Tabla de contenido

1.	1.1. Los fluidos perfectos y la ecuación de Euler] ;; ;;
2.	Análisis local del campo de velocidad 2.1. El concepto de vorticidad	
3.	La ecuación de Euler incompresible en el caso bidimensional 3.1. Formulación en términos de la vorticidad y la función de corriente 3.2. Resultados clásicos de existencia, unicidad y regularidad	12 13 15
4.	La ecuación de Euler incompresible y tridimensional 4.1. Flujos tridimensionales axisimétricos	18 18 21 23
5.	La búsqueda de soluciones singulares de la ecuación de Euler tridimensional 5.1. Eventos destacados en la búsqueda de potenciales soluciones singulares 5.2. Modelos unidimensionales para la ecuación de vorticidad tridimensional 5.2.1. Integración del modelo unidimensional y quiebre explícito de la regularidad de sus soluciones	30 32 38 41 45
6.	Experimento numérico de Luo y Hou 6.1. Descripción del problema	49 50 52 55
7.	Análisis del <i>ansatz</i> auto - similar de Luo y Hou 7.1. El ansatz de Luo y Hou genera dos familias de soluciones	61 62 68

8.	La e	ecuación de Navier - Stokes incompresible	7 9
	8.1.	El concepto de solución (formulación débil)	81
	8.2.	La evolución de la vorticidad y formulaciones alternativas de la ecuación de	
		Navier - Stokes	83
	8.3.	Existencia, unicidad y regularidad de soluciones de la ecuación de Navier -	
		Stokes incompresible	86
		8.3.1. Unicidad y regularidad en el caso bidimensional	86
		8.3.2. Unicidad y regularidad en el caso tridimensional	87
	8.4.	Singularidades en tiempo finito de soluciones de la ecuación de Navier - Stokes	
		incompresible y tridimensional	89
		8.4.1. Acumulación de la vorticidad y existencia de soluciones globalmente	
		regulares de la ecuación de Navier - Stokes 3D	90
	8.5.	Medida de Hausdorff del conjunto de puntos singulares	91
	8.6.	Soluciones auto - similares de la ecuación de Navier - Stokes incompresible y	0.4
	o =	tridimensional	94
	8.7.	Teoremas del tipo Liouville para la ecuación de Navier - Stokes incompresible	O.C.
		y aplicaciones	96
9.	Con	aclusiones finales	99
Α.	Tra	nsformada de Hilbert	102
	A.1.	Introducción y definiciones básicas	102
	A.2.	Propiedades fundamentales de la transformada de Hilbert	104
Bi	bliog	grafía	107

Índice de tablas

5.1.	Hitos en la búsqueda de soluciones singulares de la ecuación de Euler 3D	38
5.2.	Modelos unidimensionales para la evolución de la vorticidad tridimensional	48
6.1.	Coeficientes de escalamiento del ansatz auto - similar (6.15)	60

Índice de ilustraciones

2.1.	Esquema representativo de la función de trayectorias del fluido	9
2.2.	Esquema representativo de la evolución del campo de vorticidad	10
5.1.	Simulación espectral del vórtice de Taylor - Green	36
5.2.	Simulación de la formación de capas de vorticidad	37
5.3.	Gráfico de la función $ \omega(x,2t) $ en torno al punto de explosión	43
6.1.	Gráfico de $\ \omega(\cdot,\tau)\ $ en el plano (r,z)	52
6.2.	Gráfico de dos curvas de $\log(\log(\ \omega(\cdot,t)\ _{\infty}))$	53
6.3.	Gráfico del inverso de la derivada temporal de $\log(\ \omega(\cdot,t)\ _{\infty})$	54
6.4.	Norma infinito de la vorticidad y su ley de potencia inversa	55
6.5.	Curvas de nivel de la función ω_1 en torno al punto de máxima vorticidad	59
7.1.	Componente axial del campo de vorticidad para $r \approx 1$	70