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(Received 5 August 2015; revised manuscript received 19 May 2016; published 16 June 2016)

The stability of the magnetization auto-oscillations of the ferromagnetic free layer of a cylindrical nanopillar
structure is studied theoretically using a classical Hamiltonian formalism for weakly interacting nonlinear waves,
in a weakly dissipative system. The free layer corresponds to a very thin circular disk, made of a soft ferromagnetic
material like Permalloy, and it is magnetized in plane by an externally applied magnetic field. There is a dc electric
current that traverses the structure, becomes spin polarized by a fixed layer, and excites the modes of the free layer
through the transfer of spin angular momentum. If this current exceeds a critical value, it is possible to generate
a large amplitude periodic auto-oscillation of a dynamic mode of the magnetization. We separate our theoretical
study into two parts. First, we consider an approximate expression for the demagnetizing field in the disk, i.e.,
�HD = −4πMzẑ or a very thin film approximation, and secondly we consider the effect of the full demagnetizing

field, where one sees important effects due to the edges of the disk. In both cases, as the applied current density
is increased, we determine the modes that will first auto-oscillate and when these become unstable to the growth
of other modes, i.e., their ranges of “isolated” auto-oscillation.
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I. INTRODUCTION

In 1996, Slonczewski [1] and Berger [2] simultaneously
discovered the spin transfer torque (STT), a phenomenon in
which angular momentum is transferred from a spin polarized
current to a ferromagnetic material. This phenomenon is
observable at a nanometric scale due to the amounts of current
necessary and its effect on the magnetization. Geometries
where STT has been observed are nanopillars, magnetic
multilayers with point contacts and nanoscale magnetic tunnel
junctions. Two qualitatively different types of magnetization
dynamics have been studied in relation with STT: induced
switching of the magnetization from one equilibrium state to
another [3–5], and nano-oscillators [6–8] that evidence auto-
oscillations due to a possible antidamping effect of the spin
torque. Both types of magnetization dynamics have potential
technological applications, like nonvolatile magnetic random
access memory (MRAM) [9,10] and tunable high-frequency
oscillators [11,12], respectively.

Nanopillars in a basic configuration consist of two ferro-
magnetic layers separated by a metallic spacer. One of the
ferromagnetic layers is called the fixed layer, engineered so that
the magnetization remains at an equilibrium configuration and
that will spin polarize a current that runs through the device.
Then the emergent spin polarized current goes through the
metallic spacer that uncouples both ferromagnets, and finally
through the so-called free layer made of a soft ferromagnet,
influencing its magnetization dynamics via transference of
angular momentum.

In this study, we are interested in the magnetization
dynamics of the free layer, in particular when it acts as a
nano-oscillator. Many works [13–16] have used the macrospin
approximation to study the free layer dynamics, i.e., they
study the nonlinear dynamics of the uniform magnetization
mode, assuming that the magnetization dynamics does not
develop nonuniform features. These macrospin studies have
had successful in explaining some features of experimental
results [17–19], but there are other features that require
consideration of nonuniform deviations [20–22]. In particular,

for nano-oscillators excited into auto-oscillations by spin
torque, the amplitudes of oscillation may be large, attaining a
point where they become unstable to the growth of nonuniform
modes.

In this study, we first analyze the stability of a uniform
periodic auto-oscillation, when the free layer is a thin circular
disk magnetized in plane with the aid of a uniform magnetic
field applied in plane in a particular direction, using a model
for the dynamics of a very thin soft ferromagnetic circular
disk disregarding edge effects (the demagnetizing field is
approximated by its very thin film limit), and we study the
thresholds of instability of nonuniform modes in terms of
the parameters of the problem: mainly the current density,
applied magnetic field and radius of the disk. The values
of these parameters are quite relevant for the magnetization
dynamics. The model considers a description of the dynamics
in terms of amplitudes of excitations, following a standard
Hamiltonian formalism [23–27]. An advantage of the model is
that a theoretical analysis of the magnetization dynamics and
the thresholds can be done, leading to a better understanding
of when and how the macrospin solution becomes unstable.
By doing separate numerical checks of the dynamics, we
corroborate the theoretical results of the model. Similar
studies have been done when the applied magnetic field is
perpendicular to the plane of the disk [28,29].

Secondly, we improve the theoretical model by consid-
ering the full demagnetizing field within the very thin disk
approximation. This allows to better understand the finite size
effects of a ferromagnetic disk of nanometric dimensions. We
determine the nonuniform equilibrium magnetization under
an in plane applied magnetic field, and the linear dynamic
modes on top of this configuration, that do agree with previous
micromagnetic simulations [30,31]. Within this improved
model the previous uniform mode becomes quasiuniform, it
still has the lowest frequency, but at small radii, there is a
mode of edge character with a frequency very close to the
latter one. Indeed, this edge mode has a lower critical current
than the quasiuniform mode, thus we studied the range of
current densities under which it auto-oscillates in isolation,
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FIG. 1. Representation of a nanopillar and the torque by spin
transfer. The electrons are polarized in the fixed layer, go through the
spacer, and then produce a torque on the magnetization of the free
layer.

and the current under which it becomes unstable to the growth
of the quasiuniform mode.

The manuscript is organized as follows. In Sec. II, the model
of magnetization dynamics with simplified demagnetizing
field is presented; in Sec. III, we develop theoretical results on
instability that follow from the simple version of the model;
Sec. IV shows applications and numerical results of the simple
model; Sec. V shows results for the model with an exact
demagnetizing field. Finally, in Sec. VI, we conclude.

II. MODEL, SIMPLER VERSION

The device under study is a nanopillar of circular cross
section. In particular, we study the magnetization dynamics of
its free layer, which is a thin ferromagnetic disk magnetized in
plane. We consider that a spin polarized current runs through
the disk, perpendicular to its plane (CPP geometry). The
nanopillar is formed by two ferromagnetic layers separated by
a metallic spacer. There is a “fixed” ferromagnetic layer with
magnetization in the x̂ direction (see the geometry in Fig. 1)
that serves as spin polarizer for the current that traverses the
device. Due to the presence of the spacer, which has to have a
certain width, we neglect the Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction between both ferromagnetic layers [32].

We consider that there is a uniform external magnetic
field applied in the plane of the free layer (Hx), in direction
x̂. First, we will approximate the dipolar field by its main
term in an infinite very thin ferromagnetic film, i.e., �HD =
−4πMzẑ, assuming that we are dealing with very thin disks
(neglected terms are of order h/R). Indeed, we assume that
the magnetization is uniform over the thickness of the film,
i.e., �M = �M( �ρ) with �ρ ≡ xx̂ + yŷ, and in particular we do
calculations for free layers of Permalloy (exchange length
of 5.7 nm) of thickness h = 5 nm and radius R = 50 nm.
Considering the effect of the Zeeman, dipolar and exchange
interactions, and the previous approximations, the equilibrium
configuration corresponds to a uniform magnetization in the
direction of the applied field. The free energy that we consider
takes the form H = ∫

WdV , with W the free energy density:

W = −HxMx + 2πM2
z + A

∑
α={x,y,z}

(∇mα)2. (1)

A is the exchange constant of the free layer material,
Ms the saturation magnetization, and �m ≡ �M/Ms a scaled
magnetization with norm one ( �m2 = 1). We have neglected an
anisotropy energy density since we have a soft ferromagnet
in mind, like Permalloy. Thus the effective field associated
with this free energy takes the form: �Heff = −δH/δ �M =
Hxx̂ − 4πMzẑ + A∇2 �m. In order to study, the magnetization
dynamics of the free layer, we use the Landau-Lifshitz
equation (LL). In addition to the torques associated with
the previously mentioned terms (Zeeman, dipolar, exchange),
we consider the spin transfer torque associated to the spin
polarized current in the form proposed by Slonczewski [33]
(in a simple form), and a damping torque in its Landau-Lifshitz
phenomenological form [34]. A scaled LLS equation then
takes the form:

d �m
dt ′

= − �m × �heff︸ ︷︷ ︸
precession

−α �m × ( �m × �heff)︸ ︷︷ ︸
dissipation

+ βJ �m × ( �m × m̂fix)︸ ︷︷ ︸
spin transfer torque

. (2)

Nondimensional quantities have been introduced: t ′ =
|γ |4πMst (|γ | is the absolute value of the gyromagnetic
ratio), �heff = �Heff/4πMs , and α is the phenomenological
damping constant. Also, β = 2π�ε/(4πMs)2eh [26] (ε is
the polarization factor between 0 and 1, e is the electron
charge, and h the thickness of the free layer, that in the
following, we consider fixed), J is the current density, and
m̂fix = x̂ is the direction of spin polarization of the current.
We also introduce nondimensional frequencies ω, through
ω = 
/|γ |4πMs , with 
 in rad/s.

The previous LLS equation maintains dynamically the
restriction �m2 = 1. Also, since the equilibrium magnetization
in this model is �m = x̂, it is convenient to introduce two
complex variables a( �ρ,t) and a∗( �ρ,t) that do describe the
magnetization dynamics via a classical Holstein-Primakoff
transformation [35,36]. a and a∗ represent a dynamic pertur-
bation of the equilibrium, and they are the classical analogs of
the spin wave annihilation and creation operators of quantum
mechanics. The transformation of variables corresponds to

mx = 1 − aa∗

my = (a − a∗)
√

2 − aa∗/2i

mz = (a + a∗)
√

2 − aa∗/2

⎫⎪⎬
⎪⎭ ⇔ a = mz + imy√

1 + mx

. (3)

The temporal evolution of the variable a satisfies by the
chain rule iȧ = ida/dt ′ = i(∂a/∂ �m) · �̇m, and similarly for a∗.
Thus, due to this simple dependence on �̇m, the dynamics of
the complex variables a and a∗ can be obtained through the
LLS equation (2) as

iȧ = δU
δa∗ + F , (4a)

iȧ∗ = −δU
δa

− F∗. (4b)

The first term associated with the normalized free energy
U ≡ H/4πM2

s corresponds to the conservative precession
dynamics in the effective field, and the second term associated
with F corresponds to the dynamics associated with the
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Slonczewski spin transfer torque and the Landau-Lifschitz
damping. Thus Eqs. (4a) and (4b) have a Hamilton’s form
(conservative precessional terms) plus nonconservative terms.
The different contributing terms can be separated as U =
UZ + UD + Uex and F = Fdis + Fstt, with

UZ = −hx

∫
(1 − aa∗)dV, (5a)

UD = 1

4

∫
(a + a∗)2

(
1 − aa∗

2

)
dV, (5b)

Uex = l2
ex

∫ {
�∇a · �∇a∗ + 1

4

[
a2( �∇a∗)2 + a∗2( �∇a)2

]

+ aa∗

8(2 − aa∗)
[ �∇(aa∗)]2

}
dV, (5c)

with hx ≡ Hx/4πMs , and lex ≡ √
A/2πM2

s the exchange
length. And

Fdis = iα

[
δU
δa∗

(
8 − 4|a|2 + |a|4

4|a|2 − 8

)
+ δU

δa
a2

( |a|2 − 4

4|a|2 − 8

)]
,

(6a)

Fstt = iβJa

(
1 − aa∗

2

)
. (6b)

Furthermore, in order to describe the dynamics in variables
suitable to the geometry of the thin disk, we introduce a change
of variables from the fields a( �ρ,t ′),a∗( �ρ,t ′) to the variables
amj (t ′),a∗

mj (t ′), which are the coefficients of a Bessel functions
series expansion, as follows:

a( �ρ,t ′) = N00a00(t ′) +
∞∑

m=−∞

∞∑
j=1

Nmjamj (t ′)Jm(κmjρ)eimφ,

(7)

with ρ and φ polar coordinates related to the center of the disk.
We also assume that the boundary conditions on the edges of
the disk correspond to free spins [37], meaning null normal
derivatives of the magnetization on the surfaces of the sample,
i.e., in this case, the radial derivatives of the magnetization
are null at ρ = R, with R the radius of the disk. The latter is
satisfied if the κmj are such that J ′

m(κmjR) = 0, meaning that
κmj = χmj/R, with χmj the j th zero of J ′

m(x). This series is
complete in the mathematical sense, and orthonormal:∫

dV Jm(κmjρ)Jm′ (κm′j ′ρ)ei(m+m′)φ = (−1)mδm
−m′δ

j

j ′/N
2
mj ,

(8)

amj (t ′) = Nmj

∫
dV a( �ρ,t)Jm(χmjρ/R)e−imφ. (9)

The normalization coefficients take the following form:

N00 = 1/
√

V , (10a)

Nmj = 1/
√−Jm(χmj )J ′′

m(χmj )V . (10b)

These coefficients were chosen in this way so that the
transformation from a,a∗ to the amj ,a

∗
mj were canonical

(considering only the conservative part of the equations). Thus
the equations of motion in the new variables take the canonical
form with extra terms associated with dissipation and the spin
torque term:

iȧmj = ∂U
∂a∗

mj

+ Fmj , (11a)

iȧ∗
mj = − ∂U

∂amj

− (Fmj )∗, (11b)

with Fmj = Nmj

∫
dVFJm(χmjρ/R)e−imφ .

III. THEORETICAL RESULTS, SIMPLER MODEL

A. Spin wave modes of the equilibrium configuration

The equations of motion satisfied by the linear spin wave
modes of the uniform equilibrium configuration correspond to
Eqs. (11a) and (11b) excluding the damping and spin torque
terms, and follow from the energyU approximated to quadratic
order in the coefficients amj . Indeed, to this order U 
 U (2),
with

U (2) =
∑
mj

[(
hx + hmj

ex

)|amj |2 + 1

4
|(amj + (−1)ma∗

−mj )|2
]
,

(12)

with h
mj
ex ≡ (χmj lex/R)2. From Eqs. (11a), (11b), and (12), one

obtains

i

(
ȧmj

ȧ∗
−mj

)
=

(
Amj (−1)mBmj

−(−1)mBmj −Amj

)(
amj

a∗
−mj

)

≡ M
(

amj

a∗
−mj

)
, (13)

with Amj ≡ hx + h
mj
ex + 1/2 and Bmj = 1/2. It means that

to this order the variables amj and a∗
−mj correspond to

two coupled harmonic oscillators. Through the following
Bogoliubov transformation [24,38], this problem may be
diagonalized:(

amj

a∗
−mj

)
=

(
ρmj (−1)mνmj

(−1)mνmj ρmj

)(
b

(1)
mj

b
(2)
mj

)

≡ N

(
b

(1)
mj

b
(2)
mj

)
= b

(1)
mj

(
ρmj

(−1)mνmj

)

+ b
(2)
mj

(
(−1)mνmj

ρmj

)
, (14)

i.e.,

N−1MN =
(

ωmj 0
0 −ωmj

)
, (15)

with

ρmj =
√

Amj + ωmj

2ωmj

, νmj =
√

Amj − ωmj

2ωmj

, (16)

ωmj =
√

A2
mj − B2

mj =
√(

hx + h
mj
ex

)(
hx + h

mj
ex + 1

)
. (17)
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FIG. 2. Frequencies as a function of applied magnetic field for
the first four linear modes of the ferromagnetic disk. For a given
applied field, the frequency grows for modes with more angular and
radial oscillations. Here, ω has no dimensions and 
 has dimensions
of rad/s.

There is an analogous transformation to Eq. (14) for the
complex conjugates of those variables, i.e., for a∗

mj , a−mj , b(1)∗
mj ,

and b
(2)∗
mj . This is a canonical transformation, and the equations

of motion in the new variables are

iḃ
(1)
mj = ∂U/∂b

(1)∗
mj = ωmjb

(1)
mj , (18a)

iḃ
(2)
mj = ∂U/∂b

(2)∗
mj = −ωmjb

(2)
mj , (18b)

which have as solutions

b
(1)
mj (t) = b

0(1)
mj exp(−iωmj t

′), b
(2)
mj (t) = b

0(2)
mj exp(iωmj t

′),

(19)

with ωmj the normalized frequencies of the normal modes
of the disk [Eq. (17), ωmj = 
mj/|γ |4πMs]. The frequencies
increase with the number of radial and angular oscillations of
the modes that grow with the indices j and m, as a consequence
of the exchange interaction. In Fig. 2, we show a graph of the
frequencies as a function of the applied field for the first four
modes.

The corresponding shape of the modes follows via Eqs. (7)
and (14), noticing that a∗

mj and a−mj follow as complex
conjugates of the expressions in Eq. (14). If one considers
that only the mode (1) exists, and taking b

0(1)
mj as real, one gets

mz = b
0(1)
mj

√
2NmjJm(κmjρ)(ρmj + νmj ) cos(mφ − ωmj t

′),

my = b
0(1)
mj

√
2NmjJm(κmjρ)(ρmj − νmj ) sin(mφ − ωmj t

′).

(20)

And if only the mode (2) exists, and with b
0(2)
mj real:

mz = b
0(2)
mj

√
2NmjJm(κmjρ)(ρmj + νmj ) cos(mφ + ωmj t

′),

my = b
0(2)
mj

√
2NmjJm(κmjρ)(νmj − ρmj ) sin(mφ + ωmj t

′).

(21)

Thus these are modes stationary in the radial direction, but
that do rotate anticlockwise or clockwise with respect to the
angular direction.

If one considers dissipation and the effect of the spin
transfer torque, the linear equations (13) lead to

iȧmj = (1 − iα)(Amjamj + Bmj (−1)ma∗
−mj ) + iβJamj ,

(22)

and to a similar equation for iȧ∗
−mj . The equation corre-

sponding Eq. (18a) in the variables b
(1,2)
mj is given by this

latter equation with the addition of a term Fb
mj = ρmjFmj −

νmj (−1)mF−mj
∗ in the right-hand side (and a similar equation

for ḃ
(2)
mj ). The solution to these equations is

b
(1)
mj (t ′) 
 e−(αAmj −βJ )t ′

(
c0
mje

−iωmj t
′ + id0

mj

αBmj

2ωmj

eiωmj t
′
)

,

b
(2)
mj (t ′) 
 e−(αAmj −βJ )t ′

(
d0

mje
iωmj t

′ − ic0
mj

αBmj

2ωmj

e−iωmj t
′
)

.

(23)

Considering low dissipation, i.e., α � 1, we may approximate

b
(1)
mj (t ′) 
 c0

mje
−iωmj t

′
e−(αAmj −βJ )t ′ ,

b
(2)
mj (t ′) 
 d0

mje
iωmj t

′
e−(αAmj −βJ )t ′ . (24)

Thus one observes that the spin torque term may act as
antidamping, and it leads to auto-oscillations of the mode
(m,j ) when it compensates the damping at a critical current
density J crit

mj = αAmj/β. The lowest critical current density
corresponds to the macrospin or uniform mode, with J crit

00 =
αA00/β = α(hx + 1/2)/β. These auto-oscillations of the sys-
tem can be observed in a range of the applied magnetic
field [39,40].

B. Study of the macrospin mode to nonlinear order

As seen in the previous linear analysis of the modes,
the macrospin mode enters into an auto-oscillatory regime
if the current density exceeds the critical value J crit

00 = α(hx +
1/2)/β, i.e., it exists as an undamped periodic solution. As the
current density increases the amplitude of oscillation of the
macrospin increases and it will be limited by nonlinear terms.
Indeed, the macrospin becomes a periodic nonlinear solution
to the equations of motion, which has been studied by several
authors [41–45]. In this section, we will present the macrospin
solution within the framework of our model. It satisfies the
following exact equation [it follows from Eqs. (4a)–(6b)]:

i
da00

dt ′
= (1 − iα)[(hx + 1/2)a00 + a∗

00/2] + iβJa00

− a00
(
a2

00 + 4|a00|2 + 3a∗
00

2)
/8

+ iαa00[hx |a00|2/2 + (3 − |a00|2)(a00 + a∗
00)2/8]

− iβJa00|a00|2/2. (25)

In the absence of damping and spin torque, a static solution
to this equation is a

eq
00 = 0, i.e., mx = 1. We will study the

macrospin solution that starts close to a
eq
00 = 0 and that grows

to nonlinear order and becomes auto-oscillatory in the presence
of damping and STT. In order to do so, we introduce the fol-
lowing linear change of variables, a00 = ρ00b00 − ν00b

∗
00, with

ρ00 = √
(A00 + ω00)/2ω00, ν00 = √

(A00 − ω00)/2ω00, A00 =
hx + 1/2, B00 = 1/2, and ω00 = √

hx(hx + 1). Neglecting
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nonresonant terms [this approximation is called rotating wave
approximation (RWA)] [46,47], the equation of motion of
motion for b00 becomes

iḃ00 = (ω00 − 2A00A2|b00|2)b00

− iαA00(1 − A1|b00|2 + A2|b00|4)b00

+ iβJ (1 − A3|b00|2)b00, (26)

with A1, A2, and A3 functions of the applied field (all positive):

A1 = (A00 + 3B00)(A00 − B00)

2A00ω00
, (27a)

A2 = B00

A00

(2A00 − B00)(A00 − B00)

4ω2
00

, (27b)

A3 = A00

2ω00
. (27c)

These previous expressions have been obtained in previous
works, like for example Ref. [42], but the nonlinear correction
to order 5 in the dissipation is new.

We search for a nonlinear periodic auto-oscillatory solution
of Eq. (26), of the form

b00 = b0
00e

−iωt ′ , (28)

with b0
00 a constant, and we obtain

∣∣b0
00

∣∣2 = 1

2A2/A3

[
(A1/A3 − J/Jc)

±
√

(A1/A3 − J/Jc)2 − 4A2(1 − J/Jc)/A2
3

]
,

(29)

ω = (
ω00 − 2A00A2

∣∣b0
00

∣∣2)
, (30)

with Jc = αA00/β the critical current density. Thus we
found an approximate uniform auto-oscillation solution whose
frequency diminishes with its amplitude from its linear value
ω00.

The nonlinear solution of Eqs. (28)–(30) exists in a certain
range of the parameter space (J,hx). The range of existence
of this solution is associated with imposing (i) that |b0

00|2 is
real and greater than zero and (ii) that the magnitude of the
components of �m remain in the physical range (in magnitude
lower than one). Indeed imposing mx(t) = 1 − |a|2 � −1 one
gets |b0

00|2 � 2ω00/(hx + sin2(ω00t
′)) for all t ′, which leads to

|b0
00|2 � 2ω00/(hx + 1), i.e., an upper bound for |b0

00|2: we will
see that this leads to a maximum current density J (1)

c (hx) for
each applied field hx .

The analysis of the previous two conditions leads to differ-
ent allowed solutions depending on the value of the applied
field hx . We will present the different possibilities of solutions
fixing the value of hx at particular ranges and considering
the current density to be variable. The ranges of hx are
associated with two special values, h(1)

x = 1/4 and h(2)
x which

is a solution to the equation (h(2)
x )3 + h(2)

x − 1/2 = 0. About
the origin of these special hx field values. (i) If one studies the
magnitude of the oscillatory solutions at J = Jc, two solutions
are obtained |b0

00|2 = 0 and |b0
00|2 = (A1/A3 − 1)(A3/A2).

The second solution is valid for A1/A3 > 0, i.e., if hx > 1/4,

thus one defines h(1)
x = 1/4, which corresponds to A1/A3 =

1 (H (1)
x = 2500 Oe for Permalloy). Notice that A1/A3 =

hx(hx + 2)/(hx + 1/2)2: for hx < 1/4 → A1/A3 < 1, and for
hx > 1/4 → A1/A3 > 1.

(ii) If one studies the magnitude of the oscillatory so-
lutions at J = 0, one obtains as solution |b0

00|2 = [A1 ±√
A2

1 − 4A2]/(2A2), that exists if A2
1 − 4A2 > 0. The con-

dition A2
1 − 4A2 = 0 leads to the condition (h(2)

x )3 + h(2)
x −

1/2 = 0 and to h(2)
x 
 0.42 (H (2)

x ≈ 4200 Oe for Permalloy).
Notice that the square root in Eq. (29) is imaginary if

Jd (hx) < J < Ju(hx), with Jd (hx) < Ju(hx) � Jc(hx):

Ju,d = (Jc/A3)

×[A1 − 2A2/A3 ± 2
√

(1 − A1/A3)A2 + (A2/A3)2].

(31)

The ranges of the applied field hx associated to the existence or
not of macrospin solutions of the type of Eq. (28) are (1) hx <

h(1)
x . For current densities below Jc in the range Ju < J < Jc,

there are no solutions that satisfy condition (i). Also Jd < 0,
meaning that there are no solutions between 0 � J < Ju. The
static equilibrium state mx = 1 is stable for 0 < J < Jc. For
J > Jc, the state mx = 1 becomes unstable, and the macrospin
solution (28)–(30) is a stable periodic dynamic solution (a limit
cycle), with its oscillation amplitude growing and its frequency
diminishing with an increasing applied current density (there
is the limiting upper current density J (1)

c already mentioned).
Figure 3(a) reflects this case.

(2) h(1)
x < hx < h(2)

x . In the region Ju < J < Jc, there
are two branches of solutions of the macro spin type (28)
corresponding to the ± signs of Eq. (29) (we will show that
the (−) branch is unstable). Here, again Jd < 0, so there are
no solutions for 0 < J < Ju. For J > Jc, there is only one
macrospin solution branch (+), and notice that at J = Jc,
the amplitude |b0

00| is already finite. For J < Jc, the uniform
equilibrium state mx = 1 is stable, and becomes unstable for
J > Jc. Figure 3(b) reflects this case.

(3) hx > h(2)
x . There is a region with 0 < J < Jd where

there is a real and positive macrospin solution for |b0
00|2, but

it is nonphysical since its amplitude of oscillation goes over
the upper bound mentioned in (ii), as can be seen in Fig. 3(c).
For other current densities, the analysis is the same as for
h(1)

x < hx < h(2)
x (the value of h(2)

x is associated with Jd = 0).
In Figs. 3(a)–3(c), we note that when varying the control

parameter hx different types of Hopf bifurcations are seen:
when hx < 1/4 the bifurcation is supercritical, and when hx >

1/4 the bifurcation is subcritical [48].
In Fig. 4, we show a comparison between the approximate

macrospin solution of Eqs. (28)–(30) and a simulation of the
exact macrospin equations written in spherical coordinates, for
two different applied fields hx : the agreement is better for the
lower hx case.

C. Interaction of the uniform auto-oscillation with the
nonuniform modes

The auto-oscillation of the macrospin starts over a critical dc
current, a problem of interest is to determine its stability with
respect to the growth of nonuniform magnetization features.
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FIG. 3. Amplitude of oscillation of the macrospin mode as a
function of the current density from Eq. (29), for different ranges of
applied field. (a) hx < 1/4. The graph corresponds to an applied field
hx = 0.2. (b) h(1)

x < hx < h(2)
x . The graph corresponds to an applied

field hx = 0.4. In the region Ju < J < Jc, the branch solutions ± of
Eq. (29) are seen. (c) hx > h(2)

x . The graph corresponds to an applied
field hx = 0.5. The horizontal line represents the maximum amplitude
that can have the macrospin oscillation, meaning that the solutions
close to J = 0 are nonphysical.

We do an analytic study of the stability of this uniform auto-
oscillation allowing it to attain large amplitudes and studying
the onset of exponential growth of nonuniform modes as the
dc current density is increased within the range of existence
of the auto-oscillation (the following analysis is valid for all
the branches of macrospin solutions already discussed). The
previously obtained macrospin periodic solution of Eqs. (28)–
(30) is

aao = ρ00b
0
00e

−iωt ′ − ν00b
0
00

∗
eiωt ′ . (32)

FIG. 4. Comparison between a simulation in spherical coordi-
nates of the macrospin (solid line) and the approximate solution of
Eqs. (28)–(30) (dashed line). A projection of the magnetization in the
yz plane is shown for a period of oscillation, with (a) hx = 0.15 and
J = 1.1Jc, (b) hx = 0.25 and J = 1.005Jc.

Thus we consider a linear perturbation of it:

a00 = aao + δa00, (33a)

amj = δamj . (33b)

Thus, doing an expansion about aao in Eq. (11a) one gets,
the following linear dynamic equation for δȧmj in terms of
δamj and δa∗

−mj :

i
dδamj

dt ′
≈

[
∂

∂amj

(
∂U

∂a∗
mj

+ Fmj

)]∣∣∣∣
aao

δamj

+
[

∂

∂a∗
−mj

(
∂U

∂a∗
mj

+ Fmj

)]∣∣∣∣
aao

δa∗
−mj , (34)

(given the structure of U only the terms δamj and δa∗
−mj exist

on the right-hand side). The previous equation takes the form:

iδȧmj = (Amj + Cmj (aao))δamj

+ [Bmj + Dmj (aao)](−1)mδa∗
−mj

+ i[βJ − αAmj + Emj (aao)]δamj

+ i[−αBmj + Fmj (aao)](−1)mδa∗
−mj , (35)

with the coefficients Amj − Fmj given in the Appendix A 1.
Doing the change of variables of Eqs. (14)–(17), one obtains
from Eq. (35) (and from the analogous form for δȧ∗

−mj ) the

following equation for ḃ
(1)
mj , that couples b

(1)
mj and b

(2)
mj :

iḃ
(1)
mj = [

ωmjb
(1)
mj − i(αAmj − βJ )b(1)

mj − iαBmj (−1)mb
(2)
mj

]
+ [Gmj (aao) + iHmj (aao)]b(1)

mj

+ [Imj (aao) + iJmj (aao)](−1)mb
(2)
mj , (36)

with an analogous equation for ḃ
(2)
mj . The first term in brackets

corresponds to the part without interaction with the macrospin
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(already analysed for the linear modes), and the second part
includes the interaction with the macrospin via nonlinear terms
dependent on its amplitude. The functions Gmj , Hmj , Imj ,
and Jmj are evaluated at aao of Eq. (32), and are detailed in
Appendix A 2.

Now, based on the linear solution of Eq. (24), the following
change of variables is done:

b
(1)
mj (t ′) = b

0(1)
mj (t ′)e−iωmj t

′
e−(αAmj −βJ )t ′ , (37)

and similarly for b
(2)
mj (t ′). Then ḃ

0(1)
mj (t ′) satisfies the equation

iḃ
0(1)
mj =[Gmj (aao) + iHmj (aao)]b0(1)

mj

+ [Imj (aao) + iJmj (aao)](−1)mb
0(2)
mj e2iωmj t

′

− iαBmj (−1)mb
0(2)
mj e2iωmj t

′
, (38)

and there is a similar equation for ḃ
0(2)
mj (t ′). We search for a

solution in which b
0(1)
mj (t ′), b

0(2)
mj (t ′) vary slowly in time, thus

we can neglect terms of Eq. (38) that have coefficients that
vary rapidly [46,47] (terms like e2iωt ′ or e−2iωt ′ for example).
Following this idea, we use the constant terms of Gmj (aao) and
Hmj (aao), and the terms proportional to e−2iωt ′ in Imj (aao) and
Jmj (aao), and we obtain the following approximate equation
for b

0(1)
mj , b

0(2)
mj :

iḃ
0(1)
mj =(G′

mj + iH ′
mj )

∣∣b0
00

∣∣2
b

0(1)
mj

+ (I ′
mj + iJ ′

mj )b0
00

2
(−1)mb

0(2)
mj e2i(ωmj −ω)t ′ , (39)

with the expressions for G′
mj − J ′

mj given in Appendix A 3

(there is a similar equation for ḃ
0(2)
mj ).

The solution to the system of equations for b
0(1)
mj , b

0(2)
mj is

b
0(1)
mj = u0

mje
i(ωmj −ω)t ′eγmj t

′
, (40)

with

γmj = ±
√

(|I ′
mj |2 + |J ′

mj |2)
∣∣b0

00

∣∣4 − (
ωmj − ω + G′

mj

∣∣b0
00

∣∣2)2

+ H ′
mj

∣∣b0
00

∣∣2
. (41)

Since we are looking for instabilities, we take the (+) sign
in the previous solution, and the solution for the mode b

(1)
mj

takes the form

b
(1)
mj (t ′) = u0

mje
i(ωmj −ω)t ′eγmj t

′
e−iωmj t

′
e−(αAmj −βJ )t ′ ,

= u0
mje

−iωt ′eγmj t
′−(αAmj −βJ )t ′ , (42)

i.e., it oscillates with the same frequency ω as the macrospin.
Then, the mode b

(1)
mj will have an exponential growth if γmj >

αAmj − βJ , or√(
I ′
mj

2 + J ′
mj

2)∣∣b0
00

∣∣4 − (
ωmj − ω + G′

mj

∣∣b0
00

∣∣2)2

> αAmj − βJ − H ′
mj

∣∣b0
00

∣∣2
, (43)

a condition that will be analyzed in the following.

FIG. 5. (a) Graph of the threshold current density at which
nonuniformities of the magnetization start growing. The three curves
correspond to the first three modes to grow exponentially [(11),(21),
and (01)]. The lower segmented line corresponds to the current
at which the uniform mode starts auto-oscillation and the upper
segmented line corresponds to J (1)

c . (b) Graph of the threshold
amplitude attained by the macrospin when the nonuniformities of
the magnetization start (first three nonuniform modes). The lower
segmented line corresponds to the minimum amplitude of oscillation
and the upper segmented line is associated with the maximum
amplitude possible.

IV. APPLICATIONS OF THE SIMPLER MODEL,
NUMERICAL RESULTS

In the following, we will show applications of the the-
oretical model and present some numerical results. For all
the plots that follow we will consider that the free layer is
made of Permalloy, with the following associated parameters:
4πMs = 104 Oe, lex = 5.7 nm, ε = 0.17, and α = 0.01.

A. Instabilities, examining theoretical results

The expression of Eq. (43) that establishes possible linear
exponential growth of nonuniform modes depends on the
current and magnetic field applied to the system. Thus, for
a given applied magnetic field, by solving the equality on
Eq. (43) a threshold dc current J

(mj )
t can be found at which

the nonuniform mode (m,j ) destabilizes. Figure 5(a) shows
Jt for the three first nonuniform modes that go unstable. In
Fig. 5(b), we graph the amplitude that the macrospin has
at the point where the first three nonuniform magnetization
modes grow exponentially in this linear analysis. Notice that
we graph three nonuniform modes since there is evidence
in some systems [49–52] that these modes may stabilize via
nonlinear terms and coexist with an adjusted uniform mode.

Also, with Eq. (43) one can establish if the differ-
ent branches of the macrospin solutions that were found
[Eqs. (28)–(30)] are stable or not with respect to uniform
perturbations. This can be done evaluating Eq. (43) for
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FIG. 6. Plot of the (±) branch solutions of Eq. (29) for the
amplitude squared of the macrospin periodic solutions of Eq. (28)
[(+), corresponds to the continuous line, and (−) to the segmented
line]. The dotted line is the instability line of Eq. (45).

(m,j ) = (0,0), and it simplifies to

|J ′
00|

∣∣b0
00

∣∣2
> αA00 − βJ − H ′

00

∣∣b0
00

∣∣2
, (44)

which gives an instability condition as follows:

∣∣b0
00

∣∣2
<

√
1 − J/Jc

A2
. (45)

As discussed in Sec. III B for hx > 1/4 there are two
branches of macrospin solutions of the type of Eq. (28). In
Fig. 6, the latter limit curve of Eq. (45) is plotted and shows
that the lower (−) branch is unstable to uniform perturbations,
while the upper one (+) is stable. For hx < 1/4, the only
branch for J > Jc is stable to uniform perturbations.

It is to be noted that since for hx > 1/4 the (+) branch
is stable and occurs at a gap in amplitude with respect to
the equilibrium uniform state: thus in Fig. 5(b), that plots
the amplitudes at instability of the nonuniform modes, one
sees a lower segmented curve for the allowed values of
|b0

00|2. The upper segmented curve is associated with the
upper bound mentioned in Sec. III B. From Fig. 5(a) one
infers that for hx > 1/4 a very small change of current
density leads to the nonuniform modes becoming unstable,
and this is occurring with an associated significant increase
in amplitude of oscillation [Fig. 5(b)]. Also, for fields higher
than hx 
 0.28 the first nonuniform mode is always unstable.
The previous comment plus the high sensitivity to changes
in current density of Fig. 5(a) show that a practical limiting
applied field for stability of the uniform auto-oscillation is
approximately hx = 1/4, or Hx = πMs .

Also, Fig. 6 shows the coexistence of two stable solutions
[the static equilibrium and the (+) branch] when the current
lies in the interval Ju < J < Jc, this occurs for hx > 1/4. To
first order in |b0

00|2, the difference in energy (averaged over
time) between the macrospin solution of the upper branch and
the static uniform solution is 4πM2

s V ω|b0
00|2: this means that

for a field slightly over hx = 1/4, and for a disk of a radius of
50 nm., this difference in energy may be much greater than the
thermal energy kBT , with T an ambient temperature. Thus, for
currents below the critical current Jc, there is range of fields
over hx = 1/4 where there is bistability in the system between

FIG. 7. (a) Comparison of the theoretical and numerical threshold
current densities for the growth of the first nonuniform mode: points
are numerical data, and the curve the theoretical prediction of Eq. (43).
(b) Comparison of the theoretical and numerical threshold oscillation
amplitude for the growth of the first nonuniform mode. The segmented
curves have the same significance as those equivalent curves of
Figs. 5(a) and 5(b).

a periodic macrospin solution and the uniform static solution
(only for fields very close to hx = 1/4, one would see thermal
switching between these two states).

B. Instabilities, comparison with numerical simulations

The previous theoretical analysis of Sec. III C on the
instability of the macrospin due to growth of nonuniform
modes made use of some approximations like approximating
the exchange energy and the exclusion of nonresonant terms.
The objective of this section is to compare those approximate
theoretical results with numerical simulations that address the
growth of these nonuniform modes without using approxi-
mations of the underlying equations. Thus a system of three
coupled equations is studied numerically: one is Eq. (25) that
describes the exact dynamics of the macrospin (if uncoupled),
the others are the linearized equation (35) for δȧmj when the
macrospin amplitude a00 = aao has attained a large value, and
a similar one for δȧ∗

−mj that follows from Eq. (35).
In order to find a numerical instability, we proceed by

solving the macrospin equation (25) as a function of a slowly
increasing dc current density J = J (t ′) (in this way we are
in an adiabatically changing stationary periodic solution, and
we are also neglecting the influence of other modes on
the macrospin), and then with this macrospin solution we
numerically solve the mentioned equations for δamj and δa∗

−mj .
At the moment t ′ = τ in which we evidence an unstable growth
of the nonuniform modes amplitudes, we establish as J (τ ) the
threshold current density for instability of the macrospin.

The following Fig. 7(a) shows a comparison between the
theoretical prediction for the current density threshold for the
growth of the first nonuniform mode versus the analogous
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FIG. 8. The solid curves represent, for different radii: R =
{50 nm,60 nm,70 nm}: (a) the threshold current density that
must be applied in order to start observing nonuniformities of the
magnetization in the free layer and (b) the threshold oscillation
amplitude that are attained by the macrospin when nonuniformities of
the magnetization start in the free layer. All the curves correspond to
the growth of the first nonuniform mode (m = j = 1). The segmented
curves have the same significance as those equivalent curves of
Figs. 5(a) and 5(b).

threshold obtained numerically: we see a similar behavior
between the numerical (in principle exact) and theoretical
(approximate) thresholds, with the numerical threshold being
lower. Figure 7(b) shows a comparison between the theoretical
prediction for the amplitude of oscillation threshold for the
growth of the first nonuniform mode, versus the analogous
threshold obtained numerically.

C. Instabilities, dependence with size

In this section we study the dependence of the instability
of the first nonuniform mode (m = j = 1) on the radius of
the disk, by maintaining its thickness constant at h = 5 nm. In
particular, the radii considered are R = {50 nm,60 nm,70 nm},
and we use parameters for Permalloy. The results are presented
in Figs. 8(a) and 8(b). In Fig. 8(a), it is seen that the smaller
the radius of the disk, the larger is the threshold dc current
density needed to de-stabilize the first nonuniform mode.
While in Fig. 8(b) it is seen that the smaller the radius of
the disk, the bigger the amplitude of oscillation of the uniform
mode that is reached when the nonuniformities appear [the
limiting segmented curves of Figs. 8(a) and 8(b) have the same
significance as those equivalent curves of Figs. 5(a) and 5(b)].

The dependence of the instability of the macrospin on the
disk’s size, or more specifically its radius, in this model comes
through the exchange field. As can be seen from Eq. (12),
Uex ∝ (lex/R)2|amj |2, meaning that smaller radii effectively
increase the energy of non-uniform modes relative to the
uniform one, meaning the latter is more stable at smaller radii.
This is consistent with the idea that uniform magnetization
configurations are stabilized in samples of smaller sizes.

V. A DISK WITH EDGE EFFECTS, EXACT
DEMAGNETIZING FIELD

The disk dynamics changes if one goes beyond the previous
model in which the demagnetizing field was approximated by
its main term −4πMzẑ, or the very flat thin film limit. In the
following, we will consider the effect of the full demagnetizing
field, which introduces important edge effects: the smaller the
radius the more relevant these become. Notice that the full
demagnetizing field has contributions from surface charges as
well as volume charges. These new terms of the demagnetizing
field are proportional to the thickness h of the film, which in
this model is considered small. In the Appendix, we detail
the calculation of the different terms that contribute to the
averaged demagnetizing field over the thickness of the disk.
The calculation proceeds by determining the magnetostatic
potential via its integral representation in terms of surface and
volume charges, with the appropriate Green’s function written
in terms of an integral representation that involves Bessel
functions, Eq. (B2). We do not explicitly separate static and
dynamic components of the magnetization in the calculations
of demagnetizing fields presented in the Appendix.

In Ref. [53], the demagnetizing fields of uniform magne-
tization configurations in nonellipsoidal samples were calcu-
lated. Previous studies have calculated demagnetizing fields
in ferromagnetic very thin circular dots magnetized in plane,
with the aim to determine the spin wave modes of these dots.
We mention Ref. [54] where demagnetizing fields have been
calculated in an equivalent way through use of volume integral
representations: tensorial Green’s functions are used averaged
over the thickness of the dot, and the fields are calculated within
a basis that diagonalizes the exchange operator (it is a similar
basis to the one used in this work, i.e., written in terms of Bessel
functions); dynamic and static contributions of the dipolar
fields are separated, the equilibrium magnetization is consid-
ered uniform and the eigenvalue problem for the frequencies
in their basis is simplified by neglecting nondiagonal terms.
Also Refs. [55,56] present an approximate variational method
to determine the modes of very thin circular ferromagnetic
dots: they calculate demagnetizing fields via the same tensorial
Green’s functions averaged over the thickness of the dot, and
indeed use the integral representation of the basic kernel in
terms of Bessel functions, i.e., Eq. (B2); they approximate the
equilibrium configuration as uniform, use approximate forms
of the dynamic demagnetizing fields, introduce a model for
dipolar pinning, and they do variational calculations within
restricted trial sets.

A. Equilibrium configuration

With the demagnetizing field in its full form the equilibrium
magnetization is no longer fully aligned as �m = x̂. In order to
calculate the equilibrium configuration, i.e., a

eq
mj , we need to

impose

∂U
∂a∗

mj

∣∣∣∣
eq

= 0 (46)

withU now including the full demagnetizing energyUD , which
is given in Eqs. (B5)–(B13) of the Appendix. The previous
system of nonlinear equations, Eqs. (46), was solved using an
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FIG. 9. Magnetization orientation in minimum energy configu-
rations of the disk: (a) hx = 0.1 and (b) 0.2. In both cases, the
magnetization is in plane, i.e., mz = 0.

iterative method, that is, an extension of the Newton-Raphson
method [57,58]. Initially, one solves for the linear corrections
of the equilibrium, and then this solution is used as a first seed
of an iterative process that converges to the nonlinear solution.
We find that the a

eq
mj are real, that a

eq
mj = 0 if m is odd, and

that a
eq
mj �= 0 if m is even. Also, a

eq
−mj = −(−1)ma

eq
mj , leading

to mz = 0.
In Fig. 9, two equilibrium configurations are shown for two

different applied fields. They correspond to an almost aligned
magnetization configuration with some curvature that mimics
a bit the circular geometry of the disk: it occurs in order to
minimize magnetic surface charges on the edges of the disk,
and consequently the full energy of the system.

Notice that depending on the dimensions of the free layer, it
is known that the minimum energy configuration may be either
a vortex state or an almost saturated state in the plane or out of
the plane [59,60]. The dimensions used in this work, i.e., R =
50 nm and h = 5 nm only allow an equilibrium magnetization
almost saturated in the plane.

B. Linear dynamics

The linear magnetization dynamics in thin circular disks
has been studied in cases where the magnetizaton equilibrium
configuration corresponds to a vortex [61–64], or in a case
of almost saturation in plane [65]. There is a large difference
between the spatial profiles of the modes corresponding to the
previous two cases of equilibrium configurations with vortices
or quasisaturated states. The basis of Eq. (7) that we use to
describe the dynamics of the magnetization would describe
better the case of a vortex equilibrium configuration when
both the geometry and the magnetization state have circular
symmetry, but in our case of magnetization almost saturated
in plane in the direction of the applied magnetic field this
basis is still practical since it assures satisfying the boundary
conditions in the circular geometry although the magnetization
state breaks the circular symmetry.

In order to study the linear dynamics in the case of
full consideration of the demagnetizing field, the dynamic
equations without dissipation (11a) are approximated to linear
order by writing amj = a

eq
mj + ãmj :

i ˙̃amj =
∑
m′j ′

(
A

m′j ′
mj ãm′j ′ + B

m′j ′
mj ã∗

m′j ′
)
, (47)

where A
m′j ′
mj = ∂2U/∂am′j ′∂a∗

mj |eq and B
m′j ′
mj =

∂2U/∂a∗
m′j ′∂a∗

mj |eq . Or using matrices, schematically:

i
d

dt ′

(
ãmj

ã∗
mj

)
=

(
A

m′j ′
mj B

m′j ′
mj

−B
m′j ′
mj

∗ −A
m′j ′
mj

∗

)(
ãm′j ′

ã∗
m′j ′

)

= M1

(
ãm′j ′

ã∗
m′j ′

)
. (48)

The matrix M1 is diagonalizable through the following
Bogoliubov type transformation:

ãmj =
∑

n

(
λn

mjbn − μn
mjb

∗
n

)
, (49)

or using matrices (compact notation):(
ãmj

ã∗
mj

)
=

(
λn′

mj −μn′
mj

−μn′∗
mj λn′∗

mj

)(
bn′

b∗
n′

)
= M2

(
bn′

b∗
n′

)

=
∑
n′

{
bn′

(
λn′

mj

−μn′∗
mj

)
+ b∗

n′

(−μn′
mj

λn′∗
mj

)}
. (50)

The equation for the new variables bn,b
∗
n becomes

i
d

dt

(
bn

b∗
n

)
= M−1

2 M1M2

(
bn′

b∗
n′

)

= D
(

bn′

b∗
n′

)
, (51)

where D = M−1
2 M1M2 is a diagonal matrix. Also, in order for

the transformation (50) to be canonical, the following needs to
be satisfied: ∑

mj

(
λn

mj
∗
λn′

mj − μn
mjμ

n′
mj

∗) = δn
n′ , (52a)

∑
mj

(
λn

mj
∗
μn′

mj − μn
mjλ

n′
mj

∗) = 0. (52b)

The diagonal terms of the matrix D are the eigenfrequencies
of oscillation, ωn, of the different modes, i.e., in this linear
approximation bn = b0

ne
−iωnt

′
are independent oscillators.

In order to analyze how the frequencies of the modes are
modified as one considers the effect of the full demagnetizing
field, we write this field as (averaged over the thickness of the
disk):

�HD = −4πMz(ρ,φ)ẑ + ε
[
hz

D(Mz)ẑ + �h⊥
D(M⊥)

]
. (53)

A control parameter ε has been introduced that is equal to zero
when the demagnetizing field is approximated by its very thin
film limit, and it is equal to one when the full demagnetizing
field is considered. Recourse to this control parameter allows
to follow the evolution of the linear modes of the disk from the
analytical form found in the very thin film limit approximation
[Eqs. (14)–(18b)] to their more complex form as the finite
transverse dimensions and small but finite thickness of the film
is considered: effectively increasing this control parameter is
equivalent to artificially increasing the thickness of the disk.

In Fig. 10(a), we show the evolution of the frequencies of
the first modes of the disk as the control parameter ε increases,
for an applied magnetic field hx = 0.1. The lower blue points
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FIG. 10. (a) Variation of the frequencies of the lowest modes
with changing control parameter ε, for hx = 0.1. Blue circular points
represent the evolution of the mode (m = 0,j = 0), that corresponds
to mode n = 1 in (b). The orange squares and red triangles represent
the evolution of modes (m = 1,j = 1)(1,2), that become modes n =
2 and n = 4 respectively in (b). The green rhombi represent the
evolution of one of the modes (m = 2,j = 1)(1,2), which becomes
mode n = 3 in (b). (b) Variation of the frequencies of the lowest
modes with changing applied magnetic field: lines correspond to
frequencies at ε = 0, shown in Fig. 2, points to the case ε = 1, with
corresponding colors to adjacent figure (a).

correspond to the evolution of the frequency of the original
mode (m,j ) = (0,0), which represents the macrospin at ε = 0:
it diminishes its frequency with increasing strength of the
“extra” demagnetizing field. The orange/red points represent
the initially degenerate (m,j )(1,2) = (1,1)(1,2) modes: they mix
and the frequencies do separate and increase/decrease with
an increasing effective thickness of the disk (these modes at
ε = 0 correspond to nonzero values of a11, a∗

−11 and their
complex conjugates). The green points correspond to the
evolution of the frequencies of a mode that corresponds to a
mixture of (m,j )(1,2) = (2,1)(1,2) modes at ε = 0, its frequency
diminishes with full consideration of demagnetizing effects.
Also, Fig. 10(b) shows the dependence of the frequencies of
the first modes on the applied magnetic field: they increase
monotonically with it (full curves correspond to ε = 0 modes,
and points to the lowest modes at ε = 1, with corresponding
colors to the previous figure).

In the following Fig. 11, we plot the shapes of different
linear modes of the thin disk. For a given mode (n), with
associated nonnull bn and b∗

n, from Eq. (49) one determines
the associated ãmj , i.e., as ãmj = b0

n(λn
mj − μn

mj ) if one chooses
bn = b0

n real (this amounts to choosing an origin of time).
Then, from Eq. (7), one may determine a(�x,t) associated to
mode (n). Furthermore, in solving the eigenvalue problem

(a) (e)

(b) (f)

(c) (g)

(d) (h)

FIG. 11. Graphic representation of the first four lowest modes
in the disk, with an applied magnetic field of hx = 0.1. The
colors represent the values of the mz component of the dynamic
magnetization of each mode. The figures to the left represent the
lowest modes at ε = 0 and those to the right those for ε = 1: they are
ordered from lower to higher frequencies (labels for the modes in the
ε = 0 and ε = 1 cases are explained in the text).

involved in Eq. (51), we numerically found that there are
modes with λn

−mj = (−1)mλmj and μn
−mj = (−1)mμmj , or

λn
−mj = −(−1)mλmj and μn

−mj = −(−1)mμmj . In the first
case, we find

mz =
√

2Re(a)

=
√

2b0
n

∑
j

N0j

(
λn

0j − μn
0j

)
J0(κ0j ρ) cos(ωnt)

+ 2
√

2b0
n

∑
m>0j

NmjJm(κmjρ)
(
λn

mj − μn
mj

)
× cos mφ cos(ωnt), (54)
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my =
√

2Im(a)

= −
√

2b0
n

∑
j

N0j (λn
0j + μn

0j )J0(κ0j ρ) sin(ωnt)

− 2
√

2b0
n

∑
m>0j

NmjJm(κmjρ)
(
λn

mj + μn
mj

)
cos mφ sin(ωnt),

(55)

i.e., these are stationary modes that have reflection symmetry
with respect to the x axis (symmetry with respect to φ → −φ).
And in the second case, we find

mz =
√

2Re(a)

= 2
√

2b0
n

∑
m>0j

NmjJm(κmjρ)
(
λn

mj + μn
mj

)
sin mφ sin(ωnt),

(56)

my =
√

2Im(a)

= 2
√

2b0
n

∑
m>0j

NmjJm(κmjρ)
(
λn

mj − μn
mj

)
sin mφ cos(ωnt),

(57)

i.e., these modes are stationary antisymmetric with respect
to reflections with respect to the x axis (antisymmetry with
respect to φ → −φ).

Also, it is to be noted that the modes separate into those
that have m even and m odd (the second condition only arises
if λn

0j = 0 and μn
0j = 0), and this leads to antisymmetric or

symmetric modes with respect to reflections with respect to the
y axis, which depends on them being proportional to cos(mφ)
or to sin(mφ).

Thus we get the result that taking into account the full
demagnetizing field, the modes no longer circulate as in the
simpler version of the model, but instead they are stationary
modes with definite symmetries with respect to the x and y

axis, and this will be seen in the following figures. This may be
attributed to the magnetic charges introduced by aligning the
magnetization along the x axis, then the differential equations
for the modes are space dependent and reflect that the x and y

axis are symmetry axes.
In Fig. 11, we have plotted over the disk the quantity

Re(ã) = mz/
√

2 (at t = 0 and assuming bn to be real), thus
it is basically the mz of the dynamic magnetization, and
it is assumed to be in the range [−1,1] (this is arbitrary
since these are linear modes). The applied magnetic field
is taken as hx = 0.1. The left column of Fig. 11 shows the
shape of the four lowest frequency modes in the limit ε → 0
(notice that particular linear combinations of the modes of
the simpler model that rotate in different directions give
rise to these modes). The first corresponds to the macrospin
mode [Fig. 11(a)], which shows a uniform value as expected,
it corresponds to the mode (m,j ) = (0,0) in the notation
introduced in the simpler model. Figures 11(b) and 11(c) are
associated to linear combinations of the degenerate modes
(m,j )(1,2) = (1,1)(1,2), and Fig. 11(d) corresponds to a linear
combinations of the modes (m,j ) = (2,1). The right column
of Fig. 11 shows the four modes with lowest frequencies
when ε = 1, occurring at 7.98 GHz, 8.38 GHz, 12.35 GHz,

FIG. 12. The points correspond to the critical current densities of
the lowest mode as a function of the applied magnetic field for ε = 1,
or full demagnetizing field. The continuous line corresponds to the
macrospin critical current density at ε = 0, or the very thin disk limit.

and 12.96 GHz, respectively. In general, as ε → 1, there is
more localization of the modes at the edges in the regions
where y 
 0, where the magnetic charges are stronger. In the
case of the macrospin mode, it gets curved close to the edges
attaining higher amplitude there while maintaining an almost
uniform value in the interior (the variable a00 is dominant).
Figure 11(f) has as as dominant variables a11 and a−1,1. And
Figs. 11(g) and 11(h) have as dominant variables a21, a−2,1

and a11, a−1,1, respectively.
The previous modes may be named through the classifica-

tion used for modes in rectangular dots, that depends on nodal
lines. The first, Fig. 11(e), may be named (0,0) or fundamental
(mode with no nodes); the second, Fig. 11(f), as (1,0) or
1-backward mode (a mode with one nodal plane perpendicular
to the in-plane magnetization); the third, Fig. 11(g), as (2,0) or
2-backward mode (a mode with two nodal plane perpendicular
to the in-plane magnetization); and the fourth, Fig. 11(h), as
(0,1) or 1-Damon-Eshbach mode (a mode with one nodal plane
parallel to the in-plane magnetization).

It is important to note that our results for ε = 1 coincide
very well with those of micromagnetic simulations done in
Ref. [30], both in the values of the frequencies of the modes
as well as in their shapes (there are small differences that
may be attributed to slightly different values for the saturation
magnetization and the exchange constant).

Next, we study the effect of an applied current to linear
order, considering the associated spin transfer torque and
dissipation:

i ˙̃amj ≈ (1 − iα)
∑
m′j ′

(
A

m′j ′
mj ãm′j ′ + B

m′j ′
mj ã∗

m′j ′
) + iβJ ãmj .

(58)

In terms of the bn variables of Eq. (50), these previous
equations read

i
d

dt

(
bn

b∗
n

)
= D

(
bn′

b∗
n′

)
+ iM3

(
bn′

b∗
n′

)
. (59)

We approximate the induced nonoscillatory behavior of modes
n considering the diagonal terms of matrix M3, i.e., bn 

b0

ne
(−iωn+γn)t ′ . For each applied magnetic field, a critical current

density may be found such that γn = 0. In Fig. 12, the critical
current density for the second mode is shown (this mode has
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the lowest critical current), and a comparison is made with
the critical current density of the macrospin, i.e., J = α(hx +
1/2)/β for the macrospin. Thus precessions may be observed
at current densities that are lower than that predicted for the
uniform macrospin model. In Ref. [66], normal modes are
excited via spin transfer torque: they show that the first excited
mode corresponds to the lowest frequency, but in our case it
happens for the mode of the second lowest frequency, this may
occur since we use a lower applied field than them.

C. Mode with lowest critical current, its excitation and
instability

The modes we labeled as 1,2 (b1,b2) have the lowest fre-
quencies, and these are quite similar, with b1 the quasiuniform
mode and the one with lowest frequency. Also their critical
currents are similar, J crit

1 ∼ J crit
2 . However, the mode b2 has

the lowest critical current (the critical current density not only
depends directly on the frequency), it will auto-oscillate first
as one increases the current density.

We will study the range of applied currents in which the
mode b2 auto-oscillates, and determine its linear stability
range with respect to other modes becoming unstable: we will
compare theoretical predictions with numerical results.

If we apply a current density J > J crit
2 , the mode b2 starts

to auto-oscillate, we write an equation for its nonlinear growth
assuming the other modes have very low amplitudes. The
dynamic equations for the modes bn,b

∗
n are

i
d

dt

(
bn

b∗
n

)
= M−1

2 i
d

dt

(
ãmj

ã∗
mj

)
. (60)

Considering that only mode bn dominates the previous dy-
namics, and that one only keeps resonant terms up to order 3
without interaction between modes, one obtains the following
approximate equation for the time evolution of bn:

i
dbn

dt ′
= C1

nbn + C2
n|bn|2bn. (61)

We look for an auto-oscillatory solution to the previous
equation for mode b2, i.e., b2 = b0

2e
−iω2t

′
, with a real frequency

ω2. Imposing this, one obtains that

ω2 = Re
(
C1

2 + C2
2

∣∣b0
2

∣∣2)
, (62a)

Im
(
C1

2 + C2
2

∣∣b0
2

∣∣2) = 0. (62b)

Thus one obtains an expression for the frequency of auto-
oscillation ω2 that depends on the amplitude of oscillation
|b0

2| and an expression for this latter amplitude as a function
of the applied current density and applied magnetic field.
In Fig. 13, we show a comparison between this previous
theoretical prediction for this amplitude of auto-oscillation
versus numerical results for it, they reasonably agree (in
the numerical solution one changes adiabatically the applied
current). The cloud of blue points that is observed in the
numerical solution is explained since in the latter solution for
b2 not only the resonant terms shown in Eq. (61) are included,
but the nonresonant terms also. In this way, the general solution
for this variable is of the form: b2 = b0

2e
−iω2t

′ + b1
2e

−2iω2t
′ +

b2
2e

−3iω2t
′ + . . . . When its magnitude is plotted, an oscillatory

part follows, that explains the blue cloud of points.

FIG. 13. Comparison between the theoretical prediction (dashed
green line) and numerical result (blue) for the amplitude of auto-
oscillation of mode b2, considering an applied magnetic field hx =
0.1.

Now we study theoretically the linear stability of the
previous auto-oscillatory solution for the mode b2. Thus we
assume a solution with linear perturbations as follows:

b2 = b0
2e

−iω2t
′ + δb2, (63a)

bj = δbj . (63b)

The form that takes the equation for mode j , considering
that mode b2 is auto-oscillating, is the following:

i
dδbj

dt ′
= C1δbj + C2δb

∗
j + C3(b2)δbj + C4(b2)δb∗

j . (64)

We search for solutions of the form δbj = b0
j e

−iωj t eγj t , and
when replaced in the previous equation, we obtain[

(ωj + iγj )b0
j + iḃ0

j

]
= [C1 + C3(b2)]b0

j + [C2 + C4(b2)]b0
j

∗
e2iωj t

≈ [C1 + C3(b2)]b0
j + C4(b2)b0

j

∗
e2iωj t , (65)

where we have considered only resonant terms, i.e., we
eliminated a term proportional to C2. Mode 2 is such that
ãmj �= 0 for m odd. If we study the stability of mode j such
that ãmj �= 0 for the case m even, we will have that C3(b2)
and C4(b2) only will have quadratic terms in b2. The previous
statements are valid for j = 1, the particular case that we will
study.

We consider C3(b2) constant and C4(b2) proportional to
e−2iω2t . In this way, we write b0

j = u0
j e

i(ωj −ω2)t ⇒ δbj =
u0

j e
−iω2t eγj t , where γj should be

γj =
√

|C4|2 − [ωi − Re(C1 + C3)]2 + Im(C1 + C3).

(66)

Figure 14 shows a comparison between the instability
current found theoretically from the previous expression and
that found numerically, for mode j = 1. The analysis is done
for a given applied magnetic field and the applied current
is varied: the instability current is identified when γj = 0,
i.e., when mode j becomes unstable starting an exponential
growth. The agreement between theoretical and numerical
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FIG. 14. The circular blue points represent the critical current
densities when the mode b2 starts to auto-oscillate, as a function
of applied magnetic field. The square orange and diamond green
points represent the instability current densities of the previous auto-
oscillatory mode obtained numerically and theoretically, respectively.

results is good, since mode b2 only attains small amplitudes of
oscillation before mode 1 starts to grow.

VI. CONCLUSIONS AND REMARKS

A model for the dynamics of the magnetization of a very
thin disk magnetized in plane was developed that under a
simplified version (demagnetizing field approximated by its
very thin film limit) captures the dynamics of a uniform mode
and reproduces the linear nonuniform modes of the system.
The idea was to model the dynamics of a free ferromagnetic
layer of a nanopillar structure, using a simplified version of
the dipolar field that neglects terms proportional to the film
thickness. Within this simple version of the model one can also
study exactly the dynamics of the uniform mode, or macrospin,
when its precession out of equilibrium occurs at large angles,
i.e., including all nonlinear terms. Considering a spin transfer
torque term and dissipation, at a given critical current density
the system develops a periodic macrospin solution, which
is an auto-oscillatory limit cycle solution. We obtained an
approximate analytic form for this uniform nonlinear periodic
solution by neglecting nonresonant terms.

One goal of this work was to determine the linear stability
of this mentioned periodic macrospin solution. Using some
approximations, we determined analytically the thresholds in
current (at a fixed applied magnetic field) at which nonuniform
modes of the system become unstable, i.e., points at which
the macrospin approximation has to be extended in order to
describe the dynamics of the system. The nonuniform modes
with lower frequencies are those which become unstable
first.

All the previous summarized description of the macrospin
dynamics and its stability is valid for applied magnetic fields
in plane that do not exceed πMs in magnitude. For higher
applied fields, the picture is a bit more complex: for current
densities somewhat below the critical density there is a stable
periodic macrospin solution that coexists with the stable static

equilibrium uniform solution. There is a gap in energy that
separates these two solutions that can easily overcome a
thermal excitation energy. We found this coexistence via our
analytic results, but an exact numerical simulation of the
uniform mode dynamics also shows convergence to this limit
cycle solution if one does a significant perturbation of the static
equilibrium. The analysis of stability of this higher branch
with respect to the growth of nonuniform modes is analogous
to the case of lower fields, and one also finds that the lower
threshold for instability occurs for the first nonuniform modes.
Also, from a practical point of view once the applied field
exceeds πMs the macrospin becomes unstable at a current
that is slightly over the thresholds currents for existence of the
periodic macrospin solutions.

One aspect of interest of this simplified model was
to determine the dependence of the stability of the pe-
riodic macrospin solution on the radius of the disk: we
found that lower radii correspond to higher stability, some-
thing understood in relation to the role of the exchange
interaction.

In order to better capture the magnetization dynamics of
a real nanometric disk we studied an improved version of
the model: we used the full expression of the demagnetizing
field. When this is done, the equilibrium magnetization
configuration is no longer uniform, and the dynamic linear
modes are also modified developing in general features close
to the edges of the disk. We did a study of a 50-nm radius
disk with this improved model. In particular, there are two
modes with similar frequencies at the lower end, the lowest is
a quasiuniform mode and the other a mode of edge character.
The latter edge mode has the lowest critical current for
entering into an auto-oscillatory regime: we studied when
this isolated auto-oscillation becomes unstable due to the
exponential growth of the quasiuniform mode. In conclusion,
this improved model showed us that one can study the full
effect of the demagnetizing field within the framework of this
model, allowing to determine the different nonlinear terms
that contribute to the demagnetizing energy. The improved
model reproduces well the linear dynamic magnetization
modes, with the added characteristic of understanding their
shape and symmetry properties. The inclusion of the full
demagnetizing field effectively shows the effect of the finite
size of the disk introducing edge effects that clearly influence
the magnetization dynamics of small radii disks.

Thus this models allow to understand the isolated auto-
oscillations with lowest critical currents of the magnetization
of thin film disks magnetized in plane, as well as the currents
under which these auto-oscillations become unstable to the
growth of other non-uniformly magnetized modes. Thus the
models provide a basic understanding of auto-oscillations at
low currents.

This work may stimulate further work in the topic of
understanding higher nonlinear effects in the dynamics of
nanoferromagnetic samples, as it was studied in the past
in a ferromagnetic bulk or thin films. Our treatment of
the magnetization dynamics based on the dynamics of the
amplitudes of the magnetic modes allows to better understand
the magnetization dynamics as compared to a micromagnetic
approach, specially in order to appreciate the very important
role of resonant phenomena.
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As far as extending this approach to other geometries, this
approach can be used in ferromagnetic wires of rectangular
cross sections, or nanosamples of rectangular geometry. It is
also plausible to extend it to thin dots with elliptical base.
Furthermore, this approach can be generalized to samples of
other shapes with nonuniform magnetization configurations,
where it may be used if one has calculated numerically
the modes (at this moment it is practical for equilibrium
magnetization configurations close to uniform ones).
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APPENDIX A: DEFINITIONS FOR EQUATIONS

1. Definitions for Eq. (35)

The following expressions are associated with the interaction between the large amplitude uniform mode of oscillation and
the modes mj :

Amj = (
hx + 1/2 + hmj

ex

)
, (A1a)

Bmj = 1/2, (A1b)

Cmj = hmj
ex

|a00|4
4(2 − |a00|2)

−
(

3

8
a2

00 + |a00|2 + 3

8
a∗

00
2
)

, (A1c)

Dmj = hmj
ex

|a00|2a2
00

4(2 − |a00|2)
+ 1

2

(
hmj

ex − 1
)
a2

00 − 3

4
|a00|2, (A1d)

Emj = 3α

8

[
3a2

00 +
(

4 + 8

3
hx

)
|a00|2 + a∗

00
2 − 2

3

(
2a2

00 + 3|a00|2 + a∗
00

2)|a00|2
]

− βJ |a00|2, (A1e)

Fmj = 3α

4

[(
1 + 2

3
hx

)
a2

00 + |a00|2 − 1

6

(
a2

00 + 4|a00|2 + 3a∗
00

2)
a2

00

]
− βJ

2
a2

00. (A1f)

For the theoretical analysis, we approximate the terms associated with the exchange interaction as

Cmj ≈ h
mj
ex

8
|a00|4 −

(
3

8
a2

00 + |a00|2 + 3

8
a∗

00
2
)

, (A2a)

Dmj ≈ h
mj
ex

8
|a00|2a2

00 + 1

2

(
hmj

ex − 1
)
a2

00 − 3

4
|a00|2. (A2b)

2. Definitions for Eq. (36)

In doing the change of variables from the amj to the bmj , it is convenient to define the following quantities:

Gmj = Amj (Cmj + C∗
mj )

2ωmj

− Bmj (Dmj + D∗
mj )

2ωmj

+ Cmj − C∗
mj

2
, (A3a)

Hmj = Amj (Emj − E∗
mj )

2ωmj

− Bmj (Fmj − F ∗
mj )

2ωmj

+ Emj + E∗
mj

2
, (A3b)

Imj = Amj (Dmj + D∗
mj )

2ωmj

− Bmj (Cmj + C∗
mj )

2ωmj

+ Dmj − D∗
mj

2
, (A3c)

Jmj = Amj (Fmj − F ∗
mj )

2ωmj

− Bmj (Emj − E∗
mj )

2ωmj

+ Fmj + F ∗
mj

2
. (A3d)

3. Definitions for Eq. (39)

In searching for a solution to the b0
mj that varies slowly in time, we may neglect some contributions to the terms Gmj , Hmj ,

Imj and Jmj . We define G′
mj , H ′

mj , I ′
mj , and J ′

mj as a result of this process:

G′
mj = 1

2ωmj

[Amj (C ′
mj + C ′∗

mj ) − Bmj (D′
mj + D′∗

mj )], (A4a)

224416-15



D. MANCILLA-ALMONACID AND R. E. ARIAS PHYSICAL REVIEW B 93, 224416 (2016)

H ′
mj = E′

mj + E′∗
mj

2
. (A4b)

The terms G′
mj and H ′

mj correspond to the terms that do not depend on time in Gmj and Hmj , with

C ′
mj + C ′∗

mj ≈
(

3B00 − 4A00

2ω00

)
+ hmj

ex

(
2A2

00 + B2
00

8ω2
00

)
|b00|2, (A5a)

D′
mj + D′∗

mj ≈ (1 − hmj
ex )

(
B00

ω00

)
− 3A00

2ω00
− 3hmj

ex
A00B00

8ω2
00

|b00|2, (A5b)

E′
mj + E′∗

mj = α

[
2

(3B00 + A00)(A00 − B00)

ω00
− 3

(2A00 − B00)(A00 − B00)

4ω2
00

|b00|2
]

− 2βJ
A00

ω00
, (A5c)

I ′
mj = Amj (dmj + d∗

mj )

2ωmj

− Bmj (cmj + c∗
mj )

2ωmj

+ 1

2
(dmj − d∗

mj ), (A6a)

J ′
mj = Amj (fmj − f ∗

mj )

2ωmj

− Bmj (emj − e∗
mj )

2ωmj

+ 1

2
(fmj + f ∗

mj ). (A6b)

The terms I ′
mj and J ′

mj correspond to the terms proportional to e−2iωt ′ in Imj and Jmj with

cmj + c∗
mj ≈ −hmj

ex
A00B00

4ω2
00

|b00|2 −
(

3A00 − 4B00

4ω00

)
, (A7a)

dmj + d∗
mj ≈ hmj

ex

A2
00 + B2

00

8ω2
00

|b00|2 + 1

2

(
hmj

ex − 1
)A00

ω00
+ 3B00

4ω00
, (A7b)

dmj − d∗
mj ≈ hmj

ex
A00

8ω00
|b00|2 + 1

2

(
hmj

ex − 1
)
, (A7c)

emj − e∗
mj = α

(
3

4
− A00

4ω00
|b00|2

)
, (A7d)

fmj + f ∗
mj = α

[ (A00 + 3B00)(A − B00)

2ω00
− (A00 − B00)2

2ω2
00

|b00|2
]

− βJ

2

A00

ω00
, (A7e)

fmj − f ∗
mj = α

(
A00 + 2B00

2
+ B00 − 2A00

4ω00
|b00|2

)
− βJ

2
. (A7f)

APPENDIX B: DEMAGNETIZING FIELD AND DEMAGNETIZING ENERGY

To determine the demagnetizing field of our thin disk (the magnetization is assumed uniform over the thickness of the disk)
we first calculate the magnetostatic potential ( �HD = −�∇φ), which has contributions from surface and volume effective magnetic
charges:

�(�x) =
∫

dS ′ n̂ · �M( �x ′)
|�x − �x ′| −

∫
dV ′ �∇ · �M( �x ′)

|�x − �x ′| . (B1)

σM = (n̂ · �M) represents the surface magnetic charge density, with contributions from the top and bottom surfaces of the disk and
from its mantle; and ρM = −(∇ · �M) the volumetric magnetic charge density, with contributions from the interior of the disk.

In order to calculate these potentials, we use the following representation of the Green’s function in terms of cylindrical
coordinates:

1

|�x − �x ′| =
∞∑

m=−∞
eim(φ−φ′)

∫ ∞

0
dkJm(kρ)Jm(kρ ′)e−k|z−z′ |. (B2)

The demagnetizing field averaged over the thickness of the disk can be separated into two parts. (a) Its component in the
perpendicular direction to the plane z, with contribution only from surface charges in the top and bottom surfaces:

Hz
dem = −4πMz(ρ,φ) + 2Ms

h

∫ ∞

0
dkf (kh)

∞∑
m=−∞

[∫
dS ′Jm(kρ ′)mz(ρ

′,φ′)e−imφ′
]
Jm(kρ)eimφ, (B3)

with f (u) ≡ exp(−u) − 1 + u.
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(b) Its in plane components, with contributions from mantle surface charges as well as volume charges:

�H⊥
dem = −2Ms

h

∫ ∞

0
dk

f (kh)

k2

∞∑
m=−∞

[∫
dS ′ �∇(Jm(kρ ′)e−imφ′

) · �m(ρ ′,φ′)
]

�∇(Jm(kρ)eimφ). (B4)

Furthermore, the demagnetizing energy is calculated in the following form:

U = − 1

8πM2
s

∫ [
Hz

demẑ + �H⊥
dem

] · �MdV. (B5)

We write the magnetization components in the following way (M± ≡ Mx ± iMy):

Mz = Ms

∑
lj

σljNljJl(κljρ)eilφ,

M± = Ms

∑
lj

σ±
lj Nlj Jl(κljρ)eilφ. (B6)

Using equations (B3)–(B6), one obtains the demagnetizing energy as follows, U = U z + U⊥, with

U z = 1

2

∑
l1j1j2

(−1)l1σ z
l1j1

σ z
−l1j2

(
δ

j1
j2

− 2V I 1
(l1,j1,j2,h/R)

)
, (B7)

U⊥ = −V

4

∑
l1j1j2

(−1)l1
(
σ−

l1j1
σ−

(−l1−2)j2
I 2

(l1,j1,j2,h/R) + σ+
l1j1

σ+
(−l1+2)j2

I 3
(l1,j1,j2,h/R) − 2σ+

l1j1
σ−

(−l1)j2
I 1

(l1,j1,j2,h/R)

)
, (B8)

where the σ z
lj , σ+

lj , and σ−
lj are functions of the variables amj [see Eqs. (3) and (7)], with details of these expressions in Sec. B 1;

and the I 1
(l1,j1,j2,h/R), I 2

(l1,j1,j2,h/R), I 3
(l1,j1,j2,h/R) represent integrals that are calculated numerically, with details in Sec. B 2. In the

limit h/R → 0, the previous integrals tend to zero, and then the demagnetizing energy takes the value valid for an infinite very
thin film:

U → 1

2

∑
l1j1

(−1)l1σ z
l1j1

σ z
−l1j1

= 1

2

∫
mz(ρ,φ)2dV. (B9)

1. Relation between the σ ′
l j s and the a′

m j s

The σ ′
lj s [defined through Eq. (B6)] are functions of the a′

mj s [defined through Eqs. (3) and (7)]. These may be expanded in
power series of the a′

mj s as follows (superindices indicate the order of approximation):

σ z
lj

(0) = 0 = σ z
lj

(2) = σ z
lj

(4)
, (B10a)

σ z
lj

(1) = (alj + (−1)la∗
−lj )/

√
2, (B10b)

σ z
lj

(3) = − V

2
√

2

∑
m1j1m2j2m3j3

(am1j1 + (−1)m1a∗
−m1j1

)am2j2a
∗
m3j3

i4
ljm1j1m2j2m3j3

δm1+m2−l
m3

, (B10c)

σ z
00

(0) = σ+
00

(0) = σ−
00

(0) =
√

V , (B10d)

σ+
lj

(1) = −σ−
lj

(1) = (alj − (−1)la∗
−lj )/

√
2, (B10e)

σ+
lj

(2) = σ−
lj

(2) = −2
∑

m1j1m2j2

am1j1a
∗
m2j2

δm1−l
m2

id
3
(ljm1j1m2j2), (B10f)

σ+
lj

(3) = −σ−
lj

(3) = σ z
lj

(3)
, (B10g)

σ+
lj

(4) = σ−
lj

(4) = 0 (B10h)

with id
3
(ljm1j1m2j2) and id

4
(ljm1j1m2j2) integrals defined in Sec. B 2.
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2. Integrals calculated numerically

I 1
(l1,j1,j2,h/R) = Nl1j1Nl1j2Jl1

(
χ

l1
j1

)
Jl1

(
χ

l1
j2

) ∫ ∞

0
dk

f (kh/R)k2J ′
l1

(k)2

(h/R)
(
k2 − (

χ
l1
j1

)2)(
k2 − (

χ
l1
j2

)2) , (B11a)

I 2
(l1,j1,j2,h/R) = Nl1j1N(l1+2)j2Jl1

(
χ

l1
j1

)
Jl1+2

(
χ

l1+2
j2

) ∫ ∞

0
dk

f (kh/R)k2J ′
l1

(k)J ′
l1+2(k)

(h/R)
(
k2 − (

χ
l1
j1

)2)(
k2 − (

χ
l1+2
j2

)2) , (B11b)

I 3
(l1,j1,j2,h/R) = Nl1j1N(l1−2)j2Jl1

(
χ

l1
j1

)
Jl1−2

(
χ

l1−2
j2

) ∫ ∞

0
dk

f (kh/R)k2J ′
l1

(k)J ′
l1−2(k)

(h/R)
(
k2 − (

χ
l1
j1

)2)(
k2 − (

χ
l1−2
j2

)2) , (B11c)

id
3
(ljm1j1m2j2) =NljNm1j1Nm2j2

∫ 1

0
Jl(χ

l
jx)Jm1

(
χ

m1
j1

x
)
Jm2

(
χ

m2
j2

x
)
xdx, (B12)

id
4
(ljm1j1m2j2m3j3) =NljNm1j1Nm2j2Nm3j3

∫ 1

0
Jl

(
χl

j x
)
Jm1

(
χ

m1
j1

x
)
Jm2

(
χ

m2
j2

x
)
Jm3

(
χ

m3
j3

x
)
xdx. (B13)
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