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Abstract

We propose a new approach for proving existence of monotone wavefronts in non-monotone and non-
local monostable diffusive equations. This allows to extend recent results established for the particular case 
of equations with local delayed reaction. In addition, we demonstrate the uniqueness (modulo translations) 
of obtained monotone wavefront within the class of all monotone wavefronts (such a kind of conditional 
uniqueness was recently established for the non-local KPP-Fisher equation by Fang and Zhao). Moreover, 
we show that if delayed reaction is local then each monotone wavefront is unique (modulo translations) 
within the class of all non-constant traveling waves. Our approach is based on the construction of suitable 
fundamental solutions for linear integral-differential equations. We consider two alternative scenarios: in 
the first one, the fundamental solution is negative (typically holds for the Mackey–Glass diffusive equa-
tions) while in the second one, the fundamental solution is non-negative (typically holds for the KPP-Fisher 
diffusive equations).
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1. Main results and discussion

Introduction In this work, we study the existence and uniqueness of monotone wavefronts 
u(x, t) = φ(x + ct) for the monostable delayed non-local reaction–diffusion equation

ut (t, x) = uxx(t, x) − u(t, x) +
∫
R

K(x − y)g(u(t − h,y))dy, u ≥ 0, (1)

when the reaction term g : R+ → R+ neither is monotone nor defines a quasi-monotone func-
tional in the sense of Wu–Zou [46] or Martin–Smith [32] and when the non-negative kernel 
K(s) is Lebesgue integrable on R. Equation (1) is an important object of studies in the popula-
tion dynamics, see [2,3,6,15,19,22,29,30,33,34,40,41,44,47–49]. Taking formally K(s) = δ(s), 
the Dirac delta function, we obtain the diffusive Mackey–Glass type equation

ut (t, x) = uxx(t, x) − u(t, x) + g(u(t − h,x)), u ≥ 0, (2)

another popular focus of investigation, see [2,21,26,43] for more details and references.
In the classical case, when h = 0, all wavefronts to the monostable equation (2) are monotone 

and, given a fixed admissible wave velocity c, all of them are generated by a unique front by 
means of translations. The same monotonicity-uniqueness principle is valid for certain subclasses 
of equations (2) with h > 0 (e.g. when g is monotone [43]) and even for equations (1) (e.g. when 
g is a monotone and globally Lipschitzian function, with the Lipschitz constant g′(0), and when 
additionally K(s) = K(−s), s ∈ R [30,40]). However, if the reaction term is non-local and g
is non-monotone, monotonicity and uniqueness are not longer obligatory front’s characteristics. 
For example, [41] provides conditions sufficient for non-monotonicity of wavefronts’ profiles for 
non-local equation (1) with compactly supported kernel K . Co-existence of multiple wavefronts 
for non-local models is also known from [23,36]. All this explains our interest in establishing 
effective criteria for the existence and uniqueness of monotone wavefronts for the monostable 
non-monotone non-local (or delayed) reaction–diffusion equations. Remarkably, this problem 
has recently attracted attention of several researchers. In this regard, the most studied model was 
the non-local KPP-Fisher equation [5,7,16,23,35,36]

ut (t, x) = uxx(t, x) + u(t, x)(1 −
∫
R

K(x − y)u(t, y)dy), (3)

and its local delayed version [5,14,27,24,20,21,46] (called the diffusive Hutchinson’s equation)

ut (t, x) = uxx(t, x) + u(t, x)(1 − u(t − τ, x)). (4)

The above cited papers elaborated a complete characterization of models (3) and (4) possessing 
monotone wavefronts. Moreover, the absolute uniqueness (i.e. uniqueness within the class of 
all wavefronts) of monotone wavefronts to (4) and the conditional uniqueness (i.e. uniqueness 
within the subclass of monotone wavefronts) of monotone wavefronts to (3) were also proved 
in these works. As we have mentioned, in general, monotone and non-monotone wavefronts can 
coexist in (3) [23,36].

In the case of model (1) having non-monotone function g, the existence of monotone wave-
fronts was analyzed only for the particular case of equation (2) in [21], with the help of the 



E. Trofimchuk et al. / J. Differential Equations 261 (2016) 1203–1236 1205
Hale–Lin functional-analytic approach and a continuation argument. This method required a 
detailed analysis of a family of linear differential Fredholm operators associated with (2). The 
discrete Lyapunov functionals of Mallet-Paret and Sell for delayed differential equations were 
also used in an essential way. Therefore the task of extension of the approach developed in [21]
to non-local equations (1) seems to be quite difficult (if anyhow possible). Consequently, the 
main goal of this paper is to provide an alternative technique allowing to analyze monotonicity 
of wavefronts for non-monotone and non-local equation (1). A key feature of this technique con-
sists in reduction of the wave profile equation for (1) to new non-obvious convolution equations 
(see Sections 2 and 6). The obtained nonlinear equations are then studied by means of various 
already established methods. In particular, we use the Berestycki–Nirenberg sliding method as 
well as an extension of the Diekmann–Kaper theory developed in [2,19].

In the subsequent parts of this section, we state the key hypotheses used in the paper and 
briefly discuss our main theorems together with a key auxiliary assertion.

Main assumptions
(M) g ∈ C(R+), g(s) > 0 for s > 0, and the equation g(s) = s has exactly two nonnegative so-
lutions: 0 and κ > 0. Moreover, g is differentiable at the equilibria with g′(0) > 1 and g′(κ) < 0.
(ST) g(s) − g′(κ)s is non-decreasing on [0, κ]. Observe that the last assumption implies the 
sub-tangency property of g at κ : g(s) ≤ g(κ) + g′(κ)(s − κ), s ∈ [0, κ].
(K) K ≥ 0 and 

∫
R

K(s)ds = 1. Moreover, 
∫
R

K(s)e−λsds < ∞ for each λ ∈R.

Example 1. If g is differentiable on [0, κ] then the hypothesis (ST) amounts to the inequality
(ST′): g′(s) ≥ g′(κ) satisfied for all s ∈ [0, κ]. For the following non-local version of the popular 
Nicholson’s blowflies diffusive equation

ut (t, x) = uxx(t, x) − du(t, x) + p

∫
R

K(x − y)u(t − h,y)e−u(t−h,y)dy, p > d > 0,

the assumptions (M) and (ST′) are equivalent to the inequalities e < p/d ≤ e2. We note that 
the bulk of information concerning the Nicholson’s diffusive equation is obtained for a simpler 
(monotone) case when 1 < p/d ≤ e (cf. the recent works [47] and [39]).

Remark 2. In this paper, we are concerned with the classical wavefront solutions of equations 
(1), (2), so that rather weak smoothness conditions mentioned in (M) are sufficient for our pur-
poses. On the other hand, in order to ensure the existence and uniqueness of classical solution of 
the initial value problem

u(s, x) = w0(s, x), s ∈ [−h,0], x ∈ R, (5)

for equation (1) (or (2)), we have to impose some additional restrictions on g, cf. [17]. For 
instance, suppose that h > 0, that w0(s, x) is continuous, bounded and uniformly Hölder con-
tinuous in x ∈ R, and that |g(u) − g(v)| ≤ Lg|u − v|, u, v ∈ [0, κ]. Then the Cauchy problem 
(1), (5) (or (2), (5)) can be solved by the method of steps, where in the first step we have to look 
for the solution of the inhomogeneous linear equation
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ut (t, x) = uxx(t, x) − u(t, x) +
∫
R

K(y)g(w0(t − h,x − y))dy, t ∈ [0, h], x ∈R,

satisfying the initial condition u(0, x) = w0(0, x).

Main results: existence Clearly, u(t, x) = φ(x + ct) is a front solution of equation (1) if and 
only if the profile y = φ(t) solves the boundary value problem

y′′(t) − cy′(t) − y(t) +
∫
R

K(t − s)g(y(s − ch))ds = 0, y(−∞) = 0, y(+∞) = κ, y(t) ≥ 0.

(6)

For kernel K satisfying (K), we will consider the characteristic functions

χ0(z, c,h) = z2 − cz − 1 + g′(0)e−chz

∫
R

e−zsK(s)ds, z ∈C,

χκ(z, c,h) = z2 − cz − 1 + g′(κ)e−chz

∫
R

e−zsK(s)ds, z ∈ C,

associated with the linearizations of (6) at the equilibria 0 and κ , respectively. We will need the 
following three subsets D0, Dκ , DL := D0 ∩Dκ of the half-plane (h, c) ∈R+ ×R:

Dκ = {(h, c) ∈R+ ×R : χκ(z, c,h) has at least one positive and one negative simple zeros} ;
D0 = {(h, c) ∈ R+ ×R : χ0(z, c,h) has exactly two positive zeros μ0 < μ1} .

The geometric description of the open domain D0 is well known and it is summarized in the 
following assertion:

Proposition 3. Assume that g′(0) > 1. Then for each h ≥ 0 there exists a unique c = c#(h) ∈
R such that χ0(z, c, h) with this c has a unique positive double zero. The function c# :
R+ → R is C∞-continuous and strictly decreasing. Furthermore, D0 coincides with the set 
{(h, c) ∈R+ ×R : c > c#(h)} and D0 = {(h, c) ∈ R+ ×R : c ≥ c#(h)}.

Proof. For example, see [19, Lemma 22] and [3, Theorem 1.1]. By [3] if, in addition, K(s) =
K(−s), s ∈ R, then 0 < c#(h) = O(1/h) at +∞. In general, however, c#(h) can take negative 
values, cf. [19]. �
Remark 4. To simplify the notation, we suppose in (K) that the bilateral Laplace transform of 
K exists for all z ∈ C. Under this assumption, χ ′′(x, c, h) > 0 for all x ∈ R and χ(0, c, h) =
g′(0) − 1 > 0, so that either χ0(z, c, h) has exactly two real zeros (counted with multiplicity) or 
it does not have any real zero. It is also known (e.g. see [2,44]) that (K) can be weakened till

(K′) K ≥ 0, 
∫
R

K(s)ds = 1 and 
∫
R

K(s)e−λsds < ∞ for each λ ∈ (α−, α+), where α− < 0 <
α+ and lim −

∫
K(s)e−λsds = +∞.
λ→α+ R
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In such a case, the above definition of D0 should be replaced with

D′
0 = {(h, c) ∈R+ ×R : χ0(z, c,h) has at least one positive zero} .

It is easy to see that the boundary of DL in R+ × R consists from the curves determined 
either from the system χ0(z, c, h) = 0, χ ′

0(z, c, h) = 0 or from the system χκ(z, c, h) = 0, 
χ ′

κ(z, c,h) = 0. Thus, in each particular case, the shape of the domains Dκ , DL can be iden-
tified after some work. For instance, if K(s) is the Dirac’s delta and g′(κ) < 0, then DL is 
a simply connected domain whose boundary contains a non-empty segment of the half-line 
{h = 0, c ≥ 0} [21]:

DL = {(h, c) : h ∈ [0, h∗], h∗ ≤ +∞, 0 < c#(h) ≤ c < c∗(h)}.

Here the smooth decreasing function c∗ : [0, +∞) → (0, +∞] is defined as follows [21]: 
i) c∗(h′) = +∞, if χκ(z, c, h′) = z2 − cz − 1 + g′(κ)e−ch′z has a simple negative zero for each 
c ≥ 0; ii) if χκ(z, c, h′) has a double negative zero for some c = c′ > 0, then such a value of c′
is unique and we set c∗(h′) = c′. It is easy to prove that c∗(h) = +∞ for all h ∈ [0, ha], where 
ha is the positive root of the equation eh|g′(κ)|eh = 1, and that c∗(h) is finite for h > ha . Next, 
it was shown in [21, Lemma 1.3] that equation c#(h) = c∗(h) has at most one solution, denoted 
by h∗ (if exists). If c#(h) < c∗(h) for all positive h, we set h∗ = +∞. For the particular case of 
the diffusive Nicholson’s equation, two possible forms of DL, one with h∗ = +∞ and another 
with h∗ < +∞, are presented on Figure 2 in [21]. The aforementioned topological characteris-
tics of DL are essential for the use of a continuation argument in [21]. For general kernels K , 
however, the set DL eventually might be more complicated (for instance, not connected). One 
of advantages of our present approach is that it does not require any connectedness property 
from DL:

Theorem 5. Assume (M), (K), (ST) and that g is sub-tangential at the equilibrium 0: g(s) ≤
g′(0)s, for all s ∈ [0, κ]. Then for each point (h, c) in the closure DL of the set DL, equation (1)
has at least one wavefront u(t, x) = φc(x + ct) with strictly increasing profile φc(s), s ∈R.

As we have mentioned, the conclusion and the proof of Theorem 5 are also valid when K(s)

is the Dirac delta function, i.e. for the local equation (2). Thus it is enlightening to compare cri-
terion of front’s monotonicity for (2) established in [21, Theorem 2.2] and Theorem 5. These 
two results almost coincide except for two important details: g in [21] must be more smooth 
(C1,γ -continuous on [0, κ]) and must have a unique critical point on (0, κ). That is, the uni-
modal form of g is assumed in [21] instead of the condition (ST). Clearly, even if these both 
requirements are fulfilled for the classical population models (Nicholson’s blowflies model, 
hematopoiesis model), they are independent: so that Theorem 5 and [21, Theorem 2.2] comple-
ment each other in the case of local delayed equations. This comparison also shows that for some 
classical ‘delayed’ models (such as equation (2) with h > 0 and g(x) = pxe−x, e < p ≤ e2) 
condition (h, c) ∈ DL of Theorem 5 is necessary and sufficient for the existence of monotone 
wavefronts. However, as our ‘dual’ existence result, Theorem 11, shows, this condition fails to be 
necessary for the ‘advanced’ models (such as equation (2) with h < 0 and the same nonlinearity 
g(x) = pxe−x, e < p ≤ e2).
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Main results: uniqueness The Diekmann–Kaper theory [2,13,19,47] is instrumental in estab-
lishing the absolute uniqueness of semi-wavefronts to equation (1). In order to apply this theory, 
it is necessary to transform the profile equation (6) into a suitable nonlinear convolution equation 
[13,46]

φ(t) =
∫
R

Nj(t − s)gj (φ(s − ch))ds, (7)

with an appropriate kernel Nj ∈ L1(R, R+) and continuous monostable nonlinearity gj : R+ →
R+. Certainly, Nj , gj in (7) depend on c, h, K, g and the choice of specific Nj, gj depends on 
the goals of investigation. So far, the usual way was to take gj = g: in such a case, assuming 
that g ∈ C1,α[0, κ], K satisfy (M), (K) and |g′(s)| ≤ g′(0), s ∈ [0, κ], the absolute uniqueness 
of each semi-wavefront profile φ :R → [0, κ] for (6) was proved in [2, Theorem 7]. In this work, 
we take other gj 
= g, Nj in equation (7), with these functions, the Diekmann–Kaper method 
leads to slightly different conclusions. For instance, it can be proved that each semi-wavefront 
φ : R → [0, κ] is absolutely unique if (h, c) ∈ DL and K, g ∈ C1,α[0, κ] satisfy (K), (M) and 
g′(κ) ≤ g′(s) ≤ g′(0), s ∈ [0, κ].

However, even monotone wavefronts might be not absolutely unique [23,36]. In order to prove 
the conditional uniqueness of a monotone wavefront, here we will use the sliding method devel-
oped by Berestycki and Nirenberg [8]. This technique was successfully applied in [10–12,31,
43] to prove the uniqueness of monotone wavefronts without imposing any Lipschitz condition 
on g. The main idea of the sliding technique consists in moving (either horizontally or vertically) 
one wavefront profile (say, ψ(t)) up to having a common point of tangency with another (fixed) 
wavefront profile (say, φ(t)). Technically, this includes consideration of one-dimensional family 
of differences ψ(t + a) − φ(t), a ∈ R (or ψ(t) + a − φ(t), a ∈ R) and analysis of its behavior 
as t → ±∞. Then a suitable form of the maximum principle is invoked in order to establish that 
ψ(t) ≡ φ(t +a0) for some a0, cf. [8]. In the present paper, we consider sliding solutions to prove 
the following:

Theorem 6. Assume (M), (K) and (ST). In addition, let g be C1-smooth in some neighborhood 
of κ and there exist C > 0, θ ∈ (0, 1], � > 0 such that

∣∣g(u)/u − g′(0)
∣∣ ≤ Cuθ , u ∈ (0,�]. (8)

Fix some (h, c) ∈ DL, and suppose that u1(t, x) = φ(x + ct), u2(t, x) = ψ(x + ct) are two 
monotone traveling fronts of equation (1). Then φ(s) = ψ(s + s0), s ∈ R, for some s0.

Remark 7. As a by-product of the proofs of Theorems 5, 6, we obtain the following: Assume (K)
and (M) where g′(κ) ≥ 0 is considered instead of g′(κ) < 0. If, in addition, g(s) ≤ g′(0)s, s ∈
[0, κ], and g is monotone and satisfies the smoothness conditions of Theorem 6, then for each 
point (h, c) in the closure of the set D0, equation (1) has a unique (up to a translation) monotone 
wavefront u(t, x) = φc(x + ct).

We will say that some c is an admissible speed of propagation for (1) (or for (2)) if there 
exists a positive wave solution u = φ(x + ct) to (1) (to (2), respectively) such that φ(−∞) = 0
and lim inft→+∞ φ(t) > 0. We call such a wave solution semi-wavefront. As [23,36] reveals, 
proper semi-wavefronts and monotone fronts can co-exist in non-local monostable equations. 



E. Trofimchuk et al. / J. Differential Equations 261 (2016) 1203–1236 1209
Nevertheless, as the next result shows, the statement of Theorem 6 can be strengthened for the 
case of local delayed reaction:

Theorem 8. Assume (M), (K) and (ST). Then each semi-wavefront u = φ(x + ct), (h, c) ∈ DL, 
for equation (2) is actually a monotone front. Therefore, if g also satisfies the smoothness con-
ditions of Theorem 6, then u = φ(x + ct) is the unique (up to translation) wavefront solution of 
(2) propagating with the speed c.

An auxiliary result A correct choice of Nj and gj in (7) may indicate a shortest way for es-
tablishing various properties of profiles (including their existence and uniqueness). For instance, 
all above mentioned front’s monotonicity criteria for the KPP-Fisher equations (3) and (4) were 
obtained after discovering a satisfactory form of the associated convolution equation, see [16,20,
27]. Similarly, an important part of this paper is focused on reducing equation (6) to the ‘optimal’ 
convolution equation:

Theorem 9. Assume (M) and (K). Then for each point (h, c) ∈DL, there exist g1, positive ε and 
kernels N1, −v > 0 given by

N1 = −(1 + ξ)K ∗ v := −(1 + ξ)

∫
R

K(s)v(t − s)ds, g1(s) = g(s) + ξs

1 + ξ
, ξ := |g′(κ)| + ε,

such that the boundary value problem (6) has a solution if and only if equation (7) has a non-
negative solution satisfying the boundary conditions of (6). Furthermore, 

∫
R

N1(s)ds = 1 and ∫
R

N1(s)e
−λsds < ∞ for all λ from some maximal finite interval (γl, γr) � {0}. Continuous 

function v is C∞-smooth on R− and R+ and has a unique minimum point at t = 0. In fact, 
v is strictly monotone on R− and R+ and it is strictly convex on R−.

The function v in Theorem 9 is called the fundamental solution, actually it is a distributional 
solution of the non-local equation

y′′(t) − cy′(t) − y(t) + (g′(κ) − ε)

∫
R

K(t − s)y(s − ch)ds = δ(t),

where δ(t) is the Dirac delta function. The inequality v(t) < 0, t ∈ R, is an important part of the 
statement of Theorem 9 and Section 2 is completely devoted to proving this and other properties 
of v(t).

Remark 10. For equation (2), a more explicit form of N1(t) can be obtained:

N1(t) = −(1 + ξ)v(t, ξ), where v(t, ξ) = − 1

χ ′(λ0(ξ))

{
ũ(t), t ≥ 0,

eλ0(ξ)t , t < 0,

χ(z) = z2 − cz − 1 − ξe−chz, λ0(ξ) is the unique positive zero of χ(z), and ũ(t) is the solution 
of the following initial value problem:
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u′′(t) − cu′(t) − u(t) − ξu(t − ch) = 0, (9)

u(s) = eλ0(ξ)s , s ∈ [−ch,0], u′(0) = −(λ0(ξ) − c + ξche−λ0(ξ)ch).

When ξ = 0, this formula for the fundamental solution v(t, ξ) for (9) is well known, cf. (19). We 
note that the explicit exponential form of v(t) for negative t allowed us to prove the monotonicity 
of all wavefronts under conditions of Theorem 8. On the other hand, the one-sided Laplace 
transform v̂(z) = ∫ +∞

0 e−zt v(t)dt of v(t) can also be easily found:

v̂(z) = 1

χ(z)
− 1

χ ′(λ0)

1

z − λ0(ξ)
.

This function is analytic in the half-plane {
z > λ1(ξ)} where λ1(ξ) is the biggest negative zero 
of χ(z). As the Laplace transform of the negative function, −v̂(x), x ∈ (λ1(ξ), +∞), provides a 
new example of completely monotone function, cf. [4,45].

Once the hypotheses (ST), (M) and (K) are assumed, the optimality of our main exis-
tence/uniqueness results has to be explained in terms of optimality of the set DL = D0 ∩Dκ . In 
the ideal case, the closure of DL must contain the set M of all pairs (h, c) for which (6) has a 
unique (modulo translation) monotone solution. Since it is well known (cf. [19]) that M ⊆D0, 
we need only to justify the choice of Dκ . The necessity of the presence of at least one negative 
zero of χκ(z, c, h) in the definition of Dκ for the existence of monotone fronts was proved both 
for the delayed equation (2) (e.g. see [21]) and the non-local equation (1) (at least when K has 
compact support, cf. [41, Theorem 6]). However, the necessity of the presence of at least one 
positive zero of χκ(z, c, h) in the definition of Dκ is not so clear. Certainly, in some situations 
(e.g. for equation (2) with h > 0), at least one positive zero of χκ(z, c, h) exists automatically 
for all parameters in D0

1; on the other hand, in other cases (e.g. if we take equation (2) with 
large h < 0), χκ(z, c, h) may have only negative real roots. At this point, it is enlightening to 
recall the Fang–Zhao monotonicity criterion [16] for equation (3) where it is required from the 
characteristic equation

charκ (z) := z2 − cz −
∫
R

K(s)e−zsds = 0,

related to the linearization at the steady state u = 1 of the wave profile equation

φ′′(t) − cφ′(t) + φ(t)(1 −
∫
R

K(s)φ(t − s)) = 0, t ∈R, (10)

only to have a negative root. However, more weak restrictions on the real zeros of charκ (z) as-
sumed in [16] go hand in hand with more simple structure of the linearization φ′′(t) − cφ′(t) +
φ(t) = 0 of the profile equation (10) at u = 0. In fact, this linear equation possesses a non-
negative fundamental solution. Surprisingly, the same combination of conditions (i.e. existence 

1 In fact, a unique positive zero of χκ (z, c, h) plays an essential role in the proof of monotonicity criterion in [21] (more 
precisely, in the proof of surjectivity of associated Fredholm operators, see Proposition 3.2 and Lemma 3.3 in [21]).
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of non-negative fundamental solution for the linearization of the profile equation (6) at 0 together 
with existence of at least one negative zero of χκ(z, c, h)) can also be sufficient for the presence 
of monotone wavefronts in (1). Such an alternative existence result will show, however, that one 
has to pay some price for each simplification in the definition of Dκ . In our case, the non-local 
term in equation (1) will be supposed to have trivial left interaction.

Non-negative fundamental solutions and a ‘dual’ existence result In various applied models, 
the derivative g′(s), s ∈ [0, κ], attains its maximal value at 0. This suggests the consideration of 
the following hypothesis (which is in some sense ‘dual’ to (ST)):

(ST∗) g′(0)s − g(s) is non-decreasing on [0, κ]. In particular, g(s) ≤ g′(0)s, s ∈ [0, κ].
In this subsection, we discuss how our previous arguments can be modified when (ST∗) is con-
sidered instead of (ST). We also state here an analog of Theorem 5 for such a case while an 
analog of Theorem 9 will be stated and proved later, in Section 6. All this requires the redef-
inition of the set DL (its analog will be denoted as D∗

L
) and of the fundamental solution v(t)

(its analog will be denoted as w(t)), as well as the use of appropriate functions Nj, gj , j > 1, 
in equation (7). Revisiting our proofs for the case when (ST) is assumed, we see that new fun-
damental solution w(t) should be non-negative for (h, c) ∈ D∗

L
and that it should satisfy, as a 

distribution, the equation

y′′(t) − cy′(t) − y(t) + g′(0)

∫
R

K(t − s)y(s − ch)ds = δ(t)

(the formal definition of w(t) is given in Section 6). This means that conditions assuring the 
non-negativity of w(t) should be expressed in terms of the characteristic function χ0(z, c, h). 
But as we have already mentioned, this function must have two positive roots (counted with 
multiplicity) each time when equation (1) has a semi-wavefront. Since χ ′′

0 (x, c, h) > 0, x ∈ R, 
this means that χ0(z, c, h) cannot have negative zeros when equation (1) has a semi-wavefront. 
On the other hand, if χ0(z, c, h) has complex zeros with negative real parts, the fundamental 
solution w(t) oscillates at +∞ (cf. Lemma 19 and Remark 20). This shows that w(t) can be 
non-negative only when all zeros of χ0(z, c, h) have positive real parts. In such a case, however, 
w(t) decays super-exponentially as t → +∞ that makes the analysis of its positivity at +∞
highly non-trivial. Nonetheless, for each fixed pair (h, c) ∈ D0, the analysis of non-negativity 
of w(t) can be successfully realized when the support suppK of K(s) belongs to the interval 
(−∞, −ch]. This leads us to the following definition:

D∗
0 = {(h, c) ∈R+ ×R : χ0(z, c,h) (a) has exactly two positive zeros μ0 < μ1;

and (b) suppK ⊂ (−∞,−ch]} .

In Section 6, we prove that if (h, c) ∈ D∗
0 then χ0(z, c, h) does not have zeros with non-positive 

real parts. It is clear also that if suppK ⊂ (−∞, −ch] then χκ(z, c, h) has exactly one negative 
simple zero (say, λ1(g

′(κ))). Thus we can set D∗
L

:= D∗
0:

Theorem 11. Assume (M), (ST∗), (K) and g(s) ≤ g(κ) +g′(κ)(s −κ), s ∈ [0, κ]. Then for each 
point (h, c) in the closure D∗

0 of the set D∗
0, equation (1) has at least one wavefront u(t, x) =

φc(x + ct) with non-decreasing profile φc(s), s ∈R.
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Finally, the organization of the paper is as follows. In Sections 2, 6, we study properties of 
the fundamental solutions v(t, ξ) and w(t). These studies are resumed in Theorems 9 and 27
which are formally proved in Step I of Section 3 and at the beginning of Section 6, respectively. 
The convolution equation (7) is then used to prove Theorems 5, 6, 11 in Sections 3, 4 and 6, 
respectively. The proof of Theorem 8 is given in Section 5.

2. Negativity of the fundamental solution

2.1. The fundamental solution: definitions and properties

Fix c, d, ξ ∈ R, kernel K(s) satisfying (K) and consider the linear integral-differential inho-
mogeneous equation

y′′(t) − cy′(t) − dy(t) − ξ

∫
R

K(t − s)y(s − ch)ds + f (t) = 0, (11)

where f : R → R is a bounded continuous function and the characteristic function

χ(z, ξ) = z2 − cz − d − ξe−chz

∫
R

e−zsK(s)ds, z ∈C,

does not have zeros on the imaginary axis (in such a case, we will say that equation (11) is 
hyperbolic). Suppose, for a moment, that f is compactly supported and that, for this inhomo-
geneity, equation (11) has a solution y : R → R exponentially decaying, together with its first 
derivative y′(t), at ±∞. Then, applying the bilateral Laplace transformation to (11), we find 
easily that this equation has a solution y(t) = −v ∗ f (s), which is the convolution of f with 
the bilateral Laplace inverse v(t, ξ) of 1/χ(λ, ξ). Since y(t) is a bounded function, the formula 
y(t) = −v ∗ f (s) shows that the inverse Laplace transform should be applied to 1/χ(λ, ξ) con-
sidered on the maximal vertical analyticity strip �(λl.λr) := {z : λl < 
z < λr} that includes 
the imaginary axis (observe that λl < 0 < λr since the imaginary axis does not contain any sin-
gular point of 1/χ(λ, ξ)). The function v(·, ξ) : R → C is called the fundamental solution for 
equation (11). The above said and the inversion theorem imply that

v(t, ξ) = − 1

2π

+∞∫
−∞

eiutdu

u2 + ciu + d + ξe−iuch
∫
R

K(s)e−iusds
, t ∈R. (12)

We view this formula as a formal definition of the fundamental solution for equation (11).

Lemma 12. Suppose that χ(z, ξ) does not have pure imaginary zeros. Then v(·, ξ) : R → R

is a real valued function which is infinitely differentiable with respect to t on the set R \ {0}
where it also satisfies equation (11) with f (t) ≡ 0. Moreover, the limits v′(0−, ξ), v′(0+, ξ) exist 
and v′(0+, ξ) − v′(0−, ξ) = 1 (thus the limits v′′(0−, ξ), v′′(0+, ξ) exist and v′′(0+, ξ) − v′′(0−,

ξ) = c).
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Proof. Indeed, v is a real valued function because of the presentation

v(t, ξ) = − 1

π

+∞∫
0

p(u) cos(tu) + q(u) sin(tu)

p2(u) + q2(u)
du, t ∈R, (13)

where p, q satisfying p(u) = p(−u), q(u) = −q(−u), u ∈ R, are defined by

p(u) := u2 + d + ξC(u), q(u) := cu − ξS(u),

where, due to the Lebesgue–Riemann lemma, the functions

C(u) :=
∫
R

K(s) cos(u(ch + s))ds, S(u) :=
∫
R

K(s) sin(u(ch + s))ds,

are vanishing, together with their derivatives of all orders, at ∞. In particular, this implies that

P(+∞) = 0, where P(u) := up(u)

p2(u) + q2(u)
,

while derivatives of all orders k = 1, 2, 3, . . . ,

P (k)(u) = (u−1)(k)(1 + o(1)) = (−1)kk!u−k−1(1 + o(1)), u → +∞,

are monotone at +∞. Therefore, by the Dirichlet test of the uniform convergence of improper 
integrals [50, p. 421], the integral

1

π

+∞∫
0

up(u) sin(tu)

p2(u) + q2(u)
du

converges uniformly for t on each compact subset of R \ {0}. In consequence (cf. [50, p. 426]),

v′(t, ξ) = 1

π

+∞∫
0

up(u) sin(tu) − uq(u) cos(tu)

p2(u) + q2(u)
du, t 
= 0, (14)

exists for all t 
= 0. Note that the term uq(u)/(p2(u) + q2(u)) is Lebesgue integrable on R+ so 
that the function

I2(t) =
+∞∫
0

uq(u) cos(tu)

p2(u) + q2(u)
du

is continuous on R. Hence, in order to prove the existence of v′(0+, ξ), v′(0−, ξ), we only need 
to take into account the integral
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I1(t) :=
+∞∫
0

P0(u)
sin(tu)

u
du =

+∞∫
0

(1 − P1(u))
sin(tu)

u
du = π sign t

2
−

+∞∫
0

P1(u)
sin(tu)

u
du

where t 
= 0, |u−1 sin(tu)| ≤ |t |, u > 0, and

P0(u) := u2p(u)

p2(u) + q2(u)
, P1(u) = p(u)(1 + ξC(u)) + q2(u)

p2(u) + q2(u)
∈ L1(R+).

Thus I1(0+) = π/2, I1(0−) = −π/2, so that v′(0+, ξ) − v′(0−, ξ) = 1.
Finally, in view of formulas (13), (14), a direct computation gives, for t 
= 0,

v′(t, ξ) − cv(t, ξ) −
t∫

0

v(s, ξ)ds − ξ

t∫
0

du

∫
R

K(s)v(u − s − ch, ξ)ds

= 1

π

+∞∫
0

(
p2(u) + q2(u)

)
sin(tu) + (q(u)p(u) − p(u)q(u)) cos(tu)

u(p2(u) + q2(u))
du

+ 1

π

+∞∫
0

ξp(u)S(u) + ξq(u)C(u) + dq(u)

u(p2(u) + q2(u))
du

= 1

2
+ 1

π

+∞∫
0

ξp(u)S(u) + ξq(u)C(u) + dq(u)

u(p2(u) + q2(u))
du.

Consequently, v′′(t, ξ) exists for t 
= 0 and v(t, ξ) satisfies equation (11) with f (t) ≡ 0 for all 
t 
= 0. In fact, if t > 0 (the case t < 0 is similar) then

v′(t, ξ) = 1

tπ

+∞∫
0

[
P

(v

t

)
sin v + Q

(v

t

)
cos v

]
dv, where Q(u) := −uq(u)

p2(u) + q2(u)
.

This shows that all derivatives v(j)(t, ξ), t > 0, exist. �
It follows from (12) that v(±∞, ξ) = 0 as the Fourier transform of a function from L1(R). In 

fact, some additional work shows that actually v(t) is exponentially decaying at ±∞:

Lemma 13. If equation (11) is hyperbolic then v ∈ W 1,1(R). In addition, |v(t)| ≤ Ce−γ |t |, t ∈R, 
for some positive C, γ and v′′ ∈ L1(R±) (so that v′(±∞, ξ) = 0).

Proof. A simple inspection of the characteristic equation

z2 − cz − d = ξe−chz

∫
e−zsK(s)ds, (15)
R
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shows that, in view of the hyperbolicity of (11), there exists γ > 0 such that the vertical strip 
{|
z| < 2γ } does not contain roots of (15). But then we can shift the path of integration in the 
inversion formula for the Laplace transform (e.g. see [2, p. 88]) to obtain

v(t, ξ) = e±γ t

2π

+∞∫
−∞

eiutdu

(±γ + iu)2 − c(±γ + iu) − d − ξ
∫
R

K(s)e−(±γ+iu)sds
= e±γ tσ±(t),

where σ±(∞) = 0. Next, by (14),

v′(t, ξ) = − 1

2π
lim

T →+∞

T∫
−T

iueiutdu

u2 + ciu + d + ξe−iuch
∫
R

K(s)e−iusds
, t 
= 0.

Therefore similarly, for t 
= 0,

v′(t, ξ) = e±γ t

2π
lim

T →+∞

T∫
−T

(±γ + iu)eiut du

(±γ + iu)2 − c(±γ + iu) + d − ξ
∫
R

K(s)e−(±γ+iu)sds
,

where the latter limit also exists in L2(R) and represent the Fourier transform of an element of 
L2(R). Thus v′(t, ξ) = e±γ tρ±(t), t 
= 0, where ρ± ∈ L2(R). By the Hölder inequality, v′ ∈
L1(R±) so that v′ ∈ L1(R). Finally, since v satisfies the equation (11) on R±, we conclude that 
v′′(t) = cv′(t) + v(t) + ξK ∗ v(t − ch) also belongs to L1(R±). �

In the sequel, we will denote by Cb(R) the Banach space of all real valued bounded contin-
uous functions f : R → R endowed with the norm |f | = supt∈R |f (t)|. Below, we also use the 
notation C1

b(R) = {f ∈ Cb(R) : f ′(t) ∈ Cb(R)}.

Lemma 14. If v ∈ W 1,1(R) and function f is continuous and bounded then v ∗ f ∈ C1
b(R) and 

(v ∗ f )′ = v′ ∗ f .

Proof. Clearly, |v ∗ f (t)| ≤ supt∈R |f (t)||v|1, t ∈R, and

v ∗ f (t + δ) − v ∗ f (t) =
∫
R

f (t − s)(v(s + δ) − v(s))ds =
∫
R

f (t − s)

s+δ∫
s

v′(u)duds

= δ

∫
R

v′(u)du
1

δ

u∫
u−δ

f (t − s)ds because of
∫
R

s+δ∫
s

|v′(u)|duds = δ|v|1 < ∞.

Since

∣∣∣∣∣∣
1

δ

u∫
f (t − s)ds

∣∣∣∣∣∣ ≤ sup
t∈R

|f (t)|, lim
δ→0

1

δ

u∫
f (t − s)ds = f (t − u),
u−δ u−δ
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we conclude that v ∗ f is differentiable on R and (v ∗ f )′ = v′ ∗ f . Note also that |v′ ∗ f (t)| ≤
supt∈R |f (t)||v′|1, t ∈R. �

Our next goal is, given a bounded continuous function f :R → R, to prove the uniqueness of 
bounded solution y(t) for the hyperbolic equation (11) and to justify the representation y(t) =
−v ∗ f (t):

Corollary 15. Suppose that f ∈ Cb(R). If equation (11) is hyperbolic and v is the associated 
fundamental solution then the formula u = −v ∗f gives the unique C2-smooth bounded solution 
of (11).

Proof. Invoking Lemmas 12, 13, 14 and using the formula

u(t) = −
t∫

−∞
v(t − s, ξ)f (s)ds −

+∞∫
t

v(t − s, ξ)f (s)ds,

we find easily that

u′(t) = −
∫
R

v′(t − s, ξ)f (s)ds, u′′(t) = −
∫
R

v′′(t − s, ξ)f (s)ds − f (t)(v′(0+, ξ) − v′(0−, ξ))

are continuous, bounded and satisfy equation (11).
On the other hand, assume that u(t) is some classical bounded solution of equation (11). Then 

it is easy to see from (11) that u′(t), u′′(t) are also bounded on R and

u′′ ∗ v(t) =
∫
R

u′′(s)v(t − s)ds =
∫
R

v′(t − s)u′(s)ds = u(t) +
∫
R

v′′(t − s)u(s)ds,

u′ ∗ v(t) =
∫
R

u′(s)v(t − s)ds =
∫
R

u(s)v′(t − s)ds.

In consequence, considering the convolution of equation (11) with the fundamental solution, we 
find that u(t) + v ∗ f (t) = 0. �
2.2. Continuous function v(t, ξ) as a distributional solution of a non-local equation

It is worthwhile to analyze the fundamental solution v(t, ξ) and some of its properties from 
the point of view of the theory of distributions. The distributions will be regarded in the standard 
way, as elements of the dual space D′(R) (recall that the space D(R) of test functions consists 
of compactly supported smooth functions). This perspective is quite useful since it helps to cope 
with more general non-local delayed differential operators
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Lφ(t) = φ(n)(t) + an−1φ
(n−1)(t) + · · · + a1φ

′(t) + a0φ(t) + b0

∫
R

K(t − s)φ(s)ds

+
m∑

j=1

bjφ(t − hj ).

We assume here that φ ∈ D(R), n ≥ 2, ai, bj , hj ∈ R and that the operator L is hyperbolic in 
the sense that the characteristic function η(z, L) determined from (L)(ezt ) = η(z, L)ezt does not 
have zeros on the imaginary axis. Obviously, this form of L includes the particular case of the 
operator defined by the left-hand side of equation (11).

Consider the formally adjoint operator L∗ defined by

L∗ψ(t) = (−1)nψ(n)(t) + (−1)n−1an−1ψ
(n−1)(t) + · · · − a1ψ

′(t) + a0ψ(t)

+ b0

∫
R

K(s − t)ψ(s)ds +
m∑

j=1

bjψ(t + hj ), ψ ∈D(R).

Clearly, for all φ, ψ ∈ D(R), it holds that Lφ, L∗ψ ∈ L1(R) and

∫
R

ψ(t)Lφ(t)dt =
∫
R

φ(t)L∗ψ(t)dt.

We have the following

Lemma 16. Suppose that L is hyperbolic. Then function

v(t) = 1

2π

+∞∫
−∞

eiutdu

η(iu,L)
, t ∈R, (16)

is continuous, bounded and Lebesgue integrable on R. Moreover, it is a distributional solution 
of the equation Lv(t) = δ(t), where δ(t) is the Dirac delta function:

∫
R

v(t)L∗φ(t)dt = φ(0) for all φ ∈D(R). (17)

In consequence, v(t) is Cn−2-smooth on R, Cn-smooth on (−∞, 0] and on [0, +∞), Lv(t) = 0
for all t 
= 0 and v(n−1)(0+) − v(n−1)(0−) = 1.

Proof. From 1/η ∈ L1(R) we infer that v ∈ C(R), v(±∞) = 0. In fact, repeating the argument 
given in the first lines of the proof of Lemma 13, we obtain that |v(t)| ≤ Ce−γ |t |, t ∈R, for some 
positive C, γ . Now, using the Fubini theorem and integrating by parts, we find that
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∫
R

v(t)L∗φ(t)dt = 1

2π

∫
R

L∗φ(t)dt

∫
R

eiutdu

η(iu,L)
= 1

2π

∫
R

du

η(iu,L)

∫
R

eiutL∗φ(t)dt

= 1

2π

∫
R

du

η(iu,L)

∫
R

φ(t)Leiutdt = 1

2π

∫
R

du

η(iu,L)

∫
R

φ(t)η(iu,L)eiut dt

= 1

2π

∫
R

du

∫
R

φ(t)eiutdt = φ(0).

In the last line, we are using the inversion formula for the Fourier transform [50].
Next, we observe that, on each interval (α, β) disjoint with {0}, continuous v(t) is a dis-

tributional solution of the following inhomogeneous linear ordinary differential equation with 
constant coefficients and right-hand side F ∈ Cb(R):

v(n)(t) + an−1v
(n−1)(t) + · · · + a1v

′(t) + a0v(t) = F(t), t ∈ (α,β), (18)

F(t) := −b0

∫
R

K(t − s)v(s)ds −
m∑

j=1

bjv(t − hj ).

It is well known [38] that, in such a case, v(t) is also a classical solution on (α, β) of equa-
tion (18). Since F ∈ Cb(R), we find that v(t) has continuous derivatives up to order n on the 
interval (−∞, 0] and on the interval [0, +∞).

Finally, for n ≥ 2 consider Cn−2-smooth function Tn : R → [0, +∞) defined as follows: 
Tn(s) = 0 for s ≤ 0 and Tn(s) = sn−1/(n − 1)! Clearly, Tn is a distributional solution of

T (n)(t) + an−1T
(n−1)(t) + · · · + a1T

′(t) + a0T (t) = δ(t) + F1(t), t ∈ R,

where piecewise continuous function F1 : R → R (having a unique jump discontinuity at t = 0) 
is defined by F1(0) = 0 and

F1(t) := an−1T
(n−1)
n (t) + · · · + a1T

′
n(t) + a0Tn(t), t 
= 0.

But then the difference W(t) = v(t) − Tn(t), being is a distributional solution of the ordinary 
differential equation

W(n)(t) + an−1W
(n−1)(t) + · · · + a1W

′(t) + a0W(t) = F(t) − F1(t), t ∈R,

is Cn−1-smooth function on R. In consequence, v(t) = W(t) + Tn(t) is a Cn−2-smooth function 
on R and v(n−1)(0+) − v(n−1)(0−) = T

(n−1)
n (0+) − T

(n−1)
n (0−) = 1. �

Now, since for f ∈ Cb(R) and continuous v ∈ L1(R)

−
∫
R

v ∗ f (t)L∗φ(t)dt =
∫
R

f (s)ds

∫
R

v(t − s)L∗φ(t + s)dt =
∫
R

f (s)φ(s)ds,

we obtain the following
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Corollary 17. For each fixed f ∈ Cb(R), the function u = −v ∗ f is a distributional solution of 
the equation Lu(t) +f (t) = 0. In consequence [38], u(t) is also a bounded Cn-smooth classical 
solution on R of this equation.

2.3. A criterion of negativity of the fundamental solution v(t, ξ)

In this subsection, assuming the hyperbolicity of equation (11), we establish a criterion of 
negativity of its fundamental solution v(t, ξ). It is well known (and it is straightforward to check) 
that v(t, ξ) < 0, t ∈ R, in the local and non-delayed case when ξ = 0, d > 0 and

v(s,0) = min{eλ1(0)s , eλ0(0)s}/(λ1(0) − λ0(0)), (19)

with λ1(0) < 0 < λ0(0) being the roots of the characteristic equation λ2 − cλ − d = 0. Suppose 
now that K(s) satisfies (K) and ξ ≥ 0, d + ξ > 0. Then it is easy to see that there exists a unique 
positive number ξ∗ such that χ(z, ξ) has both positive and negative finite zeros if and only if 
ξ ∈ [0, ξ∗]. In fact, since χ(4)(s, ξ) < 0 for all s ∈R, function χ(s, ξ), s ∈R, for ξ ∈ (0, ξ∗] can 
have at most four real zeros λj (ξ), all of them being finite if

0∫
−∞

K(s)ds

+∞∫
0

K(s)ds 
= 0.

In such a case, we will order them as λ2(ξ) ≤ λ1(ξ) < 0 < λ0(ξ) ≤ λ−1(ξ). If 
∫ 0
−∞ K(s)ds = 0

and ξ ∈ [0, ξ∗], then there are exactly two negative and one positive finite roots λ2(ξ) ≤ λ1(ξ) <
0 < λ0(ξ); by definition, we set λ−1(ξ) = +∞. A similar situation occurs when 

∫ +∞
0 K(s)ds =

0, ξ ∈ [0, ξ∗], where it is convenient to set λ2(ξ) = −∞. Finally, we set λ2(0) = −∞, λ−1(0) =
+∞. Observe that in either case the biggest negative root λ1(ξ) and the smallest positive root 
λ0(ξ) are finite numbers.

Lemma 18. Suppose that ξ ∈ [0, ξ∗], c2 + 4d > 0. Then in the closed strip

�(λ2, λ−1) := {z : λ2(ξ) ≤ 
z ≤ λ−1(ξ)}
the function χ(z, ξ) does not have zeros different from λj(ξ), j = −1, 0, 1, 2.

Proof. First, note that only zero of χ(z, ξ) on the line 
z = λj (ξ), where j ∈ {−1, 0, 1, 2}, is 
λj (ξ). Indeed, if zj , 
zj = λj (ξ), denotes another root of equation (15) then, using the factor-
ization z2 − cz − d = (z − A)(z − B) with real A, B , we get the following contradiction:

|λ2
j − cλj −d| < |zj −A||zj −B| = |z2

j − czj −d| ≤ ξe−chλj

∫
R

e−λj sK(s)ds = |λ2
j − cλj −d|.

Next, the right hand side of (15) is uniformly bounded in each closed strip �(a, b) by

ξ∗
∫

(e−a(ch+s) + e−b(ch+s))K(s)ds,
R
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while z2 −cz−1 → ∞ as z → ∞. In consequence, there exists positive C which does not depend 
on ξ such that each zero zk of χ(z, ξ), ξ ∈ [0, ξ∗], in �(λ1(ξ), λ0(ξ)) satisfies |�zk| ≤ C. Since 
λj (ξ), j = 0, 1, are continuous functions of ξ and �(λ1(0), λ0(0)) does not contain non-real 
roots of χ(z, 0), we find that either �(λ1(ξ), λ0(ξ)) contains only two zeros of χ(z, ξ) for all ξ ∈
[0, ξ∗] or there exist ξ1 ∈ (0, ξ∗] and complex zero z1 of χ(z, ξ) such that 
z1 ∈ {λ1(ξ1), λ0(ξ1)}. 
However, as we have just proved, the latter cannot happen.

Finally, suppose that χ(z0, ξ) = 0, λ2(ξ) < x0 := 
z0 < λ1(ξ) (the case when λ0(ξ) < 
z0 <

λ−1(ξ) can be treated analogously). Then we get the following contradiction

|z2
0 − cz0 − d| ≤ ξe−chx0

∫
R

e−x0sK(s)ds < |x2
0 − cx0 − d| ≤ |z0 − A||z0 − B| = |z2

0 − cz0 − d|.

This completes the proof of the lemma. �
Lemma 19. Suppose that ξ ∈ [0, ξ∗], d > 0, h ≥ 0. Then v(t, ξ) < 0 for all t ∈ R, ξ ∈ [0, ξ∗]. 
Moreover, v(t, ξ) is sign-changing on R for each ξ > ξ∗ close to ξ∗.

Proof. Due to Lemma 18, equation (11) is hyperbolic and therefore the fundamental solution 
exists. The proof of its negativity is divided in several steps. Recall that if ξ ∈ [0, ξ∗) then 
χ ′(λ0(ξ)) > 0, χ ′(λ1(ξ)) < 0 and λj (ξ), j = 0, 1, are simple zeros of χ(z, ξ).

Claim I. For each non-negative ξ0 < ξ∗ there exist real numbers ν0, ν1, a neighborhood O � ξ0
and positive constants K, L such that, for all ξ ∈O,

λ2(ξ) + L < ν1 < λ1(ξ) − L, λ0(ξ) + L < ν0 < λ−1(ξ) − L, (20)

v(t, ξ) = ρj (ξ)eλj (ξ)t + rj (t, ξ), |rj (t, ξ)| ≤ Keνj t , (−1)j+1t ≥ 0, j = 0,1, (21)

where ρj (ξ) = (−1)j+1/χ ′(λj (ξ)) < 0, j = 0, 1, depend continuously on ξ .
We prove this claim for j = 1, the other case being similar. Fix some ξ0 < ξ∗ and ν1 ∈

(λ2(ξ0), λ1(ξ0)). Then we can choose a neighborhood O � ξ0 and L > 0 sufficiently small to 
meet the condition (20) for all ξ ∈ O. Next, after moving the integration path in the inversion 
formula (12) from 
z = 0 to 
z = ν1, we obtain that, for t ≥ 0, v(ξ, t) =

eλ1t

χ ′(λ1, ξ)
+ 1

2πi

ν1+i·∞∫
ν1−i·∞

etzdz

χ(z, ξ)
= − eλ1t

|χ ′(λ1, ξ)| + eν1t

2π

+∞∫
−∞

eist ds

χ(ν1 + is, ξ)
=: e1(t) + eν1t q(t),

where q(±∞) = 0 and

|q(t)| ≤ K = sup
ξ∈O

1

2π

+∞∫
−∞

ds

|χ(ν1 + is, ξ)| .

Claim I implies that exponentially decaying function v(t, ξ), ξ ∈ O, is negative at ±∞. In 
particular, there exists a leftmost point T+(ξ) ≥ 0 such that v(t, ξ) < 0 for all t > T+(ξ). Anal-
ogously, T−(ξ) ≤ 0 denotes the rightmost point such that v(t, ξ) < 0 for all t < T−(ξ). By (19), 
T±(0) = 0.
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Claim II. v(t, ξ) is a continuous function of t ∈ R, ξ ∈ [0, ξ∗]. Furthermore, v(t, ξ) is 
bounded on R, uniformly with respect to ξ ∈ [0, ξ∗].

Indeed, observe that the function g(u, ξ) := 1/χ(iu, ξ) is continuous on R × [0, ξ∗] and 
|g(u, ξ)| ≤ G(u), u ∈ R, ξ ∈ [0, ξ∗], with G ∈ L1(R) defined by

G(u) =
{

max{1/|χ(is, ξ)|, |s| ≤ 2 + ξ∗, ξ ∈ [0, ξ∗]}, |u| ≤ 2 + ξ∗,
1/(u2 − ξ∗), |u| > 2 + ξ∗,

(recall that χ(λ, ξ) 
= 0 when 
λ = 0, ξ ∈ [0, ξ∗]). In particular, to prove the continuity state-
ment, it suffices to apply the Lebesgue dominated convergence theorem to (12).

Claim III. On each closed interval [0, ζ ] ⊂ [0, ξ∗), functions T±(ξ) are bounded.
Due to the compactness of [0, ζ ], it is enough to prove that T±(ξ) are locally bounded. For 

example, consider T+(ξ) for ξ ∈ O. We have that either T+(ξ) = 0 or T+(ξ) > 0 and

0 = v(T+(ξ)) ≤ ρ1(ξ)eλ1(ξ)T+(ξ) + Keν1T+(ξ), ξ ∈ O.

In the latter case, for all ξ ∈ O,

T+(ξ) ≤ 1

λ1(ξ) − ν1
ln

K

|ρ1(ξ)| ≤ 1

L
ln(K sup

ξ∈O
|χ ′(λ1(ξ), ξ)|).

Claim IV. v(t, ξ) < 0 for all t ∈R, ξ ∈ [0, ξ∗]. Furthermore, v(t, ξ) is sign-changing on R for 
ξ > ξ∗ close to ξ∗.

Let ξc ∈ [0, ξ∗] be the maximal number such that v(t, ξ) < 0, t ∈ R, for all ξ ∈ [0, ξc). For a 
moment, suppose that ξc < ξ∗. Since v(t, 0) < 0 for all t ∈ R, due to Claims II and III, ξc > 0
and v(tc, ξc) = 0 for some T−(ξc) ≤ tc ≤ T+(ξc). Since v(±∞, ξc) = 0, there exist two numbers 
ac < bc where v(t, ξc) reaches its absolute minima on the half-lines (−∞, tc] and [tc, +∞), 
respectively. Clearly, either ac or bc is different from zero. For instance, suppose that ac 
= 0. 
Then v(t, ξc) is differentiable at this point where v(ac, ξc) < 0, v′(ac, ξc) = 0, v′′(ac, ξc) ≥ 0 and 
K ∗ v(ac − ch) ≤ 0. Obviously, this contradicts equation (11) with f (t) ≡ 0 at t = ac 
= 0. This 
shows that ξc = ξ∗ and also implies that v(t, ξ∗) ≤ 0 for all t ∈ R. Now, ξ = ξ∗ is a bifurcation 
point for some real zero of χ(z, ξ): for instance, suppose that for λ2(ξ

∗) = λ1(ξ
∗) < 0. Clearly, 

χ ′(λ1(ξ
∗), ξ∗) = 0 while χ ′′(λ1(ξ

∗), ξ∗) 
= 0 for otherwise λ1(ξ
∗) would be a triple negative 

zero of χ(z, ξ∗). Then, using the inversion formula again, we find that v(t, ξ∗) is negative at +∞
because of the relation limt→+∞ v(t, ξ∗)t−1e−λ1(ξ

∗)t = 1/χ ′′(λ1(ξ
∗), ξ∗) < 0. Thus the above 

proof of negativity also works for v(t, ξ∗). Next, for all ξ > ξ∗ close to ξ∗, function χ(z, ξ) has 
two simple complex conjugated zeros λ1±(ξ) := p(ξ) ± iq(ξ), λ1±(ξ∗) := λ1(ξ

∗), such that the 
strip �(p(ξ), 0] does not contain any zero of χ(z, ξ). Now, assuming that v(t, ξ) ≥ 0, t ∈ R, 
we infer from [45, Theorem 5b, p. 58] that the singularity of the Laplace transform 1/χ(z, ξ) of 
v(t, ξ), which is rightmost on the half-plane 
z ≤ 0, should be a real number and not complex 
as λ1±(ξ). This contradiction proves the second part of Claim IV. �
Remark 20. It can be proved in Lemma 19 that actually v(t, ξ) is oscillating (either at +∞ or 
−∞) for ξ > ξ∗ close to ξ∗. Here the assumption of smallness of ξ − ξ∗ is used only in order to 
assure the existence of zeros of χ(z, ξ) in the both half-planes {
z > 0} and {
z < 0}. Observe 
that, due to a result by Iliev, [25, Theorem 3.2.46], the function 

∫
e−zsK(s)ds can have all its 
R
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zero only in the half-plane {
z < 0} even if non-negative continuous K has a compact support 
and K(0) > 0. In general, there is a lack of detailed knowledge regarding the distribution of 
zeros of χ(z, ξ) (e.g., see the discussion concerning the Riemann hypothesis in [25]). If K has 
a compact support, then the entire function χ(iz, ξ) is of class A and is of completely regular 
growth: in such a case, some general information about the distribution of zeros of χ(z, ξ) can 
be found in [28, Chapter V, Theorem 11].

Remark 21. The negativity (or positivity) of the fundamental solution (or of the Green function) 
for solving initial/boundary value problems for delayed differential equations is an important 
topic of the theory of functional differential equations. See the recent monographs [1,18] for 
more references concerning this problem.

The final result of this section shows that the geometric form of v(t, ξ) for ξ ∈ [0, ξ∗] is quite 
similar to the shape of v(t, 0) given in (19):

Corollary 22. If ξ ∈ [0, ξ∗] then v(t, ξ) has a unique minimum point at t = 0. Moreover, v(t, ξ)

is strictly monotone on R− and R+. It is also strictly convex on R−.

Proof. Indeed, as we have seen in the proof of Lemma 19, v′(t, ξ) cannot change the sign on 
(−∞, 0) and (0, +∞) because otherwise v(t, ξ) reaches a local minimum at some point of 
R \ {0}. By the same reason, v′(t, ξ) cannot vanish on an open interval. Finally, observe that all 
this implies that v′′(t, ξ) < 0 for t < 0. �
3. Proof of Theorem 5

Case I: (h, c) ∈ DL In this section, in view of the particular form of equation (1), we use 
χ(z, ξ) with d = 1:

χ(z, ξ) = z2 − cz − 1 − ξe−chz

∫
R

e−zsK(s)ds.

Since g′(κ) < 0, we have therefore that χκ(z, c, h) = χ(z, |g′(κ)|). In this way, we are as-
suming that the equation χ(z, |g′(κ)|) = 0 has at least one negative and one positive simple 
roots λ1(|g′(κ)|) < 0 < λ0(|g′(κ)|). In consequence, for sufficiently small ε > 0 we have that 
ξ = |g′(κ)| + ε ≤ ξ∗ and the equation χ(z, ξ) = 0 also has at least one negative and one positive 
simple roots λ1(ξ), λ0(ξ):

λ1(ξ) < λ1(|g′(κ)|) < 0 < μ0 < μ1 < λ0(|g′(κ)|) < λ0(ξ).

With g1(s) = (g(s) + ξs)/(1 + ξ), the profile equation (6) can be rewritten as

y′′(t)−cy′(t)−y(t)−ξ

∫
R

K(t −s)y(s−ch)ds+(1+ξ)

∫
R

K(t −s)g1(y(s−ch)) = 0. (22)

By Corollary 15, this equation has at least one bounded solution φ(t) if and only if
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φ(t) =Nφ(t), where Nφ(t) :=
∫
R

N1(t − s)g1(φ(s − ch))ds, N1(s) = −(1 + ξ)v ∗ K(s).

(23)

In virtue of Lemma 19, the following properties of N1(s) are immediate: N1(s) > 0, s ∈ R, ∫
R

N1(s)ds = 1. Furthermore, χ1(0) = (1 − g′(0))/(1 + ξ) < 0, χ1(μ0) = 0, where

χ1(z) := 1 − g′
1(0)

∫
R

e−zsN1(s)ds = χ0(z, c,h)

χ(z, ξ)
< ∞ for all z ∈ (λ1(ξ), λ0(ξ)). (24)

On the other hand, g1(s) is strictly increasing on [0, κ] where g1(κ) = κ, g1(0) = 0 and

g′
1(κ) = ε

|g′(κ)| + ε
∈ (0,1), g1(s) = g(s) + ξs

1 + ξ
≤ g′

1(0)s = g′(0)s + ξs

1 + ξ
.

Therefore nonlinear convolution equation (23) can be analyzed within the framework of the-
ory developed in [19]. Particularly, Theorem 7 in [19] guarantees the existence of a positive 
solution y = φ(t) to (22) satisfying the conditions φ(−∞) = 0, φ(+∞) = κ . Moreover, it is 
easy to see that solution φ(t) provided by [19, Theorem 7] is a non-decreasing one if g1(s) is 
a non-decreasing function. For the sake of completeness, in Remark 23 below, we indicate the 
corresponding change in the proof of [19, Theorem 7]. Now, due to the positivity of N1(s), the 
profile φ(t) is actually a strictly increasing function: if t2 > t1 then φ(t2 − s) ≥ φ(t1 − s), s ∈R, 
φ(t2 − s) 
≡ φ(t1 − s), so that

φ(t2) =
∫
R

N1(s − ch)g1(φ(t2 − s))ds >

∫
R

N1(s − ch)g1(φ(t1 − s))ds = φ(t1).

Hence, the proof of Case I is completed if g1(s) is increasing on R+. Otherwise, consider some 
increasing continuous and bounded function g2(s) coinciding with g1(s) on [0, κ] and such that 
g′

2(κ) = g′
1(κ). But then, due to the first part of the proof, convolution equation (23) where g1

is replaced with g2 has a monotone solution φ : R → [0, κ]. Since g1(s) ≡ g2(s) on [0, κ], the 
same function φ(t) solves (23).

Case II: (h, c) belongs to the boundary of the set DL In such a case, there exists a sequence 
{(hj , cj )} of points in DL converging to (h, c). From Case I we conclude that for each point 
{(hj , cj )} there exists a monotone positive solution y = φj (t), φj (−∞) = 0, φj (−∞) = κ , 
satisfying the profile equation

y′′(t) − cj y
′(t) − y(t) +

∫
R

K(t − s)g(y(s − cjhj )) = 0.

Since this equation is translation invariant, we can assume that φj(0) = κ/2 for each j . Then it 
follows that φj (s) has a subsequence φjk

(t) converging (uniformly on compact subsets of R) 
to a positive monotone solution φ(t), φ(0) = κ/2, of the limit equation (6) (e.g. see [19]
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or [41, Section 6] for more details). Now, the monotonicity of φ(t) implies that the boundary 
conditions in (6) are also satisfied (e.g. see Remark 23 below). This completes the proof of The-
orem 5. �
Remark 23. In order to solve the following slightly modified version

φ := Aφ, where Aφ(t) :=
∫
R

N1(s)γn(φ(t − s − ch))ds, (25)

γn(s) :=
{

g′
1(0)s, for s ∈ [0,1/n],

max{g′
1(0)/n,g1(s)}, when s ≥ 1/n,

of equation Nφ = φ in Section 4 of [19], we can use the iteration procedure φj+1 = Aφj , j =
0, 1, . . . , φ0(s) = n−1 exp(μ0s), s ∈ R, instead of the Schauder fixed point theorem. For a small 
positive ε > 0, set φ−(t) = φ0(t)(1 − eεt )χR−(t), where χR−(t) is the characteristic func-
tion of R−. Since γn(s), φ0(t) are non-decreasing functions and φ−(t) ≤ Aφ−(t) ≤ φ1(t) ≤
Aφ0(t) ≤ φ0(t), we conclude that each φj (t), j ∈ N, is also a non-decreasing function and 
φ0(t) ≥ φ2(t) ≥ · · · ≥ φj (t) ≥ · · · ≥ φ−(t). Then the limit φ(t) = limj→+∞ φj (t) should be 
a positive non-decreasing and bounded solution of the equation φ = Aφ. Taking the limit 
in (25) as t → ±∞, we obtain that φ(±∞) = γn(φ(±∞)) that immediately implies that 
φ(−∞) = 0, φ(+∞) = κ .

4. Proof of Theorem 6

In this section, we show how the use of convolution equation (22) helps to extend the front 
uniqueness result established for equation (2) with monotone birth function g (e.g. see [43, The-
orem 1.2]) on the case of non-local and non-monotone model (1).

Lemma 24. Fix some (h, c) ∈DL and suppose that φ, ψ : R → (0, κ] are two wavefront profiles 
satisfying equation (6) and such that φ is monotone and, for some finite T ,

φ(t) < ψ(t), t < T . (26)

Then φ(t) < ψ(t) for all t ∈R.

Proof. Set a∗ = inf A where

A := {a ≥ 0 : ψ(t) + a ≥ φ(t), t ∈ R}.

Note that A 
= ∅ since [κ, +∞) ⊂ A. Clearly, a∗ ∈ A.
Now, if a∗ = 0 then ψ(t) ≥ φ(t), t ∈ R. We claim that, in fact, ψ(t) > φ(t), t ∈ R. Indeed, 

otherwise we can suppose that T is such that φ(T ) = ψ(T ). In this way, the difference ψ(t) −
φ(t) ≥ 0 reaches its minimal value 0 at T . Then, recalling that N1(t) = −(1 + ξ)v ∗ K(t) > 0
for all t ∈ R, we get a contradiction:

0 = ψ(T ) − φ(T ) =
∫

N1(s − ch)(g1(ψ(T − s)) − g1(φ(T − s)))ds > 0. (27)
R
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In this way, Lemma 24 is proved when a∗ = 0 and, consequently, we have to consider the case 
a∗ > 0. Let σ > 0 be small enough to satisfy

γ1 := max
s∈[κ−σ,κ+σ ]g

′
1(s) < 1.

Case I. First, we take Q > 0 such that κ
∫ +∞
Q

N1(s − ch)ds < a∗(1 − γ1) and suppose that T is 
large enough to have

φ(t),ψ(t) ∈ (κ − σ, κ + σ), t ≥ T − Q. (28)

In such a case non-negative function

w(t) := ψ(t) + a∗ − φ(t), w(±∞) = a∗ > 0,

reaches its minimal value 0 at some leftmost point tm, where ψ(tm) − φ(tm) = −a∗. Thus 
ψ(tm) < φ(tm) and therefore tm > T so that

ψ(tm − s), φ(tm − s) ∈ (κ − σ, κ + σ), s ≤ Q.

In consequence, for some θ(s) ∈ (κ − σ, κ + σ), we obtain

−a∗ = ψ(tm) − φ(tm) =
∫
R

N1(s − ch)(g1(ψ(tm − s)) − g1(φ(tm − s)))ds

=
⎛
⎜⎝

Q∫
−∞

+
+∞∫
Q

⎞
⎟⎠N1(s − ch)(g1(ψ(tm − s)) − g1(φ(tm − s)))ds

> −a∗(1 − γ1) +
Q∫

−∞
N1(s − ch)g′

1(θ(s))(ψ(tm − s) − φ(tm − s))ds

≥ −a∗ + a∗γ1 − γ1a∗
Q∫

−∞
N1(s − ch)ds ≥ −a∗, a contradiction.

Case II. If (28) does not hold, then, due to the convergence of profiles at +∞ and the strict 
monotonicity of φ, we can find large τ > 0 and T1 > T such that

ψ(t + τ) > φ(t), t < T1, φ(t),ψ(t + τ) ∈ (κ − σ, κ + σ), t ≥ T1 − Q.

Therefore, in view of the previous arguments, we obtain that

ψ(t + τ) > φ(t), t ∈ R. (29)

Define now τ∗ by
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τ∗ := inf{τ ≥ 0 : inequality (29) holds}.

It is clear that ψ(t + τ∗) ≥ φ(t), t ∈ R. Now, using the same argument as in (27), we conclude 
that either ψ(t + τ∗) ≡ φ(t) with τ∗ = 0 (a contradiction) or ψ(t + τ∗) > φ(t), t ∈ R. In the 
latter case, if τ∗ = 0, then Lemma 24 is proved. Otherwise, τ∗ > 0 and for each ε ∈ (0, τ∗) there 
exists a unique Tε > T such that

ψ(t + τ∗ − ε) > φ(t), t < Tε, ψ(Tε + τ∗ − ε) = φ(Tε).

It is immediate to see that limTε = +∞ as ε → 0+. Indeed, if Tεj
→ T ′ for some finite T ′ and 

εj → 0+, then we get a contradiction: ψ(T ′ + τ∗) = φ(T ′). Therefore, if ε is small, then

ψ(t + τ∗ − ε),φ(t) ∈ (κ − σ, κ + σ), t ≥ Tε − Q,

that is ψ(t + τ∗ − ε) and φ(t) satisfy condition (28). But then we get ψ(t + τ∗ − ε) > φ(t) for all 
t ∈ R, in contradiction to the definition of τ∗. This means that τ∗ = 0 and the proof of Lemma 24
is completed. �
Corollary 25. Fix some (h, c) in the closure of D0 and suppose that equation (6) possesses 
two monotone wavefronts φ and ψ . Then there exist s0, s1 ∈ R and j ∈ {0, 1} such that either 
lims→−∞ φ(s + s0)e

−μj s = 1, lims→−∞ ψ(s + s1)e
−μj s = 1, or lims→−∞ φ(s + s0)e

−μj ss−1 =
−1, lims→−∞ ψ(s + s1)e

−μj ss−1 = −1.

Proof. First, we prove that every profile satisfies one of the given asymptotic formula, with j
which might depend on the profile. For definiteness, we will take profile φ. We are going to 
apply some results of [2] to the convolution equation (23). It follows from (24) that the set 
{z : σK < 
z < γK}, where σK = λ1(ξ), γK = λ0(ξ), is the maximal open strip of convergence 
for the Laplace transform of N1, cf. [45, Theorem 16b]. Moreover,

lim
x→γK−

∫
R

N1(s)e
−sxds = +∞ and, in virtue of (21), N1(s) = O(eλ0(ξ)s), s → −∞.

Therefore, using condition (8) and a standard argument of the Diekmann–Kaper approach (cf. 
Step I of the proof of Theorem 3 in [2]), we find that, for some j, k ∈ {0, 1} and ρ > 0, the 
Laplace transform 

∫
R

φ(s)e−zsds is analytic in the strip 0 < 
z < μj , has a singularity at μj , 
and satisfies

χ0(z, c,h)

χ(z, ξ)

∫
R

φ(s)e−zsds = D(z),

where D(z) is analytic in a bigger strip 0 < 
z < μj + ρ. Since clearly �+(z) := ∫ +∞
0 φ(s) ×

e−zsds is analytic in the half-plane {
z > 0}, we conclude that the function Q(z) :=
D(z)χ(z, ξ)/χ0(z, c, h) − �+(z) is meromorphic in 0 < 
z < μj + ρ, where it has a unique 
singularity (a simple or double pole) at μj . Since �−(z) := ∫ 0

−∞ e−szφ(s)ds = Q(z) for 

z ∈ (0, μj ) and φ(s) is positive and non-decreasing on R−, an application of the Ikehara 
theorem [9, Proposition 2.3] yields the required asymptotic formula.
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Finally, we claim that φ and ψ have the same asymptotic behavior at −∞. For example, 
suppose that φ(t) ∼ eμ0t and ψ(t) ∼ eμ1t as t → −∞. Then for every fixed τ ∈ R there exists 
T (τ) such that ψ(t + τ) < φ(t) for all t < T (τ). Applying Lemma 24, we obtain that ψ(s) <
φ(t) for every s := t + τ, t ∈ R, what obviously is false. �

Now we are in position to finalize the proof of Theorem 6. By Corollary 25, we can suppose 
that ψ(t) and φ(t) have the same type of asymptotic behavior at −∞. Consequently, ψ(t +
τ), φ(t) satisfy condition (26) of Lemma 24 for every small τ > 0. But then ψ(t + τ) > φ(t)

for every small τ > 0 that yields ψ(t) ≥ φ(t), t ∈ R. By symmetry, we also find that φ(t) ≥
ψ(t), t ∈R, and Theorem 6 is proved. �
5. Proof of Theorem 8

We will show that conditions of Theorem 8 assure that each semi-wavefront u = φ(x + ct), 
(h, c) ∈ DL, of equation (2) is actually a monotone wavefront. Indeed, it is easy see that 
0 < φ(t) < κ, t ∈ R, since otherwise, without loss of generality, we can assume that φ(t0) =
maxs∈R φ(s) for some t0 that leads to the following contradiction:

κ ≤ φ(t0) = max
s∈R

φ(s) =
∫
R

N1(t0 − s)g1(φ(s −ch))ds <

∫
R

N1(t0 − s)max
s∈R

g1(φ(s))ds ≤ φ(t0).

Next, we will need the following

Lemma 26. Set �(s) := g1(φ(s − ch)). If the semi-wavefront φ(t) is increasing on R− and 
satisfies φ′(0) = 0 then, for t ∈ [0, ch],

φ′(t) =
0∫

−∞
(N1(t − s) − eλ0(ξ)tN1(−s))d�(s) +

t∫
0

(N1(t − s) − eλ0(ξ)(t−s)N1(0))d�(s).

Proof. Since �(s) increases on (−∞, ch] and �(−∞) = 0, all Riemann–Stieltjes integrals in 
the above formula are well defined and convergent. Next, note that g(s) = g1(s)(1 + ξ) − ξs is 
of bounded variation on [0, κ]. Thus, using [42, Remark 9(2)] together with Corollary 25, we 
conclude that φ(t) can have at most a finite number of critical points on each interval (−∞, α]. 
This implies that �(s) has bounded variation on each (−∞, α]. Next, in view of Remark 10, 
after integrating by parts, we find that

φ′(t) =
t∫

−∞
N ′

1(t − s)�(s)ds +
+∞∫
t

λ0(ξ)N1(0)eλ0(ξ)(t−s)�(s)ds

=
t∫

−∞
N1(t − s)d�(s) +

+∞∫
t

N1(0)eλ0(ξ)(t−s)d�(s)

=
t∫

N1(t − s)d�(s) + eλ0(ξ)tN1(0)

⎛
⎝

+∞∫
e−λ0(ξ)sd�(s) −

t∫
e−λ0(ξ)sd�(s)

⎞
⎠ .
−∞ 0 0
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Since φ′(0) = 0, it holds that

N1(0)

+∞∫
0

e−λ0(ξ)sd�(s) = −
0∫

−∞
N1(−s)d�(s)

and therefore

φ′(t) =
t∫

−∞
N1(t − s)d�(s) + eλ0(ξ)t

⎛
⎝−

0∫
−∞

N1(−s)d�(s) − N1(0)

t∫
0

e−λ0(ξ)sd�(s)

⎞
⎠

=
0∫

−∞
(N1(t − s) − eλ0(ξ)tN1(−s))d�(s) +

t∫
0

(N1(t − s) − N1(0)eλ0(ξ)(t−s))d�(s). �

Now we can complete the proof of Theorem 8. From [42, Lemma 6], we know that φ′(t) > 0
on some maximal interval (−∞, σ). If σ = +∞, the corollary is proved. If σ is finite, with-
out loss of generality we may take σ = 0. Then �(t) = g1(φ(t − ch)) is strictly increasing on 
(−∞, ch). But then Lemma 26 implies that φ′(t) ≤ 0 for all t ∈ (0, ch]. Here, we are using the 
inequalities

N1(t − s) < N1(−s) < eλ0(ξ)tN1(−s), s ≤ 0 < t; N1(t − s) < N1(0) < N1(0)eλ0(ξ)(t−s), s < t.

Thus φ′(t) ≤ 0 on some maximal interval (0, σ1). Note that σ1 must be a finite real num-
ber since otherwise φ′(t) ≤ 0 on (0, +∞) implying φ(+∞) = 0. However, this contradicts 
the uniform persistence property of semi-wavefronts [19]. In consequence, σ1 > ch is finite 
so that φ′(σ1) = 0, φ′′(σ1) ≥ 0 and φ(σ1) ≤ φ(σ1 − ch). On the other hand, we know that 
φ′′(t) − cφ′(t) − φ(t) + g(φ(t − ch)) = 0 for all t ∈R so that

φ′′(σ1) − φ(σ1) + g(φ(σ1 − ch)) = 0,

from which we obtain κ > φ(σ1 − ch) ≥ φ(σ1) ≥ g(φ(σ1 − ch)) > 0, a contradiction.
Finally, the uniqueness statement of Theorem 8 follows from Theorem 6. �

6. Proof of Theorem 11

We will need the following analog of Theorem 9.

Theorem 27. Assume (M) and (K). Then for each point (h, c) ∈ D∗
0 , there exist g2 and kernels 

N2, w ≥ 0 given by

N2(t) = (g′(0) − 1)

∫
R

K(s)w(t − s)ds, g2(s) = g′(0)s − g(s)

g′(0) − 1
,

such that the boundary value problem (6) has a solution if and only if equation (7) (where 
j = 2) has a non-negative solution satisfying the boundary conditions of (6). Furthermore, 
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∫
R

N2(s)ds = 1 and 
∫
R

N2(s)e
−λsds < ∞ for all λ from some infinite interval (−∞, γ ∗

r ) � {0}. 
In fact, N2(t) = 0 for all t ≥ −ch. Continuous function w is C2-smooth on R− and w(t) ≡ 0
on R+.

Proof. With ξ ∈ [0, 1], consider the linear equation

y′′(t) − cy′(t) − y(t) + g′(0)

∫
R

K(s)y(t − ξ(s + ch))ds = 0. (30)

For (h, c) ∈ D∗
0, the characteristic function for (30) has the form

χ0(z, ξ) := z2 − cz − 1 + g′(0)

0∫
−∞

e−zξsK(s − ch)ds.

Thus χ0(x, ξ), x > 0, is strictly increasing with respect to ξ ∈ [0, 1]. At the same time, 
χ0(0, ξ) ≡ g′(0) − 1 > 0, χ ′′

0 (x, ξ) > 0, x ∈ R. This implies that if (h, c) ∈D∗
0 then χ0(z, ξ) has 

exactly two positive simple zeros μ0(ξ) < μ1(ξ) for each ξ ∈ [0, 1]. In fact, μ0(ξ), −μ1(ξ) are 
increasing continuous functions of ξ ∈ [0, 1] and μ0(ξ) ≤ μ0 = μ0(1) < μ1(1) = μ1 ≤ μ1(ξ) ≤
μ1(0).

In the next five claims, we define the fundamental solution w(t) and study its properties.

Claim I. If (h, c) ∈ D∗
0 then χ0(z, ξ), ξ ∈ [0, 1], does not have non-real zeros zj with the real 

part 
zj ≤ μ1(ξ).

Proof of the claim. Note that if χ0(zj , ξ) = 0 and 
zj ≤ μ1(ξ) then

|z2
j − czj − 1| = g′(0)|

0∫
−∞

e−zj ξsK(s − ch)ds| ≤ g′(0)

0∫
−∞

e−μ1(0)sK(s − ch)ds.

Therefore some compact disk in C (not depending on ξ ∈ [0, 1]) contains all such zeros zj of 
χ0(z, ξ). Moreover, the vertical line 
z = μ1(ξ0) does not contain non-real zeros zk of χ0(z, ξ). 
Indeed, assuming that such a zero zk exists, we immediately obtain the following contradiction:

|(μ1(ξ0))
2 − cμ1(ξ0) − 1| < |z2

k − czk − 1| = g′(0)|
0∫

−∞
e−zkξ0sK(s − ch)ds|

≤ g′(0)

0∫
−∞

e−μ1(ξ0)ξ0sK(s − ch)ds = |(μ1(ξ0))
2 − cμ1(ξ0) − 1|.

In consequence, since the zeros μ0(ξ), μ1(ξ) are simple, the number of zeros of χ0(z, ξ) lying 
in the half-plane 
z ≤ μ1(ξ) does not depend on ξ and is equal to 2. �
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In consequence, if (h, c) ∈ D∗
0 then equation (30) is hyperbolic for all ξ ∈ [0, 1] that allows 

us to apply Lemma 16 and define the fundamental solution w(t, ξ) for (30);

w(t, ξ) = 1

2π

+∞∫
−∞

eiutdu

χ0(iu, ξ)
, t ∈R. (31)

Arguing as in Claim II of Lemma 19, we obtain that the function w(t, ξ) is continuous and 
bounded on R × [0, 1]. It is easy to see (cf. [20]) that

w(t,0) = 1

μ1(0) − μ0(0)

{
0, t ≥ 0,

eμ0(0)t − eμ1(0)t , t < 0.

In the next two claims, we extend the main properties of w(t, 0) for w(t, ξ) with ξ ∈ [0, 1].
Claim II. w(t, ξ) = 0, t ≥ 0, for every ξ ∈ [0, 1]. Thus w′(0−, ξ) = −1 so that w(t, ξ) > 0 for 
all t from some maximal non-empty set (T+(ξ), 0).

Proof of the claim. Indeed, by Lemma 16 function w1(t, ξ) = w(−t, ξ) satisfies, for all t 
= 0, 
the linear functional differential equation with infinite delay

y′′(t) + cy′(t) − y(t) + g′(0)

0∫
−∞

K(s − ch)y(t + ξs)ds = 0. (32)

Consider the initial value problem

y(s) = y0(s), s ≤ 0, y′(0) = b (33)

for (32), where (b, y0) ∈ B, and the vector space

B := C× {ϕ : ϕ is Lebesgue measurable complex function on R−,

0∫
−∞

|ϕ(s)|2esds < ∞}

is provided with the complete norm |(b, ϕ)|B = |ϕ(0)| + |b| +
(∫ 0

−∞ |ϕ(s)|2esds
)1/2

. Then the 
linear operator

(b,ϕ) ∈B −→ (−cb + ϕ(0) − g′(0)

0∫
−∞

K(s − ch)ϕ(ξs)ds, b) ∈ C
2

is bounded in virtue of assumption (K) and the Cauchy–Schwarz inequality. Since χ0(−z, ξ)

is the characteristic function for (32), all its zeros have negative real parts once (h, c) ∈ D∗
0. 

Therefore [37, Theorem 4.4] guarantees that, for some universal constants α > 0, K > 0,
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|(y′(t), y(t + ·))|B ≤ Ke−αt |(b, y0(·))|B, t ≥ 0, (34)

for the unique solution y(t) of the initial value problem (33).
Now, clearly, (w′

1(0−, ξ), w1(·, ξ)) ∈ B. As a consequence, the initial value problem (33)
where y0(s) = w1(s, ξ), b = w′

1(0−, ξ) has a unique solution w̃1(t, ξ) on [0, +∞). In view 
of (34), w̃1 is bounded on [0, +∞). Hence, the function

ŵ1(t, ξ) =
{

w1(t, ξ), t ≤ 0,

w̃1(t, ξ), t > 0,

belongs to the space C2(R) and satisfies (32) for all t ∈ R. Because of (34), this is possible only 
when ŵ1(t, ξ) ≡ 0. �
Claim III. For each non-negative ξ0 ∈ [0, 1] there exist real number ν, a neighborhood O � ξ0

and positive constant M such that, for all ξ ∈ O,

ν > sup
ξ∈O

μ1(ξ), w(t, ξ) = ρ0(ξ)eμ0(ξ)t − ρ1(ξ)eμ1(ξ)t + r(t, ξ), |r(t, ξ)| ≤ Meνt , t ≤ 0,

where ρj (ξ) = (−1)j+1/χ ′
0(μj (ξ), ξ) > 0, j = 0, 1, depend continuously on ξ .

Proof of the claim. Clearly, we can choose a small neighborhood O � ξ0 and ν > supξ∈O μ1(ξ)

sufficiently close to μ1(ξ0) and such that the vertical strip {z : μ1(ξ) < 
z < ν} does not contain 
any zero of χ0(z, ξ) when ξ ∈ O. Then, after moving the integration path in the inversion formula 
(16) from 
z = 0 to 
z = ν, we obtain that, for t ≤ 0,

w(ξ, t) = − eμ0(ξ)t

χ ′
0(μ0(ξ), ξ)

− eμ1(ξ)t

χ ′
0(μ1(ξ), ξ)

+ 1

2πi

ν+i·∞∫
ν−i·∞

etzdz

χ0(z, ξ)

= ρ0(ξ)eμ0(ξ)t − ρ1(ξ)eμ1(ξ)t + eνt

2π

+∞∫
−∞

eist ds

χ0(ν + is, ξ)
=: e0(t) − e1(t) + eνtq(t, ξ),

where q(−∞, ξ) = 0 and

|q(t, ξ)| ≤ M = sup
ξ∈O

1

2π

+∞∫
−∞

ds

|χ0(ν + is, ξ)| . �

Claim III implies that exponentially decaying function w(t, ξ), ξ ∈ O, is positive at −∞. In 
particular, there exists the rightmost point T−(ξ) ≤ 0 such that w(t, ξ) > 0 for all t < T−(ξ). 
Recall that T+(ξ) < 0 denotes the leftmost point such that w(t, ξ) > 0 for all t ∈ (T+(ξ), 0). In 
particular, T−(0) = 0, T+(0) = −∞, w(T−(ξ), ξ) = 0.
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Claim IV. Function T−(ξ) is bounded on [0, 1].

Proof of the claim. It is enough to prove that T−(ξ) is locally bounded, so that we will consider 
T−(ξ) for ξ ∈O where O was defined in Claim III. We have that

0 = w(T−(ξ), ξ) ≥ ρ0(ξ)eμ0(ξ)T−(ξ) − (ρ1(ξ) + M)eμ1(ξ)T−(ξ), ξ ∈O,

and therefore, for all ξ ∈ O,

T−(ξ) ≥ 1

μ1(ξ) − μ0(ξ)
ln

ρ0(ξ)

ρ1(ξ) + M
≥ 1

μ1(1) − μ0(1)
inf
ξ∈O

ln
ρ0(ξ)

ρ1(ξ) + M
. �

Claim V. w(t, ξ) > 0 for all t < 0, ξ ∈ [0, 1].

Proof of the claim. Indeed, otherwise there exists ξc ∈ (0, 1] such that w(t, ξ) > 0, t < 0, for all 
ξ ∈ (0, ξc) and w(tc, ξc) = 0 at its rightmost zero tc from (−∞, 0) (since w(t, 0) > 0 for t < 0, 
such ξc is well defined due to Claims III and IV). Clearly, T−(ξc) ≤ tc < 0 and w′(tc, ξc) =
0, w′′(tc, ξc) ≥ 0. Thus, in view of equation (30),

0 ≥
∫
R

K(s)w(tc − ξc(s + ch), ξc)ds =
0∫

tc/ξc

K(s − ch)w(tc − ξcs, ξc)ds ≥ 0.

Since w(t, ξc) > 0 for all t ∈ (tc, 0), we obtain that K(t − ch) = 0 almost everywhere on 
[tc/ξc, 0]. In this way,

∫
R

K(s)w(t − ξc(s + ch), ξc)ds =
0∫

t/ξc

K(s − ch)w(t − ξcs, ξc)ds = 0 for t ∈ [tc,0].

Therefore

w′′(t, ξc) − cw′(t, ξc) − w(t, ξc) = 0 for all t ∈ [tc,0].

Since w(tc, ξc) = w′(tc, ξc) = 0, in view of the uniqueness theorem we can conclude that 
w(t, ξ) = 0 for all t ∈ [tc, 0], a contradiction. �

Hence, the function w(t) := w(t, 1) has all properties mentioned in the statement of the the-
orem and it is the required fundamental solution for equation (30). In particular, 

∫
R

w(t)dt =
(χ0(0, c, h))−1 = (g′(0) − 1)−1. The properties of N2(t) are now obvious, note here that

N2(t) = (g′(0) − 1)

−ch∫
K(s)w(t − s)ds.
t
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Finally, arguing as in Corollary 15, we find the boundary value problem (6) has a solution if 
and only if equation (7) has a non-negative solution satisfying the boundary conditions of (6). 
Theorem 27 is proved. �

In order to complete the proof of Theorem 11, one might try, as before, to apply the general 
existence theory developed for convolution equations in [19]. However, a straightforward appli-
cation of [19, Theorem 7] to equation (7) with j = 2 (which was successfully realized for the 
case j = 1 in the proof of Theorem 5) is not possible now because it holds g′

2(0) = 0 instead of 
the required inequality g′

2(0) > 1. In particular, such a ‘degeneracy’ of g2 at 0 implies that the 
well known sub- and super-solutions φ−(t), φ0(t) indicated in Remark 23 cannot be used in the 
case when j = 2 in (7). Exactly the same situation happened in the studies of the KPP-Fisher 
equations (3), (4) (where also the non-negative fundamental solution was used). We recall that, 
for these equations, new sub- and super-solutions were constructed in [16,20] by gluing together 
pieces of non-oscillating eigenfunctions for linearizations of (3), (4) at the steady states 0 and 1. 
Since the approach of [16,20] is more technically involved than the rather standard method of 
[19], in this paper we propose the following simple alternative idea.

Fix some (h, c) ∈ D∗
0 and realize the change of variables y(t) = κ − ψ(−t) in (6). We will 

obtain the boundary value problem ψ(−∞) = 0, ψ(+∞) = κ, ψ(t) ≤ κ for equation

ψ ′′(t) + cψ ′(t) − ψ(t) +
∫
R

K(s − ch)(κ − g(κ − ψ(t + s)))ds = 0. (35)

Let w−(t) be the fundamental solution for

ψ ′′(t) + cψ ′(t) − ψ(t) + g′(0)

∫
R

K(s − ch)ψ(t + s)ds = 0,

then

w−(t) = 1

2π

+∞∫
−∞

eiutdu

χ0(−iu,1)
≡ w(−t), t ∈R,

cf. (31). In consequence, arguing as in Corollary 15, we obtain that

ψ(t) =
∫
R

N3(s)g3(ψ(t − s))ds,

where

N3(t) = (g′(0) − 1)

∫
R

w(−s)K(s − t − ch)ds, g3(u) = g′(0)u + g(κ − u) − κ

g′(0) − 1
.

Observe that N3(t) ≥ 0, t ∈R, N3(t) = 0, t ≤ 0, 
∫

N3(s)ds = 1, g3(0) = 0, g3(κ) = κ ,

R
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g′
3(0) = g′(0) − g′(κ)

g′(0) − 1
> 1, g′

3(κ) = 0, g3(u) > u, u ∈ (0, κ),

and g3(u) is non-decreasing on [0, κ] in view of (ST∗). Since g(u) is sub-tangential at κ , we find 
that g3(u) is sub-tangential at 0 (i.e. g3(u) < g′

3(0)u, u ∈ (0, κ)). Furthermore, the function

χ∗
1 (z) := 1−g′

3(0)

∫
R

N3(s)e
−szds = 1− (g′(0)−g′(κ))

∫
R

K(−s − ch)e−szds

χ0(−z, c,h)
= χκ(−z, c,h)

χ0(−z, c,h)

is analytic in the half-plane {
z > −μ0} and satisfies

χ∗
1 (0) = g′(κ) − 1

g′(0) − 1
< 0, χ∗

1 (−λ1(g
′(κ))) = 0.

In consequence, in order to complete the proof of Theorem 11, it suffices to apply Theorem 7 
from [19] and argues as in the proof of Theorem 5. �
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