural granulosa and cumulus cells [70]
IR-A> IR-B in bovine corpora lutea [71]
IR-B> IR-A in bovine late luteal stage and during early pregnancy
IR-B> IR-A in human skeletal muscle [38]
IR-B> IR-A in rat liver and kidney [72]
IR-A> IR-B in rat pancreas, sciatic nerve, anterior tibial muscle, dorsal root ganglion, spinal cord and brain
IR-A> IR-B in human fetal fibroblasts [50]
IR-B> IR-A in human adult fibroblasts
IR-B= IR-A in ovine liver and skeletal muscle (rectus capitis and longissimus dorsi) [73]
IR-B> IR-A in rat liver, adipose tissue, kidney and adrenal gland [74]
IR-A> IR-B in rat cerebral cortex, hypothalamus and skeletal muscle
IR-A> IR-B in rat skeletal muscle [75]
IR-B> IR-A in rat liver [75,76]
IR-A> IR-B in human skeletal muscle [77,78]
IR-B> IR-A in human quadriceps femoris muscle [79]
IR-B> IR-A in human liver [80,81]
IR-A> IR-B in human leukocytes
IR-A= IR-B in human placenta, skeletal muscle and adipose tissue
IR-A> IR-B in human muscle, adipocytes and fibroblasts [81]

Insulin signalling
IR-A and IR-B maturation depends on furin [82]
IR-B is matured by proprotein convertase PACE4 when furin activity is reduced
IGF-2/IR-A pathway is downregulated by decorin [83]
F19A/IR-A pathway promotes neural stem cell expansion [84]
IR-A, but not IR-B, associates with proliferative phenotype in VSMCs in response to proatherogenic stimuli
(TNF-α, Ang II, ET-1, U46619)

[65]

IR-A trafficking and stability is differentially regulated by IGF-2 and insulin [85]
Proinsulin/IR-A pathway promotes cell proliferation and migration via ERK/p70S6 kinase [59]
Identification of IR-A substrates recruited after insulin exposure [86–88]
Insulin/IR-A pathway promotes pancreatic β-cell signal transduction via PI3K-C2α/Akt [89]
IGF-2/IR-A pathway promote p70S6 kinase, and ERK and Akt activation [90]
IR-A and IR-B modulate the susceptibility to apoptosis in mouse immortalized neonatal hepatocytes [91]
Insulin/IR-B pathway induces transcription of GK via PI3K-C2α–like/PDK1/Akt [92]
Insulin/IR-B pathway induces transcription of c-fos genes via PI3K class Ia/Shc/MEK1/ERK
IGF-2 C domain is critical for signalling, cell survival, and migration induced by IGF-2/IR-A pathway [93]
Insulin/IR-A pathway promotes activation of the insulin promoter [94]
Insulin/IR-B pathway promotes activation of the β-GK promoter
IR-A and IR-B exhibit different plasma membrane domains
IR-A is downregulated by prostaglandin F2α in bovine corpora lutea [71]
IGF-2/IR-A pathway induces nuclear IRS-1 translocation and relates to mitogenic and antiapoptotic signals [95]
Insulin/IR-B pathway promotes differentiation signals
IGF-2/IR-A pathway promotes cell migration via Shc/ERK [96]
Insulin/IR-B pathway blocks apoptosis via PI3K/Akt
IGF-2/IR-A pathway is associated with Akt/Gsk3β activation [97]
Insulin/IR-B pathway induces transcription of GK via PI3K class II–like activity/Akt [94]
Insulin/IR-A pathway induces insulin transcription via PI3K class Ia/p70S6 kinase
IGF-2 binds and activates IR-A, but not IR-B [50]
Insulin/IR-A pathway promotes metabolic effects
IGF-2/IR-A pathway induces mitogenic effects

(continues)
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Table 2. (continued)

Reported evidence References

Faster IR-A internalization and recycling induced by pp120 compared with IR-B [98,99]
IR-B is upregulated by dexamethasone in HepG2 cells [100]
IR-B exhibits higher tyrosine kinase activity than IR-A in response to insulin [101]
Insulin stimulates PLC activity by signalling via IR-A and IR-B [102]
Insulin stimulates PI3K activity by signalling via IR-A and IR-B [103]
Insulin affinity is higher for IR-A compared with IR-B [49]

Cancer
IR-A> IR-B in human colorectal adenoma in patients with high plasma insulin [41]
IR-A> IR-B in human non-small cell lung cancers [104]
IR-A overexpression in human hepatoma carcinoma cells associates with upregulation of CUGBP1,
hnRNPH, hnRNPA1, hnRNPA2B1, and SRSF1

[105]

IR-B overexpression reduces proliferation in human intestinal and colorectal cancer cell lines [37]
IR-A> IR-B in human endometrial carcinoma [106]
IR-A> IR-B in human prostate cancer [107]
IR-A> IR-B in human breast cancer [108,109]
IR-A> IR-B in human thyroid cancer cells [40]
IR-A knockdown promotes formation of IGFR-1 homodimers and enhances the viability in human colorectal cancer cell lines [110]
Insulin activates ERK and Akt pathways via IR-A and increase cell proliferation in a human acute myeloid
leukaemia cell line

[111]

IR-A> IR-B in human osteosarcoma [112]
Inhibition of IR-A signalling restores sensitivity to gefitinib in resistant colon cancer line cells [113]
IR-B> IR-A in seminoma testis tissue [114]
IR-B> IR-A in ovarian carcinoma cell lines associates with proliferation after IGF-2 stimulation [115]
IR-B> IR-A in thyroid cancer cells associates with mitogenic effects and tumour de-differentiation after IGF-2 stimulation [116]
IR-B> IR-A in human breast cancer associates with mitogenic effects after IGF-2 stimulation [117]
IR-B> IR-A in human breast, lung and colon cancer [50]

Myotonic dystrophy
IR-B expression is lower in type 1 and type 2 skeletal muscle from MD1 and MD2 patients [118]
IR-B expression is lower in vastus lateralis muscle from MD1 and MD2 patients [119,120]
IR-B expression is lower in skeletal muscle from MD1 patients associated with impaired metabolic responsiveness to insulin [38]

Diabetes
Insulin restores GDM–reduced adenosine transport via IR-A in HUVECs [17]
Reduced hENT2-adenosine transport in hPMECs from GDM is reverse by insulin involving IR-A and IR-B activation [18]
IR-A expression is higher in HUVECs from GDM compared with normal pregnancies, whereas the IR-B
expression is unaltered

[16]

IR-A and IR-B unaltered expression in skeletal muscle and liver of diabetic rats [75]
IR-A> IR-B in liver from T2DM monkeys [121]
IR-B expression is higher in fat and muscle from obese and T2DM patients [122]
IR-A= IR-B in muscle from STZ-induced diabetic rats [123]
IR-A expression is higher in vastus lateralis muscle from T2DM monkeys [124]
IR-A expression is higher in skeletal muscle from T2DM patients [125]
IR-B expression is higher in skeletal muscle from T2DM patients [77–79,126]
IR-A= IR-B in skeletal muscle from lean, obese and T2DM patients [127]
IR-A= IR-B in skeletal muscle from T2DM patients [80]
IR-B expression is higher in isolated adipocytes from T2DM patients [128]

Insulin analogues
GLA-M1 correlates with serum-induced IR-A, but not IR-B expression [129]
GLA does not alters IGF via IR signalling in long-term insulin therapy in T2DM
INS-A/IR-A pathway promotes muscle glycogen synthesis [36]
INS-B/IR-B pathway promotes glycogen accumulation and lipogenesis in hepatocytes and adipocytes
Glargine and detemir increase cell proliferation via IR-A/ERK pathway [57]
X-10/IR-A induces higher mitogenic pathway compared with insulin [130]
S597/IR-A induces glycogen synthesis that is comparable with activation by insulin via Akt in rat muscle L6 cells [131]

IR-A, insulin receptor A; IR-B, insulin receptor B; VSMCs, vascular smooth muscle cells; hPMECs, human placental microvascular endo-
thelial cells; HUVECs, human umbilical vein endothelial cells; PACE4, paired basic amino acid-cleaving enzyme 4; IGF-2, insulin-like
growth factor 2; F19A, IGF-2 analogue; TNF-α, tumour necrosis factor α; Ang 2, angiotensin 2; ET-1, endothelin 1; U46619, prostaglan-
din H2/thromboxane A2 receptor agonist; ERK, extracellular-signal-regulated kinases; p70S6 kinase, 70 kDa ribosomal protein S6
kinase; PI3K, phosphatidylinositol 3-kinase; PI3K-C2α, PI3K class II α-isoform; Akt, protein kinase B; GK, glucokinase; PDK1, pyruvate
dehydrogenase lipoamide kinase isozyme 1; Shc, Src homology 2 domain-containing transforming protein 1; MEK1, mitogen-activated
protein kinase 1; β-GK, beta-cell-specific glucokinase; IRS-1, insulin receptor substrate 1; Gsk3β, glycogen synthase kinase 3 beta;
pp120, 120-kDa glycoprotein substrate; PLC, phospholipase C; HepG2, human hepatocellular liver carcinoma cell line; CUG-BP1,
CUG-repeat binding protein 1; hnRNPH, heterogeneous nuclear ribonucleoprotein H; hnRNPHA1, hnRNPH A1; hnRNPHA2B1, hnRNPH
A2B1; SRSF1, serine/arginine-rich splicing factor 1; IGFR-1, IGF receptor 1; MD1, myotonic dystrophy type 1; MD2, myotonic dystrophy
type 2; GDM, gestational diabetes mellitus; T2DM, type 2 diabetes mellitus; STZ, streptozotocin; GLA-M1, glargine metabolite M1;
INS-A, insulin receptor A analogue; INS-B, insulin receptor B analogue; Detemir, X-10 and S597 are insulin analogues.

Insulin receptors and diabetes 355

Copyright © 2015 John Wiley & Sons, Ltd. Diabetes Metab Res Rev 2016; 32: 350–365.
DOI: 10.1002/dmrr



[16,134,135]. In addition, the Grb-2/p44/42mapk branch
ubiquitously regulates gene transcription, protein synthe-
sis, cell growth and differentiation, and also controls the
secretion of vasoconstrictor endothelin-1 in endothelial
cells [12,136]. Thus, the differential action of insulin on
IR subtypes causes a differential regulation of these
phenomena [17,29].

Activation of IR-A by the 120-kDa glycoprotein sub-
strate (pp120) undergoes faster internalization and
recycling compared with IR-B in NIH3T3 fibroblasts
[98,99] and is differentially regulated by IGF-2 and insu-
lin [85]. In addition, IGF-2 binding to IR-A is associated
with stimulation of cell growth and invasion and nuclear
IRS type 1 (IRS-1) translocation [50,95], whereas IR-B,
which does not bind IGF-2, is associated with differentia-
tion and metabolic signals following insulin stimulation
[95]. In human uterine leiomyosarcoma-derived cells,
IGF-2 via IR-A was a more potent activator of the
Shc/p44/42mapk signalling pathway and stimulator of cell
migration than insulin, whereas this hormone was a more
potent stimulator of the PI3K/Akt pathway and a better
protector from apoptosis [96]. In R�/IR-A, IGF-2 induces
mitogenic effects associated with Akt/glycogen synthase
kinase-3β (Akt/Gsk3β) activation [97]; however, it also
stimulates p70S6 kinase (p70S6K), p44/42mapk and Akt
[90]. These findings suggest a complex role of IR-A, in ad-
dition to eliciting a unique signalling pattern after IGF-2
binding. In pancreatic β-cell lines, glucokinase (GK) gene
transcription is promoted by insulin through IR-B/PI3K
class II-like activity/Akt, whereas insulin expression is
regulated through PI3K class Ia/p70s6k [94], which is
attributed to the different localization of IR isoforms at
the plasma membrane subdomains [137]. It was recently
shown that both IR isoforms are cleaved by the protein
convertase furin; however, when its activity is reduced,
the paired basic amino acid-cleaving enzyme 4 promotes
IR-B maturation, highlighting the importance of pharma-
cological inhibition of furin to modulate the IR-A-induced
mitogenic effects [82]. In addition, the proteoglycan
decorin significantly inhibited IGF-2–mediated activation
of the Akt signalling pathways, without affecting insulin
and proinsulin-dependent signalling in R�/IR-A cells. Thus,
decorin activity might play a pivotal role in tumour
initiation/progression in cancer cells, which exhibit in-
creased IGF-2/IR-A signalling pathway activity [83].

Several types of cancer have been associated with IR-A
overexpression (Figure 1 and Table 2). IGF-2 binds with
high affinity to IR-A, promoting its activation and mito-
genic, rather than metabolic, effects in breast, colon and
lung human carcinoma [50]. Human acute myeloid
leukaemia cell lines incubated with insulin exhibit in-
creased cell proliferation through the p44/42mapk and
Akt signalling pathways via a mechanism that involves
activation of IR-A [111]. Conversely, inhibition of IR-A

signalling restored sensitivity to gefitinib, an epidermal
growth factor receptor tyrosine kinase inhibitor [113],
and elevated IR-B expression reduced the proliferation
of human colon cancer cell lines [37]. Recently, it was
reported that IR-A overexpression is associated with
upregulation of the splicing factors CUG-BP1, hnRNPH,
hnRNPA1, hnRNPA2B1 and SRSF1 in human haepatoma
carcinoma cells [105], which have also been related to
myotonic dystrophy type 1-associated aberrant IR splicing
[38,138]. Myotonic dystrophy type 1 is characterized by
lower IR-B expression in skeletal muscles (Figure 2 and
Table 2), muscle hyperexcitability (myotonia), progressive
muscle wasting, cardiac conduction defects, cataracts,
alterations in smooth muscle function, neuropsychiatric
disturbances and insulin resistance [38].

Studies evaluating whether IR isoform regulation could
be associated with insulin resistance and type 2 diabetes
mellitus (T2DM) have yielded inconsistent results
(Figure 2 and Table 2), possibly because T2DM is a het-
erogeneous and complex disease with variable levels of
insulin resistance. The patient age and body mass index,
as well as different therapies (i.e. insulin, insulin analo-
gous, insulin sensitizers, controlled calories ingest and
physical activity), influence IR isoform expression. Unfortu-
nately, given this level of complexity, the available data are
not sufficient to draw a firm conclusion on the role, if any,
of IR isoforms in T2DM and insulin resistance. However, IR
isoforms might play a crucial role in maintaining the insulin
signalling cascades in the microvascular and macrovascular
endothelium in the human foetoplacental unit in GDM
[16–18,29].

Figure 2. The pie chart expresses the evidence collected from
state-of-the-art research for the past 30 years (from PubMed
database; http://www.ncbi.nlm.nih.gov/pubmed/). The chart
shows the percentage of the predominant topics (signalling, tis-
sue expression, cancer, diabetes, dystrophy and analogues) re-
ported in 96 original research articles
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Insulin signalling in the human placenta

The placenta is an organ of foetal origin that acts as a
selective natural barrier between maternal and foetal cir-
culation and is essential for foetal growth and develop-
ment [139]. During its transient existence, the placenta
performs a wide range of functions, such as transport of
maternal O2 and other nutrients to the foetus, synthesis
of several hormones and release of growth factors that
may affect the mother, the foetus or both [140,141].
Placental growth and development is associated with
trophoblasts-dependent proliferation and differentiation
processes and with endothelium-dependent angiogenesis
and vascularization in the first and the second half of
the gestational period [142]. In addition, a wide range
of hormones, cytokines and growth factors narrowly regu-
lates placenta formation and development and substrate
uptake of the maternal and foetal circulation in close con-
tact with trophoblasts and endothelial cells. Transgenic
mice expressing human placental growth hormone
(hPGH) at levels that are comparable with those in the
third trimester of human pregnancy display severe insulin
resistance [143]. Expression of hPGH was associated with
higher expression of the p85α monomer of PI3K, which
competes in a dominant negative manner with the
p85-p110 heterodimer, resulting in marked reduction in
IRS-1/PI3K kinase activity [144]. Moreover, a prospective
observational cross-sectional study including 180 normal
pregnant women showed that maternal hormonal and
metabolic factors related to the placenta, adipose tissue
and the growth hormone axis are associated with the
variation in insulin sensitivity seen during normal human
pregnancy [145]. Altogether, these effects might explain
the development of maternal pregnancy-induced insulin
resistance, a pivotal physiological process designed to
limit maternal D-glucose uptake, ensuring a proper supply
of nutrients to the growing foetus. However, none of these
studies characterized the potential differential involve-
ment of the IR isoforms in these phenomena.

The placenta expresses high amounts of IR compared
with other tissues, and its location undergoes develop-
mental changes. At the beginning of gestation, IR is
mainly located in trophoblasts, whereas at term, it is
predominantly found at the endothelium [146–148]. Un-
fortunately, previous research did not study whether both
IR-A and IR-B account for this distribution in the placenta
or whether one form predominates. However, the spatio-
temporal shift in the IR expression has been associated
with different insulin-induced intracellular signalling
depending on the placental cell type [141]. Signalling
associated with the IR-A or IR-B forms is different in
placenta endothelial cells [16–18]. In this context, insulin
induced the expression of 236 genes in human primary
trophoblasts in the first trimester (HPTs-ft), whereas only

the expression of six genes was induced in human primary
trophoblasts in term (HPTs-tp) placenta. Conversely, 146
transcripts were regulated by insulin in human placental
endothelial cells, suggesting that the shift regarding the
control of insulin-dependent processes throughout preg-
nancy might regulate placental insulin effects from
mother to foetus [26].

The insulin effect in human placental trophoblasts is
not fully elucidated [29,149]. In this regard, insulin
increases D-glucose uptake [150] and lipid deposition
[151], but does not alter L-alanine transport in HPTs-ft
[150]. However, insulin increased both L-alanine and
L-leucine in HPTs-tp via a mechanism that is mediated
by the mammalian target of rapamycin (mTOR) [152].
Insulin increased D-glucose uptake but decreased the
human chorionic gonadotrophin (hCG) secretion in the
first trimester, but not in term placenta explants [153],
showing that its effect depends on the placenta develop-
mental stage. Accordingly, insulin increases the expres-
sion of the membrane-type matrix-metalloproteinase 1
in HPTs-ft [154], a process that might be crucial for
placental tissue remodelling. Conversely, in HPTs-tp,
interleukin-1β (IL-1β) caused inhibition of insulin-
stimulated L-arginine, but not L-leucine uptake, which
was associated with higher phosphorylation of IRS-1 at
Ser307 (inhibitory residue), lower total IRS-1 protein
abundance and unaltered IR β-subunit expression [22].
Other studies show that adipose tissue-derived
adiponectin is associated with insulin-sensitizing action
in the liver and muscle and inhibits the insulin-stimulated
L-alanine transport in HPTs-tp [155], following activation
of placental peroxisome proliferator-activated receptor α
(PPARα) and ceramide synthesis [156]. This information
reinforces the concept that adiponectin and IL-1β play
pivotal roles in foetal growth/development by reducing
the insulin-regulated placental amino acid transport.
The latter might be a link between GDM and/or maternal
obesity or excessive pregnancy weight gain and defective
placental insulin signalling in the foetoplacental vascula-
ture [157]. Lower DNA methylation in the promoter of
the adiponectin gene (ADIPOQ) on the foetal and mater-
nal sides of the placenta was correlated with higher
maternal D-glucose concentration and higher insulin
resistance index throughout pregnancy, suggesting that
epigenetic changes in ADIPOQ might be one of the
mechanisms involved in the foetal programming of
metabolic disorders in adult life [158]. Insulin induces
2785 and 87 genes in HPTs-ft from lean and obese women,
respectively [159]. These results highlight the role of
insulin in early gestation and show the impact of maternal
obesity on insulin-regulated placental gene expression.

In term placenta, insulin has a stronger effect on the
endothelium than in trophoblasts because the majority of
placental IR is located in this cell type [26]. Insulin
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regulates genes related to growth factors, the cell cycle
and apoptosis, suggesting a metabolic/mitogenic effect in
human placental endothelial cells (HPECs) [26]. Insulin
and IGF-2 also induce membrane-type matrix-
metalloproteinase 1 expression in HPECs; however, this
effect is absent in cells treated with wortmannin (PI3K
inhibitor) but not with U0126 (p44/42mapk inhibitor),
suggesting the involvement of IR-A in response to this
hormone [159]. Moreover, insulin induces a metabolic
effect by increasing L-arginine transport via human
cationic amino acid transporter 1 in human umbilical vein
endothelium from normal pregnancies [23], which
requires functional A2A adenosine receptor (A2AAR) acti-
vation to lead to human umbilical vein ring dilation [20].
Accordingly, placental vascular function in response to
insulin might be dependent on adenosine receptor activa-
tion. In the absence of autonomic innervation, vasomotor
control of foetoplacental circulation is regulated by the
release of local vasoactive factors. In this regard, human
equilibrative nucleoside transporter 2 (hENT2)-mediated
adenosine transport is reduced in IR-A knockdown (KDIR-A)
hPMECs from normal pregnancies stimulated with insulin
[18]. However, the insulin-reduced hENT1-mediated adeno-
sine transport in HUVECs from normal pregnancies was
blocked both in KDIR-A and IR-B knockdown (KDIR-B) cells
[17]. These findings suggest that the insulin effect on
microvascular and macrovascular endothelial cells involves
a different expression pattern of IR isoforms, confirming the
differences in the functionality of these types of endothelial
cells in the human placenta [29,149,160]. Cell signalling
mechanisms involved in the reduced activity of hENT2 in re-
sponse to stimulation of hPMECs with insulin are associated
with a p44/42mapk/Akt ratio >1, supporting the need for
the expression of IR-A in this cell type to mediate the insulin
effect in this particular phenomenon. In HUVECs exposed to
insulin, p44/42mapk/Akt was ~1, suggesting equal or bal-
anced cell signalling associated with IR-A and IR-B activation
by this hormone in this cell type.

Placental defective insulin signalling in
gestational diabetes mellitus

The state of insulin resistance described in normal preg-
nancy has been related to a decrease in insulin signalling
pathways associated with several hormonal and metabolic
factors [145], including maternal tumour necrosis factor-α
(TNF-α) [161], a phenomenon reversed postpartum [28].
Conversely, in GDM, insulin resistance is exacerbated be-
cause of increased TNF-α, leptin and resistin plasma levels
[142,161]. In addition, GDM women with impaired glucose
tolerance postpartum have insulin resistance at the skeletal
muscle, which is associated with high risk of developing
T2DM [162]. GDM leads to adverse maternal and neonatal

outcomes [163,164] and defective placental insulin signal-
ling [16–18,140,165]. Despite the impaired action of insulin
and differential IR form activation and subsequent cell
signalling described earlier, studies in humans and primates
have reported that hyperinsulinemia is correlated with
higher birth weight [166,167] and contributes to a larger
placental glycogen content [168], highlighting the role of
insulin either as a mitogenic or metabolic placental factor.

Differential expression of IR, IRS-1 and PI3K p85α is
reported between the apical (maternal side) and basal
(foetal side) membrane of the trophoblasts in normal or
GDM pregnancies [169] and in abdominal subcutaneous
adipose tissue from GDM women [170]. These findings
are related to the reported decrease in D-glucose uptake
seen in the placenta in GDM pregnancies [171,172].
Differential expression of IRS-1, IRS-2, PI3K p85α, PI3K
p110α, GLUT-1 and GLUT-4 in the placenta in normal or
GDM pregnancies has been shown; however, these
changes were treatment-dependent (diet-controlled or
insulin-controlled GDM) and/or associated with GDM
and maternal obesity [165]. The effectiveness of insulin
therapy of pregnant women with GDM that are unrespon-
sive to diet, in terms of glycaemia control, is not fully un-
derstood [29]. Indeed, there is no information regarding
insulin therapy and foetal outcome in terms of foetal endo-
thelial dysfunction [29,173–175]. Thus, the role of IR
forms in this intervention in patients and the consequences
for foetoplacental vascular function is unknown [29].

The fact that placental hypervascularization is induced
by angiogenesis in GDM [176] highlights the role of the
insulin/IR axis in placenta vascular growth [25,177]. In
addition, placenta vascular alterations [160], in both the
macrovascular and microvascular endothelium [149] in
GDM, are well-documented. Insulin and adenosine cause
relaxation of umbilical vein rings, an effect that is less
common in GDM compared with normal pregnancies
and is blocked by ZM-214385, an A2AAR antagonist
[178], and NG-nitro-L-arginine methyl ester (L-NAME, a
nitric oxide synthase inhibitor) [179]. Moreover, the
adenosine concentration in the umbilical vein blood in
GDM was higher than in normal pregnancies, suggesting
that abnormal adenosine plasma levels and A2AAR play
critical roles in GDM [16]. Increased A2BAR expression
in leukocytes is associated with hyperglycaemia in GDM
women [180]. Moreover, A2BAR expression was shown
to correlate with altered expression of 19 genes involved
in insulin signalling, including insulin action, D-glucose
and lipid metabolism, oxidative stress and inflammation
[180]. HUVECs from GDM pregnancies show lower
expression and activity of hENT1 [16,181,182] and
accumulate extracellular adenosine in vitro [16], which
is associated with the A2AAR-dependent increase in eNOS
and p42/44mapk activity [183]. Because insulin reverses
the GDM-reduced hENT1-mediated adenosine transport
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[16] involving the expression and activation of IR-A and
requiring normal p42/44mapk/Akt signalling in HUVECs
(Figure 3) [17] and because insulin restores the GDM-
reduced, hENT2-mediated adenosine transport requiring
both IR isoforms in hPMECs [18], it is likely that these
IR isoforms play differential roles, depending on the vas-
cular bed the endothelial cells are from and on which
insulin is acting. More recently, it was shown that insulin
reverses GDM-increased L-arginine and nitric oxide
synthesis in HUVECs [E Guzmán-Gutiérrez, L Sobrevia,
unpublished]. This phenomenon is due to activation of
IR-A requiring A1AR instead of A2AR as in this cell type in
normal pregnancies. Thus, adenosine receptors and IR act
in concert depending on whether the cells are from GDM
or normal pregnancies, which demonstrates the differential
biological effect of insulin in the macrovascular and the
microvascular endothelium of the human placenta [29].

Concluding remarks, perspectives and
open questions
Despite the evidence available regarding IR isoforms,
there are many open questions that require answers in
order to understand the precise differential roles of these
receptors both in health and disease. A better understand-
ing of the apparent controversial studies about the
relative IR-A/IR-B expression ratio among species, organs
and cells in the several pathologies is essential. Additional
studies are therefore required to determine the specific
roles of IR isoforms in the regulation of tissue-specific
insulin sensitivity, which should provide new detailed
insight into the complex relationship described, for
example, in cancer and diabetes mellitus [186]. Pregnant
women that are diagnosed with GDM have higher risk of
developing postpartum T2DM [187]. At the same time,

Figure 3. Proposed model for the requirement of IR-A by insulin to reverse gestational diabetes mellitus (GDM)–reduced
hENT1-mediated adenosine transport. Left panel. In human umbilical vein endothelial cells (HUVECs) obtained from GDM and
exposed to basal levels of insulin (Basal state), the expression of insulin receptor A (IR-A) is higher than IR-B and higher than in
HUVECs from normal pregnancies. In GDM, the circulating concentration of adenosine (Ado) in the umbilical vein is higher than in
normal pregnancies, a finding that is proposed to result from lower Øplasma membrane. Reduced adenosine transport via this mem-
brane transporter isoform results from a reduced (⇩) hENT1 protein abundance due to reduced hENT1mRNA and lower transcription
of SLC29A1 (for hENT1) in this cell type. This phenomenon could result from activation of adenosine receptors (ARs), which, via
increased phosphorylation (P)–dependent activity of the endothelial nitric oxide synthase (eNOS), leads to higher (⇧) p44/42mapk

activity with non-significant modifications in the protein kinase B/Akt (pAKT) activity. Activated p44/42mapk inhibits (⊥) SLC29A1
expression in HUVECs from GDM. Right panel. In the presence of insulin at a concentration over the basal condition (Insulin), IR-A
expression is reversed to the values in HUVECs under basal conditions. Additionally, insulin causes phosphorylation of IR-A and
IR-B, activating Akt by phosphorylation (pAKT) and reducing p44/42mapk phosphorylation, thus reducing the inhibitory effect on
SLC29A1 expression and allowing this gene to generate normal hENT1 mRNA and hENT1 protein abundance and location at the
plasma membrane. Therefore, hENT1–mediated adenosine transport is restored, normalizing the extracellular level of adenosine
and reducing the effect of this nucleoside on ARs. Additionally, a physiological extracellular level of adenosine is required (?) to
facilitate the insulin biological effect via IR-A and/or IR-B in HUVECs from GDM. From [16–18,20,29,135,165,178,181–185]
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GDM confers future risk of T2DM and obesity to the devel-
oping foetus through ‘developmental programming’ [188].
To date, DNA methylation variable positions have been
identified in 1485 samples of cord blood and 1708 placenta
samples from GDM pregnancies [189], and 127 genes
(i.e. growth factors and insulin signalling proteins) are
differentially expressed in HUVECs from this disease
[190]. In addition, microRNA-101 (miR-101) was related
with GDM-impaired endothelial function in HUVECs
[191]. Thus, one of the unanswered questions is whether
miR-101 could be used as a predictive biomarker or target
for potential therapies in GDM. In addition, no information
is available regarding a potential mechanistic link between
miR-101 and insulin signalling pathways in GDM. Thus,
the concept that GDM alters the foetoplacental unit, playing
a role in foetal programming, is proposed. In addition,
whether altered IR alternative splicing and downstream sig-
nalling pathways have a pathophysiological role in human
placental tissue in GDM pregnancies and how they affect
the normal endothelial function during pregnancy remain
to be elucidated. We propose that future research should
be conducted considering the fact that placental endothe-
lial cells are heterogeneous in their genotype and pheno-
type, even throughout the same vascular bed [140].

In a recent study, it was reported that the insulin-
analogue glargine (GLA) metabolite 1 (GLA-M1) was
found in circulation in patients with T2DM after long-
term GLA therapy and is correlated with serum-induced
IR-A, but not IR-B, activation. In addition, GLA did not
increase IGFR-1 signalling during long-term insulin
therapy in T2DM [129]. Thus, a new perspective in
the treatment of GDM patients could be considered. Fur-
thermore, evaluation of insulin analogues in the clinical
treatment of GDM patients [192,193] and their effects
on IR isoforms in different experimental models might
be useful to reduce vascular function alterations in the
mother and the foetus suffering from this disease. A
recent study performed in blood samples from 390
children whose mothers were diagnosed with mild
GDM during the pregnancy revealed that a randomized

treatment trial for mild GDM was associated with lower
fasting D-glucose levels in female but not in male off-
spring at ages 5–10 years [194]. Thus, the physiological
differences of sex among the offspring might be a field for
future research and clinical studies related to GDM. An-
other research line is adenosine regulation of insulin signal-
ling in several tissues, including the placenta [16,20],
pancreas, adipose tissue, muscle and liver [184], under
physiological conditions. Nevertheless, adenosine could
also contribute to endothelial dysfunction in HUVECs from
GDM pregnancies [183]. However, because A2AAR [20,21]
in GDM and A2BAR [21] in preeclampsia are required for
insulin biological effects in the human foetoplacental
endothelium, a potential beneficial role of this nucleoside
is under consideration [29,149]. Thus, an open question is
the potential impact of adenosine biological effects on pla-
cental insulin signalling in GDM. In addition, the involve-
ment of the subtypes of the adenosine receptors and/or IR
isoforms in the effect of adenosine in GDM is unknown.
Answers to these questions will help to elucidate the com-
plex interplay among adenosine receptors and the insulin
receptor subtypes as key pieces of the adenosine/insulin
axis [29,149,184,185], leading to endothelial dysfunction
in the GDM-puzzle.
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