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finches had lower intestinal mass and energy intake remains 
stable. Furthermore, sparrows had higher BMR on phenol-
enriched diets compared to the control group, whereas in 
the finches BMR remains unchanged. Interspecific differ-
ences in response to phenols intake may be determined by 
the dietary habits of these species. While both species can 
feed on moderate phenolic diets for 5 weeks, energy costs 
may differ due to different responses in food intake and 
organ structure to counteract the effects of PSM intake.

Keywords  Birds · BMR · Gut size · Kidney · Opuntia 
ficus-indica · Plant secondary compounds

Introduction

Birds that eat seeds with a high nutrient density (Klasing 
1998; Sabat et  al. 2013; Ríos et  al. 2014) often consume 
high amounts of ‘Plant Secondary Metabolites’ (PSM), 
such as cyanogenic glycosides, saponins, alkaloids, tan-
nins and other phenolic compounds (Díaz 1996; Karasov 
and Martínez del Rio 2007; Ríos et al. 2012a). These com-
pounds enable plants to protect themselves from consumers 
by acting as allelochemicals, causing deterrence (Matson 
et  al. 2004; Ríos et  al. 2012a, b) or physiological conse-
quences to consumers (Foley et  al. 1995; Dearing et  al. 
2005; Kohl and Dearing 2011; Au et al. 2013; Kohl et al. 
2015). For example, tannins have been described that form 
complexes with dietary proteins in the intestine, thus reduc-
ing digestibility, and some also can being degraded in com-
pounds that act as toxins upon being absorbed (Hagerman 
et al. 1992, Foley and McArthur 1994, Lowry et al. 1996; 
Niho et al. 2001).

Once inside the body, PSM detoxification and elimina-
tion cause a high energy cost for birds (Guglielmo et  al. 
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1996), which, in turn, could be reflected in higher basal 
metabolic rates as shown by several studies conducted 
with mammals (Thomas et  al. 1988; Silva et  al. 2004). 
This increase in metabolic rate could be because the organs 
involved in detoxification (the kidney and liver) contrib-
ute significantly to energy metabolism (Maldonado et  al. 
2009). Most PSM, particularly phenols and terpenes, are 
absorbed in the small intestine (Green et al. 2005; McLean 
and Duncan 2006; Skopec et al. 2010) and the detoxifica-
tion pathway can be divided into two stages: the biotrans-
formation process, mainly regulated by enzymatic action 
to increase PSM water solubility (Jakubas et  al. 1993; 
Karasov et  al. 2012), such as the glucuronide transforma-
tion that occurs in intestinal cells, the liver and the kidney 
(Foley et al. 1995; Shipkova et al. 2001); and secondly the 
subsequent excretion of these metabolites, where the renal 
function plays a central role (Foley and Moore 2005; Kara-
sov and Martínez del Rio 2007).

Consumers require the concentrations of PSM in the 
blood to be relatively low to feed on an ongoing basis 
(Torregrossa and Dearing 2009). The detoxification pro-
cess requires the elimination of the conjugated PSM via 
urine (Foley et  al. 1995), and also entails an increase in 
the amount of ammonia in body fluids (Jakubas et  al. 
1993; Foley et al. 1995), a compound that requires a large 
amount of water to be eliminated (Roxburgh and Pin-
show 2002). Both processes challenge the kidney to ade-
quately filter the byproducts of biotransformation from 
the blood and maintain the water balance, respectively. 
Therefore, given that the processes of detoxification and 
elimination require significant amounts of water (Dear-
ing et  al. 2001), water loss related to detoxification is 
more challenging for birds inhabiting arid environments. 
In fact, scarcity of water in the surrounding environment 
as well as preformed water in desert seeds (Díaz 1996; 
Ríos et  al. 2012a) would create a trade-off between the 
need to eliminate metabolic waste and maintain adequate 
hydration. This is evidenced by the degree of specializa-
tion of several granivorous bird species to arid environ-
ments (Bartholomew and Cade 1963; MacMillen 1990), 
which may eventually lead to further development of the 
renal system, such as highly developed medullary tissue. 
Indeed, we have documented that granivorous passerines 
have a higher level of development of the renal medulla 
than insectivorous passerines inhabiting semi-arid envi-
ronments (Barceló et  al. 2012). We suggested that the 
renal morphology exhibited by the birds could either be 
due to less water volume in seeds than in insects (Díaz 
1996), increased renal activity for the elimination of PSM 
in seeds, or for both these reasons. In general, adjust-
ments to the kidney’s capabilities have been documented 
for birds that inhabit arid environments or environments 

with a high degree of water stress (Casotti and Richard-
son 1992; Sabat et al. 2006; Peña-Villalobos et al. 2013). 
Thus, we expected that consumption of high amounts of 
PSM would lead to larger kidneys with a large fraction of 
renal tissue allocated to the medulla.

Birds have developed behavioral and physiological strat-
egies that allow them to cope with PSM (Schaefer et  al. 
2003; Matson et al. 2004; Karasov et al. 2012; Zungu and 
Downs 2015) such as limiting the amount of food con-
sumed (Gilardi et al. 1999; Ríos et al. 2012a), developing 
metabolic pathways for PSM detoxification (Jakubas et al. 
1993, Guglielmo et al. 1996; Green et al. 2005), increasing 
the saturation level of one of the PSM metabolic pathways 
(Ríos et  al. 2012b) and avoiding absorption through gut 
microbiota activity (Kohl 2012). However, to our knowl-
edge, no study has been conducted from a systemic per-
spective to evaluate the effects of subchronic PSM intake 
in an integrative manner incorporating the renal and diges-
tive physiology of passerines. Accordingly, in this study we 
have explored how the interaction between (a) the intake 
of PSM, (b) the osmoregulation capabilities, and (c) the 
detoxification capacity and the energy expenditure that this 
mechanism implies, differ between passerines with differ-
ent diets.

The rufous-collared sparrow (Zonotrichia capensis) 
and the common diuca-finch (Diuca diuca) are two of the 
most conspicuous passerines in the Mediterranean envi-
ronments of central Chile (Sabat et  al. 1998). The first 
is an omnivorous species, which has a greater diversity 
of seeds, insects, and fruits in its diet, including Opuntia 
ficus-indica; while the second is a strictly granivorous bird 
(López-Calleja 1995; Sabat et  al. 1998; Ramírez-Otárola 
et  al. 2011). As such, these two bird species offer a suit-
able model for studying the role of PSM in shaping the 
food habits of South American wild passerines and the 
relationship with the bird’s morphology, physiology and 
energetics. We hypothesized that (a) metabolic expenditure 
(cost) linked with dietary PSM detoxification will differ 
between both species, and therefore, (b) the ability to cope 
with PSM will be closely related to the feeding ecology of 
the birds. As the natural diet of the sparrows is comprised 
of items with a higher amount of PSM, we expected this 
species could modify its energy budget, renal structure and 
consequently its food intake to deal with the energetic cost 
and water requirement associated with PSM waste excre-
tion. In turn, because finches’ natural diet is composed 
of seeds low in PSM content, we predicted this species 
would not exhibit such physiological and morphologi-
cal changes. As a result, we expected this species would 
be more affected by the toxic effect of PSM, manifested 
as deterrence and diuresis, producing a decrease of body 
mass during acclimation.
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Materials and methods

Bird capture and maintenance in the laboratory

Rufous-collared sparrow and common diuca-finch (hence-
forth referred to simply as the sparrow and the finch, recec-
tively, except in instances when they could be confused 
with other species of sparrow or finch) used in this study 
were captured during the fall and winter of 2012 at Que-
brada de la Plata (33°30′S, 70°54′W), central Chile. This 
study site has a Mediterranean climate characterized by hot 
dry summers (mean precipitation = 5.5 mm) and cold rainy 
winters (mean precipitation = 214 mm) (mean annual pre-
cipitation =  356  mm, di Castri and Hajek 1976). A total 
of 21 adults per species were collected using mist nets 
(Ecotone). The birds were transported to the laboratory, 
housed in individual cages (30 × 30 × 40 cm), kept under 
a constant temperature (25 °C) and light regime [12 h:12 h 
(light:dark)] and provided with milled wheat seeds and 
water ad libitum, and once a week the diet of sparrows was 
supplemented with Tenebrio molitor larvae. After 2 days of 
habituation to laboratory conditions, the 21 individuals of 
each species were randomly assigned to one of the three 
dietary treatments (including a control) for 5  weeks; this 
is the time that has been shown to produce morphological 
changes in the kidney (Sabat et al. 2004; Aldea and Sabat 
2007). Individuals were weighed weekly to assess their 
body condition during feeding trials.

Experimental diets

Two diets with added PSM and a control diet were pre-
pared based on milled (particle size ≤0.5 mm, Moulinex) 
commercial wheat seeds. The first experimental diet was 
supplemented with tannic acid (TA) (Sigma-Aldrich) as a 
standard phenol, or model substrate, at a concentration of 
2 % w/w. This concentration was chosen because it repre-
sents a level that maintains a high survival probability in 
individuals of both species during a subchronic exposure 
(Ríos 2011). The second diet (OE) was performed by add-
ing known concentrations of an extract of Opuntia ficus-
indica fruit (hereinafter Opuntia fruit), where the final con-
centration was 0.5 %w/w of total phenols in the diet. The 
total concentration of phenols in Opuntia fruit are of around 
2 % and the proportion of this fruit consumed in summer 
by the common diuca-finch is approximately 30 % (López-
Calleja 1995). Therefore, 0.5  % concentration of phenols 
approximated the phenolic load in free-living common 
diuca-finches. The alcoholic extract of Opuntia fruit was 
obtained according to Tequida-Meneses et al. (2002) with 
fruits from the same area, which were crushed and dried 
at 40 °C. Fruit dry matter (17 % of total) was grounded in 

an electric grinder (particle size ≤0.5 mm, Moulinex), then 
dissolved to 6  % mass-volume with a methanol:ethanol 
(30:70) mixture that was left macerating for 48 h in dark-
ness. The total mixture was then filtered and solvents were 
evaporated under reduced pressure with a rotary evapora-
tor within a temperature range of 50–60 °C. A final extract 
of Opuntia fruit was obtained (7 % of total) and total con-
tent of phenols was measured with Folin-Ciocalteu rea-
gent (Merck, Germany) following the colorimetric assay 
adapted by Ainsworth and Gillespie (2007). Briefly, the 
Opuntia extract concentrate was diluted with distilled water 
fifty times prior to measurement to fall into the range of 
the tannic acid’s standard (0–200 mg/l). Then, 100 µl of the 
diluted extract, standard or blank sample was mixed with 
200 µl of 10 % (vol/vol) Folin–Ciocalteau reagent and vor-
texed in a microtube. Immediately afterwards, 800  µl of 
700  mM Na2CO3 was added to each tube and incubated 
at room temperature for 2  h. 200  µl of each sample was 
transferred to a microplate and its absorbance measured at 
765 nm in a Multiskan GO microplate spectrophotometer 
(Thermo Scientific, USA). In the case of the blank sample, 
the extract was replaced with distilled water. Asseys were 
done in triplicate.

To prepare both the TA and the OE diets, known 
amounts of tannic acid or Opuntia fruit final extract were 
weighed and diluted in absolute ethanol to facilitate the 
proper mixture with the dry milled wheat used as base food 
of both the control and PSM diets. The ethanol was allowed 
to evaporate under a bell jar for 36 h at room temperature 
with no exposure to light. The control diet in this experi-
ment was likewise treated with ethanol, but without the 
addition of PSM. The control diet and each treatment diet 
with PSM were stored in hermetic bags and kept at −25 °C 
until used.

Feeding trial: food intake and digestibility 
measurements

After 5 weeks of acclimation to the TA, OE or control diet, 
cages were covered in the lower half to avoid birds spilling 
food out, and daily food intake was estimated as the differ-
ence in mass between the dry food offered and that which 
remained the day after, daily excreta was collected from 
the tray under the cage. Excreta and remaining food were 
dried at 50 °C in an oven for 48 h and weighed. A sample 
of excreta of each bird and of each diet type was ground 
and gross energy was determined using a Parr adiabatic 
bomb calorimeter (Parr Instrument Co., IL, USA). Appar-
ent metabolizable energy coefficient (AMEc, Guglielmo 
and Karasov 1993; the term apparent is used because 
in birds energy from undigested matter cannot be sepa-
rated from endogenous energy from urine) was calculated 
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as the difference between daily energy intake (daily food 
intake times the average energy density of a diet) and daily 
excreta energy output (dry mass of excreta times the aver-
age energy density of excreta of each bird), divided by 
daily energy intake. Daily water consumption (DWC, in 
milliliters) was measured, offsetting the loss by evaporation 
using non-experimental drinkers out of the cage. All meas-
urements were taken for 4  days and averaged to a daily 
value.

Glucuronic acid in excreta

The glucuronidation pathway is thought to be a major route 
of phenolic detoxification in birds (Jakubas et  al. 1993; 
Guglielmo et al. 1996; Ríos et al. 2012b). Therefore, on the 
final day, glucuronic acid was analyzed in the excreta of 
each bird, for all three diets. Glucuronic acid was measured 
following the colorimetric assay described by Blumenk-
rantz and Asboe-Hansen (1973) and adapted by Ríos et al. 
(2012b). Briefly, 100  mg of ground, lyophilized, excreta 
was vigorously mixed with 10 ml of 0.01 M borate buffer 
(pH ca. 9.5) by vortex followed by 30 min of centrifugation 
at 1000  rpm. The supernatant was filtered (#1 Whatman 
filter paper) and 20 μl was added into a culture tube and 
diluted to 200 μl with distilled water. The culture tube was 
placed in an iced water bath and 3 ml of 0.0125 M sodium 
tetraborate-sulfuric acid solution was added and mixed 
using a vortex and returned to the iced water bath. Tubes 
were then heated in a water bath at 100 °C for 10  min. 
After cooling, 20 ml of the 0.5 % aqueous NaOH reagent 
3-phenylphenol (Sigma Chemical Co., St. Louis, USA) was 
added to one set of samples. For the blank sample, the rea-
gent was replaced by 20 ml of 0.5 % NaOH. Assays were 
made in triplicate. A standard curve was made with known 
concentrations of glucuronic acid (Sigma Chemical Co., 
St. Louis, USA). Absorbance was measured at 520 nm in a 
Shimadzu Mini-UV spectrophotometer.

Basal metabolic rate

BMR was determined using standard flow-through 
respirometry methods after 5 weeks of acclimation in post-
absorptive (6 h after feeding) resting birds during the inac-
tive phase (night) and within the thermoneutral zone of 
the species. Birds were weighed, put in a dark metabolic 
chamber (1  l) and then placed in a controlled temperature 
cabinet (Sable Systems, Henderson, NV, USA) at a con-
stant temperature (30 ±  0.5 °C). We were confident that 
the ambient temperature of 30.0  °C is within the thermo-
neutral zone for both species, as we had previously meas-
ured oxygen consumption at temperatures ranging from 15 
to 35 °C (Sabat et al. 2006; Sabat et al. 2010). The meta-
bolic chamber received dried air at 500 ml/min from a mass 

flow controller. The excurrent air passed through columns 
of Diedrite, CO2 absorbent granules of Baralyme, and Dri-
erite before passing through an O2-analyzer, model Turbo 
Foxbox (Sable Systems, Nevada, USA) calibrated with a 
known mix of oxygen (20 %) and nitrogen (80 %) that was 
certified by chromatography (INDURA, Chile). The mass 
flowmeter of the Turbo Foxbox was calibrated monthly 
with a volumetric (bubble) flow meter. The measurement 
and calibration followed protocols established by Tieleman 
and Williams (2000). Due to the fact that water vapor and 
CO2 were scrubbed before entering the O2 analyzer, oxy-
gen consumption was calculated as per Withers (1977): 
VO2 = [FR × 60 × (FiO2 − FeO2)]/(1 − FiO2), where FR 
is the flow rate in ml/min, and Fi and Fe are the fractional 
concentrations of O2 entering and leaving the metabolic 
chamber, respectively. Body mass (Mb) was measured 
before the metabolic measurements using an electronic bal-
ance (±0.1 g). Output from the oxygen analyzer (%) and 
the flow meter were digitalized using a Universal Interface 
II (Sable Systems) and recorded using EXPEDATA data 
acquisition software (Sable Systems). Our sampling inter-
val was 5 s. Birds remained in the chamber for at least 6 h 
until a visual inspection of the recorded data allowed us to 
determine that steady-state conditions had been reached. 
We averaged O2 concentration of the excurrent air stream 
over a 20  min period after steady-state was reached (fol-
lowing Tieleman et al. 2002).

Renal and digestive tract morphometric

At the end of this experiment, all the birds were killed by 
CO2 asphyxiation. Individuals were dissected and had their 
digestive tract and kidney excised, measured (±0.05  cm) 
and weighed (±0.1 mg). Kidneys were preserved in para-
formaldehyde-glutaraldehyde (4 %) and processed by light 
microscopy. The kidneys were then fixed and dissected to 
assess the proportion of renal cortex and medulla and the 
amount, mass and length of medullary cones following 
Barceló et al. (2012). Mass measurements were also taken 
for the gizzard, heart, and liver.

Data analyses

To test the effect of species, dietary treatment, and the inter-
action between these factors on the response variables, we 
performed a factorial ANCOVA with body mass (Mb) as 
covariate. However, given that ANCOVA reduces degrees of 
freedom in one (reducing power), when our analyses exhib-
ited a non-significant effect of Mb, this term was dropped 
from the model. Therefore, we used a factorial ANOVA 
to test for differences in body mass, renal medulla, daily 
water intake, energy intake, AMEc and glucuronic acid out-
put, and an factorial ANCOVA for test for differences in 
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organ masses and lengths and BMR. Because, physiologi-
cal and morphological variables represent a power function 
of body mass (Kleiber 1961; Lasiewski and Dawson 1967), 
BMR and organ masses were log-transformed before sta-
tistical analysis. After ANOVA or ANCOVA, we performed 
a post hoc (LSD) Fisher test, to check for specific differ-
ences among treatments. To test for significant relation-
ships between variables we performed linear regression 
analysis (LRA). Besides, we performed a test for homoge-
neity of slopes to evaluate whether the slope for glucuronic 
output as a function of phenols intake differed significantly 
between species. We used Statistica version 7.0 (StatSoft 
2004) for all analyses, and a value of P < 0.05 was consid-
ered significant. All values were reported as mean ± stand-
ard deviation (SD).

Results

Body mass and organ masses

After 5 weeks of acclimation to experimental diets, a sig-
nificant effect for both species and the interaction between 
species and diets on body mass were found (Table 1). The 
a posteriori Fisher test revealed that only finches reduced 
body mass in response to OE diet in comparison with con-
trol and TA treatments (Table 1).

The LRA revealed that the heart (r2 = 0.73, P < 0.0001), 
gizzard (r2 = 0.27, P = 0.001), liver (r2 = 0.43, P < 0.001), 
cloaca mass (r2  =  0.19, P  =  0.007), cloaca length 
(r2 = 0.23, P = 0.003), small intestine (SI) mass (r2 = 0.63, 
P < 0.0001) and SI length (r2 = 0.26, P < 0.001) were sig-
nificantly and positively correlated with Mb. ANCOVA 
revealed that SI mass and length was affected by the inter-
action between species and diet, but no effect for diet 
was found. The a posteriori test, showed that finch indi-
viduals acclimated to TA had significantly lower SI mass 
and length than those from the control group (P =  0.01, 
P = 0.16; Table 1). On the contrary, sparrows feeding on 
the TA diet had a significantly higher SI mass than those 
fed with the control diet (P = 0.04, Table 1). Furthermore, 
ANCOVA revealed that finches had a higher heart mass and 
SI length than sparrows (Table  1). The remaining organ 
masses were not statistically affected by species, diets or 
the interaction between them (P > 0.1 in all cases; Table 1).

Kidney morphology and water consumption

Kidney mass was positively correlated with body mass 
(LRA; r2  =  0.5, P  <  0.0001). The factorial ANCOVA 
revealed that kidney mass did not differ among diets, 
species or in the interaction between diet and species. 
(Table  1). Nevertheless, the percentage of renal medulla 

was significantly affected by species and diet, but not by 
the interaction between factors (Table  1). Daily water 
intake was significantly affected by species, but not by 
diet (Table  1). However, we found a significant effect of 
the interaction between species and diet. The a posteriori 
test, revealed that finches fed on the OE consumed 123 % 
more water than those fed on control diets (Fisher test, 
P =  0.01). In turn, no effect of the dietary treatment on 
daily water intake was found for sparrows (Table 1).

Basal metabolic rate and energy intake

Basal metabolic rate was positively correlated with body 
mass (LRA; r2 = 0.34, P < 0.002). The results of the facto-
rial ANCOVA revealed there was a significant effect of spe-
cies (F1, 32 = 5.02, P = 0.03), diet (F2, 32 = 4.07, P = 0.03) 
and the interaction between them (F2, 32 = 4.22, P = 0.02) 
on bird’s BMR. The a posteriori Fisher test showed that 
sparrows fed TA and OE diets had a higher BMR than 
those fed the control diet (TA P = 0.01; OE: P = 0.004), 
whereas finches did not exhibit significant differences in 
BMR among dietary treatments (P > 0.05, Fig. 1).

Daily energy intake was not affected by body mass 
(LRA r2 = 0.02, P = 0.45). A factorial ANOVA revealed 
that in both species, daily energy intake was significantly 
higher in individuals feeding on PSM diets compared to 
the control diet (a posteriori Fisher test, <0.05, Table  1). 
In the case of sparrows, daily energy intake was 76 and 
43 % higher than the control diet for the TA and OE diets 
respectively, whereas finches energy intake was 9 and 23 % 
higher for TA and OE diets respectively (Table 1). More-
over, daily energy intake was positively correlated with 
BMR in sparrows (r2 = 0.36; P = 0.015; Fig. 2), but not in 
finches (r2 = 0.15; P = 0.16; Fig. 2).

AMEc was not significantly affected by species, diet 
nor by the interaction between factors (Table 1). In finches, 
we found a tendency towards increased AMEc with small 
intestine length (LRA r2  =  0.25, P  =  0.051) and small 
intestine mass (r2 = 0.21, P = 0.09; Fig. 3). This tendency 
was not however evident in sparrows (SI length r2 = 0.01, 
P = 0.7; SI mass: r2 = 0.16, P = 0.15; Fig. 3).

Glucuronic acid output

Glucuronic acid output was not significantly correlated 
with body mass (r2 = 0.06, P = 0.2). A factorial ANOVA 
revealed that, in both species, glucuronic acid output 
was higher in individuals fed on PSC-enriched diets than 
in those fed the control diet (Table  1). Moreover, in both 
species, glucuronic acid output was similarly affected 
by TA and OE diets (P =  0.9, Table  1). Accordingly, we 
found a significantly positive correlation between phe-
nols intake and glucuronic acid for both species (LRA; 
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sparrow r2 = 0.29, P = 0.027; finch r2 = 0.31, P = 0.04). 
Moreover, the slopes for glucuronic output versus phenols 
intake between species were statistically indistinguish-
able (ANCOVA; species x phenols intake: F1, 27 =  0.31, 
P  =  0.57, Fig.  4), whereas the intercept differed sig-
nificantly between species (ANCOVA; F1, 27  =  36.73, 
P < 0.0001, Fig. 4). The same pattern was found when we 
analyzed the glucuronic acid per gram of animal mass as a 
function of phenols intake; we observed a positive and sig-
nificant relationship between these variables (LRA; spar-
row r2 = 0.25, P = 0.04, finch r2 = 0.56, P = 0.03), with 
similar slope and intercept between species (homogeneity 
of slopes: F1, 27 = 0.02, P = 0.88; intercept: F1, 27 = 25.5, 
P  <  0.0001). The difference in the excreted glucuronic 
acid per gram of animal reached 300 % in sparrows when 
consuming PSM, whereas in finches it was only 200  % 
(Table 1).

Discussion

Digestion, energy costs and detoxification

In spite of the fact that glucuronic acid excretion responds 
in the same way against the phenols intake for both birds 
(Fig.  4), sparrows at the maximum level of exposure 
ingested 25 % more phenols than finches, this was caused 
mainly by higher rates of food intake, which in sparrows 
exposed to PSM-enriched diets had in average 61 % higher 
energy intake over the control, while in finches it was just 
16 % (Table 1). This gives the first difference in how the 
two species differently confront the presence of PSM in the 
diet. According to Foley and McArthur (1994), animals can 
use two types of strategies to react to consumption of PSM, 

depending on if the costs that the consumer pays are pre or 
post absorptive. Pre-absorptive costs are defined as those in 
which the PSM prevents a proper ingestion or dilutes the 
quality of the diet. Post-absorptive costs are those related 
to costs in detoxification and the excretion of conjugated 
PSM.

In the present study, post-absorptive effects are more 
evident in sparrows. Thus, by comparing the different 
experimental diets, it is seen that this species increases 
daily energy intake and BMR when fed on both PSM diets, 
thus keeping its digestibility and AMEc seemingly con-
stant. Hagerman et  al. (1992) note that tannic acid may 
be absorbed and degraded by the body to avoid forming 
complexes with proteins in mammal’s intestines in order 
to maintain digestibility. This would permit the consump-
tion of food containing PSM, at the expense of an associ-
ated energy cost to process toxins. This behavior would 
fit with the model proposed by Illius and Jessop (1995) in 
which an animal facing tannic acid consumption should 
increase its food intake, as a larger amount of energy avail-
able for detoxification mechanisms could then be obtained. 
The increase in food intake has also been observed in other 
challenged birds that were forced to increase their daily 
energy expenditure (Van Gils et al. 2008; McWilliams and 
Karasov 2014; Barceló et al. 2016). This increase in energy 
intake could be linked to the detoxification process; which 
involves oxidation, hydroxylation, sulfation or conjugation 
with glucuronic acid, ornithine, or amino acids, and implies 
an expenditure of energy for the action of enzymes and 
synthesis of metabolites, while the kidney actively elimi-
nates the detoxification byproducts (Karasov and Martínez 
del Rio 2007).

An important determinant for avian BMR is the mass 
of metabolically active organs, such as the intestine and 

Fig. 1   Basal Metabolic Rate 
of Z. capensis (black) and D. 
diuca (gray) acclimated to 
contrasting PSM diets. Letters 
denote significant differences 
within species according to 
ANCOVA. Results expressed as 
mean ± standard error. TA tan-
nic acid 2 % diet; OE Opuntia 
ficus-indica phenolic extract 
diet
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kidney and the specific metabolic activity of these organs 
(Chappell et  al. 1999; Vézina and Williams 2005; Swan-
son 2010; Zheng et  al. 2013). Accordingly, PSM intake 
in sparrows may be associated with an increase in BMR 
coupled with an increase in the energy intake and the 
mass of metabolically active tissue (i.e., kidney and small 
intestine). These results suggest that the significant higher 
rates of energy expenditure in PSM acclimated sparrows 
(Fig.  2) is associated with the increased detoxification 
demand, which in turn comprises both the energy cost per 
se, but also the long-term effect of increasing the mass 
of the kidney and small intestine. It is also possible that 
the rate of metabolism in sparrows would increase as the 

kidney, liver and intestine tissues increment enzymatic 
activities and thus higher tissue-specific rates of energy 
expenditure. Further studies are needed to evaluate to what 
extent the differences in BMR imposed by detoxification 
of PSM affect the mass-specific metabolic capabilities of 
the internal organs.

On the other hand, there are several ways to avoid the 
absorption of ingested PSM that have been documented 
that could be part of a pre-absorptive strategy, such as 
the formation of a complex with digestive enzymes 
(Hagerman et  al. 1992; Illius and Jessop 1995), the 
action of active glyco-protein transporters in the gut epi-
thelial cells (Green et  al. 2005; Sorensen and Dearing 

Fig. 2   Correlation between 
BMR and daily energy intake 
for the three contrasting PSM 
diets. Z. capensis (above) and 
D. diuca (below). Abbreviation 
as in Fig. 1
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2006), and intestinal microbial metabolism (Kohl 2012). 
In this study, finch individuals exposed to PSM-enriched 
diets have lower total mass and length of their gut, which 
could result in less surface area exposed, lowering PSM 
absorption. This phenomenon can be explained by the 
increased paracellular permeability that exists in birds 
(Caviedes-Vidal et  al. 2007), which allows a facilitated 
absorption of water soluble compounds, nutrients and 
PSM (Karasov et  al. 2012). Our results would support 
the existence of a trade-off between the energy present 
in passively absorbed nutrients and the metabolic costs 

to remove PSM absorbed collaterally (Karasov et  al. 
2012).

Kidney morphology and water balance

According to several authors (Bartholomew and Cade 
1963; MacMillen 1990; Barceló et  al. 2012) strict grani-
vores, as the common diuca-finch, should have a higher tol-
erance to dehydration and more advanced development of 
the renal structure and its functions. This capability would 
allow this species to not rely on foods high in preformed 

Fig. 3   Correlation between 
apparent metabolizable energy 
coeficient (AMEc) and length 
of small intestine in Z. capensis 
(above) and Diuca diuca 
(below) reacting to variable 
PSM in three different diets. 
Abbreviation as in Fig. 1
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water, such as the Opuntia fruits, which is what occurs for 
sparrows (López-Calleja 1995). Thus, the need to include 
dietary items with a higher water content is what would 
lead the sparrows to include Opuntia fruits in its diet, with 
consequent costs generated by the PSM intake. In this vein, 
Ríos et  al. (2012a, b) found that the average roufous-col-
lared sparrow was more tolerant to PSM than the common 
diuca-finch and the strict graminivorous (i.e., gramineae 
seed-eating specialists) many-colored chaco-finch (Salta-
tricula multicolor).

One important item in the detoxificaction capacity of 
PSM, at least for mammals, is water intake (Dearing et al. 
2001). The reasoning is that the osmotic load caused by 
detoxification by-products or the diuretic effects of these 
compounds should increase water intake (Dearing et  al. 
2001; Mangione et  al. 2000). In our study, effects on dif-
ferent attributes related to water homeostasis, such as water 
consumption and size of the cloaca, were observed in finch 
individuals, and the smaller size of the whole intestine to 
prevent further PSM absorption in finches (Table 1) could 
also have an impact on water balance. The cloaca mass and 
length decreases along with lower intestinal sizes which 
also may affect the water absorption capacity (Schmidt-
Nielsen 1997; Braun 2003). The higher rates of water intake 
in finches feeding on the OE diet, not observed in sparrows, 
would be a way to compensate for the decrease in water 
reabsorption capacity of the cloaca, as an indirect response 
to the presence of PSM in their diets. These results agree 
with those reported by Dearing et  al. (2001) in which the 
specialist rodent Neotoma stephensi, accustomed to eat-
ing food with high levels of PSM, did not alter its drink-
ing behavior when given a diet containing PSM; by contrast 

Neotoma albigula, a species that usually eats low amounts 
of PSM in their natural diet, showed PSM intake regulation 
by substantially increasing water intake.

Additionally, the effects of PSM-enriched diets intake 
on kidney morphology are more pronounced in sparrows 
than in finches (Table  1). The apparent use of a post-
absorptive strategy by the sparrows could explain, in 
part, such a pattern. The increased PSM intake by spar-
rows must be filtered and excreted by the kidney (Foley 
et al. 1995), which would produce a greater impact on the 
organ. In this sense, this species has considerable varia-
tions in all of the morphological variables related to renal 
function (Table  1). Nevertheless, the effect on the kid-
ney morphological traits seems to differ between the two 
PSM-enriched diets. This could be explained by the dif-
ferent nature of the PSM given in each of the diets. In this 
sense, the Opuntia fruit final extract used to form the OE 
diet includes a greater variety of phenolic compounds as 
well as alkaloids (Lee et  al. 2003; Saleem et  al. 2006). 
Although total concentration of phenols was lower in the 
OE than in the TA diet, a potential synergistic activity of 
total PSM mixture content in the OE diet could produce a 
greater effect on renal morphology.

In this line, the higher water intake in finches, not 
observed in sparrows, could explain the difference in renal 
trait response to Opuntia extract between both species. 
Whereas the excretion of by-products of PSM metabo-
lism seems to be coupled to increasing total water intake 
in finches; in sparrows, it appears to be achieved through 
modifications in kidney structure, and where this morpho-
logical plasticity has been observed it contributes to urine 
concentration in this species (Sabat et al. 2009).

Fig. 4   Glucuronic acid output 
regression against total phenol 
intake by rufous-collared spar-
row (Z. capensis; black) and 
common diuca-finch (D. diuca; 
open) feeding on diets with 
different phenolic composition: 
tannic acid (triangles), Opuntia 
extract (squares) and control 
diet (circles)
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Conclusions

This study confirms that different mechanisms may be 
triggered in response to PSM intake in birds. We sug-
gested that these different strategies would be related to 
the evolutionary ecology of natural populations. Ríos 
et  al. (2012b) state that the common diuca-finch is a 
less tolerant species to PSM intake. However, our study 
revealed that this may vary according to the evolution-
ary history that is related to the natural diet, as shown 
by previous studies in mammals (Mangione et  al. 2000; 
Samuni-Blank et  al. 2014). The observed differing strat-
egies used by the sparrows and the finches to cope with 
PSM consumption allow them to consume these foods 
without an apparent decline in their health condition; we 
only observed a slight reduction in body mass for finches 
fed with the OE diet. The impact of PSM intake is multi-
systemic and various parameters not included should be 
taken into account in future research. A deeper analysis 
of energy costs through measurements of daily energy 
expenditure, surplus energy and maximum metabolic rate, 
as well as a study of the water balance (e.g., concentra-
tion and composition of the urine), could be useful for 
better understanding the physiological effects of and their 
limitations to PSM intake in birds. Finally, our results 
revealed that the organismal response can be differenti-
ated both in direction and magnitude depending on the 
kind of PSM consumed and also on the physiology and 
ecology of the consumer. Thus, it is of major importance 
to perform studies with other ecologically relevant PSM. 
These may contribute to the specific knowledge of the 
effects of consuming diets with PSM and go some way 
towards explaining food preferences among birds.
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