Tabla de Contenido

1	H	NTRO	DDUCCIÓN	1
	1.1	Fo	ormulación del estudio propuesto	1
	1.2	. M	otivación	1
	1.3	S OI	ojetivos	5
	1.4	M	etodología del estudio	5
2	Ν	ИARC	O CONCEPTUAL	7
	2	2.1.1	Diseño sísmico y diseño convencional	7
	2	2.1.2	Estructuras en superficie y estructuras subterráneas	7
	2	2.1.3	Propuestas en el diseño de estructuras subterráneas	8
	2	2.1.4	Esfuerzos internos	10
	2	2.1.5	Efectos generales de un sismo	12
3	Ν	ИЕТС	DOLOGÍA PARA EL ANÁLISIS ESTÁTICO	15
	3.1	Re	esolviendo problemas por medio del Análisis Estático	15
	3.2	: G	eneración de la malla	15
	3.3	s M	odelo Constitutivo y parámetros geotécnicos	23
	3	3.3.1	Índice de resistencia Geológica (GSI)	23
	3	3.3.2	Factor de perturbación D ("blast damage factor")	25
	3	3.3.3	Criterio de rotura de Hoek y Brown	26
	3	3.3.4	Criterio de Hoek-Brown Generalizado	26
	3.4	Pr	opiedades del material	28
	3	3.4.1	Módulo de deformación Erm	28
	3	3.4.2	Coeficiente de Poisson v	
	3	3. <i>4</i> .3	Módulo de compresibilidad K ("bulk modulus")	
	3	3.4.4	Módulo de corte o cizalle G ("shear modulus")	29
	_	3.4.5 Itilizad	Resumen de parámetros geotécnicos y propiedades del material roccido para los modelos	
	3.5	C	ondiciones iniciales	30
	3	3.5.1	Gravedad	30
	3	3.5.2	Densidad	30
	3	3.5.3	Esfuerzos in-situ y gradiente de esfuerzos	30
	3.6	C	ondiciones de borde	36
	3.7	' So	olución y secuencia de modelamiento	37
	3	3.7.1	Encontrar el estado de equilibrio de un modelo	37
	3	3.7.2	Secuencia de modelamiento	37

	3.8	Monitoreo de la respuesta estática	42
	3.9	Obtención de resultados	42
4	DIS	EÑO SÍSMICO POR MEDIO DEL METODO DINÁMICO	44
	4.1	Descripción general del análisis dinámico	44
	4.2	Registro sísmico	44
	4.3	Tratamiento de datos	45
	4.3.	1 Normas de diseño sísmico en Chile	45
	4.3.	2 Corrección de línea de base	45
	4.3. y de	esplazamiento	46
	4.3.	4 Espectro de Fourier	47
	4.3.	5 Correcta propagación de ondas y tamaño máximo de elementos	48
	4.3.	6 Aplicación del registro sísmico	50
	4.3.	7 Monitoreo de la respuesta dinámica	52
	4.3.	8 Consideraciones para una solución correcta y eficiente	53
	4.3.		
5	RES	SULTADOS Y SU ANÁLISIS	
	5.1	Secuencia de modelamiento, etapa estática	
	5.1.		
	5.1.		
	5.2	Aplicación del registro sísmico en x, etapa dinámica	
	5.2.	•	
	5.2.		
6		CUSIÓN	
	6.1	Resultados obtenidos	
	6.1.	1 Deformaciones estáticas	81
	6.1.		
	6.1.	3 Desplazamientos dinámicos	81
	6.1.	4 Esfuerzos internos dinámicos	83
	6.2	Consideración del efecto dinámico	
	6.3	Factores que pueden influir los resultados numéricos	88
	6.3.		
	6.3.		89
	6.3. del	3 Caracterización geológica del macizo rocoso en la zona de obtención registro sísmico	91

	6.3.4	Registro sísmico	94
7	CONCL	LUSIONES Y RECOMENDACIONES	96
8	BIBLIO	GRAFÍA	98
A١	NEXOS		. 101
,	ANEXO A	A: FLAC3D	. 101
(distintas d	B: Rutina elaborada para el software FLAC3D en lenguaje FISH para la calidades de roca y para la secuencia de modelamiento y análisis	
(control ub	C: Gráficos, no mostrados en el cuerpo, correspondientes a los puntos picados en el techo a los costados y en la base de la estructura de ento	

Indice de figuras	
Figura 1-1: Estación de metro Dakai, en la ciudad de Kobe, antes del sismo de 1995	う つ
Figura 1-2: Sección transversal al eje del túnel del metro de Kobe con sus medidas (en metros) (Liu, 2008)	3
Figura 1-3: À la izquierda, el daño sufrido por la estación de metro Daikai luego del sismo de 1995, a la derecha, la subsidencia del terreno sobre la estación de metro Daikai (Liu, 2008)	3
Figura 1-4: Sección transversal al eje del túnel del metro de Kobe en la estación Daikai, luego del sismo de 1995 (Liu, 2008)	3
Figura 1-5: Daños ocurridos en el revestimiento de otros túneles en la ciudad de Kobe, principalmente trizaduras longitudinales de un máximo de 25 [cm] de ancho (Yoshida, 1999)	4
Figura 2-1: Comportamiento inercial de estructuras en superficie (Boroscheck, 2012) 2
Figura 2-2: Deformaciones en túneles (Owen & Scholl, 1981)	9
Figura 2-3: Cilindro en equilibrio estático, cuyo eje está centrado en el eje x1	
Figura 2-4: Corte en el plano y-z perpendicular al eje x, en el punto A1	
Figura 2-5: Esfuerzos y momentos generados en el punto A para mantener el estado de equilibrio	
Figura 2-6: (a) corte y momento causados por la propagación de ondas sísmicas a largo del eje axial del túnel; (b) esfuerzo axial, de corte y momento provocado por la propagación de ondas sísmicas perpendiculares al eje axial del túnel (Power et al.,	
1998)1 Figura 2-7: Respuesta del terreno debido al paso de ondas sísmicas P (Bolt, 1978)1	2
Figura 2-8: Respuesta del terreno debido al paso de ondas sísmicas S (Bolt, 1978)1 Figura 3-1: Formas y puntos por definir de la primitiva "Radial Cylinder"	3
Figura 3-2: Primitiva generada con el comando "radcyl" que representa la parte superior del modelo. Las zonas de color verde corresponden a un cuarto del túnel	
que se creará y las de color azul a la roca circundante1	7
Figura 3-3: Primitiva "radcyl" con la roca al costado, que asegura que se cumpla la condición de distancia del borde1	7
Figura 3-4: Reflejo en el plano de simetría de dip 0 dip direction 0, el cual forma la parte inferior del modelo	Ω
Figura 3-5: Roca sobre y subyacente al túnel, las que definen la profundidad a la	U
cual se emplaza1	8
Figura 3-6: Etapa 1 de creación de la frente del modelo	9
Figura 3-7: Etapa 2 de creación de la frente del modelo	
Figura 3-8: Etapa 3 de creación de la frente del modelo	
Figura 3-9: Etapa 4 de creación de la frente del modelo	0
Figura 3-10: Cuña sobre la superficie de roca que simula las mediciones en el túnel	
como si se midieran a distintas profundidades2	1
Figura 3-11: Roca faltante sobre y subyacente al túnel2	1
Figura 3-12: Reflexión del material creado en el plano de dip 270 dip direction 0 para	3
crear la totalidad del modelo2 Figura 3-13: Corte transversal paralelo al eje z, donde se muestra el modelo en el	_
cual el túnel se emplaza a una profundidad 10 [m] y sus medidas	3

Figura 3-14: Tabla que se utiliza para caracterizar macizos rocosos según GSI	
1 / /	24
Figura 3-15: Guía para determinar el factor de alteración D	25
Figura 3-16: Distintas regiones donde se calculan ecuaciones para el stress in-situ	y
	31
Figura 3-17: Puntos donde se evalúa la ecuación (3.5.3.2) para encontrar la	
ecuación de stress para la región 1	32
Figura 3-18: Puntos donde se evalúa la ecuación (3.5.3.2) para encontrar la	
ecuación de stress para la región 2	33
Figura 3-19: Puntos donde se evalúa la ecuación (3.5.3.2) para encontrar la	
1 3	34
Figura 3-20: Estado de tensiones inicial en el eje z	35
Figura 3-21: Estado de tensiones inicial en el eje x	35
Figura 3-22: Condiciones de borde. Los puntos en color azul corresponden al	
comando "fix" aplicado a "gridpoints" en el eje x, el color verde aplicado en el eje y,	, el
	36
Figura 3-23: Etapa 1, frete del túnel luego de ejecutar el comando "solve"	38
Figura 3-24: Etapa 2, frente del túnel luego de la primera excavación de 2 metros,	
ejecutada con el comando "model null". Se ejecuta nuevamente el comando "solve	"
para encontrar el nuevo estado de equilibrio del modelo	38
Figura 3-25: Etapa 3, frete del túnel luego de la segunda excavación y aplicación o	lel
recubrimiento de shotcrete, el que se modela con el elemento estructural "shell" qu	ıe
se observa en rojo. Luego se ejecuta el comando "solve" para encontrar nuevamer	าte
el estado de equilibrio del modelo	39
Figura 3-26: Se muestra la etapa 18, con la aplicación de la función gráfica	
"transparency", la que permite ver dentro del modelo. En esta etapa ya se han	
, , ,	40
Figura 3-27: Etapa final con la aplicación de la función gráfica "transparency", que	
permite ver la correcta ejecución de la función iterativa de excavación, recubrimien	ito
	40
Figura 3-28: Elemento estructural "shell" y sus 18 grados de libertad	
Figura 3-29: Etapa final del elemento estructural en el modelo	41
Figura 3-30: Vista de una sección que corta perpendicularmente al eje y de un	
modelo estático donde el túnel se emplaza a 10[m] de profundidad, en el que se	
observan las secciones escogidas donde se hará el monitoreo de los puntos de	
	42
Figura 4-1: Se muestra dentro de los puntos A, B, C y D la zona donde se aplica el	I
regístro sísmico y a los costados, las condiciones de borde "free field" (Tutorial	
	51
Figura 4-2: Modelo dinámico en el que se observa las caras frontal y lateral en rojo), a
las que se le aplican bordes absorbentes. La cara basal, en gris, llamada bot, es	
Figura 4-3: Vista de una sección que corta perpendicularmente al eje y, en el que s	se
observan las secciones escogidas donde se hará el monitoreo de los puntos de	
control	52

Figura 4-4: Vista dentro de un modelo, en la cual se muestran los tres puntos de control escogidos en cada sección para monitorear el desplazamiento y los
esfuerzos internos52
Figura 4-5: Vista de la parte trasera del modelo, cortando al eje x, en la que se
observa la zonificación alrededor del túnel, desde 0,3 [m] hasta 2 [m]53
Figura 4-6: Vista de un corte del modelo cortando el eje y, en el que se observa
como en las direcciones de z y –z aumenta el tamaño de las zonas de modo que
alejado del túnel, las zonas sean de mayor tamaño54
Figura 4-7: Aumento de elementos en la frente y parte trasera de los modelos57
Figura 5-1: Deformación total en z del recubrimiento del túnel al finalizar la etapa
estática, amplificada por un factor de deformación de 1000, calidad buena59
Figura 5-2: Deformación total en y del recubrimiento del túnel al finalizar la etapa
estática, amplificada por un factor de deformación de 1000, calidad buena59
Figura 5-3: Deformación total en z del recubrimiento del túnel al finalizar la etapa
estática, amplificada por un factor de deformación de 500, calidad regular60
Figura 5-4: Deformación total en y del recubrimiento del túnel al finalizar la etapa
estática, amplificada por un factor de deformación de 500, calidad regular60
Figura 5-5: Deformación total en z del recubrimiento del túnel al finalizar la etapa
estática, amplificada por un factor de deformación de 150, calidad mala61
Figura 5-6 Deformación total en y del recubrimiento del túnel al finalizar la etapa
estática, amplificada por un factor de deformación de 150, calidad mala61
Figura 5-7: Esfuerzo axial en x (longitudinal al eje del túnel) durante la secuencia de
modelamiento (etapa estática) de puntos de control ubicados en el techo del túnel, a
20 (amarillo), 40 (azul), 60 (rojo) y 80 (verde) metros desde la cara frontal del modelo
hacia la frente del túnel, calidad buena62
Figura 5-8: Momento en x durante la secuencia de modelamiento (etapa estática) de
puntos de control ubicados en el techo del túnel, a 20 (amarillo), 40 (azul), 60 (rojo) y
80 (verde) metros desde la cara frontal del modelo hacia la frente del túnel, calidad
buena63
Figura 5-9: Modelo 2D elaborado en Phase, a 40 [m] desde el techo del túnel hasta
la superficie67
Figura 5-10: Esfuerzos axiales (Phase) en la base y techo de la estructura de
sostenimiento, con valores 0,154 y 0,139 [MN], respectivamente, roca de calidad
buena68
Figura 5-11: Esfuerzos axiales (Phase) en la base y techo de la estructura de
sostenimiento, con valores 0,338 y 0,372 [MN], respectivamente, roca de calidad
regular68
Figura 5-12: Esfuerzos axiales (Phase) en la base y techo de la estructura de
sostenimiento, con valores 1,303 y 1,426 [MN], respectivamente, roca de calidad
<i>mala</i> 68
Figura 5-13: Esfuerzos axiales en la base y techo de la estructura de sostenimiento,
con valores 0,141 y 0,153 [MN], respectivamente, modelo FLAC3D roca de calidad
buena69
Figura 5-14: Esfuerzos axiales en la base y techo de la estructura de sostenimiento,
con valores 0,322 y 0,375 [MN], respectivamente, modelo FLAC3D roca de calidad
regular69

Figura 5-15: Esfuerzos axiales en la base y techo de la estructura de sostenimiento,
con valores 1,256 y 1,437 [MN], respectivamente, modelo FLAC3D roca de calidad
mala70
Figura 5-16: Desplazamientos en x, durante el efecto dinámico, de puntos de control
ubicados a 20 (amarillo), 40 (azul), 60 (rojo) y 80 (verde) [m] de profundidad, roca
calidad buena71
Figura 5-17: Desplazamientos en y, durante el efecto dinámico, de puntos de control
ubicados a 20 (amarillo), 40 (azul), 60 (rojo) y 80 (verde) [m] de profundidad, roca
calidad buena71
Figura 5-18: Esfuerzo axial en x de puntos de control ubicados en el techo del túnel,
a 20 (amarillo), 40 (azul), 60 (rojo) y 80 (verde) metros de profundidad desde la cara
frontal del modelo, durante la aplicación del efecto dinámico, calidad buena74
Figura 5-19: Esfuerzo de corte en x de puntos de control ubicados en el techo del
túnel, a 20 (amarillo), 40 (azul), 60 (rojo) y 80 (verde) metros de profundidad desde la
cara frontal del modelo, durante la aplicación del efecto dinámico, calidad buena74
Figura 5-20: Momento en x de puntos de control ubicados en el techo del túnel, a 20
(amarillo), 40 (azul), 60 (rojo) y 80 (verde) metros de profundidad desde la cara
frontal del modelo, durante la aplicación del efecto dinámico, calidad buena75 Figura 5-21: Esfuerzo axial en y (perpendiculares al eje del túnel) de puntos de
control ubicados en el techo del túnel, a 20 (amarillo), 40 (azul), 60 (rojo) y 80 (verde)
metros de profundidad desde la cara frontal del modelo, durante la aplicación del
efecto dinámico, calidad buena76
Figura 5-22: Esfuerzo de corte en y de puntos de control ubicados en el techo del
túnel, a 20 (amarillo), 40 (azul), 60 (rojo) y 80 (verde) metros de profundidad desde la
cara frontal del modelo, durante la aplicación del efecto dinámico, calidad buena76
Figura 5-23: Momento en y de puntos de control ubicados en el techo del túnel, a 20
(amarillo), 40 (azul), 60 (rojo) y 80 (verde) metros de profundidad desde la cara
frontal del modelo, durante la aplicación del efecto dinámico, calidad buena77
Figura 5-24: Historial de esfuerzos axiales en y, perpendiculares al eje del túnel, de
puntos de control ubicados en el techo, a 20 (amarillo), 40 (azul), 60 (rojo) y 80
(verde) metros de profundidad desde la cara frontal del modelo, durante el proceso
resolutivo completo del sistema, desde su etapa estática hasta la finalización del
efecto dinámico, calidad regular78
Figura 6-1: Diagramas de capacidad flexo-compresión del sostenimiento de
shotcrete85
Figura 6-2: Sección de un túnel que permitiría la circulación de una carretera doble
<i>via</i> 89
Figura 6-3: Distintos medios representados según las distintas calidades de roca, en
términos de las discontinuidades90
Figura 6-4: Macizo rocoso de la ladera NW del cerro Santa Lucía, izquierda: principal
discontinuidad observada, centro: discontinuidad de 10 [cm] de espesor, derecha:
discontinuidades observadas91
Figura 6-5: Macizo rocoso de la ladera SE del cerro Santa Lucía92
Figura 6-6: Clasificación GSI para distintas zonas en el cerro Santa Lucía93
Figura 6-7: Representación94
Figura A-1: Gráfico que representa el ciclo de cálculo105
Figura A-2: Zonas de 8 nodos con traslapos de 5 tetraedros en cada uno105

Figura	A-3: Algunas d	le las formas	de elementos	básicas en l	FLAC3D	.106
Figura	A-4: Procedimi	iento general	para alcanzar	una buena	solución	.108

indice de graficos
Gráfico 4-1: Registro sísmico de aceleraciones en una estación sísmica de la
Universidad de Chile, ubicada en el cerro Santa Lucía, el 27 de Febrero del 2010
(Centro Sismológico Nacional, Universidad de Chile)45
Gráfico 4-2: Registro sísmico corregido por línea de base
Gráfico 4-3: Registro de velocidades obtenido integrando el registro de
aceleraciones47
Gráfico 4-4: Registro de desplazamientos obtenido integrando el registro de
velocidades47
Gráfico 4-5: Espectro de Fourier del registro de aceleraciones47
Gráfico 4-6: Se observa en rojo la zona del registro de aceleraciones que será
utilizada para correr en los modelos dinámicos54
Gráfico 4-7: Se observa en rojo la zona del registro de velocidades que será utilizada
para correr en los modelos dinámicos54
Gráfico 4-8: Se observa un "plot" de FLAC3D que muestra gráficamente los valores
de los 3 segundos del registro de velocidades que serán utilizados para correr los
modelos
Gráfico 4-9: Transmisión del registro de velocidades en la base del modelo, en el
punto (60,0,-68) en morado y en un punto de control considerado como la superficie,
en el punto (60, 0,14) en naranjo, roca de calidad buena55
Gráfico 4-10: Transmisión del registro de velocidades en la base del modelo, en el
punto (60,0,-68) en morado y en un punto de control considerado como la superficie,
en el punto (60, 0,14) en naranjo, roca de calidad regular56
Gráfico 4-11: Transmisión del registro de velocidades en la base del modelo, en el
punto (60,0,-68) en morado y en un punto de control considerado como la superficie,
en el punto (60, 0,14 en naranjo), roca de calidad mala56
Gráfico 4-12: Transmisión del registro sísmico original (morado) y transmisión en
superficie del registro amplificado por un factor (naranjo)
Gráfico 5-1: Momento torsor en x para distintos puntos de control ubicados a
distintas profundidades, en distintas calidades de roca
Gráfico 5-2: Esfuerzos axiales en y para distintos puntos de control ubicados a
distintas profundidades, en distintas calidades de roca67
Gráfico 5-3: Esfuerzos de corte en y para distintos puntos de control ubicados a
distintas profundidades, en distintas calidades de roca70
Gráfico 5-4: Máximos desplazamientos en x, durante el efecto dinámico, de distintos
puntos de control en distintas calidades de roca72
Gráfico 5-5: Máximos desplazamientos en y, durante el efecto dinámico, de distintos
puntos de control en distintas calidades de roca73
Gráfico 5-6: Efecto dinámico porcentual del corte perpendicular al eje del túnel en
relación a los resultados estáticos obtenidos a distintas profundidades en distintas
rocas
Gráfico 5-7: Efecto dinámico porcentual del momento alrededor del eje del túnel en
relación a los resultados estáticos obtenidos a distintas profundidades en distintas
calidades de roca79
Gráfico 5-8: Efecto dinámico porcentual del esfuerzo axial perpendicular al eje del
túnel en relación a los resultados estáticos obtenidos a distintas profundidades en
distintas rocas80

Gráfico 6-1: Máximos desplazamientos en x de distintos puntos de control, ubicados	
en la base de los modelos, en distintas calidades de roca8	33
Gráfico 6-2: Efecto dinámico porcentual del esfuerzo axial perpendicular al eje del	
túnel en relación a los resultados estáticos obtenidos a distintas profundidades en	
distintas rocas8	34
Gráfico 6-3: Efecto dinámico porcentual del corte perpendicular al eje del túnel en relación a los resultados estáticos obtenidos a distintas profundidades en distintas	
,	_
rocas8	36
Gráfico 6-4: Efecto dinámico porcentual del momento alrededor del eje del túnel en relación a los resultados estáticos obtenidos a distintas profundidades en distintas	
calidades de roca8	37
Gráfico 6-5: Efecto dinámico porcentual del esfuerzo axial perpendicular al eje del	
túnel en relación a los resultados estáticos obtenidos a distintas profundidades en	
distintas rocas8	37

Índice de tablas

Tabla 3-1: Resumen de las distintas calidades de roca escogidas y sus	
correspondientes parámetros geotécnicos	27
Tabla 3-2: Resumen de las distintas calidades de roca escogidas y sus	
correspondientes parámetros geotécnicos y propiedades de materiales	29
	42
•	49
Tabla 5-1: Esfuerzos axiales, de corte y momento al finalizar la etapa estática, en	
puntos de control ubicados a distintas profundidades en la estructura de	
sostenimiento, roca de calidad buena	63
Tabla 5-2: Resumen de esfuerzos axiales, de corte y momento longitudinales al	
finalizar la etapa estática, en puntos de control ubicados a distintas profundidades	en
la estructura de sostenimiento, para las 3 distintas calidades de roca	64
Tabla 5-3: Resumen de esfuerzos axiales, de corte y momento en y, al finalizar la	
etapa estática, en puntos de control ubicados a distintas profundidades en la	
estructura de sostenimiento, para las 3 distintas calidades de roca	65
Tabla 5-4: Máximos desplazamientos observados durante el efecto dinámico de	
distintos puntos de control en distintas calidades de roca, en los ejes x e y	72
Tabla 5-5: Resultados estáticos y dinámicos máximos de esfuerzos internos en x d	le
distintos puntos de control en distintas calidades de roca	75
Tabla 5-6: Resultados estáticos y dinámicos máximos de esfuerzos internos en x d	le
distintos puntos de control en distintas calidades de roca	77
Tabla 6-1: Desplazamientos longitudinales al eje del túnel en la base de los modelo	os,
a distintas profundidades en distintas calidades de roca	82
Tabla 6-2: Esfuerzo axial perpendicular al eje del túnel en puntos de control ubicad	los
en el costado de la estructura de sostenimiento, a distintas profundidades y en	
	84
Tabla 6-3: Resumen de efecto considerable de cargas sísmicas	88