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Although ecometric methods have been used to analyse fossil mammal

faunas and environments of Eurasia and North America, such methods

have not yet been applied to the rich fossil mammal record of eastern

Africa. Here we report results from analysis of a combined dataset spanning

east and west Turkana from Kenya between 7 and 1 million years ago (Ma).

We provide temporally and spatially resolved estimates of temperature and

precipitation and discuss their relationship to patterns of faunal change, and

propose a new hypothesis to explain the lack of a temperature trend. We

suggest that the regionally arid Turkana Basin may between 4 and 2 Ma

have acted as a ‘species factory’, generating ecological adaptations in advance

of the global trend. We show a persistent difference between the eastern and

western sides of the Turkana Basin and suggest that the wetlands of the shal-

low eastern side could have provided additional humidity to the terrestrial

ecosystems. Pending further research, a transient episode of faunal change

centred at the time of the KBS Member (1.87–1.53 Ma), may be equally plau-

sibly attributed to climate change or to a top-down ecological cascade initiated

by the entry of technologically sophisticated humans.

This article is part of the themed issue ‘Major transitions in human

evolution’.
1. Introduction
The Turkana Basin holds a special place in palaeoanthropology because of its

unique record of Plio-Pleistocene hominin evolution. Fieldwork conducted in

the basin over decades has generated a highly resolved contextual framework

for the hominins, as well as large collections of other fossils, including an excep-

tionally dense record of mammals [1–14]. These fossil mammals play an

important role in the growing understanding of changing environments and

climate of the Turkana Basin, and several approaches have been used in their

study. These include analyses of diversity, turnover [15,16], community struc-

ture in terms of body size, locomotion and diet [17,18], and habitat and diet

based on stable isotopes preserved in dental enamel [19–21] and paleosol

carbonates [22–26]. Hernández Fernández & Vrba [27] used principal com-

ponent analysis of fossil mammal faunas to generate the first quantitative
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estimates of Plio-Pleistocene precipitation in the Turkana Basin.

Missing until now have been studies based on dental eco-

metrics as recently developed in a Eurasian fossil context [28].

Here we present the first results of estimates of climate and

environments of the Turkana Basin based on dental ecometrics.

The ecometric approach is used here for the first time in

an African context and is methodologically independent of

previous work mentioned above [15–27]. It is based on identi-

fying trait—environment relationships and using them to

estimate environmental parameters in space and time [29].

The first such ecometric to be explicitly developed, mean-

ordinated hypsodonty (molar crown height) of large mammal

herbivores, was used to map continental-scale precipitation

patterns in the Neogene of Eurasia [30]. Subsequently, a metho-

dology giving numerical estimates of rainfall in mm/yr

was developed [31,32]. Combining hypsodonty with another

ecometric, occlusal cutting-edge count, improved predictions

of global rainfall and also allowed prediction of tempera-

ture and primary productivity [33]. For the world today, this

combination resolves ca 70% of terrestrial net primary pro-

ductivity, similar to the best available alternatives. Intuitively,

the fundamental property being estimated is some aspect of

productivity, such as the growth of new, edible plant matter.

The less there is, the more demanding will be the task of the

teeth in chewing hard, dry foods of poor nutritive quality.

Because productivity in most terrestrial environments mainly

depends on humidity and temperature, it is not surprising

that these climate variables can be estimated directly from

dental ecometrics.

The ecometric method could, in principle, be ‘taxon-free’,

because it uses morphological information with no regard to

taxonomy or taxon identification. In reality, however, eco-

metrics relies on taxonomy for propagating the relevant

information across occurrences. Any fossil of the modern

horse tribe Equini, correctly identified, can, e.g., be confi-

dently classified as hypsodont with two longitudinal lophs

(cutting edges) on its molar teeth, regardless of whether

that morphology is actually present on the fossil in question.

In some cases, the ecometric scores of entire families can be

set in this way; in others, taxonomic resolution at the genus

or even species level is required. It follows that the quality

of taxon identification is crucial and also that all sufficiently

precisely identified fossil occurrences in space and time can

be used, rather than only the few trait-bearing specimens,

maximizing sampling density.

It is a property of ecometric analysis that it captures sig-

nals at short timescales, despite the fact that the evolution

of hypsodonty—as well as deep structural properties such

as the number of cutting edges—is typically much slower

than environmental change. Ecometric patterns reflect

changes in the distribution of taxa as found, not their morpho-

logical evolution, and is thus a phenomenon taking place on

‘ecological’ rather than on ‘evolutionary’ timescales in the con-

ventional sense. It follows that ecometric patterning, while at

any one time probably reflecting the distribution of selection

pressures, does not possess phylogenetic or other inertia,

and in that sense is comparable to other short-term signals,

such as sedimentary properties and stable isotope ratios.

Ecometric methodology was developed in a conventional

structure of ‘localities’ with age, location and a list of occurring

taxa. This poses a challenge for applying ecometrics to the

fossil record of the Turkana Basin, where each specimen has

independent information about its placement in space and
time. In this first attempt, we have created computational,

locality-like entities called ComLocs, by aggregating specimens

in space and time. Spatial aggregation is by ’place’, an entity

combining collecting area, site and locality, as used in the

Turkana database, whereas temporal aggregation is by strati-

graphic Member. Such ComLocs are probably, on average,

more inclusive than a typical fossil ‘locality’, with greater tem-

poral and spatial extent and averaging, but essentially similar

collectionsof fossil specimensrepresentinga place intime.More-

over, ComLocs should make the direct comparison of modern-

day data with fossil occurrences more straightforward. The

ComLoc is in any case a finer-scale aggregate than the time

bins that have typically been used in analyses of temporal

trends in these data and permits resolving the data spatially in

map form. For maximum compatibility with earlier work, we

also aggregate the data by 0.4 million year time bins and plot

the corresponding trend lines.

This is a first attempt and inevitably suffers from short-

comings of data and methodology. We accordingly report

our results and interpretations in a tentative and cautious

spirit as hypotheses to be verified or rejected by later work.
2. Material and methods
(a) Data
For this study, we complemented the Turkana Basin Paleontol-

ogy Database1, created by a collaborative project between

the National Museums of Kenya (NMK) and the Smithsonian

Institution, with several datasets for Lothagam, Kanapoi and

sites on the western side of Lake Turkana, respectively, from

files curated by Meave Leakey. We also added data for both

east and west sides collected since 2005 until 2009 inclusive

and updated the taxonomic identifications of monkeys

(ML), carnivores (LW) and bovids (FB, DP, RB). The com-

bined dataset, limited to the Kenyan part of the Turkana

Basin, was pruned to exclude non-mammal records, and

any records not yet accessioned by the NMK. The dataset cur-

rently comprises 19 927 records, corresponding to 14 581

specimens assigned to 345 ComLocs, out of which 139 Com-

Locs with 11 748 specimens qualified for analysis. Among

these, 2128 unique ComLoc-species were identified and

used for producing precipitation and temperature estimates.

The specimen-level data used along with the resulting temp-

erature and precipitation estimates are available in the

electronic supplementary material.
The dataset used for the turnover analysis includes two com-

ponents. The data on non-carnivorans are the same as those used

by reference [34]. The data for carnivorans have been updated by

LW for the present analysis to include all unpublished west

Turkana carnivorans in addition to the recent analysis of east

Turkana [14].

For temporal resolution, we used all available information at

the level of stratigraphic Member or finer [35]. For spatial coordi-

nates, we used the midpoints of the collecting areas, sites and

localities (‘places’) listed in the database. Computational

localities (ComLocs) were created as unique combinations of

places and Members. The taxon list for each ComLoc was created

by listing all the unique taxa represented and pruning it under

the conservative assumption that no taxa recorded at a higher

level represented taxa unrecorded at a lower one (e.g. if Menelikia
indet. was recorded, it was assumed that no other taxon was

present among tribe Reduncini from the same ComLoc, unless

explicitly recorded at the genus or species level).

http://rstb.royalsocietypublishing.org/
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Ecometric information (hypsodonty and lophedness) was

added to the dataset by MF based on a combination of collections

work and expert knowledge. Hypsodonty (HYP) was scored as

in reference [31]. Scores were based on observations at the species

or genus level, except for family Bovidae, where a conservative

scheme was applied at the tribe level, such that all bovids were

scored as hypsodont (3), except for tribes Tragelaphini and Bose-

laphini, which were scored mesodont (2). Simple experiments

suggested that the choice between this and other plausible but

more complicated alternatives had little effect on the mean

values obtained. Longitudinal lophedness (LOP) was scored as

0, 1 or 2, according to criteria in reference [36]; transverse

lophs were not scored [33].

Data from the NOW database [37] were downloaded in

August 2015 and used for the comparison of Turkana Basin eco-

metrics with eastern Africa. This dataset was harmonized for

HYP and LOP scores with the Turkana Basin data.

Predictive models for estimating temperature and precipi-

tation were inferred from modern species occurrence data. The

methodology of Liu et al. [33] was used, although the underlying

base models were different, and instead of WWF ecoregions, we

used International Union for Conservation of Nature modern

occurrence maps2. Processed modern-day data were obtained

from reference [38]. Climate layers from the WorldClim

(worldclim.org) database [39] were obtained from reference

[38]. The original data were gridded by latitude and longi-

tude to 50 km resolution. The WorldClim data include

nineteen bioclimate variables [40], from which we selected

two for modelling: mean annual temperature (bio1) and

annual precipitation (bio12). These are expected to capture

principal climatic patterns and trends. Although we acknowl-

edge that climatic averages are rarely biologically limiting, we

felt they would be the most intuitive and generally understand-

able metrics to use for this pilot study.

(b) Methods
(i) Methods for carnivore analysis
The turnover analysis used the methodology introduced by

Foote [41]. Carnivorans and non-carnivorans were analysed sep-

arately to investigate possible differences in turnover between

trophic levels. Data were binned into 300 kyr bins (the smallest

the data would support). The binning process was the same for

both carnivorans and non-carnivorans.

(ii) Models for estimating climate variables
Following the methodology of Liu et al. [33], we built regression

models for separately estimating temperature and precipitation

from mean HYP and mean LOP. Modern-day data were divided

into grid cells (to mimic computational localities of the fossil

record), each grid cell had an associated species occurrence list

and climate parameters. For each grid cell, average dental trait

values were computed taking into account occurring species.

These average trait values were used as inputs for predictive

models with the climate parameters as target variables.

In earlier studies, models were fitted on global data [31,33].

We have observed that modern-day distributions of traits sub-

stantially differ across continents owing to palaeobiogeographic

effects. In this study, we therefore fit climate models on African

data within 25 degrees of the Equator, expecting these data to be

the closest capture of trait distribution of the Turkana region in

the past, and at the same time broad enough to incorporate a

range of possible climatic conditions. The model coefficients

were estimated on a subset of observations that had at least

three species. After filtering, we had 7479 observations for fitting

the model. Precipitation and temperature required different base

models. Because the signal for precipitation is much stronger
than for temperature in the HYP and LOP data, a nonlinear

model is chosen for precipitation, whereas a more conservative

linear model is chosen for temperature.

To estimate precipitation, we used a nonlinear regression

model with an interaction term. This model was selected from

several alternatives by visual inspection of relations between

HYP, LOP and precipitation in the data. Additional verification

of model form selection was done via cross-validation. Ordinary

least-squares procedure was used for estimating the model

coefficients. The resulting model is

PREC ¼ 1251:9� 460:9HYPþ 2237:1LOP� 823:7HYP �LOP:

ð2:1Þ

To estimate temperature, we used a linear regression model.

Model coefficients were estimated using the principal component

regression procedure (implementation from pls package in R3)

with one component. As LOP is strongly linearly correlated

with HYP, and at the same time, the relation between HYP,

LOP and temperature is weak, we were seeking a conservative

model that would produce robust estimates without too extreme

deviations from the mean temperature, hence, principal com-

ponent regression suited the purpose. The model is fitted by

first making a linear projection of data such that the new vari-

ables are minimally correlated with each other and maximally

correlated with the target variable (temperature). A regression

model is then fitted to the projected variables. Even though

obtained differently, the resulting model looks and behaves

like a standard linear regression. The fit is weaker than for pre-

cipitation, but we believe it is still sufficiently robust to capture

generic underlying trends. The resulting model is

TEMP ¼ 27:8� 1:1HYP� 1:2LOP: ð2:2Þ

Apart from regression models, which are commonly used in

paleoecology, we experimented with non-parametric k-nearest

neighbours (kNN) models, which allow modelling complex pat-

terns without assuming the form of relation between variables.

kNN allows closer fit to the data, but is more difficult to interpret.

While a regression model is a formula, kNN model is a collection

of examples. The kNN closely follows data; for example, it cannot

produce negative precipitation if there is none in the data, whereas

a regression model may produce negative precipitation. kNN does

not perform explicit generalization, but predicts by comparing a

new example with the k closest reference examples, stored in

memory. We used k ¼ 15, which was selected from a range of

options via cross-validation on the modern-times data.

Figure 1 visualizes the resulting models for temperature and

precipitation. This is a visualization of the model decision space,

rather than actual observations. This is to demonstrate how the

models behave at different values of HYP and LOP. We can see

that the regression models make a uniformly gradual transition

from warm to cold, and from wet to dry, whereas kNN

models, for instance, capture wet spots more abruptly. The two

models present two extreme ends of generalization versus closely

following data—the reality is perhaps somewhere in between.

We believe that both models (regression and kNN) have their

merits. Therefore, our analysis presents and discusses results

obtained using both.
(iii) Methods for fossil data analysis
Ecometric temperature and precipitation estimates obtained by

regression and kNN models for time intervals corresponding

to aggregates of fossil taxa by 0.4 Ma time bin (a binning that

best accommodates the Member age ranges), by Turkana Lake

Phase, by Member and by ComLoc, were analysed using

standard statistical and visualization techniques. Because the

http://rstb.royalsocietypublishing.org/
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regression model may occasionally produce a negative estimate

for precipitation, we post-processed all such estimates to 0.

We analysed the data in two modes: aggregated primarily in

space and aggregated primarily in time. Even though the gaps

between sampled time points are not even over time and some

interim details are lacking, generic trends can be clearly observed.

Thus, the oldest records (Lower and Upper Nawata) appear as

single ComLocs per time unit because they cannot currently be

further divided temporally or spatially. In the plots, these averages

stand as single points, but volume-wise, the estimates are compar-

able to averaging over several points elsewhere, which themselves

come from smaller assemblages. We also undertook a detailed

study of the fossil data from the temporal and spatial setting of

the ‘KBS event’ that we recognized. For aggregation in time, we

used local polynomial regression (implementation in R stats pack-

age3), with degree of smoothing 0.75, degree of polynomial 1

and fit by least-squares. The 95% CI of the fit is indicated in

the figures. For aggregation in space, we used inverse dis-

tance-weighted interpolation in QGIS4, with settings

adjusted case by case (see figure captions). The values of indi-

vidual localities and ComLocs are shown as highlighted

circles on a faded interpolated background [30].
3. Results
(a) Ecometric precipitation and temperature estimates

for the Plio-Pleistocene of Turkana
Within the regional setting of eastern Africa, operationally

defined here as the territories of present-day Ethiopia,
Kenya, Uganda and Tanzania, the Turkana Basin appears

relatively arid during much of the interval studied

(figure 2). It has lower precipitation estimates than the sur-

rounding areas overall. This difference is mostly owing to

the interval 4–2 Ma (t-test, 95% confidence of means of

regression model estimates, p , 0.0001), with regional aridity

especially marked (with about half the rainfall of surround-

ing areas) during the Moiti Floodplain (4.0–3.6 Ma) and

Tulu Bor (3.4–2.0 Ma) phases. This contrast is entirely

absent during the Lorenyang Lake Phase (2.0–1.4 Ma),

when conditions actually appear locally slightly less arid

than in the surrounding areas. The Turkana Basin does not

appear to differ significantly in aridity from the rest of eastern

Africa prior to 4 or after 2 Ma.

According to ecometric estimates, Turkana Basin tempera-

tures remained remarkably constant during the 6 Ma interval

studied (figure 3). Whether the mean annual temperature

really was ca 248C is moot, but the lack of a long-term trend

matches previous results based on soil carbonate isotopes

[42]. Depending on the model, there may or may not be a

slight indication of a temperature peak near 4 Ma, which

might reflect the globally warm early Pliocene [43].

As expected from previous studies, humidity in the Tur-

kana Basin declined from the late Miocene, reaching a

lower plateau during the Plio-Pleistocene (figure 4). Depend-

ing on the model used, the decline was gradual during the

Pliocene or quite abrupt soon after the still-humid time

around 4 Ma. In addition, there may be one or two intervals

of increased variance. All models show a great spread of

values near 1.8 Ma, but only some also show this near

http://rstb.royalsocietypublishing.org/
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3.5 Ma. It is presently not possible to tell from data or analy-

tical results whether this increased variability indicates

increased sampling density, increased spatial heterogeneity

or increased temporal variation. However, the fact that

such periods of increased variance are not seen for the temp-

erature estimates suggests that something beyond sampling

is involved.

Ecometric precipitation maps for Turkana show the

spatial details of the temporal trends (figure 5). The emer-

gence of an east-west contrast is seen from 4 Ma onwards,

as soon as the present tectonic structure was created [44].

The shallow eastern side of the half-graben appears more

humid than the elevated western side and, especially after

2 Ma, more spatially heterogeneous, in agreement with pre-

vious work [11,45]. The hypothesis that temporal variability

also increased regionally as a result of orbital forcing [46,47]

is entirely consistent with our results but cannot be
independently supported, owing to the low temporal resol-

ution available to us.

Comparing the temporal trends of the two sides of the

basin reveals a clear difference over time (figure 6), regardless

of resolution (mode of aggregation). The wetter east side has

a greater spread of values, possibly reflecting better sampling

but perhaps also suggesting greater spatial heterogeneity or

greater sensitivity to fluctuations in the water table, related

to influx of river water rather than rainfall. Under such an

interpretation, the elevation of the estimates from the east

side would be due to local surface or ground water and,

potentially, teleconnection to climatic changes elsewhere,

rather than to greater local rainfall on the east side. This

interpretation appears climatologically more plausible and

is supported by some of the most humid ComLocs being

situated in areas where sedimentology records the presence

of river mouths and palaeodeltas [44,48].
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The ratio of specimens collected to taxa identified is quite

stable in the data but one anomaly stands out: the extremely

well-sampled KBS Member at Koobi Fora (1.87–1.53 Ma)

has a much lower ratio of specimens to species than do

other intervals (figure 7). This includes the preceding and

equally well-sampled Upper Burgi Member (2.00–1.87 Ma),

suggesting that sampling intensity alone is not the cause.

This anomaly corresponds to a major turnover event described

below but apart from the possible increase in temporal or

spatial variability, there is no indication of a corresponding

major local climate effect in the ecometrics (figure 6).

A key to the nature of this signal is given by detailed com-

parison of the sequence of Members of the Koobi Fora

Formation during this interval: the Upper Burgi, the KBS

and the Okote (1.53–1.38 Ma). This comparison shows that

(i) the low specimen-to-species ratio is restricted to the KBS

Member (figure 7), (ii) as far as can be told, it affects all taxo-

nomic groups, (iii) the KBS Member has a lower temperature

estimate, owing to a higher mean LOP value, in turn caused

by an exceptionally high number of bovid and perissodactyl
species (figure 8c). The succeeding Okote Member is, interest-

ingly, an exception in the opposite direction, with an

unusually high ratio of specimens to species (figure 7). For

what its worth, the ecometric signal of lowered temperature

and precipitation suggests slightly decreased, rather than

increased, productivity during KBS time.

Figure 8c–d also shows that the KBS is characterized by

an exceptionally low number of carnivore and primate speci-

mens and an exceptionally high number of bovid and

perissodactyl specimens. The two Members bracketing the

KBS in time are both quite similar in this regard, despite

the fact that the Okote stands out by its higher specimen/

species ratio and its higher ecometric estimate of productivity,

possibly suggesting a biotic rather than climatic driver of the

KBS event.
(b) Turnover
The results of the turnover analysis are shown in figure 9.

Origination patterns are broadly similar in both sets of taxa,
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with the important exception that the early Pleistocene orig-

ination peak occurs one bin earlier in carnivorans than in

non-carnivorans. Both datasets concur that origination is at

a minimum in the late Pliocene (i.e. 2.8–2.5 Ma). The early

Pliocene origination peaks are an edge effect and the differ-

ence in timing between carnivorans and non-carnivorans

there owing to sampling.
Extinction patterns are more similar between the two

datasets, although carnivorans show greater fluctuations;

our interpretations will be discussed in §4.
4. Discussion
In the regional context of eastern Africa, the Turkana Basin

stands out as a relatively arid place for much of the time

between 4 and 2 Ma. This pattern potentially matches the

concept and setting of a ‘species factory’ [28,49]. While this

suggestion may appear to be at variance with previous

interpretations of the setting of the Turkana Basin as a refu-

gium, with a more reliable and climate-independent water

supply than other basins in the region [27,50,51], it is concei-

vable that both interpretations may apply. The refugium

situation [51] was specifically Lorenyang Lake, when the

Turkana Basin, or at least its eastern side, does appear mar-

ginally more humid than surrounding areas, whereas the

‘species factory’ scenario would apply particularly to the situ-

ation represented by the regionally arid conditions of Tulu

Bor and Moiti Floodplains.

Within the Turkana Basin, we find a pattern that has

been observed by others [11,13,27]: the east side of the Tur-

kana Basin persistently appears more humid than the west

side, and also more variable. Such a pattern might simply

be a result of the asymmetric structure and hydrology of

the half-graben that has made up the basin the last 4

million years [44]. In this setting, the west side is more

elevated above the water table and thus expected to be

less influenced by surface water, whereas the low-lying
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east side will feature local wetlands and therefore show

both greater influence of surface water and greater spatial

variability. Local changes in rainfall should affect both

sides equally, but changes in rainfall outside the sampled
area (e.g. the Ethiopian highlands) may impact the east

side more.

The ecometric analysis suggests two main conclusions

regarding temporal patterns. First, humidity declined from
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the late Miocene and flattened out at a lower level during the

Plio-Pleistocene, in agreement with both marine and terres-

trial records that suggest an overall increase in aridity and

proportion of C4 plant material [23,26,52–55] within eastern

African ecosystems during this period. Depending on the

model used, our analyses support these findings and suggest

a gradual decline in humidity during the Pliocene or an

abrupt decline soon after the still humid period around 4 Ma.

Second, temperatures remained remarkably constant

during the 6 Ma interval studied. There may have been a

slight temperature peak near 4 Ma, consistent with wide-

spread model and proxy evidence for a warm early

Pliocene [43]. As for the puzzling lack of overall cooling,

we here propose a novel hypothesis. It is well known that

deforestation can lead to increased surface temperatures

under tropical conditions [56,57], and recent modelling

work suggests that the effect is of the same magnitude as

the effect of CO2-driven global warming today [58]. For cen-

tral Africa, that study found that 10–20% loss of present-day

tree cover would lead to a more than 28C increase in local

temperature, whereas the combined effect of doubled CO2

and deforestation would increase local temperature by
3–48C [58] (figure 5). Analysis of woody cover from hominin

sites in the Awash and Omo-Turkana basins suggests an

overall trend from predominantly woodland/brushland/

shrubland to wooded grassland over the past 6 Ma, corre-

sponding to a decrease in the fraction of woody cover from

about 50% to about 30% (figure 6 and electronic supplemen-

tary material, figure 1 in ref. [59]). Given a global cooling of

about 38C in the Pliocene [60], a local warming of about the

same amount as a result of vegetation changes thus appears

entirely plausible for eastern Africa and could account for the

lack of a cooling trend in the proxy data.

Overall, we find a plausible match to tectonic history as

summarized by Feibel [44]. Prior to 4 Ma, the Turkana

region appears regionally relatively humid and internally

undifferentiated. With the tectonic reorganization of the

early Pliocene the basin becomes a relatively arid region

within a more humid context and develops the characteristic

differentiation between a dry west and a humid east that

remains in place from this time onwards. This internal differ-

entiation remains even after 2 Ma, when Turkana no longer

appears more arid than the general background (figure 4).

Climatic trends can be discerned on this tectonic template,
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but it seems to be the eastern side of the graben, with its

availability of extra surface water from a large catchment

area, that is more sensitive to climatic fluctuations.

There are some indications of climatic phases within the

general trend, including increased data scatter after 2 Ma,

which in addition to greater spread around the temporal

trendline, is also seen as greater spatial heterogeneity on

the maps, as previously reported [27]. The increasing

temporal variability of global and regional climate around

this time is also well known [46,60,61] and is likely to explain

some of the observed spread of values.

Locally, the low specimen-to-species ratio uniquely found

in the KBS Member (1.87–1.53 Ma) may well be the key to

understanding some the processes involved. Specifically,

the lack of ecometric support for environmental amelioration

(such as increased humidity or primary productivity) leads

us to favour non-climatic explanations for the high species

diversity, whereas the fact that the phenomenon was only

transient argues against explanations based on permanently

altered climate or habitats.

It may be no coincidence that sedimentation rates also

increased significantly from Upper Burgi to KBS time [24].

All else being equal, increased sedimentation and fossiliza-

tion would be expected to result in better representation in

the fossil record of temporal variability of environments

and biota. If species’ ranges shifted with changing climate,

this could in turn result in the apparent sympatry of species

that were in fact rarely found together in life, inflating the

apparent species diversity. Quinn et al. [24] attribute the

increased sedimentation to the simultaneous spread of grass-

lands. Needless to say, the spread of open habitats is usually

attributed to climate change and could be taken as an indi-

cation of local climate change that is not detected by our

ecometric proxies. But since nothing suggests that the grass-

lands subsequently retreated, it is the process of expansion

itself, rather than the permanent establishment of a new habi-

tat, which could potentially explain the transiently high

richness observed.

It is difficult to draw detailed conclusions from compari-

sons between turnover patterns of different trophic levels,

not least owing to the much smaller samples available for

higher trophic levels than lower ones. Nevertheless, there

are indications of a decoupling, with the higher trophic

level, i.e. carnivorans (strongly dominated by hypercarni-

vores [14,62,63]) having a somewhat earlier origination

peak and markedly earlier extinction peak. That said, how-

ever, the time bin 2.5–2.2 Ma is notably poorly sampled for

carnivorans, with only a handful of specimens available from

west Turkana and none from east. If this time bin is ignored, in

the sense that all taxa are allowed to extend through this bin

in either direction, the origination peak is moved one bin

earlier and the extinction peak one bin later, putting both in the

2.5–2.2 Ma time bin. An intermediate pattern is more likely,

but in either case, manipulating the data in this way does not

synchronize carnivorans with non-carnivorans.

In the absence of ecometric evidence for distinct clima-

tic changes affecting the local ecosystem to explain either

the pattern of differences between trophic levels or each

trophic level by itself, it is tempting to associate them with

biotic interactions, in particular with a top-down cascade

initiated by the entry of technologically advanced humans

and collapse of the large carnivore community. Such a

cascade could, in principle, explain not only the trophic
details of the turnover sequence, but also the spread of

grasslands through expanding herbivore populations, over-

grazing of woody vegetation and resultant loss of woody

cover. More detailed work remains to be done before

such a conclusion could be considered justified, however.

Regardless of whether the primary cause was climatic,

anthropogenic or something else, a close causal link is

likely to exist between local vegetation change and the

episode of faunal change observed.
5. Conclusion
Ecometrics appears able to resolve not only regional differ-

ences in climate within eastern Africa, but also differences

in conditions within the Turkana Basin. Whereas precipi-

tation estimates show the expected decrease from over 1000

to less than 500 mm/yr over the last 6 Ma, temperature

estimates are remarkably stable at about 248C, possibly

reflecting a balance between global cooling and local heating

from progressive deforestation resulting from an increased

prevalence of grassland-dominated biomes. Exactly how

our estimates compare with the significantly higher estimates

of soil temperatures based on the clumped isotope analysis of

fossil soil carbonates [42] cannot be resolved at present, but

the lack of a temporal trend is similar. We strongly encourage

workers in other fields to further test this hypothesis.

Whether the absolute values are realistic remains to be

assessed, but the trends match previously published results.

The presence of water on the surface appears to inflate local

rainfall estimates significantly, as expected when wetlands

supply water to local ecosystems. The more humid estimates

obtained for the eastern side of the basin are interpreted

as an effect of wetlands on the shallow, eastern slope of

the half-graben.

The richness and turnover anomaly observed in the KBS

Member is found to correspond to an exceptionally high

ratio of the number of species to the number of specimens.

As the ecometric analysis does not indicate local effects of

climate change as a likely cause, the possibility of a human-

induced ecological cascade to explain this and the turnover

patterns observed should be further investigated. We observe

a substantial but transient decline in the relative number of

carnivore specimens from Upper Burgi to KBS, with a partial

return towards the preceding state in Okote, an observation

not incompatible with a hypothesis of human interference.

One possible avenue to further test the hypothesis of

human interference would be a detailed study of the trophic

structure of the communities, including analysis of body size

distributions before, during and after the event.

Several authors [27,50,51] have suggested that the

Turkana Basin behaves as a refugium because of the constant

water supply of the Omo River, independently of local

climate. Our results suggest that this situation does apply

part of the time, including the interval targeted by Joordens

et al. [51], but that the Turkana Basin was also more arid

than the rest of eastern Africa for much of the Plio-

Pleistocene, especially during the interval 4–2 Ma. This

makes the Turkana Basin a candidate for the ‘species factory’

phenomenon in the sense of Fortelius et al. [28,49], a situation

where local adaptation causes newly arisen species to be

pre-adapted to the conditions that will be increasingly

widespread in subsequent time intervals. Under such an
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interpretation, it would be no surprise if new biodiversity

was generated there, including new hominin species, ahead

of the global drying trend, but buffered from local climate

change by river-fed wetlands.
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Appendix A
(a) Additional description of the modelling procedure
Figure 10 visualizes our modelling data from modern-day

Africa within 25 degrees of the Equator. To minimize poten-

tial noise in the signal our modelling data excludes grid cells

with less than three species, and cells with missing values for

LOP (rare Primates; concern less than 0.5% of the grid cells).

The data that are visualized in figure 10 have been used for

inferring models.

Modelling considers grid cells as observations, average

HYP and LOP for each grid cell as model inputs, and tempera-

ture or precipitation (separately) as model outputs. We chose

different model forms for temperature and precipitation,

because the strength of relationship in the modern-day data

was different. For precipitation, we used a second-order

regression model in order to capture a nonlinear pattern, man-

ifesting as a highly wet spot at around HYP ¼ 1 and LOP ¼ 1

(as can be seen, for instance, from kNN MAT model in

figure 1). We have selected this model from several linear

and nonlinear alternatives, including variants of subsampling

of the modelling data. The selection criteria were a combi-

nation of qualitative visual inspection of the data and the
resulting decision space (figure 1), and quantitative measures,

such as R2, obtained on the modelling data and via hold-

out tests (cross-validation). The fit of the regression model is

moderate (R2 ¼ 0.36), but we believe it provides a good bal-

ance between capturing general patterns and following the

modelling data. In case the reader is interested in the signifi-

cance of the regression coefficients, they are all deemed

significant ( p , 0.001), because our modelling sample is

large (7479 observations).

Earlier models for temperature [33] were able to capture

temperature somewhat well on the global scale, distinguish-

ing very cold negative temperatures from very warm, but

were quite volatile on a more fine-grained scale in Africa.

The challenge with modelling temperature in Africa is that

the relation with HYP and LOP is very weak here, as can

be seen, for instance, from figure 10, where low HYP and

LOP values are mainly wrapped in the central part, whereas

the temperature gradient generally goes from north to south.

Therefore, the fit of the model is weak (R2 ¼ 0.06); however,

visual inspection of figure 1 suggests that it still captures

the main trend. Our intuition suggests that the relation with

dental traits here is weak, because temperature is generally

not the limiting factor for food availability in Africa. There-

fore, we were seeking a robust model that would capture

nothing but the basic relation. Thus, we used a linear

regression model fitted with the partial least-squares pro-

cedure, which projects the input and the target variable to a

new space to explain maximum variance in the inputs. This

procedure is particularly well suited for handling correlated

inputs. For the final regression model, we use one com-

ponent, which means the very first level of projection. In

other words, we want the model to be robust and stable, to

capture only the principal trends in the data and as little

noise as possible. This model would tend to conservatively

predict values close to the mean.

The next paragraphs discuss some insights into the result-

ing models; the discussion is based on visualizations of the

decision space in figure 1. We can see nonlinear patterns

emerging as an ellipse in the diagonal centre of the plot.

The surrounding areas are monochromatic mainly, because

we have no reference examples far from the diagonal

centre, in parts of ecometric space that are sparsely populated

if at all. We see medium temperatures in the diagonal centre,

with colder spots at both ends (high HYP and LOP, as well as

low HYP and LOP). The hottest spots (intense yellow) are at

low LOP and medium-to-low HYP, and they are very near a

cold spot (dark blue). Whether this pattern is true, in reality,

requires further investigation, but it is present in the model-

ling data, and kNN can capture it, while linear regression

cannot capture such patterns, because in linear regres-

sion the transition from cold to hot is forced to be smooth

and is restricted to linear. That can be seen from figure 1,

which presents our regression models for temperature and

precipitation, when compared with kNN models.

Similar to temperature, the kNN model for precipitation

captures several distinct regions of wetness and dryness

nearby, as seen from figure 1. We see medium precipitation

on the diagonal, and very dry and very wet spots just

above the diagonal. The nonlinear regression model also cap-

tures the wet (dark green spot). The main observed difference

between kNN and regression models is that the wet sector

in the regression is much wider than in kNN. Thus,

regression is not able to capture the dry spot at mid-HYP
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and high-LOP that well, but it provides a functional approxi-

mation (an equation), which is more straightforward to reuse

than kNN.
royalsocietypublishing.org
Phil.
(b) Data and code
The processed data containing the main results are made

available as an electronic supplementary material to this

paper. The tab-delimited text file Fortelius_et_al_data.csv

contains the processed data used for this paper and the esti-

mates of mean annual temperature and mean annual

precipitation by ComLocs obtained.
In addition, for those interested in hands-on compu-

tational experiments and plots, we have made available

on GitHub5 the code in R for fitting the models on modern

data, and producing result plots on the fossil data.
Endnotes
1http://naturalhistory.si.edu/ete/ETE_Datasets_Turkana.html.
2http://www.iucnredlist.org/technical-documents/spatial-data.
3https://www.r-project.org/.
4http://www.qgis.org/en/site/.
5https://github.com/zliobaite/paper-Turkana-ecometrics.
Trans.R.Soc
References
.B
371:20150232
1. Coppens Y, Howell FC. 1976 Mammalian faunas of
the Omo Group: distributional and biostratigraphic
aspects. In Earliest man and environments in the
Lake Rudolf Basin (eds Y Coppens, FC Howell,
GL Isaac, REF Leakey), pp. 177 – 192. Chicago, IL:
University of Chicago Press.

2. Leakey MG, Leakey RE (eds). 1978 Koobi Fora
research project, vol. 1. The fossil hominids and an
introduction to their context, 1968 – 1974. Oxford,
UK: Clarendon Press.

3. Harris JM (ed.). 1983 Koobi fora research project,
vol. 2. The fossil ungulates: Proboscidea, Perissodactyla,
and Suidae. Oxford, UK: Clarendon Press.

4. Harris JM (ed.). 1991 Koobi fora research project,
vol. 3. The fossil ungulates: geology, fossil
artiodactyls, and paleoenvironments. Oxford, UK:
Clarendon Press.

5. Eck GG, Jablonski NG, Leakey M. 1987 Les faunes
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32. Eronen JT, Puolamäki K, Liu L, Lintulaakso K,
Damuth J, Janis C, Fortelius M. 2010 Precipitation
and large herbivorous mammals, part II: application
to fossil data. Evol. Ecol. Res. 12, 235 – 248.
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