
Contents lists available at ScienceDirect
Information Systems

Information Systems 59 (2016) 48–78
http://d
0306-43

☆ Pre
SISAP 20

n Corr
E-m

nreyes@
1 Fu
journal homepage: www.elsevier.com/locate/infosys
New dynamic metric indices for secondary memory$

Gonzalo Navarro a,1, Nora Reyes b,n

a Center of Biotechnology and Bioengineering, Department of Computer Science, University of Chile, Chile
b Departamento de Informática, Universidad Nacional de San Luis, Argentina
a r t i c l e i n f o

Article history:
Received 2 February 2015
Received in revised form
16 July 2015
Accepted 15 March 2016
Available online 7 April 2016

Keywords:
Metric space searching
Secondary memory indices
x.doi.org/10.1016/j.is.2016.03.009
79/& 2016 Elsevier Ltd. All rights reserved.

liminary partial versions of this paper appea
09 [17] and Proceedings of SISAP 2014 [18].
esponding author.
ail addresses: gnavarro@dcc.uchile.cl (G. Nav
unsl.edu.ar (N. Reyes).
nded with Basal Funds FB0001, Conicyt, Ch
a b s t r a c t

Metric indices support efficient similarity searches in metric spaces. This problem is
central to many applications, including multimedia databases and repositories handling
complex objects. Most metric indices are designed for main memory, and also most of
them are static, that is, do not support insertions and deletions of objects. In this paper we
introduce newmetric indices for secondary memory that support updates, that is, they are
dynamic. First, we show how the dynamic and memory-based Dynamic Spatial Approx-
imation Tree (DSAT) can be extended to operate on secondary memory. Second, we design
a dynamic and secondary-memory-based version of the static List of Clusters (LC), which
performs well on high-dimensional spaces. The new structure is called Dynamic LC (DLC).
Finally, we combine the DLC with the in-memory version of DSAT to create a third
structure, Dynamic Set of Clusters (DSC), which improves upon the other two in various
cases. We compare the new structures with the state of the art, showing that they are
competitive and outstand in several scenarios, especially on spaces of medium and high
dimensionality.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The metric space approach has become popular in
recent years to handle the various emerging databases of
complex objects, which can only be meaningfully searched
for by similarity [3,21,23,9]. A large number of metric
indices, that is, data structures to speed up similarity
searches have flourished. Most of them, however, are static
solutions that work in main memory. Static indices have to
be rebuilt from scratch when the set of indexed objects
undergoes insertions or deletions. On the other hand, in-
memory indices can handle only small datasets, suffering
red in Proceedings of

arro),

ile.
serious performance degradations when the objects reside
on disk. Most real-life database applications require indi-
ces able to work on disk and to support insertions and
deletions of objects interleaved with the queries.

The few metric indices supporting dynamism (that is,
updates to the indexed set of objects) and designed for
secondary memory can be classified into those using the
so-called pivots [8,12,20], those using hierarchical clus-
tering [4,19,13], and those using combinations [5,22].

Metric space searching becomes intrinsically more
difficult as the so-called dimensionality of the space
increases. Briefly, spaces are higher-dimensional when
their histogram of distances is more concentrated. Low-
dimensional spaces are easily dealt with by pivot-based
indices, which use the distances to a small set of reference
objects to map each other object (and the queries) into a
coordinate space, where the problem is much better stu-
died. On higher-dimensional spaces, however, the pivot-
based approach fails, because more pivots are needed and

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2016.03.009
http://dx.doi.org/10.1016/j.is.2016.03.009
http://dx.doi.org/10.1016/j.is.2016.03.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2016.03.009&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2016.03.009&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2016.03.009&domain=pdf
mailto:gnavarro@dcc.uchile.cl
mailto:nreyes@unsl.edu.ar
http://dx.doi.org/10.1016/j.is.2016.03.009

G. Navarro, N. Reyes / Information Systems 59 (2016) 48–78 49
thus the coordinate space is higher-dimensional as well.
High-dimensional spaces, either metric or coordinate-
based, are harder to index.

We are interested in dynamic secondary-memory
indices for medium- and high-dimensional spaces. The
few existing alternatives for this scenario are clustering-
based indices. The best known metric index from this
family is the M-tree [4]. Several others followed, for
example the EGNAT [19], the D-index [5], the PM-tree [22],
and the MX-tree [13]. Particularly, the PM-tree and the MX-
tree are built on top of the M-tree.

In this paper, we propose three new clustering-based
dynamic indices for secondary memory. Our first index
builds on the Dynamic Spatial Approximation Tree (DSAT)
[16], a dynamic in-memory index that yields an attractive
tradeoff between memory usage, update time, and search
performance for medium-dimensional spaces. We design a
secondary-memory variant, DSATþ , that retains the good
performance of DSAT in terms of distance evaluations,
while incurring a moderate number of I/O operations. This
structure only supports insertions, which is acceptable in
some scenarios.

Our second index builds on a simple static structure
that performs very well on high-dimensional spaces, the
List of Clusters (LC) [2]. A dynamic version, named Recursive
List of Clusters (RLC) [14], exists, but it is also designed to
work in main memory. We design a dynamic version of the
LC that works in secondary memory, which we call
Dynamic List of Clusters (DLC). This structure requires a
very low number of I/Os, but for large databases it incurs a
significant number of distance computations.

Finally, our third index, called Dynamic Set of Clusters
(DSC), aims to obtain the best of both worlds. It combines a
DLC with an in-memory DSAT in order to reduce the
number of distance computations required by the DLC. The
result is a structure with more balanced performance in
searches and updates.

Our experimental comparisons show that our structures
achieve reasonable disk page utilization and are competi-
tive with state-of-the-art alternatives. For example, our
DSATþ structure is the fastest to build and requires the
least distance computations in selective queries, out-
performing the M-tree [4], the best known alternative
structure, in all aspects except the number of I/Os in some
searches. Our DSC structure is more efficient at less selective
queries and in I/Os for construction, where it also outper-
forms the M-tree, but it requires more distance computa-
tions for construction. Fig. 1 shows a rough graphical
comparison of the insertion and search performance of our
DSC

I/O
s

DSC

M−tree

logarithmic sublinear

2

10

5

SelectivInsertions

linear

DLC
distances

I/O
s

DSAT+ DSAT+

Fig. 1. A rough graphical comparison of the insertio
different structures, considering both distance computa-
tions and I/O operations.

We show that these conclusions carry over larger
spaces and more recent competing data structures.
2. Basic concepts

Let U be a universe of objects, with a nonnegative dis-
tance function d:U�U⟶Rþ defined among them. This
distance function satisfies the three axioms that make
ðU; dÞ a metric space: strict positiveness, symmetry, and tri-
angle inequality. We handle a finite dataset SDU, which is
a subset of the universe of objects and can be preprocessed
(to build an index). Later, given a new object from the
universe (a query qAU), we must retrieve all similar ele-
ments found in the dataset. There are two basic kinds of
queries: range query and k-nearest neighbor queries. We
focus this work on range queries, where given qAU and
r40, we need to retrieve all elements of S within distance
r to q. Well-known techniques [11,10,21] derive nearest-
neighbor search algorithms from range search algorithms
in a range-optimal way: the search cost is exactly that of
range searching with a radius that captures the k nearest
neighbors.

The distance is assumed to be expensive to compute.
However, when we work in secondary memory, the com-
plexity of the search must also consider the I/O time; other
components such as CPU time for side computations can
usually be disregarded. The I/O time is composed of the
number of disk pages read and written; we call B the size
of the disk page. Given a dataset of jSj ¼ n objects of total
size N and disk page size B, queries can be trivially
answered by performing n distance evaluations and N=B I/
Os. The goal of an index is to preprocess the dataset so as
to answer queries with as few distance evaluations and I/
Os as possible.

In terms of memory usage, one considers the extra
memory required by the index on top of the data, and in
the case of secondary memory, the disk page utilization,
that is, the average fraction of the disk pages that is used.

In a dynamic scenario, the set S may undergo insertions
and deletions, and the index must be updated accordingly
for the subsequent queries. It is also possible to start with
an empty index and build it by successive insertions.

In some dynamic scenarios, deletions do not occur. In
others, they are sufficiently rare to permit a simple
approach to handle them: one marks the deleted objects
and exclude them from the output of queries. The index is
DLC

M−tree

distances

e Searches

M−tree

distances

I/O
s

Non−Selective Searches

DSAT+

DSC
DLC

n and search costs of the different structures.

G. Navarro, N. Reyes / Information Systems 59 (2016) 48–7850
rebuilt when the proportion of deleted objects exceeds a
threshold. In this paper we address the more challenging
case, where deletions must be physically executed. This is
the case when deletions are frequent, or when the objects
are large and retaining them for the sole purpose of
indexing is unacceptable.

2.1. Experimental setup

For the empirical evaluation of the indices we first
consider three widely different metric spaces from the
SISAP Metric Library (www.sisap.org) [7]. These are not
very large, but are useful to tune the indices and make
some design decisions based on their rough performance.
Larger spaces are considered in Section 7.

Feature vectors: A set of 40,700 20-dimensional feature
vectors, generated from images downloaded
from NASA.2 The Euclidean distance is used.

Words: A dictionary of 69,069 English words. The dis-
tance is the edit distance, that is, the minimum
number of character insertions, deletions and
substitutions needed to make two strings equal.
This distance is useful in text retrieval to cope
with spelling, typing and optical character
recognition (OCR) errors.

Color histograms: A set of 112,682 8-D color histograms
(112-dimensional vectors) from an image
database.3 Any quadratic form can be used as a
distance; we chose Euclidean as the simplest
meaningful distance.

In all cases, we built the indices with 90% of the points
and used the other 10% (randomly chosen) as queries. All
our results are averaged over 10 index constructions using
different permutations of the datasets.

We consider range queries retrieving on average 0.01%,
0.1% and 1% of the dataset. These correspond to radii 0.120,
0.285 and 0.530 for the feature vectors; and 0.051768,
0.082514 and 0.131163 for the color histograms. Words
have a discrete distance, so we used radii 1–4, which
retrieved on average 0.00003%, 0.00037%, 0.00326% and
0.01757% of the dataset, respectively. The same queries
were used for all the experiments on the same datasets. As
said, given the existence of range-optimal algorithms for k-
nearest neighbor searching [11,10], we have not con-
sidered these search experiments separately.

The disk page size is B¼4 KB in most cases; we will also
consider 8 KB in some experiments. All the tree data
structures cache the tree root in main memory. All the
indices are built by successive insertions.

As a baseline for comparisons, we use the M-tree [4].
This is the best-known dynamic secondary-memory data
structure, and its code is freely available.4 We use the
2 At http://www.dimacs.rutgers.edu/Challenges/Sixth/

software.html
3 At http://www.dbs.informatik.uni-muenchen.de/�seidl/

DATA/histo112.112682.gz
4 At http://www-db.deis.unibo.it/research/Mtree
parameter setting suggested by the authors.5 We will also
compare with the eGNAT [19] and the MX-tree [13].
3. Dynamic spatial approximation trees

In this section we recall the key aspects of the DSAT
[16], as we build on it for our secondary-memory indices.

The DSAT is a tree with one node per object. Searches
start at the tree root and reach any node that is at distance
at most r from the query q. The DSAT is based on the idea
of approaching the query spatially, that is, moving towards
the children of the current node that get closer to q, or
closer to any potential element at distance r from q. Thus,
the search backtracks over all the promising branches of
the tree.

Insertions: A number of alternatives for insertion of new
elements into a DSAT have been discussed and evaluated
[16]. In this section we describe only the best one, which
we have used in this paper. This is a combination of
timestamping and bounded arity. A maximum tree arity
(children per node) MaxArity is fixed, and also a timestamp
of the insertion time of each element is kept. Each tree
node amaintains its neighbor set N(a) (i.e., its children), its
timestamp T(a) (time a was inserted), and its covering
radius R(a) (maximum distance to a subtree element, used
to prune the searches). Whenever a new element x is to be
inserted in the subtree of a, we check whether it is closer
to a than to any element in N(a). If it is, we let x become a
new element of N(a) only if jNðaÞjoMaxArity, in which
case it is inserted at the end of N(a) and its insertion time T
(x) is recorded. In any other case, x is recursively inserted
into the subtree of its closest element in N(a). Note that
each element is older than its children and than its next
sibling.

Fig. 2 illustrates the construction of the DSAT on an
example metric space in R2. Assume that the elements arrive
in order p1; p2; p3;…; p15 and MaxArity¼2 or MaxArity¼6.
The resulting trees are shown in Figs. 3 and 4. Algorithm 1
details the insertion process.

Algorithm 1. Insertion of a new element x into a DSAT
with root a using timestamping plus bounded arity.
5 SPLIT_FUNCTION¼G_HYPERPL, PROMOTE_PART_FUNC-
TION¼MIN_RAD, SECONDARY_PART_FUNCTION¼MIN_RAD, RADIUS_-
FUNCTION¼LB, MIN_UTIL¼0.2

http://www.sisap.org
http://www.dimacs.rutgers.edu/Challenges/Sixth/software.html
http://www.dimacs.rutgers.edu/Challenges/Sixth/software.html
http://www.dbs.informatik.uni-muenchen.de/~seidl/DATA/histo112.112682.gz
http://www.dbs.informatik.uni-muenchen.de/~seidl/DATA/histo112.112682.gz
http://www.dbs.informatik.uni-muenchen.de/~seidl/DATA/histo112.112682.gz
http://www-db.deis.unibo.it/research/Mtree

6

p14p7

p10

p9

p8

p15

p5

p1

p13

p12

p11

p2

p4

p3

p

Fig. 2. Example of a metric database in R2.

7

p 9

p 8

p 15

p 5

p 1

p 13

p 12

p 11

p 2

p 4

p 3
p 10

p 6

p 14p

Fig. 3. Example of the DSAT obtained with maximum arity 2.

7

p 9

p 8

p 15

p 5

p 1

p 13

p 12

p 11

p 2

p 4

p 3

p 6

p 14

p 10

p

Fig. 4. Example of the DSAT obtained with maximum arity 6.

G. Navarro, N. Reyes / Information Systems 59 (2016) 48–78 51
The general idea is that elements are inserted into the
subtree of their closest element in N(a), or as a new ele-
ment in N(a) if they are closest to a. Thus the search looks
for the closest element to the query q in N(a), yet with a
tolerance given by the search radius r. However, when a
new element is added to N(a), elements that were inserted
in the subtrees of other neighbors in N(a) might now
prefer the new neighbor. The timestamp mechanism is
used to avoid any rebuilding, for which the search
mechanism is modified as detailed next.

Range searches: In principle, when searching for q with
radius r, one should report the root a if dða; qÞrr, then find
the closest element bAfag [NðaÞ, i.e., b¼ arg minbAa[NðaÞ
dðq; bÞ, and enter every child c such that dðq; cÞrdðq; bÞþ2r
and dðq; cÞrrþRðcÞ. Yet, because of the timestamped
insertion process, we have to consider the neighbors
〈b1;…; bk〉 of a from oldest to newest, and perform the
minimization (to find b) while we traverse the neighbors,
so as to decide at each point whether to enter into bi or
not. This is because, between the insertion of bi and biþ j,
there may have appeared new elements that preferred to
be inserted into bi just because biþ j was not yet a neighbor,
so we may miss an element if we do not enter bi because of
the existence of biþ j. Moreover, we use the timestamps to
reduce the work done inside older neighbors at search
time: say that dðq; biÞ4dðq;biþ jÞþ2r. We have to enter bi
because it is older. However, only the elements with
timestamp smaller than that of biþ j should be considered
when searching inside bi; younger elements have seen biþ j

and they cannot be interesting for the search if they chose
bi. As parent nodes are older than their descendants, as
soon as we find a node inside the subtree of bi with
timestamp larger than that of biþ j we can stop the search
in that branch, because its subtree is even younger.

Finally, as we bound the maximum arity, the root a is
not included in the minimization, as an element may have
been inserted into a child even if it should have become a
neighbor. Algorithm 2 gives the search process. Note that
dða; qÞ is always known except in the first invocation, and
the initial t is þ1.

Algorithm 2. Searching for q with radius r in a DSAT
rooted at a, built with timestamping plus bounded arity.

Nearest-neighbor searches: The DSAT requires some care
for k-nearest neighbor searching. In general, we perform a
range search where the search radius r is the distance to
the kth nearest element we have seen up to now, so r
decreases along the process. The branches of the tree are
visited in a particular order. We have a priority queue of
nodes yet to traverse, and choose the next according to the
minimum lower-bound distance to q. When this lower
bound is larger than r, the search terminates.

G. Navarro, N. Reyes / Information Systems 59 (2016) 48–7852
However, in the DSAT this interacts with the time-
stamps. Instead of thinking in terms of maximum allowed
timestamp of interest inside y, as done for range searches,
now we think in terms of maximum search radius that
permits entering y. Each time we enter a subtree y of bi, we
search for the siblings biþ j of bi that are older than y. Over
this set, we compute the maximum radius that permits us
not to enter y, namely ry ¼maxðdðq;biÞ�dðq; biþ jÞÞ=2. If it
holds rory, then we do not need to enter the subtree y.

Assume that we are currently processing node bi and
insert its children y into the priority queue. We compute ry
and associate it with y. Later, when the time to process y
comes, we consider our current search radius r and discard
y if rory. If we insert a child z of y, then we associate it
with the value maxðry; rzÞ. Algorithm 3 shows the process.
A is a priority queue of pairs (node,distance) sorted by
decreasing distance. Q is a priority queue of pairs (node,
lbound) sorted by increasing lbound.

Algorithm 3. Searching for the k nearest neighbors of q in
a DSAT rooted at a.

Deletions: To delete an element x, the first step is to find
it in the tree. Unlike most classical data structures for
traditional search problems, doing this is not equivalent to
simulating the insertion of x and seeing where it leads us
to in the tree. The reason is that the tree was different at
the time x was inserted. If x were inserted again, it could
choose to enter a different path in the tree, which did not
exist at the time of its first insertion.

An elegant solution to this problem is to perform a
range search with radius zero. This is reasonably cheap
and will lead us to all the places in the tree where x could
have been inserted. On the other hand, whether this
search is necessary is application-dependent. The appli-
cation could return a handle when an object was inserted
into the dataset. This handle can contain a pointer to the
corresponding tree node. Adding pointers to the parent in
the tree would permit us to locate the path for free (in
terms of distance computations). Henceforth the location
of the object is not considered as a part of the deletion
problem, although we have shown how to proceed if
necessary.

It should be clear that a tree leaf can always be removed
without any cost or complication, so we focus on how to
remove internal tree nodes. Note, however, that most tree
nodes are leaves, especially when the arity is high.

Several alternatives to delete elements from a DSAT
have been studied [16]. One of them aims at not degrading
the searches. The best way to ensure that is to ensure that
the tree resulting from the deletion of x is exactly as if x
had never been inserted. This deletion method is called
rebuilding subtrees: when node xANðbÞ is deleted, we
disconnect x from the main tree and reinsert all its des-
cendants. Moreover, elements in the subtree of b that are
younger than x have been compared against x to deter-
mine their insertion point. Therefore, these elements, in
the absence of x, could choose another path if we reinsert
them into the tree. Thus, we retrieve all the elements
younger than x that descend from b (that is, those whose
timestamp is greater, which includes the descendants of x)
and reinsert them into the tree, leaving the tree as if x had
never been inserted.

If the elements younger than x are reinserted like fresh
elements, that is, if they get new timestamps, then the
appropriate reinsertion point beginning at the tree root
must be found. On the other hand, if their original time-
stamp is maintained, then reinsertion can begin from b and
save many comparisons. The reason is that they are rein-
serted as if the current time was that of their original
insertion, when all the newer choices that appeared later
did not exist, and hence those elements should make the
same choice as at that moment, arriving again at b. In order
to leave the resulting tree exactly as if x had never been
inserted, the elements must be reinserted in the original
order, that is, in increasing order of their timestamps.

Therefore, when node xANðbÞ is deleted, all the ele-
ments younger than x are retrieved from the subtree
rooted at b, disconnected from the tree, sorted in
increasing order of timestamp, and reinserted one by one,
searching for their reinsertion point from b. Algorithm 4
shows the deletion process.

Algorithm 4. Algorithm to delete x from a DSAT, by
rebuilding subtrees.

There are two optimizations to this deletion method.
Say that x will be deleted from the subtree rooted at node
b (that is xANðbÞ). The first optimization makes a more
clever use of timestamps. It can be observed that there are
some elements younger than x that will not change their
insertion point when we reinsert them into the subtree
rooted at b. These elements are those older than the first
child of x and also than the last sibling of x. For those
elements, computing their new insertion point can be
avoided (see [16] for more details). A second optimization
is that the elements in A(y) are closer to y than to any older

G. Navarro, N. Reyes / Information Systems 59 (2016) 48–78 53
neighbor, so y only needs to be compared against newer
neighbors (as long as the same insertion path is repeated).
4. Dynamic spatial approximation trees in secondary
memory

Our secondary-memory variants of the DSAT maintain
exactly the same structure and carry out the same distance
evaluations of the main-memory version described in
Section 4. The challenge is how to maintain a disk layout in
order to minimize I/Os. We first describe the DSATn and, at
the end, describe the variant called DSATþ . As said, we
have not found efficient ways to handle deletions in the
secondary-memory structures, so we consider only inser-
tions and searches. In scenarios where deletions are not
frequent, they can be handled by marking deleted ele-
ments so as to omit them from result sets of queries, and
rebuilding the structures periodically.

We will force that, for any a, the set N(a) will be packed
together in a disk page, which ensures that the traversal of
N(a) requires just one disk read. Moreover, for technical
reasons that become clear later, MaxArity must be such
that a disk page can store at least two NðÞ lists of maximum
length. Yet, we are free to use a considerably lower value
for MaxArity, which is usually beneficial for performance.

To avoid disk underutilization, we will allow several
nodes to share a single disk page. We define insertion
policies that maintain a partitioning of the tree into disk
pages that is efficient for searching and does not waste
much space. Indeed, we will guarantee a minimum
o1

o2 o3 o4 o7

o5 o6 o14

o8o10

o11

o12

o13

o9

Oid() F() S()

iPAGE

jPAGE

Fig. 5. Example of F(a) and
average disk page utilization of 50%, and will achieve much
more in practice.
4.1. Data structure layout

We represent the children of a node as a linked list.
Therefore, each tree node has a first child F(a) and a next
sibling S(a) pointers, where the latter is always local to the
disk page. This allows making most changes to N(a)
without accessing a, which might be in another disk page.
Each node also stores its timestamp T(a) and its covering
radius R(a). Each disk page maintains the number of nodes
actually used. Far pointers like F(a) (i.e., that potentially
point to another page) have two parts: the page and the
node offset inside that page. Fig. 5 illustrates the F(a) and S
(a) pointers (T(a) and R(a) are omitted).

Nodes have fixed size in our implementation, thus
varying-length objects like strings are padded to their
maximum length. It is possible, with more programming
effort, to allocate varying sizes for each node within a disk
page. In this case the guarantee of holding at least two NðÞ
lists per page translates into a variable bound on the arity
of each node, so that a node a is not permitted to acquire a
new neighbor if the total size of its NðÞ list would surpass
half the disk page. In the case, however, of large objects
that would force very low arities (or simply not fit in half a
disk page), one can use pointers to another disk area, as it
is customary in other metric structures, and treat the
pointers as the objects. In this case every distance calcu-
lation implies also at least one disk access.
i

1

o2

o9 o10 o12
o8

o13o11

o6 o14
o5

o3 o4 o7

PAGE j

PAGE

o

S(a) pointer layout.

Fig. 7. Example before (top) and after (bottom) applying the policy ver-
tical split.

G. Navarro, N. Reyes / Information Systems 59 (2016) 48–7854
4.2. Insertions

To insert a new element x into the DSATn we first
proceed exactly as in Algorithm 1: we find the insertion
point in the tree, following a unique path, so that when we
determine that x should be added to N(a), we have both
the pages of a and N(a) loaded in main memory (these
pages can be the same or different). Now we have to add x
at the end of list N(a) inside a disk page. If N(a) was empty,
then x will become the first child of a, thus we modify F(a)
and insert x into the page of a. Otherwise, x must be added
at the end of N(a), in the page of N(a).

In either case, we must add x to an existing page, and it
is possible that there is not enough space in the page.
When this is the case, the page must be split into two, or
some parts of the page must be inserted into an existing
page. We describe next our overflow management policy.

Because every N(a) fits in a single disk page, the I/O cost
of an insertion is at most h page reads plus 1–3 page
writes, where h is the final depth of x in the tree. The reads
can be much fewer than h since a and N(a) can be in the
same disk page for many nodes along the path.

4.3. Page overflow management

When the insertion of x in N(a) produces a page over-
flow, we try out the following strategies, in order, until one
succeeds in solving the overflow. In the following, assume
that x has already been inserted into N(a), and now N(a)
does not fit in its disk page.

1st (move to parent): If a and N(a) are located in dif-
ferent pages, and there is enough free space in the page of
a to hold the whole N(a), then we move N(a) to the page of
a and finish. This actually improves I/O access times for N
(a). We carry out 2 page writes in this case. See Fig. 6.

2nd (vertical split): If the page of N(a) contains subtrees
with different parents from another page, we make room
by moving the whole subtree where the insertion occurred
to a new page (that is, we move all the subtree nodes
Fig. 6. Example before (left) and after (righ
residing in this page, to a new one). This maintains the
number of disk reads needed to traverse the subtree. This
needs up to 3 page writes, as the FðÞ pointer of the subtree
parent resides in another page, and it must be updated.
Note that we know where is the parent of the subtree to
move, as we have just descended to N(a). Fig. 7 illustrates
this case.

To maintain a property whose purpose will be apparent
in Section 4.4, we avoid using the vertical split whenever
the current page, after moving the chosen subtree to a new
page, is less than half-full.

3rd (horizontal split): We move to a new page all the
nodes of the subtree arrived at, with local depth larger
than d, for the smallest d that leaves the current page at
t) applying the policy move to parent.

G. Navarro, N. Reyes / Information Systems 59 (2016) 48–78 55
least half-full. The local depth is the depth within the
subtree stored at the page, and can be computed on the fly
at the moment of splitting. Note that (i) the nodes whose
parent is in another page have the smallest d and thus they
are not moved (otherwise we would be moving the whole
subtree, which is equivalent to a vertical split), hence only
2 page writes suffice; (ii) no N(b) is split in this process
because they have all the same d; (iii) the new page con-
tains children of different nodes, and potentially of dif-
ferent pages after future splits of the current node.

We have to refine the rule when even the largest d
leaves the current page less than half-full. In this case we
can move only some of the N(b) lists of depth d. This could
still leave the current page underfull if there is only one N
(b) of maximum depth d, but this cannot happen because
the disk page capacity is at least twice the maximum
length of an NðÞ list. Another potential problem is that, if
the maximum depth is d¼0, thenwewill move an N(b) list
whose parent is in another page. Yet, this is also impos-
sible because the current subtree should be formed by
only the top-level NðÞ list, and since it cannot account for
more than half of the page, a vertical split should have
applied in case of overflow.

Fig. 8 illustrates a horizontal split.
Note thatmove to parentmay apply because a vertical or

horizontal split freed some space in a since its children had
to move to a new page. A vertical split may apply after a
horizontal split has put several nodes of different parents
together. A horizontal split is always applicable because any
individual N(a) fits in a page. Finally, we try in the begin-
ning to put N(a) in the same page of a (when N(a) is cre-
ated) and later move it away via a horizontal split if
necessary. Note that, in general terms, a move to parent
improves I/O performance (as it puts subtrees together), a
vertical split maintains it (as keeps subtrees together), and
a horizontal split degrades it. Hence the order in which we
try the policies.

4.4. Ensuring 50% fill ratio

The previous operations do not yet ensure that disk
pages are at least half-full. Themove to parent case does: as
in the child page N(a) plus the rest overflowed, removing N
(a) cannot leave the child page less than half-full, as the
Fig. 8. Example before (left) and after (right) applying the policy hor-
izontal split.
page size is at least twice the size of N(a). Yet, vertical and
horizontal partitionings can create new underfull pages
many times, although they do guarantee that the existing
pages are always at least half-full.

To enforce the desired fill ratio, we will not allow
indiscriminate creation of new pages. We will point all the
time to one disk page, which will be the only one allowed
to be less than half-full (this is initially the root page, of
course). This will be called the pointed page, and we will
always keep a copy in main memory to avoid rereading it,
apart from maintaining it up to date on disk.

Whenever a new disk page is to be created, we try first
to fit the data within the pointed page. If it fits, no page
will be created. If it does not, we will create a new page for
the new data, and it will become the pointed page if and
only if it contains less data than the pointed page (thus
only the pointed page can be less than half-full).

4.5. Searches

Searches proceed exactly as in the DSAT, for example,
the range search is depicted in Algorithm 2. Let T be the
rooted connected subgraph of the structure that is tra-
versed during a search, and let L be the leaves of T (which
are not necessarily leaves in the structure). Because of the
disk layout of our structure, where sibling nodes are
always in the same page, the number of page reads in the
search is at most 1þjT j�jLj, and usually much less.

We assume that we have sufficient space to store in
main memory the disk pages containing the nodes from
the current one towards the root, so that old disk pages
must not be reread across the backtracking. This is not a
problem, as the tree height is on average logarithmic at
most [15].

4.6. The DSATþ variant

The DSATn we have described ensures 50% fill ratio, but
this has a price in terms of compactness. Specifically,
although our policies try to avoid it as much as possible,
the tree may become fragmented especially due to the use
of the pointed page mechanism. In this section we propose
a heuristic variant, DSATþ , which tries to achieve better
locality at the price of not ensuring 50% fill ratio (and
indeed, as seen later, achieving lower fill ratios).

The differences with respect to the DSATn are as fol-
lows. In the DSATþ each subtree root at a page maintains a
far pointer to its parent, and knows its global tree level.
The vertical split applies every time when “move to par-
ent” fails and there is more than one subtree root in the
page. It divides the subtrees into two groups so that the
partition is as even as possible in number of nodes, and
creates a new page with one of the two groups. This page
is a fresh one (no pointed page concept is used). In order to
move arbitrary subtrees to another page we use their far
parent pointers to update the child pointers of their par-
ents. If there is only one subtree in the page, the horizontal
split uses the global level to move all the nodes over some
threshold to a new fresh page, again trying to make the
sizes as even as possible.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0.01 0.1 1

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database retrieved

Search cost per element for n = 40,700 feature vectors

DSAT, Arity 4
Static SAT

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0.01 0.1 1

N
um

be
r o

f p
ag

es
 re

ad

Percentage of database retrieved

Search cost per element for n = 40,700 feature vectors

DSAT*, Arity 4
DSAT+, Arity 4

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 1 2 3 4

D
is

ta
nc

e
ev

al
ua

tio
ns

Radius

Search cost per element for n = 69,069 words

DSAT, Arity 32
Static SAT

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1 2 3 4

N
um

be
r o

f p
ag

es
 re

ad

Radius

Search cost per element for n = 69,069 English words

DSAT*, Arity 32
DSAT+, Arity 32

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0.01 0.1 1

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database retrieved

Search cost per element for n = 112,682 color histograms

DSAT, Arity 4
Static SAT

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0.01 0.1 1

N
um

be
r o

f p
ag

es
 re

ad

Percentage of database retrieved

Search cost per element for n = 112,682 color histograms

DSAT*, Arity 4
DSAT+, Arity 4

Fig. 9. Search cost of DSAT variants in secondary memory, in terms of distance evaluations (left) and disk pages read (right). Both variants are identical in
terms of distance evaluations, so the legend DSAT refers to both. We show one space per row.

6 Note that the DSATn may read many more pages than the total
amount. This is because subtrees share pages and thus the same page
may be read several times along the process.

G. Navarro, N. Reyes / Information Systems 59 (2016) 48–7856
4.7. Experimental tuning

Fig. 9 compares the search cost, in terms of both dis-
tance computations and disk pages read, of the DSATn and
the DSATþ . We found empirically the best arity for each
space, which turns out to be 4 for feature vectors and color
histograms, and 32 for words, just as for the in-memory
version of the structure [16]. As a baseline, we show the
static in-memory SAT [15], which was already known to be
outperformed by the in-memory dynamic DSAT [16].
In terms of disk pages read, the DSATþ outperforms the
DSATn variant, as a consequence of improved locality and
lower fragmentation. The difference is not very significant
on color histograms, but is noticeable on the other spaces.6

G. Navarro, N. Reyes / Information Systems 59 (2016) 48–78 57
Fig. 10 compares construction costs (the static SAT
builds as a whole, whereas the others build by successive
insertions). It can be seen that both DSAT variants build
fast (in two spaces, faster than the static SAT offline con-
struction). Each insertion requires a few tens of distance
computations and a few I/Os, and the cost grows very
slowly as the database grows (proportionally to the tree
 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database used

Construction cost per element for n = 40,700 feature vectors

DSAT, Arity 4
Static SAT

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database used

Construction cost per element for n = 69,069 words

DSAT, Arity 32
Static SAT

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database used

Construction cost per element for n = 112,682 color histograms

DSAT, Arity 4
Static SAT

Fig. 10. Construction cost of DSAT variants in secondary memory, in terms of dist
of distance evaluations, so the legend DSAT refers to both. We show one space p
depth). This time, the DSATþ variant is costlier in terms of
I/Os than the DSATn, as it does not modify pointers in
several disk pages. The difference, however, is generally
small, being largest in the space of words.

Finally, the bottom of the figure shows the average disk
page occupancy achieved for the different spaces. As
explained, this is guaranteed to be at least 1/2 for the
 0

 1

 2

 3

 4

 5

 6

 10 20 30 40 50 60 70 80 90 100
I/O

 o
pe

ra
tio

ns
Percentage of database used

Construction cost per element for n = 40,700 feature vectors

DSAT*, Arity 4
DSAT+, Arity 4

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 10 20 30 40 50 60 70 80 90 100

I/O
 o

pe
ra

tio
ns

Percentage of database used

Construction cost per element for n = 69,069 words

DSAT*, Arity 32
DSAT+, Arity 32

 0

 2

 4

 6

 8

 10

 12

 10 20 30 40 50 60 70 80 90 100

I/O
 o

pe
ra

tio
ns

Percentage of database used

Construction cost per element for n = 112,682 color histograms

DSAT*, Arity 4
DSAT+, Arity 4

ance evaluations (left) and I/Os (right). Both variants are identical in terms
er row. On the bottom, space usage of the secondary-memory structures.

G. Navarro, N. Reyes / Information Systems 59 (2016) 48–7858
DSATn, but in practice it is 3/4 to 5/6. That of the DSATþ is
around 2/3, which coincides with typical B-tree disk page
occupancies (1:� ln 2� 70%). We also show the total
number of disk pages used. The DSATn uses significantly
less space than the DSATþ .

For the comparison with other structures in Section 7,
we will use the DSATþ with the best arity for each space,
as it performs better for searches in exchange for being
only slightly slower to build.
c2
c3

c4

4c 3c1c 2c

Clusters / Disk Pages

Main Memory

c

LC

1

5. Dynamic list of clusters in secondary memory

We introduce a dynamic and secondary-memory var-
iant of the List of Clusters (LC), which aims at higher-
dimensional spaces. Our secondary-memory version, DLC,
retains the good properties of the LC, and in addition
requires few I/Os operations for insertions and searches.

5.1. List of clusters

We briefly recall the LC structure [2]. It splits the space
into zones (or “clusters”). Each zone has a center c and a
radius rc, and it stores the internal objects I¼ fxAS;
dðx; cÞrrcg, which are at distance at most rc from c (and
not inside a previous zone).

The construction proceeds by choosing c and rc, com-
puting I, and then building the rest of the list with the
remaining elements, E¼ S� I. Many alternatives to select
centers and radii are considered [2], finding experimen-
tally that the best performance is achieved when the zones
have a fixed number of elements m (and rc is defined
accordingly for each c), and when the next center c is
selected as the element that maximizes the distance sum
to the centers previously chosen. The brute force algorithm
for constructing the list takes Oðn2=mÞ time.

A range query (q,r) visits the list zone by zone. We first
compute dðq; cÞ, and report c if dðq; cÞrr. Then, if dðq; cÞ
�rcrr (that is, of the query ball and the cluster area
intersect), we search exhaustively the set of internal ele-
ments I. The rest of the list is processed only if
rcrdðq; cÞþr (that is, if the query ball is not contained in
the cluster area).

5.2. Dynamism and secondary memory

The DLC is based on the LC and also uses some ideas
from the M-tree [4]. The challenge is to maintain a disk
layout that minimizes both distance computations and I/
Os, and achieves a good disk page utilization.

We store the objects I of a cluster in a single disk page,
so that the retrieval of the cluster incurs only one disk
page read. Therefore, we use clusters of fixed sizem, which
is chosen according to the disk page size B.7

For each cluster C the index stores (1) the center object
c¼ centerðCÞ; (2) its covering radius rc ¼ crðCÞ (the
7 In some applications, the objects are large compared to disk pages,
so we must relax this assumption and assume that a cluster spans a
constant number of disk pages.
maximum distance between c and any object in the clus-
ter); (3) the number of elements in the cluster, jIj ¼#ðCÞ;
and (4) the objects in the cluster, I¼ clusterðCÞ, together
with the distances dðx; cÞ for each xA I. In order to reduce I/
Os, we will maintain components (1)–(3) in main memory,
that is, one object and a few numbers per cluster. Thus, we
can determine whether a zone has to be scanned without
reading data from disk. The cluster objects and their dis-
tances to the center (component (4)) will be maintained in
the corresponding disk page.

Unlike in the static LC, the dynamic structure will not
guarantee that I contains all the objects that are within
distance rc to c, but only that all the objects in I are within
distance rc to c. This makes maintenance much simpler, at
the cost of having to consider, in principle, all the zones in
each query (that is, we avoid reading a cluster if it does not
intersect with the query ball, but we cannot stop the search
when the query ball is contained in the cluster area).

Fig. 11 illustrates a DLC, with the set of clusters in sec-
ondary memory and the centers in main memory. Each
cluster occupies at most a disk page. Fig. 12 shows more
details on the list of centers, where each element stores
the cluster center c¼ centerðCÞ, its covering radius cr(C), its
number of elements #ðCÞ, and the position of the disk page
where the cluster C is stored on disk.

The structure starts empty and is built by successive
insertions. The first arrived element becomes the center of
the first cluster, and from then on we apply a general
insertion mechanism described next.

5.3. Insertions

To insert a new object x we must locate the most sui-
table cluster for accommodating it. The structure of the
cluster might be improved by the insertion of x. Finally, if
the cluster overflows upon the insertion, it must be split
somehow.

Two orthogonal criteria determine which is the “most
suitable” cluster. On one hand, choosing the cluster whose
Secondary Memory

Fig. 11. Example of a DLC in R2.

c

c4

c2
c3

Main Memory

1

LC

Fig. 12. Details of the data stored in main memory for Fig. 11.

Fig. 13. The possible shrink of a cluster zone due to an insertion of a new
element x.

G. Navarro, N. Reyes / Information Systems 59 (2016) 48–78 59
center is closest to x yields more compact zones, which are
then less likely to be read from disk and scanned at query
time. On the other hand, choosing clusters with lower disk
page occupancy yields better disk usage, fewer clusters
overall, and a better value for the cost of a disk page read.
We consider the two following policies to choose the
insertion point:

Compactness: The cluster C whose center(C) is nearest to x
is chosen. If there is a tie, we choose the one
whose covering radius will increase the least. If
there is still a tie, we choose the one with least
elements.

Occupancy: The cluster C with lowest #ðCÞ is chosen. If
there is a tie, we choose the cluster whose center
(C) is nearest to x, and if there is still a tie, we
choose the one whose covering radius will
increase the least.

As it can be noticed, to determine the cluster where the
new element will be inserted it suffices with the infor-
mation maintained in main memory, thus no I/Os are
incurred, only distance computations between x and the
cluster centers. Once the cluster C that will receive the
insertion is determined, we increase #ðCÞ in main memory
and read the corresponding page from secondary memory.

Before updating the page on disk, we consider whether x
would be a better center of C than c¼ centerðCÞ: We com-
pute crx ¼maxfdðx; yÞ; yA I [fcgg, the covering radius C
would have if xwere its center. If crxomaxðcrðCÞ; dðx; cÞÞ, we
set centerðCÞ’x and crðCÞ’crx in main memory, and write
back I [fcg to disk, with all the distances between elements
and the (new) center recomputed. Otherwise, we leave the
current center(C) as is, set crðCÞ’maxðcrðCÞ; dðx; cÞÞ, and
write back I [fxg to disk, associating distance dðx; cÞ to x.

This improvement of cluster qualities justifies our
“compactness” choice of minimizing the distance
dðx; centerðCÞÞ against, for example, choosing the center C
with smallest cr(C) resulting after the insertion of x: the
insertion of elements into the clusters of their smallest
centers will, in the long term, reduce the covering radii of
the clusters. Fig. 13 illustrates an example in R2.

When the cluster chosen for insertion is full, the pro-
cedure is different. We must split it into two clusters, the
current one (C) and a new one (N), choose centers for both
(according to a so-called “selection method”) and choose
which elements in the current set fcg [clusterðCÞ [fxg
stay in C and which go to N (according to a so-called
“partition method”). Finally, we must update C and add N
in the list of clusters maintained in memory, and write C
and N to disk. The combination of a selection and a par-
tition method yields a split policy, several of which have
been proposed for the M-tree [4].
5.4. Split policies

The M-tree [4] considers various requirements for split
policies: minimum volume refers to minimizing cr(C);
minimum overlap to minimizing the amount of overlap
between two clusters (and hence the chance that a query
must visit both); and maximum balance to minimizing the
difference in number of elements. The latter is less relevant
to our structure, because the LC is not a tree, but still it is
important to maintain a minimum occupancy of disk pages.

The selection method may maintain the old center c and
just choose a new one c0 (the so-called “confirmed” strategy
[4]) or it may choose two fresh centers (the “non-con-
firmed” strategy). The confirmed strategy reduces the
splitting cost in terms of distance computations, but the
non-confirmed one usually yields clusters of better quality.
We use their same notation [4], adding _1 or _2 to the
strategy names depending on whether the partition strat-
egy is confirmed or not.

RAND: The center(s) are chosen at random, with zero
distance evaluations.

SAMPL: A random sample of s objects is chosen. For each
of the s

2

� �
pairs of centers, the m elements are

assigned to the closest of the two. Then, the new
centers are the pair with least sum of the two
covering radii. It requires Oðs2mÞ distance com-
putations (O(sm) for the confirmed variant,
where one center is always c). In our experi-
ments we use s¼0.1 m.

M_LB_DIST: Only for the confirmed case. The new center is
the farthest one from c. As we store those dis-
tances, this requires no distance computations.

mM_RAD: Only for the non-confirmed case. It is equiva-
lent to sampling with s¼m, so it costs Oðm2Þ
distance computations.

G. Navarro, N. Reyes / Information Systems 59 (2016) 48–7860
M_DIST: Only for the non-confirmed case, and not used
for the M-tree. It aims to choose as new centers a
pair of elements whose distance approximates
that of the farthest pair. It selects one random
cluster element x, determines the farthest ele-
ment y from x, and repeats the process from y,
for a constant number of iterations or until the
farthest distance does not increase. The last two
elements considered are the centers. The cost of
this method is O(m) distance calculations.

Once the centers c and c0 are chosen, the M-tree pro-
poses two partition methods to determine the new con-
tents of the clusters C and C0 ¼N. The first yields unba-
lanced splits, whereas the second does not.

Hyperplane partition: It assigns each object to its nearest
center.

Balanced partition: It starts from the current cluster ele-
ments (except the new centers) and, until
assigning them all, (1) moves to C the element
nearest to c, (2) moves to C0 the element nearest
to C0.

A third strategy ensures a minimum occupancy fraction
αm, for 0oαo1=2:

Mixed partition: Use balanced partitioning for the first
2αm elements, and then continue with hyper-
plane partitioning.

5.5. Searches

Upon a range search for (q,r), we determine the can-
didate clusters as those whose zone intersects the query
ball, using the data maintained in memory. More precisely,
for each C, we compute d¼ dðq; centerðCÞÞ, and if drr
we immediately report c¼ centerðCÞ. Independently, if
d�crðCÞrr, we read the cluster elements from disk and
scan them. Note that, in the dynamic case, the traversal of
the list cannot be stopped when crðCÞ4dþr, as explained.

The scanning of a cluster also has a filtering stage: since
we store dðx; cÞ for all xAclusterðCÞ, we compute dðx; qÞ
explicitly only when jdðx; qÞ�dðq; cÞjrr. Otherwise, we
already know that dðx; qÞ4r by the triangle inequality.

Finally, in order to perform a sequential pass on the
disk when reading the candidate clusters, and avoid
unnecessary seeks, we first sort all the candidate clusters
by their disk page number before starting reading them
one by one.

Nearest-neighbor search algorithms can be system-
atically built over range searches in an optimal way [10].
To find the k objects nearest to q, the main difference is
that the set of candidate clusters must be traversed
ordered by the lower-bound distances dðq; centerðCÞÞ
�crðCÞ, in order to shrink the current search radius as soon
as possible, and the process stops when the currently
known kth nearest neighbor is closer than the least
dðq; centerðCÞÞ�crðCÞ value of an unexplored cluster.
5.6. Deletions

An element x that is deleted from the DLC may be a
cluster center or an internal object of a cluster. If x is an
internal object of a cluster C, we read its corresponding disk
page, remove x, and write the page back to disk. In the in-
memory structures, we update #ðCÞ and recompute cr(C) if
necessary (that is, if crðCÞ ¼ dðx; cÞ, where c¼ centerðCÞ).
Note that we do not need to calculate any new distance to
carry out this process.

If, instead, x is the center of a cluster C, we read its disk
page and choose a new center for C among its elements.
The new center will be the element yAclusterðCÞ that
minimizes the maximum distance to the other elements in
clusterðCÞ�fyg, that is the element whose cr will be mini-
mum. Then, we write back the page to disk and update
center(C), cr(C), and #ðCÞ in main memory. In this case we
need Oðm2Þ distance calculations. As it can be noticed, in
both cases we need only two I/O operations.

If we want to ensure a minimum fill ratio αr0:5 in the
disk pages, we must also intervene when the deletion in a
cluster leaves its disk page underutilized. In this case, we
delete the whole cluster and reinsert its elements in the
structure. This is not as bad as it might seem because the
elements of the cluster tend to be close to each other, and
thus it is usual that several elements are inserted in the same
page, thus saving I/Os. In the worst case, however, 2αm I/O
operations and αn distance evaluations might be necessary.
If we choose not to ensure any fill ratio, then a cluster C will
be discarded only when it runs out of elements.

5.7. Experimental tuning

Fig. 14 shows search costs for a number of combinations
of split policies. We only show the best ones to avoid a
flooding of graphs. As a baselines, we show the in-memory
static LC [2]. For the LC, we use as cluster size the maximum
number of elements that fit in each cluster of DLC.

The compactness policy is always better than the
occupancy policy when searching for the insertion point,
so we only show the former. Similarly, the balanced par-
titioning obtains worse search costs than the others,
because it prioritizes occupancy over compactness.

In general, the performance for searches changes only
moderately from one policy to another. The static LC,
instead, is significantly better in terms of distance com-
putations, showing that the offline construction does help
it find a better clustering of the objects than the say DLC
handles the online insertions.

Fig. 15 shows construction costs. We only show distance
computations, since the I/O cost is always 1 read and 1 write
per insertion, plus a very small number equal to the average
number of page splits produced, which is the inverse of the
average number of objects per disk page. This is basically the
minimum possible cost for an individual insertion. In
exchange, the number of distance computations used to
insert an element is in the hundreds and even in the tens of
thousands. The worst offenders are the non-confirmed
strategies, especially in cases where the objects are small
and thus the disk pages (i.e., the clusters) contain a large
number of elements. Still, even the better DLC alternatives

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 1 0.1 0.01

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database retrieved

Search cost per element for n = 40,700 feature vectors

RAND_1, MIXED
SAMP_1, MIXED

mM_RAD_2, MIXED
RAND_1, HYPERPL
SAMP_1, HYPERPL

mM_RAD_2, HYPERPL
Static LC

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1 0.1 0.01

N
um

be
r o

f p
ag

es
 re

ad

Percentage of database retrieved

Search cost per element for n = 40,700 feature vectors

RAND_1, MIXED
SAMP_1, MIXED

mM_RAD_2, MIXED
RAND_1, HYPERPL
SAMP_1, HYPERPL

mM_RAD_2, HYPERPL

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 4 3 2 1

D
is

ta
nc

e
ev

al
ua

tio
ns

Radius

Search cost per element for n = 69,069 words

RAND_1, MIXED
SAMP_1, MIXED

mM_RAD_2, MIXED
RAND_1, HYPERPL
SAMP_1, HYPERPL

mM_RAD_2, HYPERPL
Static LC

 0

 100

 200

 300

 400

 500

 600

 700

 4 3 2 1

N
um

be
r o

f p
ag

es
 re

ad

Radius

Search cost per element for n = 69,069 words

RAND_1, MIXED
SAMP_1, MIXED

mM_RAD_2, MIXED
RAND_1, HYPERPL
SAMP_1, HYPERPL

mM_RAD_2, HYPERPL

 0

 5000

 10000

 15000

 20000

 25000

 30000

 1 0.1 0.01

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database retrieved

Search cost per element for n = 112,682 color histograms

RAND_1, MIXED
SAMP_1, MIXED

mM_RAD_2, MIXED
RAND_1, HYPERPL
SAMP_1, HYPERPL

mM_RAD_2, HYPERPL
Static LC

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1 0.1 0.01

N
um

be
r o

f p
ag

es
 re

ad

Percentage of database retrieved

Search cost per element for n = 112,682 color histograms

RAND_1, MIXED
SAMP_1, MIXED

mM_RAD_2, MIXED
RAND_1, HYPERPL
SAMP_1, HYPERPL

mM_RAD_2, HYPERPL

Fig. 14. Search cost of DLC variants in secondary memory, in terms of distance evaluations (left) and disk pages read (right). We show one space per row.

G. Navarro, N. Reyes / Information Systems 59 (2016) 48–78 61
require hundreds of distance computations per insertion, an
order of magnitude more than the DSAT variants.

The figure also shows the average disk page occupancy
achieved, considering strategy SAMP_1 HYPERPL for fea-
ture vectors, SAMP_1 HYPERPL for words, and mM_RAD_2
MIXED for color histograms. Note that the fill ratios of the
DLC are not as high as for the DSATþ . However, each object
stores less data in the DLC than on the DSATþ . As a con-
sequence, the DLC uses less total space than the DSATþ .
We remind that, by using the MIXED partition strategy, we
can guarantee a minimum disk page occupancy, if desired.

It is not easy to choose a small set of variants for the
comparisons of Section 7. We choose two for each space,
which have a reasonably good performance in all cases:
SAMP_1 HYPERPL and SAMP_1 MIXED for the feature
vectors; SAMP_1 MIXED and SAMP_1 HYPERPL for words;
and mM_RAD_2 MIXED and SAMP_1 HYPERPL for color
histograms.

 1

 10

 100

 1000

 10000

 10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database used

Construction cost per element for n = 40,700 feature vectors

RAND_1, MIXED
SAMP_1, MIXED

mM_RAD_2, MIXED
RAND_1, HYPERPL
SAMP_1, HYPERPL

mM_RAD_2, HYPERPL
Static LC

 1

 10

 100

 1000

 10000

 100000

 10 100

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database used

Construction cost per element for n = 69,069 words

RAND_1, MIXED
SAMP_1, MIXED

mM_RAD_2, MIXED
RAND_1, HYPERPL
SAMP_1, HYPERPL

mM_RAD_2, HYPERPL
Static LC

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database used

Construction cost per element for n = 112,682 color histograms

RAND_1, MIXED
SAMP_1, MIXED

mM_RAD_2, MIXED
RAND_1, HYPERPL
SAMP_1, HYPERPL

mM_RAD_2, HYPERPL
Static LC

Fig. 15. Construction cost of DLC variants in secondary memory, in terms of distance evaluations. The table shows the space occupancy. Beware of logscales.

G. Navarro, N. Reyes / Information Systems 59 (2016) 48–7862
6. Dynamic set of clusters in secondary memory

As the tuning experiments have shown, the secondary-
memory variants of the DSATwe have presented in Section
4 perform well for insertions and searches in terms of
distance computations, but the number of I/Os incurred is
high. On the other hand, the DLC of Section 5 uses a low
number of I/O operations, but the number of distance
computations for insertions is high. This is because we
must compare the query with all the cluster centers c, of
which there are Oðn=mÞ ¼ Oðn=BÞ. While this happens both
in queries and updates, queries are usually expensive and
this penalty is not as noticeable as in updates.

Our idea is replace the sequential scan of the relevant
centers by an efficient in-memory structure, both for
queries and updates. As the centers will not be scanned
sequentially, their order becomes immaterial, and the
structure is called Dynamic Set of Clusters (DSC). Our in-
memory structure must support searches, but also inser-
tions and deletions, for the case where the centers of the
clusters change, or we insert or remove clusters. We have
chosen the DSAT described in Section 4.

6.1. Data structure layout

The DSC uses the same disk structure of the DLC, and
clusters will store the same in-memory data as well.
Instead of arranging the clusters on a list, however, the set
of all centers c¼ centerðCÞ will be maintained in an in-
memory DSAT data structure. In addition to center(C), cr(C),
and #ðCÞ, each cluster will store in main memory the value
CRZ(c), the maximum distance between c and any element
stored in the cluster of any center in the subtree of c.

Fig. 16 illustrates a DSC, showing the set of clusters in
secondary memory and its DSAT in main memory. Each
cluster occupies at most a disk page. Fig. 17 expands the
details of the corresponding DSAT, where the values
CRZðcÞa0 are shown. Besides, we also show the value
CRðcÞa0 of each c in the DSAT, where CR(c) is the covering
radius of c in the in-memory DSAT.

The structure starts empty and is built by successive
insertions. The first arrived element becomes the center of
the first cluster, and hence the root of the DSAT of centers.
From then on we apply a general insertion mechanism
described next.

The only part of the index that is always up to date in
secondary memory are the clusters. Besides, these are
located in consecutive disk pages. Therefore, if any pro-
blem occurs and the DSAT of centers is lost or corrupted,
we can rebuild it from the clusters information in a
sequential scan of clusters.

6.2. Insertions

The DSAT structure supports our policy of inserting a
new element x into the cluster with center c closest to x.

3c

4c

2c

c1

c2
c3

c4

Secondary Memory

Main Memory

Clusters / Disk Pages

1

DSAT

c

Fig. 16. Example of a DSC in R2.

1

c4

2)(cCRZ 3)(cCRZ

c2
c3

3)(cCR

2)(cCR

DSAT

c

Main Memory

Fig. 17. Details of the in-memory DSAT of Fig. 16.

G. Navarro, N. Reyes / Information Systems 59 (2016) 48–78 63
Therefore, a k¼1 nearest neighbor query on the DSAT
(Algorithm 3) yields the center where x should be inserted.
This incurs no I/Os, and requires much fewer distance com-
putations than the sequential scan carried out in the DLC.

Once the cluster C that will receive the insertion is
determined, we read the corresponding page from disk, add
x in it, write it back to disk, and update the in-memory
values #ðCÞ and cr(C), just as the DLC. However, we must also
consider whether x would be a better center of C than
c¼ centerðCÞ. In such a case, we replace the cluster center by
c, as explained in Section 5. However, in the case of the DSC,
we must also update the DSAT of centers, by deleting the old
center c from the tree and inserting x as a new one. These
updates on the DSAT only require distance computations.
The insertion of a new element x in a cluster may
increase cr(C), and this triggers an update of the CRZ fields
for all the ancestors of c in the tree. For each ancestor c0,
we set CRZðc0Þ’maxfCRZðc0Þ; dðc0; xÞg. Note that all these
distances dðc0; xÞ are already computed by the time the
search reaches node c.

When the cluster chosen for insertion is full, the pro-
cedure is similar to the DLC. We split it into two clusters, the
current one (C) and a new one (N), choose centers for both
(according to a “selection method”) and choose which ele-
ments in the current set fcg [clusterðCÞ [fxg stay in C and
which go to N (according to a “partition method”). Finally,
write C and N to disk. To complete the procedure, we
remove the old center c from the DSAT and insert the new
elements center(C) and center(N) (we may avoid removing c
and inserting center(C) if both are the same).

We use Algorithms 1 and 4 to insert a new center into
the DSAT of centers and to delete an old center, respectively.
We use also the optimizations described for deletion.

Note that, when we insert a new center in the DSAT
with its cluster already defined (as it occurs after a split),
we could exactly recompute the CRZ fields of all the nodes
in the insertion path, by comparing them with each ele-
ment in cluster(C). However, this is too expensive. Instead,
each field is recomputed as CRZðc0Þ’maxfCRZðc0Þ; dðc0; cÞ
þcrðcÞg, which gives an upper bound. Similarly, when we
delete elements in the DSAT, the fields CRZ are not easily
updated. In this case we simply leave the old values,
ignoring the fact that the new ones might be smaller.
Recall that this DSAT structure is volatile; when the system
is used again, a fresh DSAT is built from the centers that are
stored on disk. Therefore, this inefficiency in updating the
CRZ fields is not cumulative.

6.3. Searches

Searches for q with radius r can also take advantage of
the DSAT structure to find all the zones that intersect the
query ball. The only difference is that each node c stands
for a ball around c of radius cr(c). Therefore, we can use
essentially the same Algorithm 2, with the difference that
we must use CRZ(a) instead of R(a) in line 1. Also, the range
search collects any element a such that dðq; aÞrrþcrðaÞ, in
line 2.

As done with the DLC, we first collect all the centers c
whose clusters must be scanned, sort them by their posi-
tion on disk, and then read them one by one into main
memory, in order to reduce disk seeks. The centers that
satisfy dðq; cÞrr are also reported. As before, we use the
distances dðx; cÞ stored with the clusters on disk to try to
avoid computing dðx; qÞ for each xAclusterðCÞ.

Nearest neighbor searches can also take advantage of
the DSAT structure. Instead of inserting all the centers c in
the priority queue, we insert the center of the DSAT root.
The priority of the nodes c will be their lower-bound dis-
tance to q, dðc; qÞ�CRZðcÞ. We extract the next element,
exhaustively examine its corresponding cluster (using the
filtering based on precomputed dðx; cÞ information), and
insert its DSAT children into the queue.

G. Navarro, N. Reyes / Information Systems 59 (2016) 48–7864
6.4. Deletions

When an element x in the DSC is deleted, the process is
very similar to that of the DLC, but the information in the
DSAT of centers is updated if necessary. If x is not the
center of its cluster C, no action on the DSAT is needed
(again, we do not try to recompute the possibly smaller
CRZ fields of all the ancestors of center(C)).

Instead, if x¼ centerðCÞ, we choose a new center for C.
In this case, we delete x in the DSAT and insert the new
center(C), with its corresponding cr value. This incurs no
further I/Os.

When a cluster has to be discarded and reinserted
because its number of elements falls below a threshold, we
try to avoid searching their insertion points one by one in
the DSAT of centers. We choose a central element x among
those to be reinserted and find its nearest center c in the
DSAT. Then, we insert x in cluster(C), and as many closest
elements to c as possible, among those to be reinserted. If
cluster(C) becomes full, we restart the process with the
remaining elements. However, if the cluster splits right
after inserting x, we exploit the fact that we have two close
clusters less than half-full and insert all the remaining
elements in the two new clusters. Each element is then
inserted in the cluster of its closest center.

In the worst case, a deletion can force a complete
rebuilding of the in-memory DSAT. If m is the maximum
size of a cluster and the dataset contains n elements, the
total reconstruction of this DSAT of centers requires
Oððn=mÞlogðn=mÞÞ distance computations. Instead, only 5 I/
Os are required for a deletion in the worst case. These may
be needed if we have to remove a cluster C because it
contains too few element: (1) to keep the pages con-
secutively on disk, we have to read the last page and write
it at the page of the deleted cluster; (2) we have to read
the disk page of the cluster whose center is closest to
center(C); (3) when inserting the elements of C into this
new cluster, it may overflow. Splitting it requires writing
two pages on disk.

6.5. Experimental tuning

As for the DLC, we compare the effect of the various
policies for DSC, showing only those that performed best.
Fig. 18 shows the search costs in terms of distance eva-
luations and pages read. Both costs are similar to those of
the DLC.

The best alternatives are, in general, mM_RAD_2,
RAND_1, and SAMP_1 for center selection, and pure
(HYPERPL) or combined with balancing (MIXED) hyper-
plane distribution for partitioning. As expected, the
balanced partitioning obtains worse search costs than the
others, because it prioritizes occupancy over compactness.

Fig. 19 shows the construction costs per element in
terms of distance evaluations. As for the DLC, the number
of I/Os is basically 1 read and 1 write per insertion. As it
can be observed, the MIXED partition strategies obtain
better costs during insertions and, as before, the center
selection strategy of mM_RAD_2 is the most expensive.

While the construction costs are still in the hundreds,
and thus an order of magnitude higher than for the DSAT,
they are in general significantly lower than for the DLC. In
particular, we note that the linear increases in insertion
cost of the DLC has turned to clearly sublinear (although
not as low as the apparently logarithmic cost of insertion
in the DSAT).

The figure also shows a table with space occupancy,
which is similar for DLC and DSC. Here we use the variants
mM_RAD_2 HYPERPL for feature vectors, mM_RAD_2
MIXED for words, and mM RAD_2 MIXED for color
histograms.

For the comparisons of Section 7, we choose the fol-
lowing variants, considering a balance of distance com-
putations and I/Os: for feature vectors we select
mM_RAD_2 MIXED and mM_RAD_2 HYPERPL (these had
excessively high insertion cost in the DLC, but not in the
DSC); for words we choose mM_RAD_2 HYPERPL and
mM_RAD_2 MIXED; and for color histograms we select
RAND_1 HYPERPL and mM_RAD_2 MIXED.
7. Experimental comparison

In this section we empirically evaluate the best repre-
sentatives of our indices, comparing them with previous
work on the small spaces we used for tuning and in
larger ones.

7.1. Comparing with M-tree

We start with a comparison with the classical baseline
of the literature, the M-tree [4], whose code is easily
available.

Fig. 20 compares the search costs. In terms of distance
computations, the DSATþ always outperforms the M-tree.
The DSATþ works better for the more selective queries.
For example, on feature vectors, the DSATþ is the best for
the most selective queries, but for larger radii the DSC
takes over. In words, instead, the DSATþ is outperformed
by the DSC even for radius r¼1, but in color histograms the
DSATþ is the best even to retrieve 1% of the dataset. The
DLC closely follows the DSC, and both outperform the M-
tree in almost all cases.

When we consider disk pages read, both the DSATþ
and the M-tree are outperformed by the DLC and DSC
variants. These are barely distinguishable, except on
words, where the DLC is better. The comparison between
the DSATþ and the M-tree is mixed. In color histograms,
the M-tree is twice as slow, on words it is twice as fast, and
in the feature vectors the result depends on the selectivity
of the query.

Fig. 21 compares construction costs, both in distance
computations and I/Os. In terms of distance computations,
the DSATþ is unbeaten: it requires a few tens of distance
computations per insertion. It outperforms the M-tree
approximately by a factor of 2. Instead, the DSC requires
a few hundred distance computations, and usually out-
performs the DLC, which is the most expensive (except on
words, where it is faster than the DSC). It is also apparent
that the cost growth in the DSATþ and the M-tree is much
lower than in the DSC, and this is lower than in the DLC. It
can be observed that, although the M-tree requires fewer

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 1 0.1 0.01

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database retrieved

Search cost per element for n = 40,700 feature vectors

RAND_1, MIXED
SAMP_1, MIXED

mM_RAD_2, MIXED
RAND_1, HYPERPL
SAMP_1, HYPERPL

mM_RAD_2, HYPERPL
 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1 0.1 0.01

N
um

be
r o

f p
ag

es
 re

ad

Percentage of database retrieved

Search cost per element for n = 40,700 feature vectors

RAND_1, MIXED
SAMP_1, MIXED

mM_RAD_2, MIXED
RAND_1, HYPERPL
SAMP_1, HYPERPL

mM_RAD_2, HYPERPL

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 4 3 2 1

D
is

ta
nc

e
ev

al
ua

tio
ns

Radius

Search cost per element for n = 69,069 words

RAND_1, MIXED
SAMP_1, MIXED

mM_RAD_2, MIXED
RAND_1, HYPERPL
SAMP_1, HYPERPL

mM_RAD_2, HYPERPL
 0

 200

 400

 600

 800

 1000

 1200

 4 3 2 1

N
um

be
r o

f p
ag

es
 re

ad

Radius

Search cost per element for n = 69,069 words

RAND_1, MIXED
SAMP_1, MIXED

mM_RAD_2, MIXED
RAND_1, HYPERPL
SAMP_1, HYPERPL

mM_RAD_2, HYPERPL

 0

 5000

 10000

 15000

 20000

 25000

 30000

 1 0.1 0.01

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database retrieved

Search cost per element for n = 112,682 color histograms

RAND_1, MIXED
SAMP_1, MIXED

mM_RAD_2, MIXED
RAND_1, HYPERPL
SAMP_1, HYPERPL

mM_RAD_2, HYPERPL
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1 0.1 0.01

N
um

be
r o

f p
ag

es
 re

ad

Percentage of database retrieved

Search cost per element for n = 112,682 color histograms

RAND_1, MIXED
SAMP_1, MIXED

mM_RAD_2, MIXED
RAND_1, HYPERPL
SAMP_1, HYPERPL

mM_RAD_2, HYPERPL

Fig. 18. Search cost of DSC variants in secondary memory, in terms of distance evaluations (left) and disk pages read (right). We show one space per row.

G. Navarro, N. Reyes / Information Systems 59 (2016) 48–78 65
distance evaluations to insert an element than the DLC and
the DSC, it needs more I/Os because it uses more disk
pages. This is because the M-tree is fast to determine an
insertion point for the new element, but it does not find
the best one. Instead, the DSC and the DLC have a more
costly insertion because they spend more time to deter-
mine the best cluster to insert the new element. The
experimental results in Fig. 20 validate this conjecture,
because searches are cheaper, both in I/O operations and
distance computations, in the DSC and the DLC than in the
M-tree.
In terms of I/Os, the situation is basically the opposite.
Both the DLC and the DSC require almost 2 I/O operations
per insertion, whereas the DSATþ requires 4–10, and the
M-tree requires more, 6–20.

Table 1 shows the space usage of the indices, both in
terms of fill ratio and total number of disk pages used. It
can be seen that the DSATþ achieves the best disk page
utilization, around 67%. This drops to 53–64% for the DLC
and the DSC. Interestingly, when we consider the total
number of disk pages used, it turns out that the DSATþ is
the most space-consuming structure, whereas the DLC and
DSC use fewer pages. This is because the latter structures

 0

 100

 200

 300

 400

 500

 600

 10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database used

Construction cost per element for n = 40,700 feature vectors

RAND_1, MIXED
SAMP_1, MIXED

mM_RAD_2, MIXED
RAND_1, HYPERPL
SAMP_1, HYPERPL

mM_RAD_2, HYPERPL

 0

 100

 200

 300

 400

 500

 600

 700

 800

 10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database used

Construction cost per element for n = 69,069 words

RAND_1, MIXED
SAMP_1, MIXED

mM_RAD_2, MIXED
RAND_1, HYPERPL
SAMP_1, HYPERPL

mM_RAD_2, HYPERPL

 0

 500

 1000

 1500

 2000

 2500

 3000

 10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database used

Construction cost per element for n = 112,682 color histograms

RAND_1, MIXED
SAMP_1, MIXED

mM_RAD_2, MIXED
RAND_1, HYPERPL
SAMP_1, HYPERPL

mM_RAD_2, HYPERPL

Fig. 19. Construction cost of DSC variants in secondary memory, in terms of distance evaluations. The table shows the space occupancy.

G. Navarro, N. Reyes / Information Systems 59 (2016) 48–7866
store less data per object. In this comparison, the M-tree is
indeed the most space-consuming of the data structures.

Overall, we can draw the following conclusions:

1. The DSATþ is a structure offering a good balance
between insertion and search costs, usually out-
performing the M-tree (except on I/Os for searches, in
some cases). It performs better on more selective
queries. It is most competitive for distance computa-
tions, whereas in I/Os it is generally outperformed by
the DLC and the DSC. Finally, the DSATþ lacks an effi-
cient support for deletions.

2. The DSC performs better when the queries are less
selective, but even when not, it usually outperforms the
other structures at searches, both in distance compu-
tations and I/Os. It also outperforms them at I/Os for
insertions, where it performs essentially two opera-
tions. Its weakest point is the number of distance
computations required for insertions. Although it is
sublinear, and generally better than those required by
the DLC, the number is an order of magnitude higher
than those required for the DSATþ and the M-tree.

7.2. Deletions

Since the DSATþ does not support deletions, and the
DLC is generally outperformed by the DSC, we study the
effect of deletions on the latter structure. We study both
the cost of a deletion and the degradation suffered by
deletion and search costs after a significant number of
deletions is performed. For this type of experiments, on an
index of n elements, we randomly select a given fraction of
the elements and delete them from the index, so that after
the deletions the index contains n elements. For example,
if we search half the space of strings after 30% of deletions,
it means that we inserted 49,335 elements and then
removed 14,800, so as to leave the same 34,534 elements
(half of the set). The index where we search contains
always the same half of space. For each dataset we use the
alternative considered in the space tables: mM_RAD_2
HYPERPL for feature vectors, SAMP_1 HYPERPL for words,
and mM RAD_2 MIXED for color histograms.

Fig. 22 shows the deletion costs as the percentage of
deletions increases. The number of I/Os required by deletions
stays in 2–3, whereas the number of distance computations
needed to restore the correctness of the index after removing
the element is relatively low: a few tens for feature vectors
and words, and a few hundreds (close to the cost of an
insertion) for color histograms. These numbers do not change
significantly when the percentage of deletions increases.

Fig. 23 shows how massive deletions degrade range
searches. The degradation is noticeable in some cases, both
in distance computations and I/Os, reaching as much as 50%
extra I/Os on feature vectors when we delete 40% of the
database. This degradation owes to two facts: deletions in
the DSAT of centers can leave overestimated covering radii

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 1 0.1 0.01

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database retrieved

Search cost per element for n = 40,700 feature vectors

DSC, mM_RAD_2, MIXED
DSC, mM_RAD_2, HYPERPL

DSAT+, Arity 4
M-tree

DLC, SAMP_1, MIXED
DLC, SAMP_1, HYPERPL

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1 0.1 0.01

N
um

be
r o

f p
ag

es
 re

ad

Percentage of database retrieved

Search cost per element for n = 40,700 feature vectors

DSC, mM_RAD_2, MIXED
DSC, mM_RAD_2, HYPERPL

DSAT+, Arity 4
M-tree

DLC, SAMP_1, MIXED
DLC, SAMP_1, HYPERPL

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 1 2 3 4

D
is

ta
nc

e
ev

al
ua

tio
ns

Radius

Search cost per element for n = 69,069 words

DSC, mM_RAD_2, MIXED
DSC, mM_RAD_2, HYPERPL

DSAT+, Arity 32
M-tree

DLC, SAMP_1, MIXED
DLC, SAMP_1, HYPERPL

 0

 500

 1000

 1500

 2000

 2500

 3000

 1 2 3 4

N
um

be
r o

f p
ag

es
 re

ad

Radius

Search cost per element for n = 69,069 words
DSC, mM_RAD_2, MIXED

DSC, mM_RAD_2, HYPERPL
DSAT+, Arity 32

M-tree
DLC, SAMP_1, MIXED

DLC, SAMP_1, HYPERPL

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 1 0.1 0.01

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database retrieved

Search cost per element for n = 112,682 color histograms

DSC, mM_RAD_2, MIXED
DSC, RAND_1, HYPERPL

DSAT+, Arity 4
M-tree

DLC, mM_RAD_2, MIXED
DLC, SAMP_1, HYPERPL

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1 0.1 0.01

N
um

be
r o

f p
ag

es
 re

ad

Percentage of database retrieved

Search cost per element for n = 112,682 color histograms

DSC, mM_RAD_2, MIXED
DSC, RAND_1, HYPERPL

DSAT+, Arity 4
M-tree

DLC, mM_RAD_2, MIXED
DLC, SAMP_1, HYPERPL

Fig. 20. Comparison of search costs of DSC, DLC, DSATþ , and M-tree. We show distance computations on the left and disk page reads on the right.

G. Navarro, N. Reyes / Information Systems 59 (2016) 48–78 67
CRZ, and having more clusters with less elements reduces
the value of each page read. Note that the former reason is
not significant in the long term, since the in-memory DSAT
is rebuilt each time the search engine is restarted.

7.3. Study of DSC on larger spaces

We have used relatively small datasets up to now. In
this section we consider an order-of-magnitude larger
datasets. First we study spaces of 1,000,000 uniformly
distributed vectors, randomly generated in the real unit
hypercube, with dimensions 10 and 15. We do not use the
explicit coordinate information of the vectors, but just
treat them as black-box objects with the Euclidean dis-
tance. These datasets are called Vectors. Second, we study a
real space of 1,000,000 vector, which will be described
later. On these larger spaces, we verify the conclusions
obtained on DSC, the best structure that supports full
dynamism (i.e., insertions and deletions). We also study a
larger disk page size of 8 KB.

7.3.1. Uniform vector spaces
Fig. 24 shows the construction and search costs in the

Vectors space. Construction costs show the number of

 0

 100

 200

 300

 400

 500

 600

 700

 800

 10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database used

Construction cost per element for n = 40,700 feature vectors

DSC, mM_RAD_2, MIXED
DSC, mM_RAD_2, HYPERPL

DSAT+, Arity 4
M-tree

DLC, SAMP_1, MIXED
DLC, SAMP_1, HYPERPL

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 10 20 30 40 50 60 70 80 90 100

I/O
 o

pe
ra

tio
ns

Percentage of database used

Construction cost per element for n = 40,700 feature vectors

DSC, mM_RAD_2, MIXED
DSC, mM_RAD_2, HYPERPL

DSAT+, Arity 4
M-tree

DLC, SAMP_1, MIXED
DLC, SAMP_1, HYPERPL

 0

 100

 200

 300

 400

 500

 600

 700

 10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database used

Construction cost per element for n = 69,069 words

DSC, mM_RAD_2, MIXED
DSC, mM_RAD_2 HYPERPL

DSAT+, Arity 32
M-tree

DLC, SAMP_1, MIXED
DLC, SAMP_1, HYPERPL

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10 20 30 40 50 60 70 80 90 100

I/O
 o

pe
ra

tio
ns

Percentage of database used

Construction cost per element for n = 69,069 words

DSC, mM_RAD_2, MIXED
DSC, mM_RAD_2, HYPERPL

DSAT+, Arity 32
M-tree

DLC, SAMP_1, MIXED
DLC, SAMP_1, HYPERPL

 0

 2000

 4000

 6000

 8000

 10000

 12000

 10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database used

Construction cost per element for n = 112,682 color histograms

DSC, mM_RAD_2, MIXED
DSC, RAND_1, HYPERPL

DSAT+, Arity 4
M-tree

DLC, mM_RAD_2, MIXED
DLC, SAMP_1, HYPERPL

 0

 5

 10

 15

 20

 25

 10 20 30 40 50 60 70 80 90 100

I/O
 o

pe
ra

tio
ns

Percentage of database used

Construction cost per element for n = 112,682 color histograms

DSC, mM_RAD_2, MIXED
DSC, RAND_1, HYPERPL

DSAT+, Arity 4
M-tree

DLC, mM_RAD_2, MIXED
DLC, SAMP_1, HYPERPL

Fig. 21. Construction costs of DSC, DLC, DSATþ , and M-tree. We show distance computations on the left and I/Os on the right.

Table 1
Space usage of the selected indices.

Dataset Fill ratio (%) Total pages used

DSATþ DLC DSC DSATþ DLC DSC M-tree

Vectors 67 53 53 1726 1450 1429 1973
Words 66 60 64 1536 713 665 1608
Colors 67 59 59 21,136 19,855 17,656 31,791

G. Navarro, N. Reyes / Information Systems 59 (2016) 48–7868
distance computations per element inserted; the number
of I/Os is always 2–3 and is not shown. For the search costs
we show both distance computations and number of
pages read.

In these spaces, the effect of some groups of policies is
more clearly visible. For example, the MIXED strategies
yield better construction costs than the HYPERPL strate-
gies, but also perform clearly worse at searches, in terms of
distance computations. In terms of I/Os, the HYPERPL
strategies are slightly better on more selective queries, but
for less selective ones the MIXED strategies clearly take
over. This behavior is more notorious as dimension grows.
Another noticeable effect is the sublinear growth of the
insertion costs, for all the strategies. For example, in
dimension 15, the MIXED strategies compare an object to

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 1 0.1 0.01

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database retrieved

Search cost per element for n = 20,350 feature vectors

0% deleted
10% deleted
20% deleted
30% deleted
40% deleted

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 0.1 0.01

N
um

be
r o

f p
ag

es
 re

ad

Percentage of database retrieved

Search cost per element for n = 20,350 feature vectors

0% deleted
10% deleted
20% deleted
30% deleted
40% deleted

 0

 5000

 10000

 15000

 20000

 25000

 30000

 4 3 2 1

D
is

ta
nc

e
ev

al
ua

tio
ns

Radius

Search cost per element for n = 34,535 words

0% deleted
10% deleted
20% deleted
30% deleted
40% deleted

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 4 3 2 1

N
um

be
r o

f p
ag

es
 re

ad

Radius

Search cost per element for n = 34,535 words

0% deleted
10% deleted
20% deleted
30% deleted
40% deleted

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 1 0.1 0.01

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database retrieved

Search cost per element for n = 56,341 color histograms

0% deleted
10% deleted
20% deleted
40% deleted
40% deleted

 0

 500

 1000

 1500

 2000

 2500

 1 0.1 0.01

N
um

be
r o

f p
ag

es
 re

ad

Percentage of database retrieved

Search cost per element for n = 56,341 color histograms

0% deleted
10% deleted
20% deleted
40% deleted
40% deleted

Fig. 23. Comparison of search costs as the fraction of deleted elements in the database increases, for the best alternatives of the DSC.

 1

 10

 100

 1000

 10 20 30 40

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database deleted

Deletion cost per element

Vectors, DSC, mM_RAD_2 HYPERPL
Words, DSC, mM_RAD_2 MIXED

Histograms, DSC, mM_RAD_2 MIXED
 0

 0.5

 1

 1.5

 2

 2.5

 3

 10 20 30 40

I/O
 o

pe
ra

tio
ns

Percentage of database deleted

Deletion cost per element

Vectors, DSC, mM_RAD_2 HYPERPL
Words, DSC, mM_RAD_2 MIXED

Histograms, DSC, mM_RAD_2 MIXED

Fig. 22. Deletion costs for the best alternatives of the DSC. We show distance computations on the left and I/Os on the right.

G. Navarro, N. Reyes / Information Systems 59 (2016) 48–78 69

 0

 200

 400

 600

 800

 1000

 1200

 10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database used

Construction cost per element for n = 1,000,000 vectors, Dim. 10

RAND_1, MIXED
SAMP_1, MIXED

mM_RAD_2, MIXED
RAND_1, HYPERPL
SAMP_1, HYPERPL

mM_RAD_2, HYPERPL
 0

 2000

 4000

 6000

 8000

 10000

 12000

 10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database used

Construction cost per element for n = 1,000,000 vectors, Dim. 15

RAND_1, MIXED
SAMP_1, MIXED

mM_RAD_2, MIXED
RAND_1, HYPERPL
SAMP_1, HYPERPL

mM_RAD_2, HYPERPL

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 1 0.1 0.01

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database retrieved

Search cost per element for n = 1,000,000 vectors, Dim. 10

RAND_1, MIXED
SAMP_1, MIXED

mM_RAD_2, MIXED
RAND_1, HYPERPL
SAMP_1, HYPERPL

mM_RAD_2, HYPERPL
 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 1 0.1 0.01

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database retrieved

Search cost per element for n = 1,000,000 vectors, Dim. 15

RAND_1, MIXED
SAMP_1, MIXED

mM_RAD_2, MIXED
RAND_1, HYPERPL
SAMP_1, HYPERPL

mM_RAD_2, HYPERPL

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 1 0.1 0.01

N
um

be
r o

f p
ag

es
 re

ad

Percentage of database retrieved

Search cost per element for n = 1,000,000 vectors, Dim. 10

RAND_1, MIXED
SAMP_1, MIXED

mM_RAD_2, MIXED
RAND_1, HYPERPL
SAMP_1, HYPERPL

mM_RAD_2, HYPERPL
 0

 5000

 10000

 15000

 20000

 25000

 30000

 1 0.1 0.01

N
um

be
r o

f p
ag

es
 re

ad

Percentage of database retrieved

Search cost per element for n = 1,000,000 vectors, Dim. 15

RAND_1, MIXED
SAMP_1, MIXED

mM_RAD_2, MIXED
RAND_1, HYPERPL
SAMP_1, HYPERPL

mM_RAD_2, HYPERPL

Fig. 24. Insertion and search costs for the best alternatives of DSC on the space of vectors in dimensions 10 (left) and 15 (right), as a function of the
policy used.

G. Navarro, N. Reyes / Information Systems 59 (2016) 48–7870
be inserted with around 1.1% of the dataset when it con-
tains 100,000 objects, but this percentage decreases to
0.8% when we have 1,000,000 objects. The HYPERPL stra-
tegies also show a decrease from around 1.9% to less than
1.2%. In dimension 10, the percentages with MIXED stra-
tegies go from 0.24% on 100,000 objects to less than 0.1%
on 1,000,000 elements. With HYPERPL the percentages
decrease too, from 0.28% to 0.11% approximately.

Fig. 25 shows the effect of the disk page size, for the
best strategies. We have used a disk page of 4 KB
throughout; now we consider the effect of doubling it to
8 KB. The conclusions are not as simple as one might
expect. For construction costs, since the in-memory DSAT
has half the centers with pages of 8 KB, the number of
comparisons decreases (less than by half, as the search
cost of the DSAT is sublinear). Besides, since in pages of
8 KB there is space for more elements, the probability of a
page split during an insertion decreases and so do the
insertion costs.

At search time, instead, since the 8 KB pages have more
elements and those are all compared with the query, the
number of distance computations increases with the disk
page size (it does not double, since in exchange we read
fewer disk pages, but not half). The number of disk pages

 0

 200

 400

 600

 800

 1000

 1200

 10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database used

Construction cost per element for n = 1,000,000 vectors, Dim. 10

mM_RAD_2, MIXED, 4KB
mM_RAD_2, HYPERPL, 4KB

mM_RAD_2, MIXED, 8KB
mM_RAD_2, HYPERPL, 8KB

 0

 2000

 4000

 6000

 8000

 10000

 12000

 10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database used

Construction cost per element for n = 1,000,000 vectors, Dim. 15

mM_RAD_2, MIXED, 4KB
mM_RAD_2, HYPERPL, 4KB

mM_RAD_2, MIXED, 8KB
mM_RAD_2, HYPERPL, 8KB

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 1 0.1 0.01

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database retrieved

Search cost per element for n = 1,000,000 vectors, Dim. 10

mM_RAD_2, MIXED, 4KB
mM_RAD_2, HYPERPL, 4KB

mM_RAD_2, MIXED, 8KB
mM_RAD_2, HYPERPL, 8KB

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 1 0.1 0.01

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database retrieved

Search cost per element for n = 1,000,000 vectors, Dim. 15

mM_RAD_2, MIXED, 4KB
mM_RAD_2, HYPERPL, 4KB

mM_RAD_2, MIXED, 8KB
mM_RAD_2, HYPERPL, 8KB

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 1 0.1 0.01

N
um

be
r o

f p
ag

es
 re

ad

Percentage of database retrieved

Search cost per element for n = 1,000,000 vectors, Dim. 10

mM_RAD_2, MIXED, 4KB
mM_RAD_2, HYPERPL, 4KB

mM_RAD_2, MIXED, 8KB
mM_RAD_2, HYPERPL, 8KB

 0

 5000

 10000

 15000

 20000

 25000

 30000

 1 0.1 0.01

N
um

be
r o

f p
ag

es
 re

ad

Percentage of database retrieved

Search cost per element for n = 1,000,000 vectors, Dim. 15

mM_RAD_2, MIXED, 4KB
mM_RAD_2, HYPERPL, 4KB

mM_RAD_2, MIXED, 8KB
mM_RAD_2, HYPERPL, 8KB

Fig. 25. Insertion and search costs for the best alternatives of DSC on the space of vectors in dimensions 10 (left) and 15 (right), as a function of the disk
page size for the chosen policies.

G. Navarro, N. Reyes / Information Systems 59 (2016) 48–78 71
read, instead, is almost exactly half when using the larger
disk pages. Therefore, using larger disk pages does not
necessarily improve search performance in distance com-
putations, but it does in terms of I/Os. On the other hand,
Table 2 shows that both on dimensions 10 and 15, the fill
ratios and space usage are unaffected by the change in disk
page size. They also show that the MIXED strategy always
makes a much better use of the space, as expected.

We also analyze deletion costs for the best alternative
and different page sizes. Fig. 26 shows deletions costs
regarding distance computations and I/O operations.
While a larger page size halves the number of distance
computations, the number of I/Os stays at 2 for both
dimensions. The reason for the reduced number of dis-
tance computations is that the in-memory DSAT has half
the number of centers, and then deletions and reinsertions
of centers, when these change, cost about half.

Finally, Figs. 27 and 28 show how range searches are
affected as the fraction of deletions increases, in dimen-
sions 10 and 15, respectively, for both disk page sizes. It
can be seen that, while the number of distance computa-
tions is basically unaltered, the number of I/Os increases

Table 2
Space usage for the space of vectors, with different page sizes.

Dim Alternative Fill ratio (%) Total pages used

4 KB 8 KB 4 KB 8 KB

10 mM_RAD_2, MIXED 68 69 14,095 7018
mM_RAD_2, HYPERPL 54 56 17,755 8553

15 mM_RAD_2, MIXED 67 67 21,272 10,548
mM_RAD_2, HYPERPL 41 42 33,953 16,722

 0

 20

 40

 60

 80

 100

 120

 10 20 30 40

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database deleted

Deletion cost per element for n = 1,000,000 vectors

Dim 10, mM_RAD_2, HYPERPL, 4KB
Dim. 10, mM_RAD_2, HYPERPL, 8KB
Dim. 15, mM_RAD_2, HYPERPL, 4KB
Dim. 15, mM_RAD_2, HYPERPL, 8KB

 0

 0.5

 1

 1.5

 2

 2.5

 10 20 30 40

I/O
 o

pe
ra

tio
ns

Percentage of database deleted

Deletion cost per element for n = 1,000,000 vectors

Dim. 10, mM_RAD_2, HYPERPL, 4KB
Dim. 10, mM_RAD_2, HYPERPL, 8KB
Dim. 15, mM_RAD_2, HYPERPL, 4KB
Dim. 15, mM_RAD_2, HYPERPL, 8KB

Fig. 26. Deletion costs for the best DSC variant on the vectors in dimensions 10 and 15.

G. Navarro, N. Reyes / Information Systems 59 (2016) 48–7872
steadily as the percentage of the database deleted grows
up to 40%. The disk page size has almost no effect in the
way the search times are degraded.

7.3.2. A real space of Flickr images
We test DSC on a real dataset of 1,000,000 image

descriptors obtained from the SAPIR8 image collection
[6]. The content-based descriptors extracted from the
images were Color Histogram 3�3�3 using RGB color
space (a 27-dimensional vector), Gabor Wavelet (a 48-
dimensional vector), Efficient Color Descriptor 8�1
using both RGB and HSV color space (two 32-
dimensional vectors), and Edge Local 4�4 (an 80-
dimensional vector). Therefore, each vector consists of
208 coordinates. The distance is Euclidean. This is a
subset of CoPhIR [1], which contains around 106 million
images from Flickr. We call this database Flickr.

We compared the effect of the various policies for DSC,
but we show only those that performed best. Fig. 29 (left)
shows the construction and search costs in this space.
Construction costs show the number of distance compu-
tations per element inserted; the number of I/Os is always
2–3 and is not shown. For the search costs, we show both
distance computations and number of pages read. As it can
be observed, the MIXED partition strategies obtain better
costs during insertions and, surprisingly, the center
selection strategy of SAMP_1 with HYPERPL partition is
the most expensive one.
8 Search In Audio Visual Content Using Peer-to-peer IR.
The best alternatives are, in general, mM_RAD_2,
RAND_1, and SAMP_1 for center selection, and pure
(HYPERPL) or combined with balancing (MIXED) hyper-
plane distribution for partitioning. As expected, the
balanced partitioning obtains again worse search costs
than the others, because it prioritizes occupancy over
compactness. Table 3 shows space occupancy.

For future comparisons we choose the variant
mM_RAD_2 HYPERPL, as it has a good balance between
distance computations and I/Os at searches. Its construc-
tion cost is not generally the lowest but it is reasonable.

We also measure deletion costs for the best alternative,
with different page sizes. Fig. 30 depicts deletions costs
regarding distance computations and I/O operations.
Again, while a larger page size halves the number of dis-
tance computations, the number of I/Os stays at 2. The
reason for the reduced number of distance computations is
the same as before.

Finally, Fig. 31 shows how range searches are affected
as the fraction of deletions increases, for both disk page
sizes. It can be seen that, unlike what happens in the
vector spaces, the number of I/Os is basically unaltered but
the number of distance computations increases steadily
with the percentage of deletions. Moreover, in this space
the disk page size affects the way the search times are
degraded: the number of I/Os grows more noticeably with
a page size of 8 KB than with 4 KB. The reason is that, with
a larger page size, more pages with few elements are tol-
erated without removing them. For example, with a page
size of 8 KB the fill ratio decreases from 36.6% to 20.3%

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 1 0.1 0.01

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database retrieved

Search cost per element for n = 500,000 vectors, Dim. 10

0% deleted
10% deleted
20% deleted
30% deleted
40% deleted

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 1 0.1 0.01

N
um

be
r o

f p
ag

es
 re

ad

Percentage of database retrieved

Search cost per element for n = 500,000 vectors, Dim. 10

0% deleted
10% deleted
20% deleted
30% deleted
40% deleted

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 1 0.1 0.01

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database retrieved

Search cost per element for n = 500,000 vectors, Dim. 10

0% deleted
10% deleted
20% deleted
30% deleted
40% deleted

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1 0.1 0.01

N
um

be
r o

f p
ag

es
 re

ad

Percentage of database retrieved

Search cost per element for n = 500,000 vectors, Dim. 10

0% deleted
10% deleted
20% deleted
30% deleted
40% deleted

Fig. 27. Comparison of search costs as the number of deletions grows, for the best alternatives of DSC, for vectors in dimension 10.

G. Navarro, N. Reyes / Information Systems 59 (2016) 48–78 73
after the deletion of 40% of the elements, because 83% of
the clusters are not removed.

7.4. Comparison with new indices

In this section we compare our index with other
alternatives that are more recent than the M-tree, on the
million-image Flickr space: the eGNAT [19] and theMX-tree
[13].9 We set their parameters as proposed by their
authors for this space. For these experiments we use a
page size of 4 KB.

Fig. 32 compares the construction and search costs of
the DSC with the eGNAT and MX-tree, considering both
distance computations and I/O operations. As it can be
seen, the DSC is significantly more expensive at distance
computations for insertions. However, it needs less than
half of the I/O operations used by the eGNAT and
approximately 10% of those used by the MX-tree. Once
again, the extra work done by the DSC during insertions
9 The MX-tree code is available at https://github.com/

jsc0218/MxTree/
pays off at search time, since the eGNAT needs more than
5 times more I/Os and twice the distance computations of
the DSC. The MX-tree is costlier at searches, regarding both
distance computations and I/O operations. The reason is
possibly that it uses copies of the elements as routing
objects and this produces many additional I/Os. For the
search experiments, the MX-tree index occupies 5,505,024
disk pages, whereas the eGNAT needs 393,216 and the DSC
uses just 288,359 pages.

7.5. Scalability

Finally, we consider a significantly larger space to study
how the performance of our best indices evolves with the
size of the database. We generate synthetic spaces in
dimensions 10 and 15 as in Section 7.3, but now we gen-
erate 10,000,000 vectors. We build the index for increasing
subsets of this dataset, and search for a fixed set of 1000
random vectors with radii 0.7 and 0.65, respectively. This
query retrieves at most 40 elements on the space in
dimension 10 with the full dataset, and 725 on the space in
dimension 15.

<ce:monospace>https://github.com/jsc0218/MxTree/</ce:monospace>
<ce:monospace>https://github.com/jsc0218/MxTree/</ce:monospace>

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 1 0.1 0.01

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database retrieved

Search cost per element for n = 500,000 vectors, Dim. 15

0% deleted
10% deleted
20% deleted
30% deleted
40% deleted

 0

 5000

 10000

 15000

 20000

 25000

 30000

 1 0.1 0.01

N
um

be
r o

f p
ag

es
 re

ad

Percentage of database retrieved

Search cost per element for n = 500,000 vectors, Dim. 15

0% deleted
10% deleted
20% deleted
30% deleted
40% deleted

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 1 0.1 0.01

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database retrieved

Search cost per element for n = 500,000 vectors, Dim. 15

0% deleted
10% deleted
20% deleted
30% deleted
40% deleted

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 1 0.1 0.01

N
um

be
r o

f p
ag

es
 re

ad

Percentage of database retrieved

Search cost per element for n = 500,000 vectors, Dim. 15

0% deleted
10% deleted
20% deleted
30% deleted
40% deleted

Fig. 28. Comparison of search costs as the number of deletions grows, for the best alternatives of DSC, for vectors in dimension 15.

G. Navarro, N. Reyes / Information Systems 59 (2016) 48–7874
We compare the DSATþ with its best arities of 8 for
dimension 10 and 16 for dimension 15, and the DSC with
policy mM_RAD_2 HYPERPL, which performs better at
searches despite being slightly more expensive to build.
We use a page size of 8 KB in this experiment.

Fig. 33 shows the construction costs (note the logscale).
While both insertion costs in terms of distance computa-
tions increase sublinearly, the growth rate of the DSATþ is
much lower, raising just from 50 to 60 (in dimension 10)
and 73 to 87 (in dimension 15) as we move from one
million to ten million elements. The insertion costs of the
DSC also grow sublinearly, despite being significantly
higher: in 10 dimensions, it compares little more than
1800 elements per insertion (0.18% of the dataset) when
we insert one million elements, and ends up examining
less than 6000 (0.059%) when all the ten million elements
are inserted. Similarly, in dimension 15, it starts examining
0.6% of the dataset and ends up examining 0.35%.

In terms of I/Os, the situation is similar to what was
observed in much smaller datasets: the DSC requires
almost exactly 2 I/Os per insertion, whereas the cost on the
DSATþ grows very slowly, from 3.7 to 4.3 and from 4.7 to
5.5, in dimensions 10 and 15 respectively.
Finally, Fig. 34 shows how the search costs increase as
the database size grows, in terms of distance evaluations
and number of pages read. On searches, the DSC clearly
outperforms the DSATþ in both aspects and in both
spaces. For the space of dimension 15, for example, the
DSC uses about half of the distance computations and a
quarter of the I/Os needed by the DSATþ . Moreover,
although the DSATþ performs better in spaces of lower
dimension (or with more selective queries), the DSC per-
forms slightly better in both aspects.

Note that, as the database size grows, the search times
grow sublinearly in both indices and in both costs. For
example, the DSC for the space of dimension 15 compares
the query with 23% of the dataset with one million ele-
ments, but with just 11% with ten million objects. The
fraction of disk pages read also decreases from about a half
to less than 20%. In dimension 10, the DSC reads almost 8%
of disk pages with one million elements, but only less than
2% with ten million elements. The percentage of objects
compared with the query also decreases from almost 3% to
less than 1.5%.

We remind that a space of dimension 15 is considered
hard to index, and our results show that our indices will

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database used

Construction cost per element for n = 1,000,000 image vectors

RAND_1, MIXED
SAMP_1, MIXED

mM_RAD_2, MIXED
RAND_1, HYPERPL
SAMP_1, HYPERPL

mM_RAD_2, HYPERPL
 0

 10000

 20000

 30000

 40000

 50000

 60000

 10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database used

Construction cost per element for n = 1,000,000 image vectors

mM_RAD_2, MIXED, 4KB
mM_RAD_2, HYPERPL, 4KB

mM_RAD_2, MIXED, 8KB
mM_RAD_2, HYPERPL, 8KB

 0

 50000

 100000

 150000

 200000

 250000

 0.001 0.01 0.1 1

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database retrieved

Search cost per element for n = 1,000,000 image vectors

RAND_1, MIXED
SAMP_1, MIXED

mM_RAD_2, MIXED
RAND_1, HYPERPL
SAMP_1, HYPERPL

mM_RAD_2, HYPERPL

 0

 50000

 100000

 150000

 200000

 250000

 0.001 0.01 0.1 1

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database retrieved

Search cost per element for n = 1,000,000 image vectors

mM_RAD_2, MIXED, 4KB
mM_RAD_2, HYPERPL, 4KB

mM_RAD_2, MIXED, 8KB
mM_RAD_2, HYPERPL, 8KB

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0.001 0.01 0.1 1

N
um

be
r o

f p
ag

es
 re

ad

Percentage of database retrieved

Search cost per element for n = 1,000,000 image vectors

RAND_1, MIXED
SAMP_1, MIXED

mM_RAD_2, MIXED
RAND_1, HYPERPL
SAMP_1, HYPERPL

mM_RAD_2, HYPERPL

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0.001 0.01 0.1 1

N
um

be
r o

f p
ag

es
 re

ad

Percentage of database retrieved

Search cost per element for n = 1,000,000 image vectors

mM_RAD_2, MIXED, 4KB
mM_RAD_2, HYPERPL, 4KB

mM_RAD_2, MIXED, 8KB
mM_RAD_2, HYPERPL, 8KB

Fig. 29. Insertion and search costs for the best alternatives of DSC on the space of Flickr. On the left, as a function of the policy used. On the right, as a
function of the disk page size, for the chosen policies.

Table 3
Space usage for the Flickr dataset, with different page sizes.

Alternative Fill ratio (%) Total pages used

4 KB 8 KB 4 KB 8 KB

mM_RAD_2, MIXED 58 56 270,466 163,265
mM_RAD_2, HYPERPL 42 37 337,717 228,321

G. Navarro, N. Reyes / Information Systems 59 (2016) 48–78 75
perform better as they handle larger spaces. This is in
contrast to pivot-based indices, whose search cost grows
linearly as the database increases (unless their space
grows superlinearly with the database size, which
becomes less and less acceptable with larger datasets).
8. Conclusions

We have presented three new dynamic metric indices
for secondary memory. The DSATn and DSATþ structures
extend an in-memory dynamic data structure [16] that
offers a good balance between construction and search
time. The secondary-memory version supports insertions
and searches. The DLC extends an in-memory static data

 0

 100

 200

 300

 400

 500

 600

 700

 800

 10 20 30 40

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database deleted

Deletion cost per element for n = 1,000,000 image vectors

mM_RAD_2, HYPERPL, 4KB
mM_RAD_2, HYPERPL, 8KB

 0

 0.5

 1

 1.5

 2

 2.5

 3

 10 20 30 40

I/O
 o

pe
ra

tio
ns

Percentage of database deleted

Deletion cost per element for n = 1,000,000 image vectors

mM_RAD_2, HYPERPL, 4KB
mM_RAD_2, HYPERPL, 8KB

Fig. 30. Deletion costs for the best DSC variant on Flickr.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0.1 0.01 0.001

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database retrieved

Search cost per element for n = 500,000 image vectors

0% deleted
10% deleted
20% deleted
30% deleted
40% deleted

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0.1 0.01 0.001

N
um

be
r o

f p
ag

es
 re

ad

Percentage of database retrieved

Search cost per element for n = 500,000 image vectors

0% deleted
10% deleted
20% deleted
30% deleted
40% deleted

 0

 50000

 100000

 150000

 200000

 250000

 0.1 0.01 0.001

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database retrieved

Search cost per element for n = 500,000 image vectors

0% deleted
10% deleted
20% deleted
30% deleted
40% deleted

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0.1 0.01 0.001

N
um

be
r o

f p
ag

es
 re

ad

Percentage of database retrieved

Search cost per element for n = 500,000 image vectors

0% deleted
10% deleted
20% deleted
30% deleted
40% deleted

Fig. 31. Comparison of search costs as the number of deletions grows, for the best alternatives of DSC, for image vectors of Flickr.

G. Navarro, N. Reyes / Information Systems 59 (2016) 48–7876
structure [2] that performs very well in spaces of medium
and high dimension, but it is costly to build. The DLC
supports insertions, deletions, and searches. It inherits
both features of the static structure, thus its insertion time
is very high in terms of distance computations, yet the
number of I/Os is essentially 2. Finally, the DSC combines
the DLC with the in-memory DSAT [16] in order to reduce
the number of distance computations at insertion time.

The best variants of our structures generally outper-
form prominent alternatives in the literature like the M-

 1

 10

 100

 1000

 10000

 100000

 10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database used

Construction cost per element for n = 1,000,000 image vectors

DSC, mM_RAD_2, HYPERPL
eGNAT
MX-tree

 1

 10

 100

 1000

 10 20 30 40 50 60 70 80 90 100

I/O
 o

pe
ra

tio
ns

Percentage of database used

Construction cost per element for n = 1,000,000 image vectors

DSC, mM_RAD_2, HYPERPL
eGNAT
MX-tree

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0.001 0.01 0.1 1

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database retrieved

Search cost per element for n = 1,000,000 image vectors

DSC, mM_RAD_2, HYPERPL
eGNAT
MX-tree

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 0.001 0.01 0.1 1

N
um

be
r o

f p
ag

es
 re

ad

Percentage of database retrieved

Search cost per element for n = 1,000,000 image vectors

DSC, mM_RAD_2, HYPERPL
eGNAT
MX-tree

Fig. 32. Comparison between DSC, eGNAT, and MX-tree on the space of Flickr.

 10

 100

 1000

 10000

 100000

 10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database used

Construction cost per element for n = 10,001,000 vectors

DSAT+, Arity 8, Dim. 10
DSAT+, Arity 16, Dim. 15

DSC, mM_RAD_2, HYPERPL, Dim. 10
DSC, mM_RAD_2, HYPERPL, Dim. 15

 0

 1

 2

 3

 4

 5

 6

 10 20 30 40 50 60 70 80 90 100

I/O
 o

pe
ra

tio
ns

Percentage of database used

Construction cost per element for n = 10,001,000 vectors

DSAT+, Arity 8, Dim. 10
DSAT+, Arity 16, Dim. 15

DSC, mM_RAD_2, HYPERPL, Dim. 10
DSC, mM_RAD_2, HYPERPL, Dim. 15

Fig. 33. Comparison of insertion costs of the DSATþ and the best alternative of DSC on the space of 10,000,000 vectors.

G. Navarro, N. Reyes / Information Systems 59 (2016) 48–78 77
tree [4], the eGNAT [19], and the MX-tree [13]. The DSATþ
supports insertions with a few tens of distance computa-
tions and a few I/Os, and this cost grows very slowly with
the database size. Its search cost is good when the spaces
are of low to medium dimension or the queries are
selective. The second structure, the DSC, outperforms the
DSATþ at searches in terms of I/Os, and also in terms of
distance computations when the spaces are of higher
dimension or the queries have lower selectivity. At con-
struction, the DSC requires 2 I/Os per insertion, but many
more distance computations than the DSATþ , yet this cost
also grows sublinearly.

Although our implementations are for proof of concept,
and we could hardly index spaces significantly larger than
those we have considered (ten million objects), our
experiments show a marked sublinearity in the growth (or
no growth) of both insertion, deletion, and search costs,
both in distance computations and I/Os. This allows us to
extrapolate that our indices would perform better on lar-
ger datasets. In contrast, indices based on pivots have

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database used

Search cost per element for n = 10,001,000 vectors

DSAT+, Arity 8, Dim. 10
DSAT+, Arity 16, Dim. 15

DSC, mM_RAD_2, HYPERPL, Dim. 10
DSC, mM_RAD_2, HYPERPL, Dim. 15

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f p
ag

es
 re

ad

Percentage of database used

Search cost per element for n = 10,001,000 vectors

DSAT+, Arity 8, Dim. 10
DSAT+, Arity 16, Dim. 15

DSC, mM_RAD_2, HYPERPL, Dim. 10
DSC, mM_RAD_2, HYPERPL, Dim. 15

Fig. 34. Comparison of search costs of the DSATþ and the best policy of the DSC on the space of 10,000,000 vectors, varying the database size.

G. Navarro, N. Reyes / Information Systems 59 (2016) 48–7878
linear-growing costs (because the probability of filtering
an object at query time is fixed), unless their space per
object is increased.

The most interesting future challenge would be to
further reduce the number of distance computations
required to insert elements in the DSC, which is its
weakest point. Reducing the degradation suffered by
searches when many elements have been deleted is also of
interest, although this only occurs when a large fraction of
the database has been deleted, and at this point a full
reconstruction has a low amortized cost. Another chal-
lenge is to extend the DSC to cases where the part we
maintain in memory (one object per disk page) does not fit
in main memory either. In this case, a hierarchical struc-
ture (i.e., a DSC on the centers, instead of an in-memory
structure) would allow handling extremely large datasets.
References

[1] P. Bolettieri, A. Esuli, F. Falchi, C. Lucchese, R. Perego, T. Piccioli, and F.
Rabitti, CoPhIR: a test collection for content-based image retrieval.
CoRR, abs/0905.4627v2, 2009.

[2] E. Chávez, G. Navarro, A compact space decomposition for effective
metric indexing, Pattern Recognit. Lett. 26 (9) (2005) 1363–1376.

[3] E. Chávez, G. Navarro, R. Baeza-Yates, J. Marroquín, Searching in
metric spaces, ACM Comput. Surv. 33 (3) (2001) 273–321.

[4] P. Ciaccia, M. Patella, P. Zezula, M-tree: an efficient access method for
similarity search in metric spaces, in: Proceedings of 23rd VLDB,
1997, pp. 426–435.

[5] V. Dohnal, C. Gennaro, P. Savino, P. Zezula, D-index: distance
searching index for metric data sets, Multimed. Tools Appl. 21 (1)
(2003) 9–33.

[6] F. Falchi, M. Kacimi, Y. Mass, F. Rabitti, P. Zezula, SAPIR: Scalable and
distributed image searching, in: SAMT (Posters and Demos), CEUR
Workshop Proceedings, vol. 300, 2007, pp. 11–12.

[7] K. Figueroa, G. Navarro, E. Chávez, Similarity search and applica-
tions: metric spaces library. Available at 〈http://www.sisap.

org/Metric_Space_Library.html〉, 2007.
[8] R.F. Santos Filho, A.J.M. Traina, C. Traina, Jr., C. Faloutsos, Similarity

search without tears: The OMNI family of all-purpose access
methods, in: Proceedings of 17th ICDE, 2001, pp. 623–630.
[9] M. Hetland, The basic principles of metric indexing, in: Swarm
Intelligence for Multi-objective Problems in Data Mining, Studies in
Computational Intelligence, vol. 242, Springer, Berlin, Germany,
2009, pp. 199–232.

[10] G. Hjaltason, H. Samet, Index-driven similarity search in metric
spaces, ACM Trans. Database Syst. 28 (4) (2003) 517–580.

[11] G.R. Hjaltason, H. Samet, Incremental Similarity Search in Multi-
media Databases, Computer Science Technical Report Series, Com-
puter Vision Laboratory, Center for Automation Research, University
of Maryland, 2000.

[12] H.V. Jagadish, B.C. Ooi, K.-L. Tan, C. Yu, R. Zhang, iDistance: an
adaptive Bþ-tree based indexing method for nearest neighbor
search, ACM Trans. Database Syst. 30 (2) (2005) 364–397.

[13] S. Jin, O. Kim, W. Feng, MX-tree: a double hierarchical metric index
with overlap reduction, in: Proceedings of ICCSA, Lecture Notes in
Computer Science, vol. 7975, Springer, Berlin, Germany 2013,
pp. 574–589.

[14] M. Mamede, Recursive lists of clusters: a dynamic data structure for
range queries in metric spaces, in: Proceedings of 20th ISCIS, Lecture
Notes in Computer Science, vol. 3733, 2005, pp. 843–853.

[15] G. Navarro, Searching in metric spaces by spatial approximation,
Very Large Databases J. 11 (1) (2002) 28–46.

[16] G. Navarro, N. Reyes, Dynamic spatial approximation trees, ACM J.
Exp. Algorithmics 12 (article 1.5) (2009).

[17] G. Navarro, N. Reyes, Dynamic spatial approximation trees for
massive data, in: Proceedings of 2nd SISAP, 2009, pp. 81–88.

[18] G. Navarro, N. Reyes, Dynamic list of clusters in secondary memory,
in: Proceedings of 7th SISAP, Lecture Notes in Computer Science, vol.
8821, 2014, pp. 94–105.

[19] G. Navarro, R. Uribe, Fully dynamic metric access methods based on
hyperplane partitioning, Inf. Syst. 36 (4) (2011) 734–747.

[20] G. Ruiz, F. Santoyo, E. Chávez, K. Figueroa, E. Tellez, Extreme pivots
for faster metric indexes, in: Proceedings of 6th SISAP, 2013, pp. 115–
126.

[21] H. Samet, Foundations of Multidimensional and Metric Data Struc-
tures, Morgan Kaufmann Publishers Inc., Burlington, Massachusetts
(2005).

[22] T. Skopal, J. Pokorný, V. Snásel, PM-tree: pivoting metric tree for
similarity search in multimedia databases, in: ADBIS (Local Pro-
ceedings), 2004.

[23] P. Zezula, G. Amato, V. Dohnal, M. Batko, Similarity Search: The
Metric Space Approach, Advances in Database Systems, vol. 32,
Springer, Berlin, Germany, 2006.

http://refhub.elsevier.com/S0306-4379(16)30126-0/sbref2
http://refhub.elsevier.com/S0306-4379(16)30126-0/sbref2
http://refhub.elsevier.com/S0306-4379(16)30126-0/sbref2
http://refhub.elsevier.com/S0306-4379(16)30126-0/sbref3
http://refhub.elsevier.com/S0306-4379(16)30126-0/sbref3
http://refhub.elsevier.com/S0306-4379(16)30126-0/sbref3
http://refhub.elsevier.com/S0306-4379(16)30126-0/sbref5
http://refhub.elsevier.com/S0306-4379(16)30126-0/sbref5
http://refhub.elsevier.com/S0306-4379(16)30126-0/sbref5
http://refhub.elsevier.com/S0306-4379(16)30126-0/sbref5
http://www.sisap.org/Metric_Space_Library.html
http://www.sisap.org/Metric_Space_Library.html
http://refhub.elsevier.com/S0306-4379(16)30126-0/sbref10
http://refhub.elsevier.com/S0306-4379(16)30126-0/sbref10
http://refhub.elsevier.com/S0306-4379(16)30126-0/sbref10
http://refhub.elsevier.com/S0306-4379(16)30126-0/sbref12
http://refhub.elsevier.com/S0306-4379(16)30126-0/sbref12
http://refhub.elsevier.com/S0306-4379(16)30126-0/sbref12
http://refhub.elsevier.com/S0306-4379(16)30126-0/sbref12
http://refhub.elsevier.com/S0306-4379(16)30126-0/sbref12
http://refhub.elsevier.com/S0306-4379(16)30126-0/sbref12
http://refhub.elsevier.com/S0306-4379(16)30126-0/sbref12
http://refhub.elsevier.com/S0306-4379(16)30126-0/sbref15
http://refhub.elsevier.com/S0306-4379(16)30126-0/sbref15
http://refhub.elsevier.com/S0306-4379(16)30126-0/sbref15
http://refhub.elsevier.com/S0306-4379(16)30126-0/sbref16
http://refhub.elsevier.com/S0306-4379(16)30126-0/sbref16
http://refhub.elsevier.com/S0306-4379(16)30126-0/sbref19
http://refhub.elsevier.com/S0306-4379(16)30126-0/sbref19
http://refhub.elsevier.com/S0306-4379(16)30126-0/sbref19
http://refhub.elsevier.com/S0306-4379(16)30126-0/sbref21
http://refhub.elsevier.com/S0306-4379(16)30126-0/sbref21
http://refhub.elsevier.com/S0306-4379(16)30126-0/sbref21
http://refhub.elsevier.com/S0306-4379(16)30126-0/sbref23
http://refhub.elsevier.com/S0306-4379(16)30126-0/sbref23
http://refhub.elsevier.com/S0306-4379(16)30126-0/sbref23

	New dynamic metric indices for secondary memory
	Introduction
	Basic concepts
	Experimental setup

	Dynamic spatial approximation trees
	Dynamic spatial approximation trees in secondary memory
	Data structure layout
	Insertions
	Page overflow management
	Ensuring 50% fill ratio
	Searches
	The DSATplus variant
	Experimental tuning

	Dynamic list of clusters in secondary memory
	List of clusters
	Dynamism and secondary memory
	Insertions
	Split policies
	Searches
	Deletions
	Experimental tuning

	Dynamic set of clusters in secondary memory
	Data structure layout
	Insertions
	Searches
	Deletions
	Experimental tuning

	Experimental comparison
	Comparing with M-tree
	Deletions
	Study of DSC on larger spaces
	Uniform vector spaces
	A real space of Flickr images

	Comparison with new indices
	Scalability

	Conclusions
	References

